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ABSTRACT

Two typical neural models have been extensively studied for operator learning,
learning in spatial space via attention mechanism or learning in spectral space via
spectral analysis technique such as Fourier Transform. Spatial learning enables
point-level flexibility but lacks global continuity constraint, while spectral learn-
ing enforces spectral continuity prior but lacks point-wise adaptivity. This work
innovatively combines the continuity prior and the point-level flexibility, with the
introduced Point-Calibrated Spectral Transform. It achieves this by calibrating the
preset spectral eigenfunctions with the predicted point-wise frequency preference
via neural gate mechanism. Beyond this, we introduce Point-Calibrated Spectral
Neural Operators, which learn operator mappings by approximating functions with
the point-level adaptive spectral basis, thereby not only preserving the benefits of
spectral prior but also boasting the superior adaptability comparable to the attention
mechanism. Comprehensive experiments demonstrate its consistent performance
enhancement in extensive PDE solving scenarios.

1 INTRODUCTION

Partial differential equations (PDEs) are widely used across a wide range of scientific and engineering
tasks, such as airfoil design, plastic structure design, and blood flow simulation. However, traditional
PDE solvers depend on high-precision meshes and substantial computational requirements, which
significantly impedes efficiency in many engineering applications.

To resolve these limitations, recent works (Li et al., 2020; Lu et al., 2019; Tripura & Chakraborty,
2022) introduce neural operators, a class of data-driven approaches that directly learn mappings
between continuous function spaces for solving parametric partial differential equations. The most
performed neural operators could be classified into two groups, i.e., attention-based neural opera-
tors (Cao, 2021; Hao et al., 2023; Wu et al., 2024) and spectral-based neural operators (Li et al., 2020;
Tran et al., 2021; Gupta et al., 2021). Attention-based methods directly learn operators in the original
physical space, devoid of prior constraints. In contrast, spectral-based methods learn operators in a
truncated spectral space via spectral transformation such as Fourier Transform, seamlessly integrating
the resolution-invariant prior.

Both attention-based neural operators and spectral-based neural operators exhibit distinct advantages
and limitations. Attention-based neural operators (Hao et al., 2023; Xiao et al., 2023; Wu et al.,
2024) can adapt to various physical systems and obtain consistent leading performance on problems
with sufficient training data amount, benefiting from the flexible spatially point-wise learning on
the physical domain. However, the pure data-driven framework without spectral prior limits their
generalization capability, thus suffering serious performance drops in scenarios with scarce data,
which is common in practical applications. In contrast, Spectral-based neural operators (Li et al.,
2020; Kovachki et al., 2023; Tran et al., 2021) can efficiently learn operator mappings between
continuous spaces with limited training data, through approximating physical functions in the
truncated spectral space. However, the classical spectral processing mechanism lacks point-level
flexibility for adaptively handling the spatially varying phenomenon in physical systems. This
makes them struggle to resolve complex PDEs and constrains their performance promotion with the
increasing of training data amount. Therefore, both attention-based neural operators and existing
spectral-based neural operators struggle to manage various PDE solving scenarios.

This work aims to develop more advanced neural operators that not only have strong generalization
capability like previous spectral-based methods (Li et al., 2020; Tran et al., 2021) but also possess
point-level flexibility like the attention-based methods (Hao et al., 2023; Wu et al., 2024). We present
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Point-Calibrated Spectral Transform, an improved spectral transform technique that integrates
point-wise frequency preference for flexible spectral feature learning. Specifically, we first predict
the frequency preference of each physical point via neural gate mechanism, and then the frequency
preference is used to calibrate spectral eigenfunctions. This enables feature learning in a point-
adaptive spectral space where spatially point-wise status is integrated, rather than point-irrelevant
spectral space like previous approaches (Li et al., 2020; Tran et al., 2021). Next, we introduce
Point-Calibrated Spectral Mixer based Neural Operator (simply denoted as PCSM), where
operator mappings are learned by approximating functions with adaptive spectral basis based on
Point-Calibrated Spectral Transform. In PCSM, the spectral prior enables efficient operator learning
even under scarce training data amount, and the point-level calibration enables adaptively handling
spatially varying phenomena e.g. adding high-frequency features in regions with sharp status changes.

Extensive experiments are conducted to validate the superiority of Point-Calibrated Spectral Mixer.
(a) First, we compare PCSM with previous most performed neural operators on diverse PDE solv-
ing problems, demonstrating its leading performance over both existing spectral-based methods
and attention-based methods. (b) Additionally, our experimental results validate that PCSM simul-
taneously has the advantages of spectral-based and attention-based neural operators. Similar to
spectral-based methods, PCSM can be efficiently optimized during training, performs well under
limited training data, and possesses great zero-shot resolution generalization capability. Similar
to attention-based methods, PCSM can flexibly manage different PDE problems and continuously
achieves significant performance gains as training data amount increases. And we find that PCSM
performs well even under extremely little spectral frequencies, different from previous spectral-based
methods that rely on sufficient spectral frequencies. (c) Furthermore, visualization analysis of the
learned frequency preference is provided. We find that the learned frequency preference by PCSM
can instruct the frequency design for constructing better fixed spectral-based neural operators.

Our core contributions are summarized as follows:

• We present Point-Calibrated Spectral Transform, pioneeringly learning features in a point-status
integrated spectral space, holding potential applications in diverse spectrum-related tasks.

• We present Point-Calibrated Spectral Neural Operator (PCSM), which (a) performs well under
limited training data and unseen resolutions like spectral-based methods, (b) flexibly handles
various PDEs and efficiently utilizes training data like attention-based methods.

• We demonstrate the superiority of PCSM in various scenarios through comprehensive experiments,
and find the frequency preference learned by PCSM can help design spectral-based neural operators.

2 METHODOLOGY

2.1 PRELIMINARY

2.1.1 PROBLEM FORMULATION

Following previous works (Li et al., 2020; Lu et al., 2021; Kovachki et al., 2023), we formulate the
solution of parametric partial differential equations as the operator mapping between two infinite-
dimensional function spaces:

G† : A → U , A = {a|a : Ω → Rda}, U = {u|u : Ω → Rdu}, (1)

where Ω denotes the physical domain, da and du represent the channel number of input functions and
output functions respectively. The function a and u are the state functions defined on the problem
domain. They are differently instantiated for different PDE problems. For example, in the steady-state
problem Darcy Flow, a denotes the diffusion coefficient and u represents the solution function. In
the time-series problem Navier-Stokes, a is the vorticity states in previous time steps and u is the
vorticity states of following time steps. The operator learning problem is to learn a parameterized
surrogate model G†

θ for the operator mapping G†. Specifically, we need to train a neural operator
network G†

θ, which takes (a, g) as input and produces the output function u.

2.1.2 TRANSFORMER-BASED NEURAL OPERATOR

Transformer (Vaswani, 2017) has been a typical choice for neural operator learning (Tran et al., 2021;
Hao et al., 2023; Wu et al., 2024). First, an element-wise projecting layer P maps the input function
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a to a latent function v0 ∈ RN×dv in a high-dimensional space, where dv denotes the number
of latent dimensions. Then, the latent function passes through a stack of feature mixing modules
(M1,M2, ...,Ml), where l represents the network depth. Each Mi takes vi−1 ∈ RN×dv as input and
produces vi ∈ RN×dv as output. Finally, a mapping layer V transforms the last hidden function vl

to the target function u ∈ RN×du . This process can be represented by the equation below:

G†
θ = V ◦Ml ◦ ... ◦M2 ◦M1 ◦ P, (2)

where P and V are typically implemented using fully connected layers. Each feature mixing block
Mi is non-local learnable neural operators (Kovachki et al., 2023), as detailed in Section. A.2.2. In
Transformer-based models, Mi consists of token mixing and channel mixing blocks:

Token Mixing : vmid
i−1 = Fmixer(LayerNorm(vi−1)) + vi−1, (3)

Channel Mixing : vi = FeedForward(LayerNorm(vmid
i−1)) + vmid

i−1, (4)

where LayerNorm(·) and FeedForward(·) are the layer normalization and feed-forward layer, respec-
tively. Fmixer represents the operation for information mixing along the spatial dimension such as
convolution and self-attention. For example, recent works (Cao, 2021; Hao et al., 2023; Wu et al.,
2024) explore attention-based token mixers for operator learning, demonstrating the versatility of
this approach in capturing complex spatial relationships. Though the attention-based token mixer
possesses enough flexibility to adapt to various physical systems, the lack of prior constraints makes
it suffer serious performance drops under limited training data and unseen low-resolution samples, as
shown in Table. 3, 4.

Spectral-based Token Mixer. Spectral neural operators offer an alternative approach to capturing
complex relationships in operator learning. These operators leverage spectral transforms to capture
and manipulate frequency-domain representations of the input data. The typical spectral transform
methods employed include the Discrete Fourier Transform in FNO (Li et al., 2020) and Wavelet
Transform in WNO (Tripura & Chakraborty, 2022). The spectral-based token mixer can be formulated
as follows:

Fmixer
spectral(x) = T −1 ◦ Project ◦ T (x), (5)

where T (·) represents the spectral transform operator, yielding spectral feature x̂ ∈ RNk×dv . Nk

represents the number of retained frequencies in the spectral domain. T −1(·) denotes the inverse
spectral transform operator, producing spatial feature x ∈ RN×dv . Project(·), typically implemented
as a fully connected layer, is a transformation designed to capture complex relationships in the
frequency domain. By operating in the frequency domain, spectral neural operators can efficiently
learn patterns that may be less apparent in the spatial domain, potentially mitigating the performance
degradation observed in attention-based token mixers under data constraints.

