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ABSTRACT

In real-world systems, models are frequently updated as more data becomes avail-
able, and in addition to achieving high accuracy, the goal is to also maintain a low
difference in predictions compared to the base model (i.e. predictive “churn”). If
model retraining results in vastly different behavior, then it could cause negative
effects in downstream systems, especially if this churn can be avoided with lim-
ited impact on model accuracy. In this paper, we show an equivalence between
training with distillation using the base model as the teacher and training with an
explicit constraint on the predictive churn. We then show that distillation performs
strongly for low churn training against a number of recent baselines on a wide
range of datasets and model architectures, including fully-connected networks,
convolutional networks, and transformers.

1 INTRODUCTION

Deep neural networks (DNN5s) have had profound success at solving some of the most challenging
machine learning problems. While much of the focus has been spent towards attaining state-of-art
predictive performance, comparatively there has been little effort towards improving other aspects.
One such important practical aspect is reducing unnecessary predictive churn with respect to a base
model. We define predictive churn as the difference in the prediction of a model relative to a base
model on the same datapoints. In a production system, models are often continuously released through
an iterative improvement process which cycles through launching a model, collecting additional data
and researching ways to improve the current model, and proposing a candidate model to replace
the current version of the model serving in production. In order to validate a candidate model, it
often needs to be compared to the production model through live A/B tests (it’s known that offline
performance alone isn’t a sufficient, especially if these models are used as part of a larger system
where the offline and online metrics may not perfectly align (Deng et al., 2013; Beel et al., 2013)).
Live experiments are costly: they often require human evaluations when the candidate and production
model disagree to know which model was correct (Theocharous et al., 2015; Deng & Shi, 2016).
Therefore, minimizing the unnecessary predictive churn can have a significant impact to the cost of
the launch cycle.

It’s been observed that training DNN can be very noisy due to a variety of factors including random
initialization (Glorot & Bengio, 2010), mini-batch ordering (Loshchilov & Hutter, 2015), data
augmentation and processing (Santurkar et al., 2018; Shorten & Khoshgoftaar, 2019), and hardware
(Turner & Nowotny, 2015; Bhojanapalli et al., 2021)— in other words running the same procedure
multiple times can lead to models with surprisingly amount of disagreeing predictions even though
all can have very high accuracies (Bahri & Jiang, 2021). While the stability of the training procedure
is a separate problem from lowering predictive churn, such instability can further exacerbate the issue
and underscores the difficulty of the problem.

Knowledge distillation (Hinton et al., 2015), which involves having a feacher model and mixing its
predictions with the original labels has proved to be a useful tool in deep learning. In this paper, we
show that this surprisingly is not only an effective tool for churn reduction by using the base model
as the teacher, it is also mathematically aligned with learning under a constraint on the churn. Thus,
in addition to providing a strong method for low churn training, we also provide insight into the
distillation.

Our contributions are as follows:
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Figure 1: Illustration of our proposal: We propose using knowledge distillation with the base
model as the teacher (with some mixing parameter A\) and then training on the distilled label. We
show theoretically that training our loss with the distilled label yields approximately the same solution
as the original churn constrained optimization problem for some slack ¢ that depends on A (or vice
versa). The significance is that the simple and popular distillation procedure yields the same solution
as the original churn problem, without having to deal with the additional complexity that comes with
solving constrained optimization problems.

e We show theoretically an equivalence between the low churn training objective (i.e. minimize a
loss function subject to a churn constraint on the base model) and using knowledge distillation
with the base model as the teacher.

e We show that distillation performs strongly in a wide range of experiments against a number
baselines that have been considered for churn reduction.

e Our distillation approach is similar to a previous method called “anchor” (Fard et al., 2016),
which trains on the true labels instead of distilled labels for the incorrectly predicted examples by
the base model, but outperform this method by a surprising amount. We present both theoretical
and experimental results showing that the modification of anchor relative to distillation actually
hurts performance.

2 RELATED WORKS

Prediction Churn. There are few works that address low churn training with respect to a base
model. Fard et al. (2016) proposed an anchor loss which is similar to distillation when the base
model’s prediction agrees with the original label, and uses a scaled version of the original label
otherwise. In our empirical evaluation, we find that this procedure performs considerably worse
than distillation. Cotter et al. (2019a); Goh et al. (2016) use constrained optimization by adding
a constraint on the churn. We use some of the theoretical insights found in that work to show an
equivalence between distillation and the constrained optimization problem. Thus, we are able to
bypass the added complexity of using constrained optimization (Cotter et al., 2019b) in favor of
distillation, which is a simpler and more robust method.

A related but different notion of churn that has been studied is where the goal is to reduce the training
instability. Anil et al. (2018) noted that co-distillation is an effective method. Bahri & Jiang (2021)
proposes a locally adaptive variant of label smoothing and Bhojanapalli et al. (2021) propose entropy
regularizers and a variant of co-distillation. We tested many of the baselines proposed in these papers
and adapt them to our notion of churn and showed that they were not effective at reducing predictive
churn w.r.t. a base model.

Distillation. Distillation (Ba & Caruana, 2013; Hinton et al., 2015), first proposed to transfer knowl-
edge from larger networks to smaller ones, has become immensely popular. Applications include
learning from noisy labels (Li et al., 2017), model compression (Polino et al., 2018), adversarial
robustness (Papernot et al., 2016), DNNs with logic rules (Hu et al., 2016), visual relationship
detection (Yu et al., 2017), reinforcement learning (Rusu et al., 2015), domain adaptation (Asami
et al., 2017) and privacy (Lopez-Paz et al., 2015). Our work adds to the list of applications in which
distillation is effective.
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The theoretical motivation of distillation however is less established. Lopez-Paz et al. (2015) studied
distillation as learning using privileged information (Vapnik & Izmailov, 2015). Phuong & Lampert
(2019) establishes fast convergence of the expected risk of a distillation-trained linear classifier.
Foster et al. (2019) provides a generalization bound for the student with an assumption that it learns a
model close to the teacher. Dong et al. (2019) argued distillation has a similar effect as that of early
stopping. Mobahi et al. (2020) showed an equivalence to increasing the regularization strength for
kernel methods. Menon et al. (2020) establish a bias-variance trade-off for the student. Our analysis
provides a new theoretical perspective of its relationship to churn reduction.

3 DISTILLATION FOR CONSTRAINING CHURN

We are interested in a multiclass classification problem with an instance space X" and a label space
[m] = {1,...,m}. Let D denote the underlying data distribution over instances and labels, and D »
denote the corresponding marginal distribution over X. Let A, denote the (m — 1)-dimensional
simplex with m coordinates. We will use p : X—A,, to denote the underlying conditional-class
probabilities, where p,(z) = P(Y = y|X = x). We assume that we are provided a base classifier
g : X—A,, that predicts a vector of probabilities g(z) € A,, for any instance z. Our goal is to then
learn a new classifier h : X —A,,, constraining its churn to be within an acceptable limit.

We will measure the classification performance of a classifier h using a loss function £ : [m] x
A,,—R that maps a label y € [m] and prediction h(z) € A,, to a non-negative number ¢(y, h(x)),
and denote the classification risk by R(h) := E(, )~ p [¢(y, h(x))].

We would ideally like to define predictive churn as the fraction of examples on which h and g
disagree. For the purpose of designing a tractable algorithm, we will instead work with a softer notion
of churn, which evaluates the divergence between their output distributions. To this end, we use a
measure of divergence d : A,,, x A,,— R, and denote the expected churn between h and g by

C(h) := Ez<p, [d(g(x), h(z))].

We then seek to minimize the classification risk for h, subject to the expected churn being within an
allowed limit € > 0:

h:)r“)n_{rimR(h) st. C(h) < e (1)

We consider loss and divergence functions that are defined in terms of a scoring function ¢ : A, —R""
that maps a distribution to a m-dimensional score. Specifically, we will consider scoring functions
¢ that are strictly proper (Gneiting & Raftery, 2007; Williamson et al., 2016), i.e. for which, given
any distribution u € A,,, the conditional risk E, .y [¢, (V)] is uniquely minimized by v = u. The
following are general forms of the loss and divergence functions employed in this paper:

€¢(y,v) = ¢y(v)§ d¢(u,v) = Z uy(¢y(v) - ¢y(u)) 2)
ye[m]

The cross-entropy loss and KL-divergence are a special case of this formulation when ¢, (v) =
—log(vy), and the squared loss and the squared L, distance can be recovered by setting ¢, (v) =

Sierm) (L1 =) = vi)*.

3.1 BAYES-OPTIMAL CLASSIFIER

We show below that for the loss and divergence functions defined in (2), the optimal-feasible classifier
for the constrained problem in (1) is a convex combination of the class probability function p and the
base classifier g.
Proposition 1. Let (¢, d) be defined as in (2) for a strictly proper scoring function ¢. Suppose ¢(u)
is strictly convex in u. Then there exists \* € [0, 1] such that the following is an optimal-feasible
classifier for (1):

h*(z) = A*p(z) + (1 — A*)g(x).

Furthermore, if u - ¢(u) is a-strongly concave over u € A, w.rt. the Ly-norm, then \* <

\/26/ (e E. [[p(x) — g(@)]2]).




Published as a conference paper at ICLR 2022

Algorithm 1 Distillation-based Churn Reduction

1: Inputs: Training sample S = {(z1,¥1),...,(®n,¥Yn)}, Grid of mixing coefficients A =
{A1,..., AL}, Base classifier g, Constraint slack € > 0
2: Train a classifier hy, for each A\, € A by minimizing the distilled loss in (4):

h;, € argming 4 EA,C (h)
3: Find a convex combination of hy, ... hy by solving following convex program in L variables:

min ~ R(h) st. C(h) <e
heco(hy,...,hr)

and return the solution ﬁ

The strong concavity condition in Proposition 1 is satisfied by the cross-entropy loss and KL-
divergence for a = 1 with the L;-norm, and by the squared loss and L»-distance for o = 2 with the
Ly-norm. The bound suggests that the mixing coefficient A* depends on how close the base classifier
is to the class probability function p.

3.2 DISTILLATION-BASED APPROACH

Proposition 1 directly motivates the use of a distillation-based approach for solving the churn-
constrained optimization problem in (1). We propose treating the base classifier g as a teacher model,
mixing the training labels y with scores from the teacher g(z), and minimizing a classification loss
against the transformed labels:

Lx(h) = E@y)~p[(Aey + (1 = Ng(x)) - (h(x))], 3)

where e, € {0,1}" denotes a one-hot encoding of the label y € [m] and ¢ is a strictly proper
scoring function. It is straight-forward to show that when A = \*, the optimal classifier for the above
distillation loss takes the same form in Proposition 1, i.e. h*(z) = M*p(x) + (1 — A*)g(z). While
the optimal mixing parameter A* is unknown, we propose treating this as a hyper-parameter and
tuning it to reach the desired level of churn.