2.2 POINT-CALIBRATED SPECTRAL NEURAL OPERATOR

In this section, we propose a new transformer-based neural operator that achieves superior perfor-
mance across various scenarios by integrating the point-level flexibility of attention-based mixers
with the spectral prior of spectral-based mixers.

2.2.1 LAPLACE-BELTRAMI TRANSFORM

While coordinate-based spectral transforms such as Fourier Transform and Wavelet Transform are
prevalent in existing neural operators (Li et al., 2020; Tran et al., 2021; Gupta et al., 2021), they are
limited by uniform discretization requirements and applicability to regular domains. To address these
constraints and enable spectral processing on general physical domains, we introduce the Laplace-
Beltrami Transform, following Chen et al. (2023). This approach adapts to irregular geometries and
non-uniform meshes, potentially enhancing the versatility and accuracy of neural operators across
diverse physical scenarios.

Laplace-Beltrami Transform. For spectral processing on the general physical domain, we follow
Chen et al. (2023) and utilize Laplace-Beltrami Operator (LBO) eigenfunctions (Rustamov et al.,
2007) to transform the features between the spectral and physical domain. LBO eigenfunctions
constitute a set of spectral basis (Patanè, 2018) of manifolds, which have been demonstrated as the
optimal basis for function approximating on Riemannian manifold (Aflalo et al., 2015). The LBO
eigenfunctions can be represented as a list of functions ϕi ∈ RN×1, where each ϕi is an eigenfunction
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Figure 1: The overall architecture of Point-Calibrated Spectral Neural Operator.

Figure 2: Visualization of Point-Calibrated spectral eigenfunctions on Airfoil. The green boxes
signify the calibrated regions with point-level frequency preference.

of the Laplace-Beltrami operator on the manifold. These eigenfunctions have correspondence to
spectral frequencies: eigenfunctions associated with lower eigenvalues correspond to lower spectral
frequencies, while those associated with larger eigenvalues correspond to higher spectral frequencies.

Consider the latent function x ∈ RN×dv , the matrix form of spectral transform TLBT and inverse
transform T −1

LBT could be formulated as follows:

TLBT(x) = [xTϕ1,x
Tϕ2, ...,x

TϕNk ]T , (6)

T −1
LBT(x̂) = [ϕ1, ϕ2, ..., ϕNk ]x̂, (7)

where xTϕi represents the i-th frequency feature of x. x̂ ∈ RNk×dv is the truncated spectrum of
x. Nk is the number of remained frequencies after truncation. To facilitate understanding, we also
provide the formal definition of the transformations in Section. A.2.1. In this work, we use the
robust-laplacian (Sharp & Crane, 2020) library 1 to calculate the LBO eigenfunctions for specific
physical domain. It allows calculating the laplacian for triangle meshes or point clouds of general
physical domain. Thus, we can learn neural operators on both structured domains (using laplacian
of points from manually constructed regular grids) and unstructured domains (using laplacian of
irregular meshes). Additionally, for handling some complex PDEs, we manually add high-frequency
spectrum with Sparse-Frequency Spectral Transform, as shown in Section. A.1.2.

2.2.2 POINT-CALIBRATED LAPLACE-BELTRAMI TRANSFORM

We propose the Point-Calibrated Laplace-Beltrami Transform to enhance spectral neural operators
by combining the spatial learning of attention-based mixers with the strong priors of spectral-based
mixers. By integrating Laplace-Beltrami Operator (LBO) eigenfunctions with point-wise calibration,
we allow frequency selection to vary across physical points. This mechanism can effectively capture
spatially varying phenomena in PDE systems. Our method maintains the computational efficiency
and generalization strengths of spectral approaches while incorporating the spatial adaptability of
attention-based methods, boosting performance across diverse PDE problems.

Given an input feature x ∈ RN×dv , we predict point-wise spectral gates G ∈ [0,1]N×Nk

by an MLP
layer followed by a Softmax function:

G = [g1, g2, ..., gNk ] = Softmax(MLPNk

gate(x) ), (8)

where Nk indicates the number of output frequencies. Softmax(·) is applied along the channel
dimension and produces normalized gates for each physical point. gi ∈ [0,1]N×1 represents the

1Robust-laplacian library link: https://github.com/nmwsharp/nonmanifold-laplacian
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frequency preference of each physical point for the i-th frequency, allowing for point-wise spectral
modulation. We implement the point-calibrated transform using point-wise spectral gates G:

TPC-LBT(x) = [xT (g1 ⊙ ϕ1),x
T (g2 ⊙ ϕ2), ...,x

T (gNk ⊙ ϕNk)]T , (9)

T −1
PC-LBT(x̂) = [g1 ⊙ ϕ1, g2 ⊙ ϕ2, ..., gNk ⊙ ϕNk ]x̂, (10)

where gi ⊙ ϕi denotes the calibrated eigenvector for the i-th frequency. x and x̂ denote the original
features and transformed features, respectively. We demonstrate the spectral mixer based on TPC-LBT
and T −1

PC-LBT is an integral operator in Theorem. A.8. It essentially integrates the integral kernels of
fixed spectral transform and the linear attention mechanism, as detailed in Remark. A.9.

As shown in Figure. 2, the point-wise calibrated eigenvector modulates ϕi individually for each point,
integrating varied frequency preferences across physical points. Unlike the standard Laplace-Beltrami
Transform, where each point’s importance is tied solely to its geometric location, our approach
considers both location and physical state. This allows emphasis on points experiencing significant
physical changes and enables different spectral modulations for latent features across layers.

Discussion. Prior adaptive frequency selection methods (Guibas et al., 2021; George et al., 2022;
Li & Yang, 2023) attempt to directly select frequencies in the spectral domain, resulting in a shared
frequency filter for all points, labeled as global-level frequency selection. Conversely, we cultivate
spectral gates in the spatial domain and utilize the gates during spectral transformation, allowing each
point to select its own suited frequencies, labeled as point-level frequency selection.

Point-Calibrated Spectral Transform enjoys three advantages: (a) PCSM automatically determines
appropriate frequency ranges and combinations for various PDE problems, adapting to domain
geometry and operator types without manual spectrum design. This allows flexible frequency
assignment to each point based on both location and physical state. (b) PCSM combines the efficient
convergence and strong generalization of spectral-based methods with the scalability of attention-
based approaches. This fusion enables effective performance across diverse PDE problems and data
scales. (c) The learned spectral gates reflect the frequency preference of physical points, which can
be used for additional applications such as guiding spectral design for fixed spectral models.

2.2.3 POINT-CALIBRATED SPECTRAL NEURAL OPERATOR

We introduce the Point-Calibrated Spectral Neural Operator, a transformer-based architecture that
integrates Point-Calibrated Spectral Transform with multi-head processing for enhanced performance
in modeling complex physical systems.

Similar to multi-head self-attention (Vaswani, 2017), we enhance the spectral mixer by introducing
the multi-head spectral mixer. Specifically, we first split the latent features x ∈ RN×dv into h vectors
xhead-1, xhead-2, ..., xhead-h along the channel dimension, where xhead-i = x[:,dhead

v ×(i−1):dhead
v ×i] and h

denotes the number of heads. dhead
v = dv/h is the dimension of features in single head. Next, every

vector xhead-i ∈ RN×dhead
v is independently processed by Fmixer

spectral. Finally, all vectors are concatenated
as the output. The multi-head mixer could be formulated as follows:

Fmixer
spectral(x) = T −1

PC-LBT ◦ FC ◦ LayerNorm ◦ TPC-LBT(x), (11)

Fmulti-head-mixer
spectral (x) = Concat(Fmixer

spectral(x
head-i)). (12)

LayerNorm(·) is introduced to normalize the spectral features for more efficient optimization and
enhanced generalization. Additionally, we share the learnable weights of FC for all spectrum
frequencies. By enabling point-wise frequency modulation, our approach offers enhanced modeling
capabilities for a wide range of complex PDE problems across various physical domains.

3 EXPERIMENT

We evaluate PCSM with extensive experiments, including structured mesh problem solving in
Section. 3.1, unstructured mesh problem solving in Section. 3.2, generalization capability evaluation
in Section. 3.3, point-wise frequency preference analysis in Section. 3.4, and ablations in Section. A.4.

3.1 STRUCTURED MESH PROBLEMS

This section compares PCSM with previous neural operators on structured mesh problems, where
the physical domains are represented with meshes aligned with standard rectangle grids. For these
problems, we implement PCSM with LBO eigenfunctions calculated on standard rectangle grids.
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Table 1: Performance comparison on structured mesh problems.

Model Darcy Flow
(Regular, Steady)

Airfoil
(Irregular, Steady)

Navier-Stokes
(Regular, Time)

Plasticity
(Irregular, Time)

FNO (Li et al., 2020) 1.08e-2 - 1.56e-1 -
WMT (Gupta et al., 2021) 8.20e-3 7.50e-3 1.54e-1 7.60e-3
U-FNO (Wen et al., 2022) 1.83e-2 2.69e-2 2.23e-1 3.90e-3
Geo-FNO (Li et al., 2023c) 1.08e-2 1.38e-2 1.56e-1 7.40e-3
U-NO (Rahman et al., 2022) 1.13e-2 7.80e-3 1.71e-1 3.40e-3
F-FNO (Tran et al., 2021) 7.70e-3 7.80e-3 2.32e-1 4.70e-3
LSM (Wu et al., 2023) 6.50e-3 5.90e-3 1.54e-1 2.50e-3
NORM (Chen et al., 2023) 9.71e-3 5.44e-3 1.15e-1 4.39e-3

Galerkin (Cao, 2021) 8.40e-3 1.18e-2 1.40e-1 1.20e-2
HT-Net (Liu et al., 2023) 7.90e-3 6.50e-3 1.85e-1 3.33e-2
OFORMER (Li et al., 2023a) 1.24e-2 1.83e-2 1.71e-1 1.70e-3
GNOT (Hao et al., 2023) 1.05e-2 7.60e-3 1.38e-1 3.36e-2
FactFormer (Li et al., 2023b) 1.09e-2 7.10e-3 1.21e-1 3.12e-2
ONO (Xiao et al., 2023) 7.60e-3 6.10e-3 1.20e-1 4.80e-3
Transolver (Wu et al., 2024) 5.70e-3±1.00e-4 5.30e-3±1.00e-4 9.00e-2±1.30e-3 1.23e-3±1.00e-4

PCSM (w/o Cali) 5.41e-3±1.15e-4 5.13e-3±1.75e-4 9.46e-2±1.24e-3 1.21e-3±3.61e-5

PCSM 4.59e-3±1.94e-4 4.72e-3±1.51e-4 7.34e-2±9.22e-4 8.00e-4±4.58e-5

Figure 3: Prediction error visualization on different problems.

Setup. (a) Problems. The experimental problems include two regular domain problems Darcy Flow
and Navier-Stokes from Li et al. (2020), and two irregular domain problems Airfoil and Plasticity
from Li et al. (2023c). Darcy Flow and Airfoil are steady-state solving problems, while Navier-Stokes
and Plasticity are time-series solving problems. (b) Metric. Same as previous works (Li et al., 2020),
we use Relative L2 between the predicted results and ground truth (the simulated results) as the
evaluation metric, lower value indicating higher PDE solving accuracy. (c) Baselines. We compare
PCSM with a lot of neural operators, covering both spectral-based methods and attention-based
methods. Section. A.3 presents more experimental setup detail.

Quantitative Comparison. Table. 1 presents the quantitative results. PCSM significantly improves
the performance over past spectral-based methods LSM (Wu et al., 2023) and NORM (Chen et al.,
2023), and outperforms the most performed attention-based method Transolver (Wu et al., 2024).
This concludes that calibrated spectral basis effectively resolves the inflexibility of spectral-based
methods and learns better features for operator learning on various problems.

Qualitative Comparison. In Figure. 3, we visualize the prediction error of PCSM and Transolver
on different problems. Compared to Transolver (Wu et al., 2024), the prediction error is evidently
reduced, especially on physical boundaries and some regions with sharp status changes. This further
demonstrates the superior operator learning capability of PCSM.

Optimization Efficiency Comparison. In addition, we compare the validation loss curves of PCSM
and Transolver during training, as portrayed in Figure 4. We notice that PCSM reaches the same
prediction accuracy as Transolver earlier, often dozens or even hundreds of epochs ahead, especially
in the initial and middle stages of training (the first 300 epochs). This confirms the excellent operator
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(b) Navier-Stokes Equation(a) Darcy Flow

Figure 4: Comparison of validation loss curve during training.

Table 2: Performance comparison on unstructured mesh problems.

Model Irregular Darcy
(2290 Nodes)

Pipe Turbulence
(2673 Nodes)

Heat Transfer
(7199 Nodes)

Composite
(8232 Nodes)

Blood Flow
(1656 Nodes)

GraphSAGE (Hamilton et al., 2017) 6.73e-2±5.30e-4 2.36e-1±1.41e-2 - 2.09e-1±5.00e-4 -
DeepOnet (Lu et al., 2019) 1.36e-2±1.30e-4 9.36e-2±1.07e-3 7.20e-4±2.00e-5 1.88e-2±3.40e-4 8.93e-1±2.37e-2

POD-DeepOnet (Lu et al., 2022) 1.30e-2±2.30e-4 2.59e-2±2.75e-3 5.70e-4±1.00e-5 1.44e-2±6.00e-4 3.74e-1±1.19e-3

FNO (Li et al., 2020) 3.83e-2±7.70e-4 3.80e-2±2.00e-5 - - -
NORM (Chen et al., 2023) 1.05e-2±2.00e-4 1.01e-2±2.00e-4 2.70e-4±2.00e-5 9.99e-3±2.70e-4 4.82e-2±6.10e-4

PCSM (w/o Cali) 7.96e-3±7.19e-5 1.11e-2±1.00e-3 1.11e-3±3.25e-4 1.00e-2±5.24e-4 3.73e-2±5.83e-4

PCSM 7.38e-3±6.20e-5 8.26e-3±7.60e-4 1.84e-4±2.27e-5 9.34e-3±2.71e-4 2.89e-2±3.25e-3

fitting ability of PCSM benefiting from the suitable combination of a spectral continuity prior (offering
fundamental function approximation basis) and point-wise calibration (providing efficient adaptivity).

3.2 UNSTRUCTURED MESH PROBLEMS

This section compares PCSM with previous works on unstructured mesh problems, where the
physical domains are represented with irregular triangle meshes. For handling these problems, we
independently calculate LBO eigenfunctions for each problem based on their triangle meshes.

Setup. (a) Problems. The evaluated problems include Irregular Darcy, Pipe Turbulence, Heat
Transfer, Composite, and Blood Flow from Chen et al. (2023). All problems come from realistic
industry scenarios and include both steady-state problems and time-series problems. (b) Metric.
Same as Section. 3.1, Relative L2 between the predicted results and ground truth (the simulated
results) is used as the evaluation metric, lower value indicating better performance. (c) Baselines.
The compared methods include GraphSAGE (Hamilton et al., 2017), DeepOnet (Lu et al., 2019),
POD-DeepOnet (Lu et al., 2022), FNO (Li et al., 2020) and NORM (Chen et al., 2023). Section. A.3
presents more experimental setup detail.

Results. The results are shown in Table. 2. Compared to previous methods, PCSM obtains consistent
enhanced performance across all problems. This validates the benefits of point-adaptive spectral
feature learning of PCSM on complex physical domains and operator mappings.

3.3 GENERALIZATION CAPABILITY COMPARISON

This section compares the generalization performance of PCSM and the best attention-based neural
operator Transolver (Wu et al., 2024), including zero-shot testing on unseen sample resolutions and
neural operator learning on limited training data amount.

Table 3: Zero-shot resolution generalization on Airfoil.
Resolution

Type
Test

Resolution
Transolver

(Wu et al., 2024)
PCSM

(w/o Cali)
PCSM

(w/ Cali)

Original Ratio 111× 26 7.68e-2 1.90e-2 1.74e-2
45× 11 9.73e-2 7.30e-2 5.34e-2

Varied Ratio 221× 26 7.85e-2 1.91e-2 1.69e-2
111× 51 1.26e-2 5.80e-3 5.37e-3

Zero-shot Resolution Generaliza-
tion. We evaluate the zero-shot ca-
pabilities of PCSM and Transolver on
samples with unseen resolutions, on
the irregular domain problem, Airfoil.
The model is trained on the 211× 51
resolution and then tested on lower
resolutions including 111×26 and 45×11, as well as varied ratio resolutions including 221×26 and
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Figure 5: Visualization of prediction error on different test resolutions.

111× 51. We utilize Relative L2 as the performance metric, with a lower value indicating preferred
performance.

Table. 3 presents the quantitative comparison results, where significant performance gaps between
Transolver and PCSM are observed. Additionally, we visualize the prediction error of different
resolutions in Figure. 5. In contrast to Transolver, PCSM significantly diminishes prediction error,
particularly on lower-resolution samples. Our results show that PCSM retains its remarkable resolu-
tion generalization ability akin to previous spectral-based neural operators (Li et al., 2020), different
from the purely attention-based method (Wu et al., 2024) that encounters performance declines on
unseen resolutions despite its superior flexibility.

Table 4: Comparison on different training numbers.

Problem Training
Number

Transolver
(Wu et al., 2024)

PCSM
(w/o Cali)

PCSM
(w/ Cali)

Darcy Flow

200 1.75e-2 1.10e-2 1.06e-2
400 1.04e-2 7.32e-3 6.66e-3
600 6.87e-3 6.20e-3 6.03e-3
800 6.33e-3 5.64e-3 4.98e-3

1000 5.24e-3 5.33e-3 4.38e-3

Navier-Stokes

200 3.76e-1 1.93e-1 1.85e-1
400 3.14e-1 1.48e-1 1.26e-1
600 2.87e-1 1.21e-1 1.17e-1
800 2.49e-1 1.04e-1 8.25e-2

1000 9.60e-2 9.34e-2 7.44e-2

Limited Training Numbers. We ad-
ditionally evaluate the generalization
ability of PCSM and Transolver (Wu
et al., 2024) with limited training data
amount. Specifically, for Darcy Flow
and Navier-Stokes, we train neural
operators with 200, 400, 600, 800,
and 1000 trajectories respectively, and
then tested on extra 200 trajectories.
We use Relative L2 as the perfor-
mance measure, with a lower value
meaning better performance.

Table. 4 reports the results. Overall,
PCSM consistently outperforms Transolver across all quantities of training data. When there is
little training data, PCSM is as good as the fixed spectral baseline (called "PCSM w/o Cali") and
significantly outperforms the attention-based Transolver method. As the training data amount
increases, PCSM efficiently utilizes available data like Transolver, obtaining consistent performance
leading. This illustrates that PCSM maintains the spectral basis prior while gaining flexibility, thus
accounting for its superior performance under various circumstances.

3.4 ANALYSIS OF POINT-WISE FREQUENCY PREFERENCE LEARNED BY PCSM

In this section, we study the frequency augmentation mechanism learned by PCSM, exploring where
and at what level PCSM enhances high or low frequency spectral basis for each physical point.