In practice, we do not have direct access to the distribution D and will need to work with a sample
S = {(z1,11),...,(zn,yn)} drawn from D. To this end, we define the empirical risk and the
empirical churn as follows:

n n

Rb) = = 3 ylyih(e); Clh) = Y dy(elr), b))

i=1 i=1

where {, and dy are defined as in (2) for a scoring function ¢. Our proposal is to then solve the
following empirical risk minimization problem over a hypothesis class X < {h : X—A,,} for

different values of coefficient Ay chosen from a finite grid {\1,..., A} < [0,1]:
) ~ 1 n
hy € argmingey, Ly, (h) := ~ DiOwey, + (1= Mp)g(:) - p(h(z)). (4)
i=1
To construct the final classifier, we find a convex combination of the L classifiers hy, ..., hy, that

minimizes sz(h) while satisfying the constraint C (h) < ¢, and return an ensemble of the L classifiers.
The overall procedure is outlined in Algorithm 1, where we denote the set of convex combinations of

classifiers hy,...,hy by co(hy,...,hy) ={h: 2 — Z;L=1 ahj(z) |ae AL}

The post-processing step in Algorithm 1 amounts to solving a simple convex program in L variables.
This is needed for technical reasons in our theoretical results, specifically, to translate a solution to a
dual-optimal solution to (1) to a primal-feasible solution. In practice, however, we do not construct
an ensemble, and instead simply return a single classifier that achieves the least empirical risk while
satisfying the churn constraint. In our experiments, we use the cross-entropy loss for training, i.e. set

dy(u) = —log(uy).
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4 THEORETICAL GUARANTEES

We provide optimality and feasibility guarantees for the proposed algorithm and also explain why
our approach is better-suited for optimizing accuracy (subject to a churn constraint) compared to the
previous churn-reduction method of Fard et al. (2016).

4.1 OPTIMALITY AND FEASIBILITY GUARANTEES

We now show that the classifier h returned by Algorithm 1 approximately satisfies the churn constraint,
while achieving a risk close to that of the optimal-feasible classifier in H. This result assumes that we
are provided with generalization bounds for the classification risk and churn.

Theorem 2. Let the scoring function ¢ : A, >R’ be convex, and |¢(z) | < B,Vz € A,,. Let the
set of classifiers H be convex, with the base classifier g € H. Suppose C and R enjoy the following
generalization bounds: for any 0 € (0,1), wp. = 1 — § over draw of S ~ D™, for any h € H,

|R(h) — R(h)| < Ag(n,0); |C(h) — C(h)| < Ac(n,9),

Sfor some Ar(n,d) and Ac(n,d) that is decreasing in n and approaches 0 as n—. Let h be

an optimal-feasible classifier in H, i.e. C(h) < e and R(h) < R(h) for all classifiers h for

which C(h) < €. Let h be the classifier returned by Algorithm 1 with A = { max{ 555, u} |ue

{%, %, A 1}}f0r some L € N_. Forany 6 € (0,1), wp. = 1 — § over draw of S ~ D™,
Optimality : R(h) < R(h) + O ((1+ 22) (Ag(n,8) + Ac(n,8) + B)),
Feasibility : C(h) < ¢ + Ac (n,d).

In practice, we expect the churn metric to generalize better than the classification risk, i.e. for
Ac(n,d) to be smaller than A (n, d). This is because the classification risk is computed on “hard”
labels y € [m] from the training sample, whereas the churn metric is computed on “soft” labels
g(x) € A,, from the base model. The traditional view of distillation (Hinton et al., 2015) suggests
that the soft labels from a teacher model come with confidence scores for each example, and thus
allow the student to generalize well to unseen new examples. A similar view is also posed by Menon
et al. (2020) , who argue that the soft labels from the teacher have “lower variance” than the hard
labels from the training sample, and therefore aid in better generalization of the student. To this end,
we apply the generalization bound from (Menon et al., 2020, Proposition 2) to the student’s churn.

Proposition 3 (Generalization bound for churn). Let the scoring function ¢ : A,,—RT be
bounded. For base classifier g, let Uy < R?Y denote the corresponding class of divergence func-
tlons u( ) = dg(h(z),g(z)) = g(x)" (¢(h(z)) — ¢(g(x))) induced by classifiers h € H. Let

= (H Uy, 2n) denote the uniform Ly, covering number for Uy. Fix 6 € (0,1). Then with
probablllty >1— 0 overdraw of S ~ D", forany h € H.:

C(h) < G(h) + O <\/Vg(h)1°g</‘/‘r(5/5> N 10g<M$5/5>> |

n n

where V€ (h) denotes the empirical variance of the divergence values computed on n examples
{g(z;)" (p(h(x;)) — d(g(x:))) 1y, the lower the variance, the tighter is the bound.

In fact, for certain base classifiers g, generalizing well on “churn” can have the additional benefit of
improving classification performance, as shown in Proposition 7 in Appendix B.

4.2 ADVANTAGE OVER ANCHOR LOSS

We next compare our distillation loss in (3) with the previous anchor loss of Fard et al. (2016), which
uses the base model’s prediction only when it agrees with the original label, and uses a scaled version
of the original label otherwise. While originally proposed for churn reduction with binary labels, we
provide below an analogous version of this loss for a multiclass setup:

L£%(h) = Ey)~p[a-¢(h(z))], 5)
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where

)

o ag(z) + (1 —a)e, ify = argmax,;, gi(z)
B ney otherwise

for hyper-parameters «, 7 € [0, 1] and a strictly proper scoring function ¢. Here, we have used
argmax to denote ties being broken in favor of the larger class. While this helps us simplify the
exposition, our results can be easily extended to a version of the loss which includes ties.

The anchor loss does not take into account the confidence with which the base model disagrees with
the sampled label y. For example, if the base model predicts near-equal probabilities for all classes,
but happens to assign a slightly higher probability to a class different from y, the anchor loss would
still completely ignore the base model’s score (even though it might be the case that all the labels are
indeed equally likely to occur). In some cases, this selective use of the teacher labels can result in a
biased objective and may hurt the classifier’s accuracy.

To see this, consider an ideal scenario where the base model predicts the true conditional-probabilities
p(z) and the student hypothesis class is universal. In this case, minimizing the churn w.r.t. the base
model has the effect of maximizing classification accuracy, i.e. a classifier that has zero churn w.r.t.
the base model also produces the least classification error. However, as shown below, even in this
ideal setup, minimizing the anchor loss may result in a classifier different from the base model.

Proposition 4. When g(x) = p(z), Yz, for any given X € [0, 1], the minimizer for the distillation
loss in (3) over all classifiers h is given by:

h*(z) = p(),
whereas the minimizer of the anchor loss in (5) is given by:

j

Zj Zj

apj() + (1 —a)p;(x)  ifj = argmax, px(v)

() —
h (@) = (n 4+ amaxy pi(x)) pj(x) otherwise

; where z; = {

Unless oo = 0 and 7 = 1 (which amounts to completely ignoring the base model) or the base model
makes hard predictions on all points, i.e. p;(z) € {0, 1}, Yz, the anchor loss encourages scores that
differ from the base model p. For example, when o = 1 = 1 (and the base model predicts soft
probabilities), the anchor loss has the effect of down weighting the label that the base model is most
confident about, and as a result, encourages lower scores on that label and higher scores on all other
labels. While one can indeed tweak the two hyper-parameters to reduce the gap between the learned
classifier and the base model, our proposal requires only one hyper-parameter A, which represents an
intuitive trade-off between the one-hot and teacher labels. In fact, irrespective of the choice of )\, the
classifier that minimizes our distillation loss in Proposition 4 mimics the base model p exactly, and
as a result, achieves both zero churn and optimal accuracy.

‘We shall see in the next section that even on real-world datasets, where the base classifier does not
necessarily make predictions close to the true class probabilities (and where the student hypothesis
class is not necessarily universal and of limited capacity), our proposal performs substantially better
than the anchor loss in minimizing churn at a particular accuracy. Figure 3 provides a further ablation
study, effectively interpolating between the anchor and distillation methods, and provides evidence
that using the true (hard) label instead of the teacher (soft) label can steadily degrade performance.

5 EXPERIMENTS

We now show empirically that distillation is an effective method to train models for both accuracy and
low churn. We test our method across a large number of datasets and neural network architectures.

5.1 SETUP

Datasets and architectures: The following are the datasets we use in our experiments, along with
the associated model architectures:

e 12 OpenML datasets using fully-connected neural networks.
e 10 MNIST variants, SVHN, CIFAR10, 40 CelebA tasks using convolutional networks.
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Dataset cold warm s-perturb mixup Is co-dist anchor distill
adult 6.27 N/A 6.05 6.57 N/A 5.78 6.62 4.39
bank 10.04 8.43 7.8 8.25 8.89 7.55 8.77 5.58

magic04 27.56  27.41 24.37 24.68 2779  23.67 2522 1851
phonemes 10.45 10.66 10.09 N/A 9.02 9.3 11.14 7.4
electricity 18.16  17.53 17.23 15.69 16.19 1494 18.22 8.99

eeg 48.02 4296 42.04 3998 4998 5499 26.99 2.0

churn 27.15 25.58 22.19 2049  N/A 18.71 17.59 5.51
elevators 33.34  35.87 30.41 3147 3291 3053 3438  10.44
pollen 44.03 N/A 42.63 446 4206 41.78 4044 3515
phishing 443 4.2 3.97 4.01 4.1 3.74 4.08 291
wilt 9.55 7.27 7.27 6.67 N/A 7.0 7.58 4.93
letters 23.01 23.15 23.47 23.86 23.06 23.44 22.04 16.92

Table 1: Results for OpenML datasets under churn at cold accuracy metric.

e CIFARI10 and CIFAR100 with ResNet-50, ResNet-101, and ResNet-152.

e IMDB dataset using transformer network.

For each architecture (besides ResNet), we use 5 different sizes. For the fully connected network, we
use a simple network with one-hidden layer of 10, 102,10, 10%, and 10° units, which we call fcn-2
where x is the respective size of the hidden layer. For the convolutional neural network, we start
with the LeNet5 architecture (LeCun et al., 1998) and scale the number of hidden units by a factor
of x forx = 1,2,4, 8,16, which we call ConvNet-x for the respective x. Finally, we use the basic
transformer architecture from Keras tutorial (Keras, 2020) and scale the number of hidden units by
x forx = 1,2,4,8, 16, which we call Transformer-x for the respective x. Code for the models in
Keras can be found in the Appendix. For each dataset, we use the standard train/test split if available,
otherwise, we fix a random train/test split with ratio 2:1.

Setup: For each dataset and neural network, we randomly select from the training set 1000 initial
examples, 100 validation examples, and a batch of 1000 examples, and train an initial model using
Adam optimizer with default settings on the initial set and early stopping (i.e. stop when there’s no
improvement on the validation loss after 5 epochs) and default random initialization, and use that
model as the base model. Then, for each baseline, we train on the combined initial set and batch
(2000 datapoints), again using the Adam optimizer with default settings and the same early stopping
scheme and calculate the accuracy and churn against the base model on the test set. We average
across 100 runs and provide the error bands in the Appendix. For all the datasets except the OpenML
datasets, we also have results for the case of 10000 initial examples, 1000 validation examples, and a
batch 1000. We also show results for the case of 100 initial samples, 1000 validation examples, and a
batch of 1000 for all of the datasets. Due to space, we show those results in the Appendix. We ran
our experiments on a cloud environment. For each run, we used a NVIDIA V100 GPU, which took
up to several days to finish all 100 trials.

Baselines: We test our method against the following baselines. (1) Cold start, where we train the
model from scratch with the default initializer. (2) Warm start, where we initialize the model’s
parameters to that of the base model before training. (3) Shrink-perturb (Ash & Adams, 2019),
which is a method designed to improve warm-starting by initializing the model’s weights to « - a5 +
(1—)- By before training, where Oy, are the weights of the base model, 8;y;; is a randomly initialized
model, and « is a hyperparameter we tune across {0.1,0.2, ...,0.9}. (4) Mixup (Zhang et al., 2017)
(a baseline suggested for a different notion of churn (Bahri & Jiang, 2021)), which trains an convex
combinations of pairs of datapoints. We search over its hyperparameter « € {0.1, ..., 0.9}, as defined
in Zhang et al. (2017). (5) Label smoothing (Szegedy et al., 2016), which was suggested by Bahri &
Jiang (2021) for the variance notion of churn, proceeds by training on a convex combination between
the original labels and the base models’ soft prediction. We tune across the convex combination
weight « € {0.1,0.2,...,0.9}. (6) Co-distillation (Anil et al., 2018), which was proposed for the
variance notion of churn, where we train two warm-started networks that train simultaneously on
a loss that is a convex combination on the original loss and a loss on the difference between their
predictions. We tune across the convex combination weight « € {0.1,0.2, ..., 0.9}. (7) Anchor (Fard
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Dataset cold warm s-perturb mixup Is co-dist anchor distill
mnist 6.68 N/A 6.78 5.93 5.02 N/A 5.21 4.81
fashion mnist 1848 N/A 17.08 1693 1652  16.53 15.75 11.9

emnist balanced 42.21  N/A 37.46 37.12 3553 N/A 33.64 2941
emnist byclass 364 N/A 32.33 31.74 3079 3196 3042 245

emnist bymerge 34.17  30.62 30.38 29.86  28.72  29.59 27.07 21.28
emnist letters 29.58 N/A 26.99 262 24.61 N/A 2322 20.16

emnist digits 6.81 N/A 6.95 6.09 5.29 N/A 5.42 4.81
emnist mnist 6.42 N/A 6.28 5.67 4.9 N/A 5.21 4.49
kmnist 1595 N/A 14.08 1341 12.08 N/A 12.0 9.9
k49 mnist 46.35 N/A 39.48 3946 3733 39.99 3524 2946
svhn 32,12 26.88 27.39 29.2 2921 26.01 2543 22.64
cifar10 52.01 47.57 46.36 4717 4792 4461 4575  29.13

Table 2: Results for MNIST variants, SVHN and CIFAR10 under churn at cold accuracy metric.

imdb | transformer-1 imdb | transformer-4 . imdb | transformer-16
3x10°
N o N
2x 10!
- * o g (]
& cold - _ b‘.
g ... warm L 2x107 d
shrink_perturb
g o —&~ mixup
= 1 - label_smoothing
“ & codistill
anchor 107t
- distill 107!
Ex1072
Q)x% anb QFLQ Q‘i\’ Q)x% Q‘a QFLQ QFD Qﬁo’ Q)‘{} Q‘& QFLQ Q‘{} Qq}
Error Error Error

Figure 2: IMDB dataset with Transformer-1, Transformer-4 and Transformer-16. We show the Pareto
frontier for each of the baselines. We see that distillation is able to obtain solutions that dominate the
other baselines in both churn and accuracy.
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Figure 3: Distillation vs Anchor Ablation: We provide an ablation study further showing that using
the true labels for wrongly predicted examples by the base model (as done in anchor method) is
worse than using distillation for all the examples. We show the performance as we vary the number
of wrongly predicted examples that we use the true label instead of the distilled label. The z-axis is
the fraction of the most (sorted by softmax score) wrongly predicted examples (i.e. O is distillation
and 1 is anchor method) and y-axis is the churn at cold accuracy metric. We show the results for
phishing dataset using fcn-1000 and celebA dataset predicting attractiveness using convnet-1, where
the average accuracies across the runs of the base model were 93.3% and 69.2%, respectively.

et al., 2016), which as noted in Section 4.2, proceeds by optimizing the cross-entropy loss on a
modified label: we use the label ag(z) + (1 — a)e, when the base model g agrees with the true label
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y, and ne, otherwise. We tune across o € {0.1,0.2,...,0.9} and € {0.5,0.7, 1}. For distillation,
we tune the trade-off parameter A across {0.1,0.2, ...,0.9}.

Metric: All of the methods will produce a model that we evaluate for both accuracy and churn with
respect to the base model on the test set. We consider the hard notion of churn, which measures the
average difference in hard predictions w.r.t. the base classifier on a test set. We will see later that
there is often-times a trade-off between accuracy and churn, and in an effort to produce one metric
for quantitative evaluation, we propose churn at cold accuracy metric, which is defined as follows.
Each baseline produces a set of models (one for each hyperparameter setting). We take the averaged
churn and accuracy across the 100 runs and choose the model with the lowest churn that is at least as
accurate as the cold-start model (it’s possible that no such model exists for that method). This way,
we can identify the method that delivers the lowest churn but still performs at least as well as if we
trained on the updated dataset in a vanilla manner. We believe this metric is practically relevant as a
practitioner is unlikely to accept a reduction in accuracy to reduce churn.

5.2 RESULTS

The detailed results for the following experiments can be found in the Appendix. Given space
constraints, we only provide a high level summary in this section

OpenML datasets with fully-connected networks: In Table 1 we show the results for the OpenML
datasets using the fcn-1000 network. We see that distillation performs the well across the board, and
for the other fully connected network sizes, distillation is the best in the majority of cases (84% of
the time for initial batch size 1000 and 52% of time for initial batch size 100).

MNIST variants, SVHN, and CIFAR10 with convolutional networks: In Table 2, we show the
results for 10 MNIST variants, SVHN and CIFAR10 using convnet-4. We see that distillation
performs strongly across the board. We found that distillation performs best in 84% of combinations
between dataset and network. When we increase the initial sample size to 10000 and keep the batch
size fixed at 1000, then we found that label smoothing starts becoming competitive with distillation,
where distillation is best 64% of the time, and label smoothing wins by a small margin all other
times. We only saw this phenomenon for a handful of the MNIST variants, which suggests that label
smoothing may be especially effective in these situations. When we decreased the initial sample
down to 100 and kept the batch size the same, we found that distillation was best 48% of the time,
with Anchor being the second best method winning 24% of the time.

For SVHN and CIFARI10, of the 10 combinations, distillation performs the best on all 10 out of the
10. If we increased the initial sample size to 10000 and kept the batch size fixed at 1000, then we
find that distillation still performs the best all 10 out of 10 combinations. If we decreased the initial
sample size to 100 and kept the same batch size, then distillation performs the best on 8 out of the 10
combinations.

CelebA with convolutional networks: Across all 200 combinations of task and network, distillation
performs the best 79% of the time. Moreover, if we increased the initial sample size to 10000 and
kept the batch size fixed at 1000, distillation is even better, performing the best 91.5% of the time. If
we decreased the initial sample size to 100, then distillation is best 96% of the time.

CIFAR10 and CIFAR100 with ResNet: Due to the computational costs, we only run these experi-
ments for initial sample size 1000. In all cases (across ResNet-50, ResNet-101 and ResNet-152), we
see that distillation outperforms the other baselines.

IMDB with transformer network: We experimented for initial batch size 100, 1000, and 10000.
We found that distillation performed the best the majority of the time, where the only notable weak
performance was in some instances where no baselines were even able to reach the accuracy of the
cold starting method. In Figure 2 we show the Pareto frontiers of the various baselines as well as
plotting cost of each method as we vary the trade-off between accuracy and churn. We see that not
only does distillation do well in churn, but it performs the best at any trade-off between churn and
accuracy for the cases shown.

Conclusion: We have proposed knowledge distillation as a new practical solution to churn reduction,
and provided both theoretical and empirical justifications for the approach.
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Reproducibility Statement: All details of experimental setup are in the main text, along with
descriptions of the baselines and what hyperparameters were swept across. Code can be found in the
Appendix. All proofs are in the Appendix.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition (Restated). Let (¢,d) be defined as in (2) for a strictly proper scoring function ¢.
Suppose ¢(u) is strictly convex in u. Then there exists \* € [0, 1] such that the following is an
optimal-feasible classifier for (1):

h* () = A*p(z) + (1 — A*)g(z).

Furthermore, if u - ¢(u) is a-strongly concave over u € A, w.r.t. the Ly-norm, then

2€

2L .
\/a E; [Ip(z) — g(@)[Z]
Proof. Let h* denote an optimal feasible solution for (1). We first note that

R(h) = B,y [((y, h(2))] = By [y, [(ly ()] = Be| S pite)bi(h(e)) |

i€[m]

and

C(h) =Eu| Y] gil@) (4i(b(@)) - 6ig(@))) |-

i€[m]

Because ¢; is strictly convex in its argument, both R(h) and C'(h) are strictly convex in h. In other
words, for any « € [0, 1], and classifiers hy, hao, R(ah; + (1 — a)hy) < aR(hy) + (1 — a)R(h2),
and similarly for C. Furthermore because C(g) = 0 < e, the constraint is strictly feasible, and hence
strong duality holds for (1) (as a result of Slater’s condition being satisfied). Therefore (1) can be
equivalently formulated as a max-min problem:

max min R(h) + uC(h),

peRy h
for which there exists a 4* € R such that (¢*, h*) is a saddle point. The strict convexity of R(h)
and C(h) gives us that h* is the unique minimizer of R(h) + p*C(h). Setting \* = ﬁ, we
equivalently have that h* is a unique minimizer of the weighted objective A* R(h) + (1 — A*)C'(h).

We next show that the minimizer h* is of the required form. Expanding the R and C, we have:
A*R(h) + (1 — A*)C(h)
= E.| >, (Wpi(e) + (1 2*)gi(2))di(h(z)) — (1 - /\*)gi(w)@(g(x))]

ie[m]

= E, | Z (Npi(z) + (1 - /\*)gz(x))d),(h(x))] + aterm independent of h

ie[m]

= E, Z pi(z) gbi(h(x))] + a term independent of h, (6)

ie[m]
where p(x) = A*p(z) + (1 — A*)g(z).

Note that it suffices to minimize (6) point-wise, i.e. to choose h* so that the term within the
expectation > ;c(,,,; Pi () ¢i(h(x)) is minimized for each «. For a fixed «, the inner term is minimized

when h*(z) = p(z). This is because of our assumption that ¢ is a strictly proper scoring function,
i.e. for any distribution u, the weighted loss , u;¢;(v) is uniquely minimized by v = u. Therefore
(6) is minimized by h*(z) = p(z) = A¥*p(z) + (1 — X\¥*)g(x).

To bound A*, we use a result from Williamson et al. (2016); Agarwal (2014) to lower bound C(h)
in terms of the norm difference |h(z) — g(x)||,. Define Q(u) = infyea,, u- ¢(v). Because ¢ is a
proper scoring function, the infimum is attained at v = u. Therefore Q(u) = u - ¢(u), which recall
is assumed to be strongly concave. Also, note that Q(u) = infyea,, u-¢(v) is an infimum of “linear”
functions in u, and therefore VOQ(u) = ¢(u) is a super-differential for Q at u. See Proposition 7 in
Williamson et al. (2016) for more details.

13
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We now re-write C'(h) in terms of Q and lower bound it using the strong concavity property:

C(h) = Eig() (6(b(x)) - o(g())) |
= E.[h(x)- ¢(h(2) + (g(z) ~ h(x)) - $(h(a)) — g(x) - $(g())]
= B.|Q(h@) + (8(2) ~h() - VO(h(x)) - Qg(x)]
> B, |3lh() - @],

where the last step uses the fact that Q is c-strongly concave over u € A, w.r.t. the L,-norm.