Point-wise Frequency Preference Visualization. In Figure. 6, the spectral gates G of a 4-layer
PCSM for Darcy Flow and an 8-layer PCSM for Airfoil are displayed. Each physical point’s
spectral gates G (comprising Nk gate values associated with different frequencies for each point)
are visualized by calculating the difference between the sum of high-frequency gates (the last Nk/2
values) and low-frequency gates (the first Nk/2 values). The outcome is a frequency intensity value
ranging between [−1, 1], with larger values (red color) indicating preferring high frequencies and
smaller values (blue color) indicating preferring low frequencies.
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Figure 6: Visualization of point-wise frequency preference on Darcy Flow and Airfoil.

Figure. 6 shows the learned frequency preference of each physical point in different layers and heads.
More visualization results of different resolution samples and different sample cases are presented in
Figure. 7 and Figure. 8 respectively. The following empirical results are observed: (a) Generally, it
prioritizes low-frequency basis for neural operator learning, which aligns with earlier studies (Li et al.,
2020; Chen et al., 2023) favoring the lowest frequencies. (b) Boundary regions and rapidly physical
quantity changing areas lean towards taking more high-frequency spectral basis. This suggests their
need for detailed information. (c) The primary enhancement of high-frequency spectrum appears
in the neural network’s middle layers, diminishes in the late layers, and is nearly absent in the early
layers.

Table 5: Manually fixed spectral design guided by
spectral gates of PCSM on Darcy Flow.
Spectral Types Relative Error

Manually Add High Frequency in Early Layers 5.12e-3
Manually Add High Frequency in Middle Layers 4.84e-3
Manually Add High Frequency in Late Layers 4.97e-3

Fixed Spectral (PCSM w/o Cali) 5.31e-3
Calibrated Spectral (PCSM) 4.38e-3

Fixed Frequency Design Guided by Spec-
tral Gates. As previously demonstrated, no-
table performance enhancements have been
achieved in extensive problems via the point-
adaptive spectral calibration by PCSM. This
raises the question: is the layer selection
strategy for frequency calibration learned
from data universally beneficial?

To investigate this, we conduct an experiment manually adding high-frequency features to the fixed
spectral baseline (i.e. the PCSM w/o Cali) either in compliance or in contradiction with the principle
based on spectral gates learned by PCSM. Specifically, we examine the impact of high-frequency
boosting in three different layer options. These involve boosting the high frequency in the early
layers (1, 2, 3), which differs from PCSM; the late layers (6, 7, 8), somewhat similar to PCSM; and
the middle layers (3, 4, 5), identical to PCSM. We implement high-frequency augmentation using
Sparse-Frequency Spectral Transform, described in Section A.1.2.

The results, laid out in Table 5, reveal that the model emulating PCSM’s exact layer choice (middle
layers) exhibits optimal performance. The next best model aligns closely with PCSM’s choice (late
layers). Conversely, models diverging from PCSM’s chosen method (early layers) were inferior
in performance. These outcomes suggest that the spectral gates learned by PCSM could guide the
frequency design for fixed spectral neural operators.

4 RELATED WORK

Spectral-based Operator Learning. Stem from Li et al. (2020), numerous works have explored
learning operator mappings in spectrum space, which significantly reduces learning difficulty through
efficient function approximation with spectral basis function. FNO (Li et al., 2020) learns operators
in fourier spectral space, LNO (Cao et al., 2024) learns in laplacian spectral space, and WMT (Gupta
et al., 2021) learns in wavelet spectral space. In addition, a line of works investigates the issue
of spectral-based neural operators, including the complex physical domain processing (Li et al.,
2023c; Bonev et al., 2023; Liu et al., 2024), computational efficiency enhancement (Poli et al., 2022;
Tran et al., 2021), multi-scale feature processing (Rahman et al., 2022; Zhang et al., 2024), and
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generalization capability improvement (Brandstetter et al., 2022; Yue et al., 2024). Moreover, Li et al.
(2024) and Du et al. (2023) explored physics-driven neural operators.

Prior studies, however, employ static spectral feature processing, which restricts the networks’ point-
level adaptability and makes the network struggle to handle spatially varying phenomena. In contrast,
we calibrate the spectral eigenfunctions with the point-wise frequency preference learned by spectral
gates, significantly enhancing the feature learning flexibility of spectral-based methods.

Attention-based Operator Learning. Recently, learning operator mappings based on attention
mechanism (Vaswani, 2017) draws extensive studies. The primary benefits of attention are the
capability to handle any physical domains and point-level flexibility for learning high-quality operators
for diverse PDEs. To resolve the quadratic complexity of attention mechanism, previous works (Li
et al., 2023a; Cao, 2021; Hao et al., 2023) employ efficient attentions for operator learning, and
Factformer (Li et al., 2023b) enhance model efficiency with multidimensional factorized attention
mechanism. Besides, Liu et al. (2023) introduce a hierarchical transformer based neural operator for
learning better multi-scale features, Xiao et al. (2023) alleviate the overfitting of neural operators with
orthogonal attention mechanism. In addition, Transolver (Wu et al., 2024) introduces a new operator
learning framework by first predicting slices and then learning attentions between different slices.

While attention-based neural operators achieve impressive performance on various PDEs (Wu et al.,
2024), their lack of spectral constraints results in subpar performance under limited training data
amount and unseen resolutions samples as compared to spectral-based methods. Instead, we develop
point-adaptive spectral processing for learning neural operators, thus simultaneously preserving the
continuity prior of spectral-based methods and point-level flexibility of attention-based methods.

Neural Gate Mechanisms. Gate modules are widely employed in deep neural models. In Mixture-
of-Experts models (Jacobs et al., 1991; Shazeer et al., 2017), the gate layer determines which expert
networks to activate for processing each input. Besides, gated recurrent unit (Cho, 2014) uses the
gate layer to control the flow of information, enabling the model to update the memory cell based on
the relevance of the previous and current inputs. Additionally, Dauphin et al. (2017) shows the gate
mechanism can help select words or features for next word prediction in language modeling.

This work introduces the concept of Calibrated Spectral Transform via neural gate mechanism, which
performs spectral transform integrating point-wise frequency preference. We show its significance for
operator learning, by providing point-level flexibility akin to attention mechanism while maintaining
the advantages of spectral basis.

5 LIMITATION AND FUTURE WORK

Despite obtaining superior performance in a variety of scenarios, the introduced Point-Calibration
methods inevitably suffer certain limitations that do not affect the core conclusion of this work, and
they are worth further exploration in future works.

• Firstly, the introduced spectral feature calibration technique remains a fundamental design, without
considering demands in particular circumstances. Therefore, it is meaningful to develop more
customized calibration methods such as learning frequency preference with physical-driven losses.

• Additionally, although this work has explored a broad PDE solving problems, numerous real-
world physical systems still warrant further investigation. And it is significant to investigate the
application of Point-Calibrated Transform in general deep learning tasks such as time-series signal
prediction and computer vision learning.

6 CONCLUSION

This work presents Point-Calibrated Spectral Mixer based Neural Operators (PCSM), enabling
the point-level adaptivity in spectral-based neural operators by integrating point-wise frequency
preference for spectral processing. The proposed Calibrated Spectral Transform holds significant
potential applications in numerous spectrum-related deep models. Comprehensive experiments
validate the superior performance in various PDE solving scenarios of PCSM, benefiting from the
combination of spectral prior of spectral-based methods and point-level adaptivity of attention-based
methods. We hope PCSM can provide insights for future exploration of PDE solving tasks.
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REPRODUCIBILITY STATEMENT

First, to ensure the reproducibility of performance gains achieved by PCSM, we report the average
and standard deviation across three repeated runs in Table. 1 and Table. 2. Additionally, the tool
library and benchmarks employed in this work are open-sourced thanks to Li et al. (2020), Li et al.
(2023c) and Chen et al. (2023), and we delineate the implementation detail for each problem in
Table. 6. Furthermore, to facilitate replication of our experiments, we include the source code for the
experiments on Darcy Flow, Navier-Stokes, Airfoil, and Plasticity in supplementary material, and
the provided file "README.md" presents the step-by-step running instructions. Extra code will be
organized and made available in the next version.

REFERENCES

Yonathan Aflalo, Haim Brezis, and Ron Kimmel. On the optimality of shape and data representation
in the spectral domain. SIAM Journal on Imaging Sciences, 8(2):1141–1160, 2015.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik Kashinath,
and Anima Anandkumar. Spherical fourier neural operators: Learning stable dynamics on the
sphere. In International conference on machine learning, pp. 2806–2823. PMLR, 2023.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for pde modeling. arXiv preprint arXiv:2209.04934, 2022.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Laplace neural operator for solving
differential equations. Nature Machine Intelligence, 6(6):631–640, 2024.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

Gengxiang Chen, Xu Liu, Qinglu Meng, Lu Chen, Changqing Liu, and Yingguang Li. Learning
neural operators on riemannian manifolds. arXiv preprint arXiv:2302.08166, 2023.

Kyunghyun Cho. On the properties of neural machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259, 2014.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Djork-Arné Clevert. Fast and accurate deep network learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289, 2015.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Yiheng Du, Nithin Chalapathi, and Aditi Krishnapriyan. Neural spectral methods: Self-supervised
learning in the spectral domain. arXiv preprint arXiv:2312.05225, 2023.

Robert Joseph George, Jiawei Zhao, Jean Kossaifi, Zongyi Li, and Anima Anandkumar. Incremental
spatial and spectral learning of neural operators for solving large-scale pdes. arXiv e-prints, pp.
arXiv–2211, 2022.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. Advances in neural information processing systems, 34:24048–24062, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,
Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In
International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
fourier transforms. arXiv preprint arXiv:2105.03824, 2021.