Since the optimal scorer h* satisfies the coverage constraint C'(h*) < ¢, we have from the above
bound

E, |5 Ih*(2) - g(@) 2| <«

Substituting for h*, we have:

* 2&
. | Y bte) ~ gl | <

or
2e

(A)? < ,
o, [[p(z) — g(@)|3]
which gives us the desired bound on \*. O

A.2 PROOF OF THEOREM 2

Theorem (Restated). Let the scoring function ¢ : Ay, =R be convex, and |$(z) | < B,Vz € Ap,.
Let the set of classifiers H be convex, with the base classifier g € H. Suppose C and R enjoy the
Sollowing generalization bounds: for any § € (0,1), w.p. = 1 — § over draw of S ~ D", for any
heH#H,
[R(h) — R(b)| < Ag(n.0):  |C(h) ~ C(h)| < Ac(n,d),

for some Ag(n,d) and Ac(n,d) that is decreasing in n and approaches 0 as n—. Let h be
an optimal-feasible classifier in H, i.e. C(B) < € and R(INl) < R(h) for all classifiers h for
which C(h) < e. Let h be the classifier returned by Algorithm 1 with A = { max{ 555, u} | u €
{%, %, e 1}}fors0me LeN,. Foranyd € (0,1), wp. = 1 — 6 over draw of S ~ D™,

Optimality : R(h) < R(h) + O ((1+ 22) (Ag(n,d) + Ac(n,8) + £)),
Feasibility : C(h) < € + A (n,0).
We first note that because |$(z) | < B, Yz € Ay, both }A%(h) < Band é(h) < B. Also, because

¢; 1s convex, both R(h) and C'(h) are convex in h. In other words, for any « € [0, 1], and classifiers

hy,hy, R(ah; + (1 — a)hy) < od%(hl) +(1— a)ﬁ(hg), and similarly for C. Furthermore, the
objective in (4) can be decomposed into a convex combination of the empirical risk and churn:

B = ) Oy, + (1= Ngle) - o(h(z)

1—A

n

= AR(h) + (1= NC(h) + —= 3 g(w:) - S(g(x:)).
i=1
Therefore minimizing L A(h) is equivalent to minimizing the Lagrangian function

Lx(h) = AR(h) + (1= 2)(C(h) - ¢) (M
over h. Moreover, each hy, minimizes £, A, ().
We also note that the churn-constrained optimization problem in (1) can be posed as a Lagrangian
game between a player that seeks to minimize the above Lagrangian over h and a player that seeks to

maximize the Lagrangian over A. The next two lemmas show that Algorithm 1 can be seen as finding
an approximate equilibrium of this two-player game.

14
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Lemma 5. Let the assumptions on ¢ and H in Theorem 2 hold. Let h be the classifier returned
by Algorithm 1 when A is set to A = { max{ 555, u} |u € {F,...,1}} of the range =55, U for
some L € N . Then there exists a bounded Lagrange multiplier \ € | 1] such that (}Al, \) forms
an equilibrium of the Lagrangian min-max game:

ARM) + (1=XN(C(h)—¢) = min  AR() + (1= X)(C(h) —¢)

heco(hy,...,hy)

e (1= N(C(R) —0) = (1-X)(C(B) — ).

_€
c+2B"

Proof. The classifier h returned by Algorithm 1 is a solution to the following constrained optimization
problem over the convex-hull of the classifiers hy, ... hz:

i ﬁh t. C*h <
heoin. | B(h) st C(h) <e

Consequently, there exists a A € [0, 1] such that:

MRB) + (1-X)CB) =9 = | min - ARW) + (1-NOB - @
e (1= N(EB) —0) = (1-H(O®) ~ ). ©)

To see this, note that the KKT conditions (along with the convexity of R and C) give us that there
exists a Lagrange multiplier iz > 0 such that

he argmin R(h) + a(C(h) —¢) (stationarity)
hECO(h17...7hL)

i (}Al) —¢) =0 (complementary slackness).
i = 0, and so (8) and (9) are satisfied for A\ = 1. When é(ﬁ) = ¢, then (8) and (9)
_ 1

T+

When C(h) < €,
are satisfied for A

It remains to show that that \ € For this, we first show that there exists a h’' €

(=55, 1]-
co(hy,...,hy) such that CM) < €/2. To see why, pick h’ to be the minimizer of the Lagrangian

Lx(h) over all h € H for A = =55 Because L) < Lx(g) < AB — (1 — \)e, where g is the

base classifier that we have assumed is in , it follows that C(h’) < 2B <e/2.

Next, by combining (8) and (9), we have
AR (h 1=\ (C(h) —¢) = i AR(h) + (1 —X\)(C(h) — ).
() + max (1= N)(©O@)—) = min - ARM) + (1-1)(Ch) ~0)

Lower bounding the LHS by setting A = 1 and upper bounding the RHS by setting h = h’, we get:
AR(B) < AR(W) - (1- )3,
which gives us:
€/2 < Me/2 + R(h') — R(h)) < Ae/2+ B).

Hence \ > which completes the proof. [

_e
+2B>
Lemma 6. Let h be the classifier returned by Algorithm 1 when A is set to A = {max{ =55, u}|ue
{£....,1}} of the range (555, 1] for some L € N,. Fix 6 € (0,1). Suppose R and C satisfy the
generalization bounds in Theorem 2 with error bounds Ag(n, ) and Ac(n,0) respectively. Then
there exists a bounded Lagrange multiplier Ne (=55 155 1] such that (h i) forms an approximate
equilibrium for the Lagrangian min-max game, i.e. w.p. = 1 — § over draw of sample S ~ D",

AR(h) + 1—XN)(C(h)—¢) < min AR(h) + (1—A)(C(h) —¢)

+ O (Ag(n,0) + Ac(n,d) + B/L) (10)
and

~ ~

max (1~ N(Ch) —¢) < 1-N)(C(h) —e) + O(Ac(n,8) + B/L). (11)
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Proof. We have from Lemma 5 that there exists \ € [555 1] such that

ARM) + (1=XN(C(h)—¢) = min  AR(M) + (1= X)(C(h) —¢) (12)
heco(hi,...,hr)
é = (1-2)(C(h) —e). 1
max (1= )(C(R) — ) = (1= N(C(H) — o (13)
Algorithm 1 works with a discretization A = {max{ﬁ,u} |lu € {+,...,1}} of the range
[ =55, 1]- Allowing X to denote the closest value to X in this set, we have from (12):
PPN Aoa ) an aa 4B
AR(h) + (1-X)(C(h) —¢) < min AR(Mh) + (1 —=X)(C(h) —¢) + —
heco(h,...;hy) L
— min AR() + (1-X)(@(h) —¢) + 2 (14)
= hen T
where the last step follows from the fact that co(hy,...,h;) € H and each hy was chosen to
minimize (1 — A\g)R(h) + Ax(C(h) — €) for A\, € A. Similarly, we have from (13),
~ ~ ~ B
max (1 —XA)(C(h)—¢€) < (1-=X)(C(h)—¢€) + —. (15)

A€[0,1] L

What remains is to apply the generalization bounds for R and C' to (14) and (15). We first bound the
LHS of (14). We have with probability at least 1 — § over draw of S ~ D™:

A~ A~

AR(h) + (1= 2)(C(b) - &) i X
> AR(h) + (1= N)(C(h) —¢) — AAg (n,6) — (1 - NAc (n,0)
> AR(h) + (1= N)(C(h) —¢) — Ag(n.8) — Ac (n,0), (16)

~

where the last step uses the fact that 0 < A < 1. For the RHS, we have with the same probability:
min {AR( )+ (1—N)(C(h) — e)} + 4B/L

< min {/\R(h) + (1=N)(Ch) —€) + 4B/L + Mg (1n,8) + (1 - N)Ac (n,a)}

< min {XR(h) + (1= N (Ch) - e)} 4 AB/L + Ag (n,0) + Ac (n,4),

where we again use 0 < A< Combining (14) with (16) and (17) completes the proof for the first
part of the lemma. Applying the generalization bounds to (15), we have with the same probability:

B/L
> L= NE@) - ) — (1= NE®) -
> max (1-2)(C(h) =) = (1= A)(C(h) =€)
> max {(1=X)(C(0) ~€) = (1= NAc (n,8)} = (1= N)(C(h) — ) = (1 = NAc (n, )
Ae[0,1]
> max (1 N(C(h) =€) = (1= A)(C(h) — ) — 2Ac (n, 4),
elo,
which completes the proof for the second part of the lemma. O

We are now ready to prove Theorem 2.

Proof of Theorem 2. To show optimality, we combine (10) and (11) and get:

AR(h) + Jae (1 —A)(Ch) —¢) < min ARM) + (1—=X)(C(h) —¢)

+O(AR(n,5) + Ac(n,d) + B/L). (17)
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We then lower bound the LHS in (17) by setting A = 1 and upper bound the RHS by setting h to the
optimal feasible solution h, giving us:

AR(h) < AR(R) + (1-3)(0) + O(Ar (1.6) + Ac (n,0) + £).
Dividing both sides by X,

R(h) < R@Dﬁ—%O(AR(m5)+»Ac(m6)+A%)

Lower bounding h\ by 55 gives us the desired optimality result.

The feasibility result dlrectly follows from the fact that Algorithm 1 chooses a h that satisfies the
empirical churn constraint C'(h) < ¢, and from the generalization bound for C. O

A.3 PROOF OF PROPOSITION 4

Proposition (Restated). When g(x) = p(z),Vz, for any given X € [0, 1], the minimizer for the
distillation loss in (3) over all classifiers h is given by:

h*(x) = p(),

whereas the minimizer of the anchor loss in (5) is given by:

. 2 _ 4 N —
W) = < where 2 — {apj (@) + (L —a)pj(x)  ifj = argmax, pi(z)
25 % (e + amaxy pr(x)) pj(x) otherwise

Proof. For the first part, we expand (3) with g(z) = p(z), and have for any A € [0, 1],

Lx(h) = Bz y)~p [(Aey + (1 = A)p(2)) - o(h(2))] (18)
= AE(uy)~p[ey - ¢(h(z))] + (1 - A) 1~DX[ (z) - ¢(h(z))]
= AEo~p, [Eyjz [ey] - ¢(h(2))] + (1 = NEsep, [p(2) - 6(h(2))]
= AE;~p, [P(2) - ¢(h ( NI+ (1= NEsnp, [P(2) - d(h(z))]
= Esvp. [P(2) - o(h(2))]. (19)

For a fixed z, the inner term in (19) is minimized when h*(z) = p(z). This is because of our
assumption that ¢ is a strictly proper scoring function, i.e. for any distribution u, the weighted loss
> ui¢;(v) is uniquely minimized by v = u. Therefore (19) is minimized by h*(z) = p(x), Va.

For the second part, we expand (5) with g(z) = p(x), and have:
L£%(h) = E@y)~pla-é(h(z))],
where

)

o ap(z) + (1 — a)e, ify = argmax,, py(x)
€e, otherwise

For a given z, let us denote j,, = argmax;, px(x). We then have:
L7(h) = By y)~p [(1(y = Jo) (ap(z) + (1 — a)ey) + el(y # jo)ey) - p(h(z))]
= Eoopy [Bye [(1(y = Jo) (ap(2) + (1 — a)ey) + €1y # ju)ey) - d(h(z))]]

2 o) (L(k = ji) (ap() + (1 = a)er) + €L (k # ji)er) ¢(h(9ﬂ)))1
k

= E,p,

=E; py lpjm () (ap(2) + (1 — ey, ) - ¢(h(x) +¢ )] pk(z)%(h(l’))]

k#jx

=Emﬂxﬁhwﬂwmm»+u—a»%xmw>
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+ 9. (2) Y ape(@)dn(h(@)) +e ), pk(ﬂﬁ)(bk@(ﬂﬁ))]

k#jo kE#jo

= Eupy [pjw (@) (apy, (2) + (1 = @) ¢, (h(x)) + (apj, () +€) ) pk(ﬂf)(bk(h(x))]

K#je
= Esvp, [B(2) - o(h(2))], (20)

where

ap;, (x s(x) otherwise

_ {apé( z) + (1 —a)ps(z)  if s = argmax,, p(z)
(amaxy pr(x) + €)ps(x) otherwise '

~ _ ( )+(170‘)p5( ) 1f5=]r
e = {on o S
(

For a fixed x, the inner term in (20) is minimized when h* (z) = %f)(z) where Z(x) = >, Dr(x).
This follows from the fact that for a fixed x, the minimizer of the inner term p(z) - ¢(h(x)) is the
same as the the minimizer of the scaled term %f)(m) - ¢(h(z)), and from ¢ being a strictly proper

scoring function. This completes the proof. O

B ADDITIONAL THEORETICAL RESULTS

B.1 RELATIONSHIP BETWEEN CHURN AND CLASSIFICATION RISK

For certain base classifiers g, generalizing well on “churn” can have the additional benefit of
improving classification performance, as shown by the proposition below.