Xin-Yi Li and Yu-Bin Yang. Gafno: Gated adaptive fourier neural operator for task-agnostic time
series modeling. In 2023 IEEE International Conference on Data Mining (ICDM), pp. 1133–1138.
IEEE, 2023.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. Transactions on Machine Learning Research, 2023a. ISSN 2835-8856. URL
https://openreview.net/forum?id=EPPqt3uERT.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling,
2023b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. Journal of Machine Learning Research,
24(388):1–26, 2023c.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024.

Ning Liu, Siavash Jafarzadeh, and Yue Yu. Domain agnostic fourier neural operators. Advances in
Neural Information Processing Systems, 36, 2024.

Xinliang Liu, Bo Xu, and Lei Zhang. HT-net: Hierarchical transformer based operator learn-
ing model for multiscale PDEs, 2023. URL https://openreview.net/forum?id=
UY5zS0OsK2e.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineering,
393:114778, 2022.

12

https://openreview.net/forum?id=EPPqt3uERT
https://openreview.net/forum?id=UY5zS0OsK2e
https://openreview.net/forum?id=UY5zS0OsK2e


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Giuseppe Patanè. Laplacian spectral basis functions. Computer aided geometric design, 65:31–47,
2018.

Michael Poli, Stefano Massaroli, Federico Berto, Jinkyoo Park, Tri Dao, Christopher Ré, and Stefano
Ermon. Transform once: Efficient operator learning in frequency domain. Advances in Neural
Information Processing Systems, 35:7947–7959, 2022.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
operators. arXiv preprint arXiv:2204.11127, 2022.

Raif M Rustamov et al. Laplace-beltrami eigenfunctions for deformation invariant shape representa-
tion. In Symposium on geometry processing, volume 257, pp. 225–233, 2007.

Nicholas Sharp and Keenan Crane. A laplacian for nonmanifold triangle meshes. In Computer
Graphics Forum, volume 39, pp. 69–80. Wiley Online Library, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator: a neural operator for parametric
partial differential equations, 2022. URL https://arxiv.org/abs/2205.02191.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances
in Water Resources, 163:104180, 2022.

Haixu Wu, Tengge Hu, Huakun Luo, Jianmin Wang, and Mingsheng Long. Solving high-dimensional
pdes with latent spectral models. arXiv preprint arXiv:2301.12664, 2023.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

Zipeng Xiao, Zhongkai Hao, Bokai Lin, Zhijie Deng, and Hang Su. Improved operator learning by
orthogonal attention. arXiv preprint arXiv:2310.12487, 2023.

Xihang Yue, Linchao Zhu, and Yi Yang. Deltaphi: Learning physical trajectory residual for pde
solving. arXiv preprint arXiv:2406.09795, 2024.

Xuan Zhang, Jacob Helwig, Yuchao Lin, Yaochen Xie, Cong Fu, Stephan Wojtowytsch, and Shuiwang
Ji. Sinenet: Learning temporal dynamics in time-dependent partial differential equations. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=LSYhE2hLWG.

13

https://arxiv.org/abs/2205.02191
https://openreview.net/forum?id=LSYhE2hLWG
https://openreview.net/forum?id=LSYhE2hLWG


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 METHODOLOGY EXTENSION

A.1.1 FIXED SPECTRAL MIXER

This section presents the implementation of the fixed spectral baseline, i.e. PCSM w/o Cali.

Based on Equation. 5 and the Laplace-Beltrami Transform in Equation. 18 and Equation. 19, the
Fixed Spectral Mixer (PCSM w/o Cali) is formulated as follows:

Fmixer
spectral(x) = T −1

LBT ◦ FC ◦ LayerNorm ◦ TLBT(x), (13)

where LayerNorm(·) is introduced to normalize the spectral features for more efficient optimization
and enhanced generalization. Additionally, we share the learnable weights of FC for all spectrum
frequencies. To ensure a fair comparison, we also employ the multi-head design for the fixed
spectral baseline. Therefore, the only difference between PCSM (w/o Cali) and PCSM is the spectral
calibration operation.

A.1.2 SPARSE-FREQUENCY FIXED SPECTRAL TRANSFORM

To enhance the learning capability of fixed spectral methods, we attempt to manually add high-
frequency spectral features in several network layers. Specifically, instead of using the lowest Nk

frequencies, we uniformly take Nk frequencies from the lowest Nk × r frequencies, where r is
the sparsity ratio. Higher r indicates using more high frequencies and we set r = 2 and r = 4 for
different layers.

We find that using Sparse-Frequency Spectral Mixer in partial network layers effectively improves
the performance of fixed spectral methods. However, such manual frequency design relies on prior
knowledge and repeated experiments to select appropriate layers and sparsity ratios, and additional
computational cost is required for calculating LBO eigenfunctions with NK × r frequencies. To
address this issue, we experiment fixed spectral design guided by learned spectral gates of PCSM, as
shown in Table. 5.

A.1.3 POINT-CALIBRATED FOURIER TRANSFORM

The introduced Point-Calibration technique could also be integrated with additional spectral transform
approaches, such as the widely used Fourier Transform in operator learning.

Consider N physical points sampled from the 1-dim Euclidean domain, the latent features could
be denoted as x ∈ RN×dv . Discrete Fourier Transform (DFT) could be described as the matrix
multiplication between x and F , where F ∈ RN×N is defined as Fn,k = e−j2πnk/N . Inverse
Discrete Fourier Transform (DFT) is matrix multiplication with F ∗, where F ∗ is the conjugate
transpose of F . Suppose Nk lowest frequencies are employed in the spectral domain, we can write
the DFT and IDFT operation as follows:

TDFT(x) = F ∗
trunkx , TIDFT(x) = Ftrunkx̂, (14)

where Ftrunk ∈ RN×Nk

and F ∗
trunk ∈ RNk×N are the matrix defined as Ftrunk = F[:,0:Nk], F ∗

trunk =

F ∗
[0:Nk,:]. x̂ ∈ RNk×dv is the truncated spectrum representation of x.

Next, with the point-wise frequency preference G shown in Equation. 8, we can obtain the Point-
Calibrated Fourier Transform as follows:

TPC-DFT(x) = (G⊙ F ∗
trunk)x , TPC-IDFT(x) = (G⊙ Ftrunk)x̂. (15)

TPC-DFT(·) and TPC-IDFT(·) could be seamlessly integrated with spectral mixer for constructing Point-
Calibrated Fourier Neural Operators.

A.2 DEFINITIONS AND THEORETICAL FOUNDATIONS

This section provides the definitions and theoretical foundations of the introduced Point-Calibrated
Spectral Mixer. We first present the formal definition of Point-Calibrated Spectral Transform and
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its matrix multiplication form in Section. A.2.1. Then we introduce the preliminary lemmas about
the neural operator learning in Section. A.2.2. Next, we provide the theoretical demonstration
(Theory. A.8) that PCSM is the learnable integral neural operator (Theorem. A.8) in Section. A.2.3.
We demonstrate that PCSM integrates the kernel functions of previous linear attention methods and
spectral methods (Remark. A.9).

A.2.1 DEFINITION OF POINT-CALIBRATED SPECTRAL TRANSFORM

Definition A.1. Laplace-Beltrami Spectral Transform.

Consider the input function u : Ω → Rd defined on the physical domain Ω, where Ω ⊂ Rdg and dg
represents the dimension of physical space. For numerical calculation, we commonly take discrete
points from Ω. We denote the set of sampled points from Ω as Ω

′
, i.e. Ω

′ ⊂ Ω. The number of
sampled points in Ω

′
is denoted as N . In addition, we denote the spectral transform of the function

u as û : D → Rd. Here D represents the spectral space and D ⊂ R. We take discrete frequencies
from D and note the set of sampled frequencies as D

′
. The number of elements in D

′
is denoted

with Nk. With these notations, we formulate the Laplace-Beltrami Spectral Transform and inverse
Laplace-Beltrami Spectral Transform as follows:

TLBT(u)(k) =
∑
x∈Ω′

ϕk(x) · u(x), (16)

T −1
LBT(û)(x) =

∑
k∈D′

ϕk(x) · û(k), (17)

where x ∈ Ω
′

and k ∈ D
′

are the elements in spatial space Ω
′

and spectral space D
′

respectively.
ϕk(·) is the LBO eigenfunction of frequency k. The LBO eigenfunctions ϕ = [ϕ1, ϕ2, ..., ϕNk ]

are calculated based on the sampled points in physical domain Ω
′
. Specifically, we calculate the

eigenfunctions using the open-sourced package robust-laplacian (Sharp & Crane, 2020) library 2.

For convenient model implementation, we can also write the spectral transform in matrix multiplica-
tion form. Specifically, taking the discrete points in Ω

′
and discrete frequencies in D

′
, the functions

could be represented as matrix, specifically u ∈ RN×d, û ∈ RNk×d, ϕk ∈ RN×1 and ϕ ∈ RN×Nk

.

TLBT(u) = [uTϕ1,u
Tϕ2, ...,u

TϕNk ]T = ϕTu, (18)

T −1
LBT(û) = [ϕ1, ϕ2, ..., ϕNk ]û = ϕû. (19)

This is consistent with Figure. 1, where the spectral transform and inverse spectral transform are
implemented with simple matrix multiplications.
Definition A.2. Point-Calibrated Laplace-Beltrami Spectral Transform.

Following Definition. A.1, we formulate the Point-Calibrated Laplace-Beltrami Spectral Transform
as follows:

TPC-LBT(u)(k) =
∑
x∈Ω′

ϕk(x) · gk(x) · u(x), (20)

T −1
PC-LBT(û)(x) =

∑
k∈D′

ϕk(x) · gk(x) · û(k). (21)

Here gk(x) = Gk(u)(x) is the learnable gate value. We implement G(u) ∈ R|Ω
′
|×|D

′
| with an

element-wise MLP layer and the Softmax activation function as shown in Equation. 8. Gk is the k-th
column of G.