Proposition 7. Let (¢, d) be defined as in (2) for a strictly proper scoring function ¢. Suppose ¢(u)
is strictly convex in u, ®-Lipschitz w.r.t. Li-norm for each y € [m], and ||¢(2)| s < B,Vz € Ap,.
Let \* be the optimal mixing coefficient defined in Proposition 1. Let Ac(n,d) be the churn

generalization bound defined in Theorem 2. Let h be an optimal feasible classifier in H and h be the
classifier returned by Algorithm 1. Then for any § € (0,1), wp. = 1 — § over draw of S ~ D™:

R(h) - R(h) <€ + Ac(n,d) + (B +@X*)Eswp, [Ip(z) — ()]

Proof. Let h* be the Bayes optimal classifier, i.e. the optimal-feasible classifier over all classifiers
(not just those in H). We have:

R(h) — R(h)
< R(h) — R(h*)

n
&=
8

14
S
®
=8
&

¢
p(2) - (6(h(2) — 6(8())) | — Bavpy [p(2) - (B(0* (2)) - B(g(2)))]
( |

6(B(2) = 6(8(@))) | + [Bavny | D py(@) (6,(0*(@)) - &y (g(x))

ye[m]

< Eopy |p@) - (9(B(2) ~ 6(8@) | + Bavny | 3] 2y(@)]oy(0*(@) - 6, (8())]
ye[m]
< Eiwny [p@)- (¢(h(@) = 6(8(2)) | + ®Eupy | D py(@)0*(2) — ()]s

ye[m]

18



Published as a conference paper at ICLR 2022

< Eowpy [P(@)- (¢(B(x) = 6(g(2))) | + PEorp. [I0*(2) — g@)]i],

where the second-last step follows from Jensen’s inequality, and the last step uses the Lipschitz
assumption on ¢,,.

‘We further have:
R(h) — R(h)

< Eowpy [8) - (¢(h(2) - 6(8(x)) | + Bouny | (p(x) — (@) - (#(B(2) — o(e(2)))
+ @B, p, [[h*(z) — g(2)[1]

< Bowny [8(0)- (6(h(@) - 6(8(2))) | + Bavpy [Ip() — g(@)]116(R() - ()] |
+ @B, p, [[0*(z) — g(2)]1] )

< Epepy [p@)- (6(B(2) = 6(8(2))) | + BEovny [Ip(@) — g()1]
+OE,p, [0*(@) —g@)li]

< Evop, 8@ (6(B(@) ~ 6(8(2)) | + BEsvp, [Ip(@) — g(@)1]

OB, p, [|p(x) — g(@)]1]

~

= C(h) + (B+ A ®)Es-p, [[p(z) — g(@)[1],
where the second step applies Holder’s inequality to each z, the third step follows from the bounded-
ness assumption on ¢, and the fourth step uses the characterization h* (z) = A*p(z) + (1 — A\*)g(x),
for A* € [0, 1] from Proposition 1. Applying Theorem 2 to the churn C'(h) completes the proof. [

This result bounds the excess classification risk in terms of the churn generalization bound and the
expected difference between the base classifier g and the underlying class probability function p.
When the base classifier is close to p, low values of A (n,d) result in low classification risk.

B.2 GENERALIZATION BOUND FOR CLASSIFICATION RISK

As a follow-up to Proposition 3, we also provide generalization bounds for the classification risk
in terms of the empirical variance of the loss values based on a result from (Menon et al., 2020,
Proposition 2).

Proposition 8 (Generalization bound for classification risk). Let the scoring function ¢ : A,, —»R’
be bounded. Let Vg  RY denote the class of loss functions v(x,y) = {s(y,h(z)) = ¢, (h(z))
induced by classifiersh € H. Let ME = J\/'oo(%7 Vs, 2n) denote the uniform Lo, covering number
forVy. Fix 6 € (0,1). Then with probability = 1 — § over draw of S ~ D", for any h € H:
log(ME/5) logw,ff/a))

n n

R(h) < R(h) + O (\/ng(h)
where VI (h) denotes the empirical variance of the loss computed on n examples {¢,, (h(z;))}™ .

C DEFINITIONS OF NETWORK ARCHITECTURES USED

C.1 FULLY CONNECTED NETWORK

FCN-x refers to the following model with size set to "x". In other words, it’s a simple fully connected
network with one hidden layer with x units.

def get_fcn(n_columns,
num_classes=10,
size=100,
weight_init=None) :
model = None
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model = tf.keras.Sequential

[

shape=(n_columns,)),

size, activation=tf.nn.relu),
num_classes, activation="softmax"),

tf.keras.layers.Input
tf.keras.layers.Dense
tf.keras.layers.Dense

—_~ o~ o~ —~

1)

model.compile (

optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=[tf.keras.metrics.categorical_accuracy])

return model

C.2

CONVOLUTIONAL NETWORK

Convnet-x refers to the following model with size set to "x". Convnet-1 is based on the lenet5
architecture LeCun et al. (1998).

def get_convnet (

C.3

input_shape=(28, 28, 3),
size=1,

num_classes=2,
weight_init=None) :

model = tf.keras.Sequential ()
model.add(
tf.keras.layers.Conv2D (
filters=16 * size,
kernel_size=(5, 5),
padding="same",
activation="relu",
input_shape=input_shape))
model.add (tf.keras.layers.MaxPool2D (strides=2))
model.add (
tf.keras.layers.Conv2D (
filters=24 x size,
kernel_size=(5, 5),
padding="valid",
activation="relu"))
model.add (tf.keras.layers.MaxPool2D (strides=2))
model.add (tf.keras.layers.Flatten())
model.add (tf.keras.layers.Dense (128 * size, activation="relu"))
model.add (tf.keras.layers.Dense (84, activation="relu"))
model.add(
model.compile (
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.CategoricalCrossentropy (),
metrics=[tf.keras.metrics.categorical_accuracy])

return model

TRANSFORMER

nyn

Transformer-x refers to the following with size set to "x". It is based on keras tutorial
on text classification (https://keras.io/examples/nlp/text_classification_
with_transformer/ licensed under the Apache License, Version 2.0).
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def get_transformer (maxlen,
size=1,
num_classes=2,
weight_init=None) :
model = None

class TransformerBlock (tf.keras.layers.Layer) :
def _ init_ (self,

embed_dim,
num_heads,

ff dim,
rate=0.1,
weight_init=None) :
super (TransformerBlock, self)._ _init_ ()

self.att = tf.keras.layers.MultiHeadAttention (
num_heads=num_heads, key_dim=embed_dim)

self.ffn = tf.keras.Sequential ([
tf.keras.layers.Dense (ff_dim, activation="relu"),
tf.keras.layers.Dense (embed_dim),

1)
self.layernorml = tf.keras.layers.LayerNormalization (epsilon=1le-6)
self.layernorm2 = tf.keras.layers.LayerNormalization (epsilon=1le-6)

def call(self, inputs, training):
attn_output = self.att (inputs, inputs)
#attn_output = self.dropoutl (attn_output, training=training)
outl = self.layernorml (inputs + attn_output)
ffn_output = self.ffn(outl)
return self.layernorm2 (outl + ffn_output)

class TokenAndPositionEmbedding (tf.keras.layers.Layer):

def __init_ (
self,
maxlen,
vocab_size,
embed_dim,

super (TokenAndPositionEmbedding, self).__init__ ()

self.token_emb = tf.keras.layers.Embedding (
input_dim=vocab_size, output_dim=embed_dim)

self.pos_emb = tf.keras.layers.Embedding (

input_dim=maxlen, output_dim=embed_dim)

def call(self, x):

maxlen = tf.shape(x)[-1]

positions = tf.range(start=0, limit=maxlen, delta=1l)
positions = self.pos_emb (positions)

x = self.token_emb (x)

return x + positions

embed_dim = 32 x size # Embedding size for each token

num_heads = 2 * size # Number of attention heads
ff_dim = 32 x size # Hidden layer size in feed forward network inside transformer
inputs = tf.keras.layers.Input (shape=(maxlen,))
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embedding_layer = TokenAndPositionEmbedding (maxlen, 20000, embed_dim)

x = embedding_layer (inputs)

transformer_block = TransformerBlock (embed_dim, num_heads, ff_dim,
weight_init)

x = transformer_block (x)

= tf.keras.layers.GlobalAveragePoolinglD () (x)

b
|

outputs = tf.keras.layers.Dense (num_classes, activation="softmax") (x)

model = tf.keras.Model (inputs=inputs, outputs=outputs)
model.compile (
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.CategoricalCrossentropy (),
metrics=[tf.keras.metrics.categorical_accuracyl)
return model

D MODEL TRAINING CODE

def model_trainer (get_model,
X_train,
y_train,
X_test,
y_test,
weight_init=None,
validation_data=None,
warm=True,
mixup_alpha=-1,
codistill_alpha=-1,
distill_alpha=-1,
anchor_alpha=-1,
anchor_eps=-1) :
model = get_model ()
if weight_init is not None and warm:
model.set_weights (weight_init)
if FLAGS.loss == "squared":
model.compile (
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.MeanSquaredError (),
metrics=[tf.keras.metrics.categorical_accuracyl])
callback = tf.keras.callbacks.EarlyStopping (monitor="val_loss", patience=3)
history = None

if distill_alpha >= 0:
original_model = get_model ()
original_model.set_weights (weight_init)
y_pred = original_model.predict (X_train)
y_use = distill_alpha * y_pred + (1 - distill_alpha) x y_train
history = model.fit (
x=X_train,
y=y_use,
epochs=FLAGS.n_epochs,
callbacks=[callback],
validation_data=validation_data)
elif anchor_alpha >= 0 and anchor_eps >= 0:
original_model = get_model ()
original_model.set_weights (weight_init)
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y_pred = original_model.predict (X_train)
y_pred_hard = np.argmax (y_pred, axis=1l)
y_hard = np.argmax(y_train, axis=1l)

correct = (y_pred_hard == y_hard)
correct = np.tile(correct, (y_train.shapell], 1))
correct = np.transpose (correct)
correct = correct.reshape(y_train.shape)
y_use = np.where (correct,
anchor_alpha % y_pred + (1 - anchor_alpha) * y_train,

y_train * anchor_eps)

history = model.fit (
x=X_train,
y=y_use,
epochs=FLAGS.n_epochs,
callbacks=[callback],
validation_data=validation_data)

elif mixup_alpha >= O0:

training_generator = deep_utils.MixupGenerator (
X_train, y_train, alpha=mixup_alpha) ()

history = model.fit (
x=training_generator,
validation_data=validation_data,
steps_per_epoch=int (X_train.shape[0] / 32),
epochs=FLAGS.n_epochs,
callbacks=[callback])

elif codistill_alpha >= O0:
teacher_model = get_model ()
if weight_init is not None and warm:
teacher_model.set_weights (weight_init)
val_losses = []

optimizer = tf.keras.optimizers.Adam()
global_step = 0

alpha = 0

codistillation_warmup_steps = 0

for epoch in range (FLAGS.n_epochs) :
X_train_, y_train_ = sklearn.utils.shuffle(X_train, y_train)
batch_size = 32
for i in range (int (X_train_.shape[0] / batch_size)):
if global_step >= codistillation_warmup_steps:
alpha = codistill_alpha
else:
alpha = 0.
with tf.GradientTape () as tape:
X_batch = X_train_[i % 32:(i + 1) % 32, :]
y_batch = y_train_[i * 32:(i + 1) = 32, :]
prob_student = model (X_batch, training=True)

prob_teacher = teacher_model (X_batch, training=True)
loss = deep_utils.compute_loss (prob_student, prob_teacher, y_batch,
alpha)
trainable_weights = model.trainable_weights + teacher_model.trainable_weid]
grads = tape.gradient (loss, trainable_weights)

optimizer.apply_gradients(zip(grads, trainable_weights))
global_step += 1
val_preds = model.predict (validation_datal[0])
val_loss = np.sum/(
deep_utils.cross_entropy(validation_datal[l].astype("float32"),
val_preds))
val_losses.append(val_loss)
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if len(val_losses) > 3 and min(val_losses[-3:]) > val_losses[-4]:

break

else:
history = model.fit (
X_train,
y_train,
epochs=FLAGS.n_epochs,
callbacks=[callback],
validation_data=validation_data)

y_pred_train = model.predict (X_train)
y_pred_test = model.predict (X_test)
return y_pred_train, y_pred_test, model.get_weights()

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ADDITIONAL OPENML RESULTS

E.1.1 INITIAL SAMPLE 100, BATCH SIZE 1000, VALIDATION SIZE 100

In Tables 3 and 4, we show the churn at cold accuracy metric across network sizes (fcn-10, fen-100,
fcn-1000, fen-10000, fen-100000). Table 5 shows the standard error bars. They are obtained by
fixing the dataset and model, and taking the 100 accuracy and churn results from each baseline and
calculating the standard error, which is the standard deviation of the mean. We then report the average
standard error across the baselines We see that distillation is the best 52% of the time.