Similar to Definition 1, we write the spectral transform in matrix multiplication form for convenient
implementation. Specifically, we take the matrix form of these functions, u ∈ RN×d, û ∈ RNk×d,
ϕk ∈ RN×1, ϕ ∈ RN×Nk

, gk ∈ RN×1 and G ∈ RN×Nk

.

TPC-LBT(u) = [uT (g1 ⊙ ϕ1),u
T (g2 ⊙ ϕ2), ...,u

T (gNk ⊙ ϕNk)]T = (ϕ⊙G)Tu, (22)

T −1
PC-LBT(û) = [g1 ⊙ ϕ1, g2 ⊙ ϕ2, ..., gNk ⊙ ϕNk ]û = (ϕ⊙G)û. (23)

2Robust-laplacian library link: https://github.com/nmwsharp/nonmanifold-laplacian
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This is also consistent with Figure. 1, where the spectral transform and inverse spectral transform are
implemented with simple matrix multiplications.

A.2.2 PRELIMINARY THEOREM: INTEGRAL NEURAL OPERATOR LEARNING

The following theorems are summarized from previous works (Li et al., 2020; Kovachki et al., 2023;
Wu et al., 2024), which provide the theoretical basis of the proposed Point-Calibrated Spectral Mixer.
Remark A.3. PDEs could be solved by learning integral neural operators.

Kovachki et al. (2023) formulate the common architecture of neural operators for PDE solving as a
stack of network layers.

Gθ = Q ◦ σ(Wl +Kl) ◦ · · · ◦ σ(Wi +Ki) ◦ · · · ◦ σ(W1 +K1) ◦ P, (24)

where P and Q are both linear point-wise projectors as shown in Equation. 2. Wi is the point-wise
fully connected layer and Ki is the non-local integral operator.

In each network layer, the key is to learn the non-local integral operator Ki defined as follows:

Ki(u)(x) =

∫
Ω

κi(x, ξ,u(x),u(ξ))u(ξ)dξ, (25)

where u is the input function and Ω is the physical domain, as defined in Section. A.2.1. As presented
in (Kovachki et al., 2023), the learnable integral kernel operator enables the mapping between
continuous functions, similar to the weight matrix operation that enables the mapping between
discrete vectors. It could be demonstrated that various neural operators (Li et al., 2020; Cao, 2021;
Chen et al., 2023; Wu et al., 2024) are learning different kernel functions of the stacked integral
neural operators shown in Equation. 25.
Lemma A.4. FNO (Li et al., 2020) learns integral neural operators.

This is demonstrated in Li et al. (2020) and Kovachki et al. (2023). By setting the kernel function as
κ(x, ξ,u(x),u(ξ)) = κ(x− ξ), it could be demonstrated that the kernel integral operator could be
implemented with Fourier Transform. For more details you can refer to Li et al. (2020).
Lemma A.5. The standard Transformer (Vaswani, 2017) learns integral neural operators.

Kovachki et al. (2023) demonstrates that the canonical attention mechanism (Vaswani, 2017) is a
special case of integral neural operators. This could be demonstrated by setting the kernel function as
follows:

κ(x, ξ,u(x),u(ξ)) = (

∫
Ω

exp(Wqu(ξ
′
)(Wku(x))

T )dξ
′
)−1exp(Wqu(x)(Wku(ξ))

T )R, (26)

where Wq ∈ Rd×d, Wk ∈ Rd×d and R ∈ Rd×d are all the training parameter of the neural network.
For simplification, we eliminate the division operation with

√
d. With this formulation, we can derive

the attention mechanism based on the kernel integral operator shown in Equation. 25 and Monte-Carlo
approximation. The proof can be found in Kovachki et al. (2023). Therefore, the attention mechanism
could be employed for PDE solving.

A.2.3 POINT-CALIBRATED SPECTRAL MIXER AS INTEGRAL NEURAL OPERATORS

To validate that the proposed Point-Calibrated Spectral Mixer (PCSM) could learn the neural operators
for PDE solving, this section provides the theoretical demonstration that PCSM is a learnable integral
neural operator (Theorem. A.8).

In addition, we notice that PCSM intrinsically integrates attention models and spectral models
(Remark. A.9) from the perspective of integral kernels. To illustrate this, we will begin from the
demonstrations that the linear attention (Katharopoulos et al., 2020) and the fixed spectral method
NORM (Chen et al., 2023) are also integral operators.
Lemma A.6. Linear attention (Katharopoulos et al., 2020) is a learnable integral operator.

Proof. First, we introduce the formulation of the linear attention mechanism shown in Katharopoulos
et al. (2020). Given the input sequential features x ∈ RN×d, where N and d represent the length of
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the sequence and the dimension of feature embeddings, respectively. We consider the linear attention
mechanism from Katharopoulos et al. (2020) with following formulation:

Linear-Attention(x) = ψ(Wqx) (ψ(Wkx)
T Wvx), (27)

where Wq ∈ Rd×d, Wk ∈ Rd×d and Wv ∈ Rd×d are all the training parameters of the neural
network, similar to the standard attention mechanism. ψ(·) is the normalization function applied
to each row of matrix Wqx and Wkx. Katharopoulos et al. (2020) instantiates ψ(·) = elu(x) + 1,
where elu(·) is the exponential linear unit (Clevert, 2015). As shown in Equation. 27, the core factor
of linear attention is that we first calculate the matrix multiplication between (ψ(Wkx)

T and Wvx,
eliminating the expansion of full attention matrix.

Next, we will demonstrate the linear attention mechanism is an integral neural operator. Consider the
input function u : Ω → Rd as Section. A.2.1. Let’s set the kernel function as follows:

κ(x, ξ,u(x),u(ξ)) = ρ(u(x),u(ξ))R, (28)
ρ(u(x),u(ξ)) =< ψ(Wqu(x)), ψ(Wku(ξ)) >, (29)

where Wq ∈ Rd×d and Wv ∈ Rd×d are both free parameters, and ψ(·) is the normalization function.
R ∈ Rd×d is also the matrix of parameters.

Based on the integral neural operator shown in Equation. 25, we could derive the linear attention
mechanism shown in Equation. 27:

K(u)(x) =

∫
Ω

κ(x, ξ,u(x),u(ξ))u(ξ)dξ

=

∫
Ω

< ψ(Wqu(x)), ψ(Wku(ξ)) > Ru(ξ)dξ (Equation. 28)

=

∫
Ω

ψ(Wqu(x))ψ(Wku(ξ))
TWvu(ξ)dξ (Matrix R as matrix Wv)

≈
∑
ξ∈Ω′

ψ(Wqu(x))ψ(Wku(ξ))
TWvu(ξ) (Monte-Carlo approximation)

= ψ(Wqu(x))
∑
ξ∈Ω′

ψ(Wku(ξ))
TWvu(ξ)

(30)

where Ω
′

is the set of sampled points from Ω, as presented in Definition. A.1. Same as Lemma. A.5,
we utilize the Monte-Carlo approximation used in Kovachki et al. (2023), which is based on sufficient
sampling points from the physical domain Ω and proper discretization of the normalization function.

By taking the discrete matrix form of the function u like Definition. A.1, we can get the equation
form that is the same as the implementation of linear attention (Equation. 27). Therefore, linear
attention could learn the integral neural operators for PDE solving.
Lemma A.7. The spectral model NORM (Chen et al., 2023) learns integral neural operators.

Proof. First, we present the spectral mixer used in NORM. NORM (Chen et al., 2023) proposes to
learn neural operators through Laplace-Beltrami Spectral Transform. The network consists of stacked
layers based on the spectral mixer as follows:

Fmixer
spectral(u) = T −1

LBT ◦ Project ◦ TLBT(u), (31)

where u : Ω → Rd is the input function, TLBT and T −1
LBT represent the Laplace-Beltrami Spectral

Transform and inverse Laplace-Beltrami Spectral Transform presented in Definition. A.1. Project
represents the processing in spectral space, and it could be implemented in multiple methods. In
NORM (Chen et al., 2023) it is a fully connected layer like FNO (Li et al., 2020).

Next, we could set the kernel function shown in Equation. 25 as follows:

κ(x, ξ,u(x),u(ξ)) = ρ(x, ξ)R, (32)

ρ(x, ξ) =

∫
D

ϕk(x) · ϕk(ξ)dk, (33)
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where ϕk(x) is the spectral eigenfunction of the physical domain Ω, as presented in Definition. A.1.
D represents the spectral space. R ∈ Rd×d is the matrix of parameters.

Based on the kernel function, we could derive the spectral mixer based on the Laplace-Beltrami
Transform used in NORM (Chen et al., 2023) from the integral neural operator shown in Equation. 25:

K(u)(x) =

∫
Ω

κ(x, ξ,u(x),u(ξ))u(ξ)dξ

=

∫
Ω

∫
D

ϕk(x) · ϕk(ξ)dkRu(ξ)dξ (Equation. 32)

=

∫
D

ϕk(x)R

∫
Ω

ϕk(ξ)u(ξ)dξdk

≈
∑
k∈D′

(ϕk(x) ·R
∑
ξ∈Ω′

ϕk(ξ) · u(ξ)) (Monte-Carlo approximation)

=
∑
k∈D′

(ϕk(x) ·R TLBT(u)(k)) (Equation. 16)

= T −1
LBT(R TLBT(u))(x) (Equation. 17)

= (T −1
LBT ◦ Project ◦ TLBT(u))(x), (Matrix multiplication as Project)

(34)

where Ω
′

is the set of sampled points from Ω, as presented in Definition. A.1. Same as Lemma. A.5,
we use the Monte-Carlo approximation used in Kovachki et al. (2023), which is based on sufficient
sampling points from the physical domain Ω and proper discretization of the spectral function ϕk(·).
The final form is exactly same as the spectral mixer used in NORM (Chen et al., 2023) as shown in
Equation. 31. Therefore, NORM (Chen et al., 2023) could learn the integral neural operators for PDE
solving.