E.1.2 INITIAL SAMPLE 1000, BATCH SIZE 1000, VALIDATION SIZE 100

In Tables 6 and 7, we show the churn at cold accuracy metric across network sizes (fcn-10, fen-100,
fcn-1000, fen-10000, fen-100000). We see that distillation consistently performs strongly across
datasets and sizes of networks. Table 8 shows the standard error bars. We see that distillation is the
best 84% of the time.

E.2 ADDITIONAL MNIST VARIANT RESULTS

E.2.1 INITIAL SAMPLE SIZE 100, BATCH SIZE 1000, VALIDATION SIZE 100

We show full results in Table 9. We see that distillation is the best for 24 out of the 50 combinations
of dataset and network. Error bands can be found in Table 10.

E.2.2 INITIAL SAMPLE SIZE 1000, BATCH SIZE 1000, VALIDATION SIZE 100

We show full results in Table 11. We see that distillation is the best for 42 out of the 50 combinations
of dataset and network. Error bands can be found in Table 12.

E.2.3 INITIAL SAMPLE SIZE 10000, BATCH SI1ZE 1000, VALIDATION SIZE 1000

We show full results in Table 13. We see that in this situation, label smoothing starts becoming
competitive with distillation with either of them being the best. Distillation is the best for 32 out of
the 50 combinations of dataset and network, and losing marginally to label smoothing in other cases.
See Table 14 for error bands.

E.3 ADDITIONAL SVHN AND CIFAR RESULTS

E.3.1 INITIAL SAMPLE 100, BATCH SIZE 1000, VALIDATION SIZE 100

Results are in Table 15, where we see that distillation is best on 8 out of 10 combinations of dataset
and network. Error bands can be found in Table 16.
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E.3.2 INITIAL SAMPLE 1000, BATCH SIZE 1000, VALIDATION SIZE 100

The results can be found in Table 17. We include the error bands here in Table 18. Distillation is best
in all combinations.

E.3.3 INITIAL SAMPLE 10000, BATCH SIZE 1000, VALIDATION SIZE 1000

Results are in Table 19, where we see that distillation is best on all combinations of dataset and
network. Error bands can be found in Table 20.

E.4 ADDITIONAL CELEBA RESULTS

E.4.1 INITIAL SAMPLE 100, BATCH SI1ZE 1000, VALIDATION SIZE 100

Tables 21, 22, 23, and 24 show the performance of CelebA tasks when we instead use an initial
sample size of 100. We see that across the 200 combinations of task and network, distillation is the
best 192 of time, or 96% of the time. The error bands can be found in Table 25.

E.4.2 INITIAL SAMPLE 1000, BATCH SIZE 1000, VALIDATION SIZE 100

We show some additional CelebA results for initial sample 1000 and batch size 1000 in Ta-
bles 26, 27, 28, and 29 which show performance for each dataset across convnet-1, convnet-2,
convnet-4, convent-8, convnet-16. This gives us 40 - 5 = 200 results, of which distillation performs
the best 158 out of those settings, or 79% of the time. The error bands can be found in Table 30.

E.4.3 INITIAL SAMPLE SIZE 10000, BATCH SI1ZE 1000, VALIDATION SIZE 1000

Tables 31, 32, 33, and 34 show the performance of CelebA tasks when we instead use an initial
sample size of 10000. We see that across the 200 combinations of task and network, distillation is the
best 183 of time, or 91.5% of the time. The error bands can be found in Table 35.

E.5 CIFARI10 AND CIFAR100 ON RESNET

Results can be found in Table 36. We see that distillation outperforms in every case.

E.6 ADDITIONAL IMDB RESULTS

In Table 37, we show the results for the IMDB dataset and transformer networks for initial batch sizes
of 100, 1000 and 10000 with the batch size fixed at 1000. The error bands can be found in Table 38.
We see that for initial sample size of 100, distillation performs poorly for the smaller networks as
the process of distillation hurts the performance with a weak teacher trained on only 100 examples,
but performs well for the larger networks. For initial sample size of 1000 and 10000, distillation is
the clear winner losing in only one instance. We show the full Pareto frontiers and cost curves in
Figure 4.
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| Dataset | network [ cold [ warm [ s-perturb [ mixup | Is [ co-dist [ anchor | distill |

fcn-10 12.75 | N/A 11.55 12.3 N/A | 10.85 N/A N/A

fcn-100 11.8 N/A 10.86 11.14 | 11.11 10.0 N/A N/A

adult fcn-1000 11.78 | 12.2 11.45 11.84 | 12.39 | 10.67 12.16 | 8.55
fcn-10000 14.03 | 13.18 13.28 13.1 12.8 13.1 14.22 9.7

fcn-100000 | 14.13 | 13.28 13.45 13.49 | 13.74 | 13.32 N/A 8.43

fcn-10 10.24 | 9.03 9.17 9.07 8.48 8.17 6.28 6.72

fcn-100 8.19 N/A 6.79 6.81 8.28 6.45 7.85 3.09

bank fcn-1000 10.1 10.71 9.96 9.59 10.29 8.93 10.38 4.35
fcn-10000 12.81 N/A 11.04 11.76 | 12.97 | 10.86 11.42 7.4

fcn-100000 | 10.78 | 10.97 9.79 9.78 8.36 9.21 10.33 5.48

fcn-10 21.71 | 18.29 18.19 1798 | 19.06 | 14.32 20.76 N/A

fcn-100 17.59 | 16.34 16.42 16.17 | 16.85 | 14.44 14.03 12.0

COMPAS fcn-1000 19.08 | 18.37 17.69 17.57 | 18.64 | 16.78 N/A 11.76
fcn-10000 | 23.13 | 23.02 22.23 21.83 N/A 21.6 N/A N/A

fcn-100000 | 24.79 | N/A 24.12 24.2 N/A 24.84 N/A N/A

fcn-10 30.42 | 25.96 27.12 26.58 | 26.88 | 25.71 25.88 | 23.58

fcn-100 32.15 | N/A 28.3 2822 | N/A | 25.61 N/A N/A

magic04 fcn-1000 3235 | N/A 29.75 29.64 | N/A 28.59 31.94 | 20.93

fcn-10000 | 30.84 | 31.0 28.5 29.57 | 29.28 | 27.07 29.09 | 27.49

fcn-100000 | 27.56 | 27.75 25.81 26.37 | 2525 | 25.12 | 26.73 | 23.65

fcn-10 18.64 | 16.77 16.73 N/A N/A N/A 18.0 N/A

fcn-100 18.15 | N/A 17.33 N/A N/A N/A N/A 16.23

phonemes fcn-1000 18.97 | 19.36 18.25 N/A N/A 18.46 20.76 | 13.24
fcn-10000 20.6 | 20.56 20.32 19.68 | 19.71 | 20.35 22.28 16.5

fcn-100000 | 19.66 19.9 18.97 18.3 18.58 | 18.93 20.93 | 12.82

fcn-10 38.8 39.6 36.8 35.8 39.8 33.8 N/A 304

fcn-100 33.45 N/A N/A N/A N/A N/A N/A N/A

electricity fcn-1000 40.29 | N/A 33.43 29.76 | 33.14 | 35.14 4252 | 27.52
fcn-10000 | 35.78 | N/A 35.81 28.63 | 32.81 | 34.11 38.63 | 26.33

fcn-100000 | 33.92 | N/A N/A 3296 | 36.46 | 37.71 N/A N/A

fcn-10 45.92 N/A N/A N/A N/A N/A N/A N/A

fcn-100 52.8 | 47.31 46.88 47.56 | N/A | 41.82 | 32.66 | 25.33

eeg fcn-1000 5473 | N/A 4422 484 | 57.85 N/A 27.38 2.12
fcn-10000 | 50.59 N/A N/A N/A N/A N/A N/A N/A

fcn-100000 | 46.57 | 50.91 44.54 43.34 | 40.63 | 44.43 45.86 | 29.3

Table 3: Results for OpenML datasets for initial sample size 100 under churn at cold accuracy metric
across different sizes of fully connected networks. Part 1 of 2.
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| Dataset | network | cold | warm | s-perturb | mixup | Is [ co-dist | anchor [ distill |

fcn-10 19.57 | N/A 16.9 18.82 | N/A N/A N/A 7.61
fcn-100 23.51 16.9 15.33 17.67 N/A 13.66 15.0 3.16
churn fcn-1000 22.2 N/A 18.2 18.6 N/A 14.68 14.5 4.48
fcn-10000 24.8 241 22.33 2474 | N/A 20.79 | 18.97 | 20.69
fcn-100000 | 23.15 | 18.68 18.52 16.93 | 20.82 | 16.85 18.88 | 18.03
fcn-10 35.52 | N/A 32.43 30.78 N/A | 29.12 N/A 29.5
fcn-100 3406 | N/A 32.25 30.54 | N/A 29.27 | 23.89 | 21.37
elevators | fcn-1000 39.06 | 39.64 35.92 37.35 N/A 3422 | 30.56 | 21.32
fcn-10000 39.8 | 39.68 38.0 35.04 | 4194 | 35.19 | 39.02 | 33.96
fcn-100000 | 33.84 | N/A 34.13 N/A N/A 35.67 N/A N/A
fcn-10 48.06 | 36.85 46.15 34.7 36.74 | 33.85 18.54 | 2.07
fcn-100 4697 | N/A 44.94 4189 | 414 4091 | 28.01 36.61
pollen fcn-1000 47.06 | N/A N/A N/A N/A N/A 3693 | 5.37
fcn-10000 | 45.85 | N/A 45.65 46.06 | 47.11 | 45.81 | 39.53 N/A
fcn-100000 | 45.77 | N/A 46.53 48.12 | N/A 4891 | 43.12 | 40.57
fcn-10 9.74 N/A 8.97 8.76 9.18 8.65 N/A 8.12
fcn-100 7.44 N/A 7.48 6.91 N/A N/A 7.28 6.69
phishing | fcn-1000 8.25 N/A N/A 7.9 7.85 8.11 N/A N/A
fcn-10000 9.21 9.45 8.91 8.7 8.56 8.61 8.53 6.48
fcn-100000 | 10.2 N/A 9.95 9.74 8.85 9.76 9.89 N/A
fcn-10 7.44 N/A 6.48 N/A N/A N/A N/A N/A
fcn-100 3.85 N/A 3.39 3.15 N/A 242 3.81 3.05
wilt fcn-1000 6.45 4.98 3.83 3.41 N/A 0.88 1.61 0.15
fcn-10000 5.08 4.22 3.21 1.58 N/A 0.56 1.89 0.01
fcn-100000 | 7.69 3.98 4.67 3.45 4.19 3.11 3.7 0.22
fcn-10 91.44 | 91.67 91.33 N/A 92.0 90.89 | 92.22 | 90.56
fcn-100 63.1 N/A 63.6 N/A 63.5 N/A N/A N/A
letters fcn-1000 59.6 60.1 59.1 58.57 58.9 N/A 59.13 | 54.43
fcn-10000 | 61.67 | N/A N/A N/A | 60.05 N/A N/A N/A
fcn-100000 | 61.62 | N/A 61.78 60.53 | 60.78 | 61.88 | 61.72 N/A

Table 4: Results for OpenML datasets for initial sample size 100 under churn at cold accuracy metric
across different sizes of fully connected networks. Part 2 of 2.

fcn-10 fcn-100 fcn-1000 fcn-10000 fcn-100000
Dataset | Error [ Churn | Error | Churn [ Error | Churn | Error | Churn | Error | Churn

adult 0.35 0.36 0.32 | 0.39 0.38 0.41 0.43 0.6 0.53 0.61
bank 0.25 0.64 | 0.25 0.48 0.42 0.78 0.57 0.96 0.53 0.81
COMPAS | 048 0.77 0.45 0.68 0.47 0.67 0.54 0.91 0.52 0.94
magic04 | 0.54 0.99 0.63 1.05 0.88 1.37 0.9 1.68 0.71 1.4
phonemes | 0.42 0.54 | 0.36 0.48 0.41 0.57 0.41 0.66 044 | 0.74
electricity | 0.94 2.06 0.67 1.49 0.55 1.43 0.62 1.62 0.62 1.82
eeg 0.65 3.23 0.59 4.59 0.59 4.71 0.59 | 4.69 0.47 4.64
churn 1.17 1.49 1.72 2.29 2.02 2.93 2.13 3.22 1.34 272
elevators | 0.54 1.06 0.74 1.48 0.93 1.89 0.97 1.97 0.81 1.77
pollen 0.51 0.75 0.46 0.89 0.44 1.16 0.45 1.25 0.42 1.4
phishing | 0.27 0.32 0.28 0.27 0.31 0.31 0.37 0.44 0.45 0.51
wilt 0.45 0.62 0.57 0.83 1.12 1.43 1.2 1.41 0.94 1.63
letters 0.62 0.78 0.53 0.69 0.53 0.66 0.51 0.69 0.51 0.59

Table 5: OpenML Error Bands for initial sample size 100: Average standard errors for error and
churn across baselines for each dataset and network across 100 runs.

27



Published as a conference paper at ICLR 2022

| Dataset | network [ cold [ warm [ s-perturb | mixup [ Is [ co-dist | anchor [ distill |
fcn-10 4.96 N/A 4.58 N/A N/A N/A N/A N/A
fcn-100 5.49 N/A 4.87 N/A 53 4.39 4.51 3.53
adult fcn-1000 6.27 N/A 6.05 6.57 N/A 5.78 6.62 4.39
fcn-10000 8.8 N/A 8.71 8.72 N/A N/A N/A 4.68
fcn-100000 | 10.36 | 9.47 9.38 9.28 9.29 9.1 N/A 3.13
fcn-10 4.29 N/A 3.99 4.23 3.35 2.57 4.19 2.39
fcn-100 6.23 N/A 5.32 5.72 6.32 4.87 N/A 1.48
bank fcn-1000 10.04 | 8.43 7.8 8.25 8.89 7.55 8.77 5.58
fcn-10000 | 10.04 | 9.19 9.15 8.72 8.75 8.68 9.25 3.75
fcn-100000 | 7.81 8.02 7.86 8.28 6.86 7.35 8.51 7.29
fcn-10 17.97 | 13.42 12.59 12.95 | 13.69 | 11.37 13.04 5.34
fcn-100 22.4 21.2 19.47 20.4 N/A 18.9 20.7 10.94
magic04 fcn-1000 27.56 | 27.41 24.37 24.68 | 27.79 | 23.67 2522 | 18.51
fcn-10000 | 26.83 | 23.97 23.01 23.19 | 25.72 | 22.85 24.0 19.97
fcn-100000 | 18.04 | 18.89 16.15 17.49 | 16.08 | 16.68 1776 | 8.73
fcn-10 12.05 | 10.03 10.41 N/A N/A 10.1 10.5 7.26
fcn-100 9.37 8.79 8.69 N/A N/A 8.91 9.28 7.11
phonemes fcn-1000 10.45 | 10.66 10.09 N/A 9.02 9.3 11.14 74
fcn-10000 | 13.04 | 13.16 13.26 N/A 12.62 | 12.45 14.3 8.14
fcn-100000 | 14.08 | 14.1 14.0 13.16 | 1297 | 1291 14.79 8.58
fcn-10 16.27 | 14.56 14.97 13.54 | 14.24 | 14.16 15.77 | 10.36
fcn-100 17.11 | 15.42 15.73 14.63 | 15.39 | 13.98 17.16 | 15.25
electricity fcn-1000 18.16 | 17.53 17.23 15.69 | 16.19 | 14.94 18.22 8.99
fcn-10000 | 19.94 | 19.47 18.64 17.38 | 18.15 | 17.01 20.53 | 10.18
fcn-100000 | 20.68 | 20.23 19.14 18.2 19.44 | 1847 19.53 5.21
fcn-10 47.44 | 3523 36.92 33.12 | 38.18 | 33.34 28.04 | 13.54
fcn-100 41.01 | N/A N/A 39.82 | N/A 44.6 33.45 N/A
eeg fcn-1000 48.02 | 42.96 42.04 39.98 | 49.98 | 54.99 26.99 2.0
fcn-10000 | 41.02 | 50.38 44.65 37.09 | 49.09 | 38.15 30.02 1.01
fcn-100000 | 27.73 | 20.25 19.75 19.67 | 2475 | 19.72 | 22.67 | 17.89

Table 6: Results for OpenML datasets with initial sample size 1000 under churn at cold accuracy
metric across different sizes of fully connected networks. Part 1 of 2.
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| Dataset | network | cold | warm [ s-perturb [ mixup | Is [ co-dist [ anchor [ distill |
fen-10 21.61 | 17.23 17.85 15.69 N/A 14.79 17.52 15.5
fcn-100 2642 | N/A 20.34 21.44 | 26.07 16.68 18.32 4.13
churn fcn-1000 27.15 | 25.58 22.19 20.49 N/A 18.71 17.59 | 5.51
fcn-10000 | 27.84 | 29.72 22.21 21.26 N/A 20.22 2292 | 18.39
fcn-100000 | 14.51 | 11.64 11.27 10.72 | 10.96 11.0 11.53 8.57
fen-10 24.34 | 19.75 20.38 18.83 | 19.88 16.72 21.77 | 11.64
fcn-100 30.83 | 29.56 29.18 28.81 | 29.97 | 26.77 30.48 | 13.68
elevators | fcn-1000 33.34 | 35.87 30.41 31.47 | 3291 30.53 34.38 | 10.44
fcn-10000 | 34.79 | 34.36 29.77 30.9 3276 | 28.95 31.85 | 11.29
fcn-100000 | 23.23 | N/A 22.86 N/A | 22.57 24.38 N/A N/A
fen-10 46.05 | N/A 23.42 N/A 31.2 N/A 33.21 N/A
fcn-100 42.82 | 35.15 36.11 33.8 35.65 | 34.58 39.95 | 10.93
pollen fcn-1000 | 44.03 | N/A 42.63 44.6 42.06 | 41.78 | 40.44 | 35.15
fcn-10000 | 4594 | N/A 41.64 41.04 | 40.78 | 42.25 41.95 6.74
fcn-100000 | 45.72 | N/A 43.77 43.16 | 4331 | 41.33 | 43.03 | 1341
fen-10 3.25 N/A N/A N/A N/A N/A N/A N/A
fcn-100 3.95 N/A 3.68 342 32 3.21 3.45 2.52
phishing fcn-1000 4.43 4.2 3.97 4.01 4.1 3.74 4.08 291
fcn-10000 5.29 5.2 5.15 5.09 4.69 5.07 5.07 4.53
fcn-100000 | 5.93 5.79 5.38 5.51 5.03 5.12 5.38 3.49
fcn-10 4.1 2.61 2.87 2.76 N/A 2.14 2.9 1.53
fcn-100 4.5 4.68 3.89 3.96 4.93 3.49 3.96 3.02
wilt fcn-1000 9.55 7.27 7.27 6.67 N/A 7.0 7.58 4.93
fcn-10000 | 11.56 | 10.07 9.67 9.51 N/A 9.2 10.13 9.68
fcn-100000 | 5.42 5.22 5.0 4.53 4.63 443 4.64 3.43
fcn-10 38.44 | N/A 25.92 N/A N/A N/A N/A 23.56
fcn-100 22.774 | 20.92 21.31 N/A N/A N/A 20.81 | 19.05
letters fcn-1000 23.01 | 23.15 23.47 23.86 | 23.06 | 2344 | 22.04 | 16.92
fcn-10000 | 27.44 | 26.48 26.29 26.1 2479 | 24.86 2473 | 18.97
fcn-100000 | 30.33 | 29.57 28.76 28.23 | 2696 | 27.89 | 27.82 | 20.71

Table 7: Results for OpenML datasets with initial sample size 1000 under churn at cold accuracy
metric across different sizes of fully connected networks. Part 2 of 2.

fcn-10 fcn-100 fcn-1000 fcn-10000 fcn-100000
Dataset | Error [ Churn | Error | Churn [ Error | Churn | Error | Churn | Error | Churn
adult 0.35 0.22 0.36 0.28 0.35 0.35 0.44 0.51 0.46 0.55
bank 0.2 0.26 0.28 0.38 0.37 0.6 0.52 0.77 0.51 0.69
COMPAS | 045 0.36 0.44 0.46 0.48 0.66 0.55 0.73 0.56 0.76
magic04 0.45 0.67 0.6 1.09 0.85 1.58 0.81 1.51 0.67 0.99
phonemes | 0.43 0.37 0.38 0.33 0.41 0.43 0.41 0.54 0.42 0.55
electricity | 0.59 0.83 0.47 0.84 0.51 1.04 0.58 1.31 0.57 1.38
eeg 0.63 2.89 0.59 4.57 0.59 4.71 0.59 4.62 0.4 4.02
churn 1.08 1.73 1.74 2.58 2.02 2.98 1.91 3.0 0.87 2.19
elevators 0.5 1.0 0.74 1.55 0.89 1.79 0.85 1.8 0.82 1.5
pollen 0.48 0.73 0.45 0.94 0.45 1.34 0.42 1.35 0.43 1.41
phishing 0.26 0.16 0.26 0.2 0.26 0.24 0.32 0.34 0.39 0.41
wilt 0.32 0.39 0.57 0.72 1.12 1.55 1.08 1.94 0.72 1.2
letters 0.67 0.74 0.47 0.5 0.51 0.56 0.54 0.61 0.58 0.69