Theorem A.8. Point-Calibrated Spectral Mixer (PCSM) is the integral neural operator.

Proof. The Point-Calibrated Spectral Mixer is represented in the following form:

Fmixer
spectral(u) = T −1

PC-LBT ◦ Project ◦ TPC-LBT(u), (35)

where u : Ω → Rd is the input function, TPC-LBT and T −1
PC-LBT represent the Point-Calibrated Laplace-

Beltrami Spectral Transform and inverse Point-Calibrated Laplace-Beltrami Spectral Transform
respectively, formulated in Definition. A.2. Project represents the processing in spectral space, and it
could be implemented in multiple methods. In PCSM, it consists of a point-wise normalization and a
fully connected layer.

We could set the kernel function shown in Equation. 25 as follows:

κ(x, ξ,u(x),u(ξ)) = ρ(x, ξ,u(x),u(ξ))R, (36)

ρ(x, ξ,u(x),u(ξ)) =

∫
D

ϕk(x) · ϕk(ξ) · gk(x) · gk(ξ)dk, (37)

where gk(·) ∈ R is the gate value introduced in Definition. A.2. ϕ(x) = [ϕ1(x), ϕ2(x), ..., ϕ|D|(x)]
is the set of eigenfunctions computed on the physical domain Ω, as presented in Definition. A.1, and
D represents the spectral space. R ∈ Rd×d is a parameterized matrix.
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Next, we can arrive Point-Calibrated Spectral Mixer from the kernel function in the above equation
and the formulation of the integral neural operator (Equation. 25). The procedure is shown as follows:

K(u)(x) =

∫
Ω

κ(x, ξ,u(x),u(ξ))u(ξ)dξ

=

∫
Ω

∫
D

ϕk(x) · ϕk(ξ) · gk(x) · gk(ξ)dkRu(ξ)dξ (Equation. 36)

=

∫
D

ϕk(x)gk(x)R

∫
Ω

ϕk(ξ)gk(ξ)u(ξ)dξdk

≈
∑
k∈D′

(ϕk(x)gk(x) ·R
∑
ξ∈Ω′

ϕk(ξ)gk(ξ) · u(ξ)) (Monte-Carlo approximation)

=
∑
k∈D′

(ϕk(x) ·R TPC-LBT(u)(k)) (Equation. 20)

= T −1
PC-LBT(R TPC-LBT(u))(x) (Equation. 21)

= (T −1
PC-LBT ◦ Project ◦ TPC-LBT(u))(x), (Matrix multiplication as Project)

(38)

where Ω
′

is the set of sampled points from Ω, as presented in Definition. A.1. Same as Lemma. A.5,
we use the Monte-Carlo approximation used in Kovachki et al. (2023), which is based on sufficient
sampling points from the physical domain Ω and proper discretization of the spectral function ϕk(·).
We note that although the Project is a LayerNorm and fully connected layer, the matrix multiplication
could act as the Project. This is because the point-wise normalization in spectral space could also be
represented as the multiplication with a matrix that is irrelevant to spatial values.

Therefore, the introduced Point-Calibrated Spectral Neural Operator is essentially an integral neural
operator presented in Kovachki et al. (2023).
Remark A.9. PCSM integrates the kernels of attention-based models and spectral-based models. If
we remove the component of spectral methods from the kernel function, PCSM will become the linear
attention mechanism. If we remove the component of attention methods from the kernel function,
PCSM will become the classic spectral mixer.

Proof. The kernel function (Equation. 36) employed in PCSM actually combines kernel functions of
linear attention (Katharopoulos et al., 2020) and NORM (Chen et al., 2023), as shown in the equation
below:

ρ(x, ξ,u(x),u(ξ)) =

∫
D

ϕk(x) · ϕk(ξ) · gk(x) · gk(ξ)dk,

=

∫
D

ϕk(x) · ϕk(ξ)︸ ︷︷ ︸
Spectral Component

·ψ(Wgu(x))(k) · ψ(Wgu(ξ))(k)︸ ︷︷ ︸
Attention Component

dk,
(39)

where Wg represents the parameterized matrix for the point-wise spectral gates prediction, and ψ(·)
is the Softmax function. They are the spectral gates module used in PCSM.

If we remove the spectral component, we will get the kernel function used in the linear attention
mechanism:

ρ(x, ξ,u(x),u(ξ)) =

∫
D
((((((hhhhhhϕk(x) · ϕk(ξ)︸ ︷︷ ︸
Spectral Component

·ψ(Wgu(x))(k) · ψ(Wgu(ξ))(k)︸ ︷︷ ︸
Attention Component

dk

=

∫
D

ψ(Wgu(x))(k) · ψ(Wgu(ξ))(k)dk

= < ψ(Wgu(x)), (ψ(Wgu(ξ))) >︸ ︷︷ ︸
Same as Equation. 29

.

(40)

From this kernel function, we can derive the linear attention mechanism, as shown in Equation. 30.
The difference to Katharopoulos et al. (2020) is the varied instantiations of Wq, Wv (the weights
are shared and the output dimension is set as NK), and the activation function ψ (we use Softmax
function).
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If we remove the attention component, we will get the kernel function used in the fixed spectral
method NORM (Chen et al., 2023):

ρ(x, ξ,u(x),u(ξ)) =

∫
D

ϕk(x) · ϕk(ξ)︸ ︷︷ ︸
Spectral Component

·
((((((((((((((hhhhhhhhhhhhhh
ψ(Wgu(x))(k) · ψ(Wgu(ξ))(k)︸ ︷︷ ︸

Attention Component

dk

=

∫
D

ϕk(x) · ϕk(ξ)dk︸ ︷︷ ︸
Same as Equation. 33

(41)

From this kernel function, we can derive the spectral method NORM (Chen et al., 2023), as shown in
Equation. 34.

A.3 EXPERIMENT SETUPS

A.3.1 IMPLEMENTATION DETAIL

We implement PCSM with close parameter amount with the compared baselines (Hao et al., 2023;
Wu et al., 2024; Chen et al., 2023). The same optimizer setup with Transolver (Wu et al., 2024) is
employed. All experiments could be conducted with a single A100 device. The implementation detail
for each problem is presented in Table. 6.

A.3.2 METRIC

Same as previous works (Li et al., 2020; Wu et al., 2024), the assessed metric in this work is the
Relative L2 Error, formulated as follows:

L2 =
1

Ntest

Ntest∑
i=1

∥ûi − ui∥2
∥ui∥2

, (42)

where Ntest is the number of evaluated samples, ûi represents the predicted trajectory, and ui denotes
the ground-truth trajectory.

A.3.3 EVALUATED PDE PROBLEMS

Darcy Flow. Darcy Flow is a steady-state solving problem from Li et al. (2020). We experiment
with the identical setup as previous works (Li et al., 2020; Tran et al., 2021; Wu et al., 2024). The
resolution of input and output functions are 85× 85 and there are 1000 trajectories for training and
an additional 200 data for testing.

Navier-Stokes. Navier-Stokes is the PDE solving problem introduced in FNO (Li et al., 2020). We
experiment with the most challenging split where the viscosity coefficient is 1e-5. The input is the
vorticity field of the first 10 time steps and the target is to predict the status of the following 10 steps.
The training and test amounts are 1000 and 200 respectively.

Airfoil. Airfoil is an irregular domain problem from Geo-FNO (Li et al., 2023c). In this experiment,
the neural operators take the airfoil shape as input and predict the Mach number on the domain. The
irregular domain is represented as structured meshes aligned with standard rectangles. All airfoil
shapes come from the NACA-0012 case by the National Advisory Committee for Aeronautics. 1000
samples are used for training and additional 200 samples are used for evaluation.

Plasticity. This task requires neural operators to predict the deformation state of plasticity material
and the impact from the upper boundary by an irregular-shaped rigid die. The input is the shape of
the die and the output is the deformation of each physical point in four directions in future 20 time
steps. There are 900 data for training and an additional 80 data for testing.

Irregular Darcy. This problem involves solving the Darcy Flow equation within an irregular domain.
The function input is a(x), representing the diffusion coefficient field, and the output u(x) represents
the pressure field. The domain is represented by a triangular mesh with 2290 nodes. The neural
operators are trained on 1000 trajectories and tested on an extra 200 trajectories.

Pipe Turbulence. Pipe Turbulence system is modeled by the Navier-Stokes equation, with an
irregular pipe-shaped computational domain represented as 2673 triangular mesh nodes. This task

20
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Table 6: Implementation detail for each PDE problem.

Problems Model Configurations Training Configurations
Depth Width Head Number Nk Optimizer Scheduler Initial Lr Weight Decay Epochs Batch Size

Darcy Flow 8 128 8 128 AdamW OneCycleLR 1e-3 1e-5 500 4
Airfoil 8 128 8 128 AdamW OneCycleLR 1e-3 1e-5 500 4
Navier-Stokes 8 256 8 128 AdamW OneCycleLR 1e-3 1e-5 500 4
Plasticity 8 128 8 128 AdamW OneCycleLR 1e-3 1e-5 500 8
Irregular Darcy 4 64 4 64 AdamW OneCycleLR 1e-3 1e-5 2000 16
Pipe Turbulence 4 64 4 64 AdamW OneCycleLR 1e-3 1e-5 2000 16
Heat Transfer 4 64 4 64 AdamW OneCycleLR 1e-3 1e-5 2000 16
Composite 4 64 4 64 AdamW OneCycleLR 1e-3 1e-5 2000 16
Blood Flow 4 64 4 32 AdamW OneCycleLR 1e-3 1e-5 2000 4

Table 7: Ablation on prediction module for spectral gates.
Input Condition Activation Function Calibration Level Relative Errorx spectral coefficient x+spectral coefficient sigmoid softmax points global

✓ ✓ ✓ 4.38e-3
✓ ✓ ✓ 5.96e-3

✓ ✓ ✓ 4.65e-3
✓ ✓ ✓ 4.86e-3
✓ ✓ ✓ 5.47e-3

requires the neural operator to predict the next frame’s velocity field based on the previous one. Same
as Chen et al. (2023), we utilize 300 trajectories for training and then test the models on 100 samples.

Heat Transfer. This problem is about heat transfer events triggered by temperature variances at the
boundary. Guided by the Heat equation, the system evolves over time. The neural operator strives to
predict 3-dimensional temperature fields after 3 seconds given the initial boundary temperature status.
The output domain is represented by triangulated meshes of 7199 nodes. The neural operators are
trained on 100 data sets and evaluated on another 100 data.

Composite. This problem involves predicting deformation fields under high-temperature stimulation,
a crucial factor in composite manufacturing. The trained operator is anticipated to forecast the
deformation field based on the input temperature field. The structure studied in this paper is an
air-intake component of a jet composed of 8232 nodes, as referenced in (Chen et al., 2023). The
training involved 400 data, and the test examined 100 data.

Blood Flow. The objective is to foresee blood flow within the aorta, including 1 inlet and 5 outlets.
The flow of blood is deemed a homogeneous Newtonian fluid. The computational domain, entirely
irregular, is visualized by 1656 triangle mesh nodes. Over a simulated 1.21-second duration, with
0.01-second temporal steps, the neural operator predicts different times’ velocity fields given velocity
boundaries at the inlet and pressure boundaries at the outlet. Same as (Chen et al., 2023), our
experiment involves training on 400 data sets and testing on 100 data.

A.4 ABLATION STUDY

Table 8: Performance of different frequency numbers
on Darcy Flow.

Problem Frequency Number PCSM
(w/o Cali)

PCSM
(w/ Cali)

Darcy Flow

16 1.04e-2 5.10e-3
32 8.08e-3 5.02e-3
64 6.15e-3 4.85e-3

128 5.31e-3 4.38e-3

Navier-Stokes

16 1.18e-1 9.51e-2
32 1.05e-1 8.77e-2
64 9.47e-2 7.44e-2

128 8.37e-2 7.28e-2

This section ablates the core modules of
PCSM, to reveal the main factors affecting
PCSM performance.

Frequency Preference Prediction Module
Ablation. In Table. 7, we attempt differ-
ent module designs for frequency preference
prediction on Darcy Flow problem.

First, we compare different input conditions
for gates prediction, including only x, only
spectral coefficient, and x+spectral coeffi-
cient. The results are shown in the first 3
lines of Table. 7. Compared to the other two, using only spectral coefficient performs poorly. This
validates the conclusion that frequency preference learning based on point status is particularly
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important, which further explains why PCSM could greatly outperform previous fixed spectral-based
methods that select frequencies without considering physical status.

Next, we experiment with different activation functions in the gate prediction module, including
sigmoid(·) and softmax(·). The results are shown in the first and fourth lines of Table. 7. It could be
observed that softmax(·) is better than sigmoid(·). We posit this is due to the normalization operation
in softmax(·) ensuring consistent spectral feature scale across different physical points.

In addition, we compare the performance between different gate levels, i.e. "point-level frequency
calibration" or "global-level frequency selection", The results are presented in the first and the fifth
lines of Table. 7. "Global" refers to first conducting average pooling on physical points and then
predicting shared spectral gates for all points. The performance of the "Global" model drops a lot.
This directly demonstrates the importance of point-level adaptive feature learning.

Performance without Gates. To fully validate the influence of calibration, for all experiments, we
compare the performance between the fixed spectral baseline (i.e. "PCSM w/o Cali") and Point-
Calibrated Spectral Mixer. The results are presented in Table. 1, 2, 3, 4. Across all problems and
setups, PCSM consistently outperforms the fixed spectral counterpart, which validates the significance
of spectral calibration for neural operator learning on various PDE solving scenarios.

Frequency Number. We compare the performance of PCSM and PCSM (w/o Cali) with different
frequency numbers Nk, as shown in Table. 8. PCSM always performs better than the counterpart
model without spectral gates. The performance gap is particularly significant under lower frequency
numbers (16, 32, and 64). This leads to the conclusion that the frequency calibration eliminates the
dependency on a lot of frequencies, benefiting from the point-level flexible frequencies selection
mechanism. Therefore, PCSM potentially performs better in some practical industry scenarios
without sufficient spectral basis due to huge computational costs.

A.5 ADDITIONAL VISUALIZATION OF POINT-WISE FREQUENCY PREFERENCE

Visualization of Spectral Gates for Samples with Different Resolutions. Figure. 7 presents more
visualization of spectral gates on Airfoil for single samples with varied resolutions. It could be
observed that the frequency preference of each physical point remains consistent as the domain
resolution varies. This demonstrates the resolution-agnostic characteristic of the Calibrated Spectral
Transform.

Visualization of Spectral Gates for Different Samples. Figure. 8 shows the visualization of
frequency preference for different samples on Darcy Flow. Although handling different input
functions, the frequency calibration strategy is consistent for specific heads at specific layers. For
example, the Head-1 of Layer-1 always enhances the high frequency of points at boundaries, and the
Head-1 of Layer2 enhances the high frequency at regions with sharp status changes. This leads to the
conclusion that the Multi-head Calibrated Spectral Mixer learns the modulated frequency calibration
strategy for point-adaptive feature learning.

A.6 PRELIMINARY BACKGROUND ON SPECTRAL NEURAL MIXER

Spectral-based neural modules. We note that the spectral processing has been extensively employed
as basic neural modules for operator learning (Li et al., 2020; Chen et al., 2023; Tran et al., 2021), as
well as general deep learning tasks (Guibas et al., 2021; Lee-Thorp et al., 2021). Unlike the classical
neural modules such as CNN (LeCun et al., 1995), RNN (Chung et al., 2014), and Self-Attention
mechanism (Vaswani, 2017) that directly mix features of different tokens or spatial locations in the
spatial domain, these spectral-based neural modules learn features in the spectral domain.

Specifically, consider the input features x ∈ RN×d, where N is the number of tokens or spatial points
and d is the number of latent dimensions. The spectral-based neural module first transforms the
features in the spatial domain into the spectral domain via spectral transform, after a few processes
such as MLPs, the features are then transformed back to spatial domains. The spectral-based neural
modules could be defined as follows:

Fmixer
spectral(x) = T −1 ◦ Project ◦ T (x),

where T and T −1 represent the spectral transform and inverse spectral transform respectively. They
could be instantiated in multiple ways, such as (inverse) Fourier Transform in Li et al. (2020) and
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(inverse) Laplace-Beltrami Transform in Chen et al. (2023). Project is the point-wise neural modules
such as MLPs.

Definition of high-frequency and low-frequency features. In the frequency domain, the features
at different locations correspond to different frequencies. Consider the transformed spectral feature
of x ∈ RN×d is x̂ ∈ RNk×d, i.e. x̂ = T (x). x̂ consists of Nk features, x̂1, x̂2, ..., x̂Nk , where each
feature x̂∗ ∈ Rd corresponds to specific frequency.

In the Laplace-Beltrami Spectral Transform, we use the eigenfunctions of the Laplace-Beltrami
Operator to transform the spatial signal x ∈ RN×d into spectral signals x̂ ∈ RNk×d. Consider the
LBO eigenfunctions ϕ = [ϕ1, ϕ2, ..., ϕNk ] where the i-th eigenfunction ϕi ∈ RN×1 has the i-th
lowest eigenvalue, ϕi could transform the spatial feature x into the spectral feature at the i-th spectral
feature x̂i via matrix multiplication.

One property of the Laplace-Beltrami Spectral Transform is that the eigenfunctions associated with
lower eigenvalues transform the signal to features of lower frequencies, whereas those with higher
eigenvalues transform them to features of higher frequencies. Therefore, the frequency features
x̂∗ ∈ Rd with lower indexes correspond to lower-frequency features, while those with high indexes
correspond to higher-frequency features.

The roles of high-frequency and low-frequency features in operator learning. Intuitively, different
frequency features help learn various aspects of function transformations for operator learning. As
illustrated in Figure. 2, in the eigenfunctions with smaller eigenvalues (e.g. ϕ56, a lower frequency
eigenfunction), the variation of importance across different spatial locations is smoother, which
facilitates the learning of coarser-grained, slowly varying function transformations. Conversely, in the
eigenfunction with larger eigenvalues (e.g. ϕ72, a higher frequency eigenfunction), the signal changes
rapidly across different locations, aiding in learning finer-grained, faster-changing transformations.

As shown in Figure. 2, unlike conventional frequency eigenfunctions that are independent of the
physical state of points, the introduced Point-Calibrated Spectral Transform calculates the features of
different frequencies integrated with the physical state. Specifically, in Figure. 2 (b), regions with
physical quantities changing rapidly could be automatically assigned stronger importance in the
calculation of higher-frequency features. This could help them achieve enhanced prediction accuracy
by integrating more local details.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 7: Visualization of point-wise frequency preference on Airfoil for samples with different
resolutions.
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Figure 8: Visualization of point-wise frequency preference on Darcy Flow for different samples.
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