Table 8: OpenML Error Bands with initial sample size 1000: Average standard errors for error and
churn across baselines for each dataset and network across 100 runs.
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| Dataset network | cold | warm [ s-perturb | mixup | Is [ co-dist | anchor | distill |
convnet-1 38.0 36.1 36.3 36.4 N/A 36.6 34.5 N/A
convnet-2 254 N/A 24.0 24.5 24.8 N/A N/A N/A
mnist convnet-4 | 20.7 | N/A 19.4 19.0 18.9 N/A 17.5 17.3
convnet-8 | 23.4 | N/A 23.0 22.7 22.1 N/A 21.2 N/A
convnet-16 | 27.0 N/A 27.1 25.8 25.8 N/A 254 N/A

convnet-1 36.9 34.4 347 32.8 339 33.7 32.8 28.9
convnet-2 34.0 32.9 33.0 31.5 31.0 31.2 31.8 28.0
fashion mnist convnet-4 31.8 N/A N/A 31.1 30.8 30.8 30.6 N/A
convnet-8 28.9 N/A 29.7 27.9 27.3 27.5 27.9 24.1
convnet-16 | 35.0 N/A 32.5 33.0 32.7 32.4 33.5 26.2
convnet-1 934 91.7 92.0 91.6 N/A 91.0 91.7 N/A
convnet-2 87.0 84.2 84.4 84.5 84.9 84.1 84.4 N/A
emnist balanced | convnet-4 85.9 82.6 82.0 81.7 82.0 82.2 82.0 76.4
convnet-8 84.8 82.0 82.2 82.1 82.2 82.0 81.7 74.3
convnet-16 | 88.6 N/A 87.5 87.4 87.3 N/A 87.4 82.2
convnet-1 73.5 | 71.75 70.5 69.75 | 70.25 | 69.25 70.0 65.75
convnet-2 68.8 64.6 65.8 63.6 63.2 64.2 63.6 N/A
emnist byclass convnet-4 | 64.8 | 62.6 62.0 60.0 59.2 61.2 61.4 52.6
convnet-8 67.5 | 63.25 64.25 64.5 63.25 | 64.25 61.25 51.5
convnet-16 | 63.0 | 63.33 59.67 58.67 | 57.67 | 61.33 57.33 | 50.67
convnet-1 76.5 77.5 75.0 75.5 77.25 75.5 75.0 N/A
convnet-2 71.8 N/A 67.4 66.0 67.4 67.8 67.6 62.0
emnist bymerge | convnet-4 | 61.4 | N/A 58.0 59.0 59.0 61.4 58.2 N/A
convnet-8 | 65.25 | 61.75 58.75 60.75 60.0 59.75 59.75 | 57.25
convnet-16 | 65.33 | 59.67 60.33 59.67 | 59.33 | 60.33 57.67 | 50.67
convnet-1 77.4 75.9 76.4 75.3 N/A 74.5 75.7 N/A
convnet-2 68.8 67.7 66.4 66.8 66.6 66.6 65.6 N/A
emnist letters convnet-4 61.9 N/A 59.9 59.8 59.4 60.5 58.9 55.2
convnet-8 634 N/A 62.7 62.0 61.0 N/A 60.5 N/A
convnet-16 | 66.5 N/A 66.1 66.2 65.2 N/A 65.2 N/A
convnet-1 33.8 32.0 32.1 31.9 31.5 31.6 30.9 29.6
convnet-2 23.0 N/A 22.9 N/A 22.8 N/A N/A N/A
emnist digits convnet-4 | 23.3 222 22.9 21.7 21.4 N/A 20.2 N/A
convnet-8 18.8 N/A 19.7 19.1 18.3 N/A 16.9 16.8
convnet-16 | 21.89 | N/A 23.44 22.56 | 21.56 N/A 20.67 | 19.56
convnet-1 333 31.4 31.5 31.0 N/A 32.6 N/A N/A
convnet-2 22.6 22.2 222 223 22.1 N/A 214 N/A
emnist mnist convnet-4 19.6 N/A N/A 19.0 19.5 N/A N/A N/A
convnet-8 21.6 N/A 20.9 21.8 20.4 N/A 20.0 N/A
convnet-16 | 22.8 N/A N/A 22.1 21.9 N/A 21.1 N/A
convnet-1 534 49.8 50.6 50.4 51.2 49.2 47.5 N/A
convnet-2 427 40.4 40.9 40.9 41.1 40.7 37.9 37.1
kmnist convnet-4 40.4 N/A 37.5 38.7 37.8 N/A 373 35.5
convnet-8 39.9 N/A 40.3 38.1 38.3 N/A 37.2 34.2
convnet-16 | 41.2 N/A N/A 40.3 39.5 N/A 38.8 N/A
convnet-1 93.5 89.8 89.7 89.1 89.9 87.9 88.6 N/A
convnet-2 86.2 83.7 83.8 83.7 83.9 83.1 83.3 76.8
k49 mnist convnet-4 83.4 N/A 82.6 81.4 81.4 81.1 80.9 72.5
convnet-8 76.5 73.8 74.1 73.3 73.0 71.8 70.8 62.1
convnet-16 | 79.44 | 78.11 76.22 76.11 | 75.89 | 76.11 77.0 65.11

Table 9: Results for MNIST variants with initial sample 100 under churn at cold accuracy metric
across different sizes of convolutional networks.
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convnet-1 convnet-2 convnet-4 convnet-8 convnet-16

Dataset Error | Churn | Error [ Churn | Error [ Churn [ Error | Churn | Error | Churn
mnist 0.48 0.52 0.38 0.41 0.37 0.39 0.41 0.43 0.43 0.45
fashion mnist 0.52 0.58 0.56 0.59 0.55 0.59 0.56 0.59 0.59 0.62
emnist balanced | 0.59 0.61 0.69 0.7 0.73 0.73 0.77 0.76 0.68 0.69
emnist byclass | 0.58 0.65 0.68 0.72 0.71 0.73 0.6 0.64 | 0.59 0.72
emnist bymerge | 0.56 0.62 0.66 0.68 0.7 0.76 0.58 0.64 0.55 0.58
emnist letters 0.59 0.63 0.69 0.69 0.75 0.74 0.73 0.74 0.68 0.69
emnist digits 0.44 0.47 0.34 0.37 0.43 0.47 0.44 0.48 0.45 0.49
emnist mnist 0.44 0.46 0.35 0.36 0.39 0.41 0.41 0.46 0.4 0.43
kmnist 0.54 0.59 0.56 0.6 0.59 0.62 0.62 0.67 0.66 0.71
k49 mnist 0.63 0.62 0.72 0.68 0.74 0.75 0.76 0.75 0.69 0.68

Table 10: MNIST Error Bands with initial sample size 100: Average standard errors for error and
churn across baselines for each dataset and network across 100 runs.
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| Dataset network | cold [ warm [ s-perturb [ mixup [ Is [ co-dist [ anchor [ distill |

convnet-1 | 11.18 | N/A 10.33 9.75 9.67 10.05 8.85 8.57

convnet-2 | 696 | N/A 6.86 6.62 5.82 N/A 5.81 5.67

mnist convnet-4 | 6.68 N/A 6.78 5.93 5.02 N/A 5.21 4.81

convnet-8 7.13 N/A N/A 5.71 4.95 N/A N/A 5.22
convnet-16 | 7.91 N/A 8.25 6.39 5.35 N/A 6.95 6.35
convnet-1 | 22.17 | 18.72 19.4 18.76 | 18.07 | 18.13 17.51 | 11.88
convnet-2 | 19.85 | 18.17 17.93 17.44 | 17.49 | 16.86 16.48 | 12.16
fashion mnist convnet-4 | 18.48 | N/A 17.08 1693 | 16.52 | 16.53 15.75 11.9

convnet-8 | 17.57 | N/A 16.35 16.07 | 14.62 | 15.36 15.1 9.05

convnet-16 | 17.98 | N/A 17.23 16.88 15.9 16.21 15.87 | 11.11
convnet-1 | 52.34 | 41.04 41.86 43779 | 41.68 | 40.97 | 38.62 N/A
convnet-2 | 45.04 | N/A 39.29 3945 | 37.78 | 3843 353 | 3244
emnist balanced | convnet-4 | 42.21 | N/A 37.46 37.12 | 35.53 N/A 33.64 | 29.41
convnet-8 | 40.95 | N/A 35.82 35.66 | 33.96 N/A 325 26.39
convnet-16 | 42.74 | N/A 39.11 37.3 35.13 N/A N/A | 29.27
convnet-1 | 44.18 | 36.18 36.35 36.15 349 3496 | 35.62 | 27.07
convnet-2 | 38.39 | 33.21 34.04 33.68 | 32.56 33.2 3141 | 24.17
emnist byclass convnet-4 36.4 N/A 32.33 31.74 | 30.79 | 3196 | 3042 | 24.5

convnet-8 | 36.72 | N/A 329 31.7 30.17 N/A N/A | 25.51
convnet-16 | 36.81 | 33.06 33.11 31.59 | 29.64 | 31.21 30.68 | 21.81
convnet-1 | 42.59 | N/A 34.44 34776 | 34.12 | 33.76 | 32.58 N/A
convnet-2 | 37.35 | N/A 32.87 32.52 | 31.43 N/A 30.74 N/A
emnist bymerge | convnet-4 | 34.17 | 30.62 30.38 29.86 | 28.72 | 29.59 | 27.07 | 21.28
convnet-8 | 33.59 | N/A 30.56 29.89 | 27.63 N/A N/A N/A
convnet-16 | 3546 | N/A 31.65 30.77 | 28.83 N/A 28.27 | 22.9
convnet-1 | 38.03 | 30.14 30.95 31.53 | 30.39 | 30.26 | 27.41 | 24.84
convnet-2 | 31.65 | N/A 28.36 27.72 | 26.37 N/A 24.26 | 21.88
emnist letters convnet-4 | 29.58 | N/A 26.99 26.2 24.61 N/A 23.22 | 20.16
convnet-8 | 29.52 | N/A 28.08 26.19 | 24.39 N/A 22.73 | 20.94
convnet-16 | 30.15 | N/A 27.36 26.39 | 24.28 N/A 23.77 | 20.67
convnet-1 9.16 | N/A 8.71 8.29 8.04 N/A 7.62 7.31

convnet-2 | 6.43 N/A 6.38 5.98 5.17 N/A 5.12 5.02
emnist digits convnet-4 6.81 N/A 6.95 6.09 5.29 N/A 5.42 4.81

convnet-8 6.74 | N/A N/A 6.14 5.11 N/A 5.9 491

convnet-16 | 6.93 N/A N/A 5.72 4.72 N/A N/A 5.61
convnet-1 9.16 | N/A 8.28 8.3 7.71 8.62 7.39 7.34
convnet-2 5.7 N/A 6.02 5.4 4.94 N/A 4.95 4.59
emnist mnist convnet-4 6.42 N/A 6.28 5.67 4.9 N/A 5.21 4.49
convnet-8 6.39 | N/A 6.64 5.16 4.48 N/A 5.28 4.23

convnet-16 | 7.09 | N/A 7.14 6.03 5.15 N/A 6.11 4.97
convnet-1 | 23.31 | 18.22 18.25 19.1 18.97 | 18.56 16.68 | 16.08

convnet-2 | 16.54 | N/A 15.35 1498 | 13.79 N/A 13.12 | 12.18

kmnist convnet-4 | 1595 | N/A 14.08 13.41 | 12.08 N/A 12.0 9.9

convnet-8 | 16.89 | N/A 15.17 14.19 | 12.68 N/A 12.72 | 10.67

convnet-16 | 18.0 | N/A 16.57 15.37 | 13.49 N/A 13.64 | 11.97
convnet-1 | 56.23 | 44.13 44.89 46.74 | 46.12 | 43.13 | 41.79 | 40.3

convnet-2 | 48.22 | 40.43 41.02 40.89 | 38.97 40.5 36.31 | 31.52

k49 mnist convnet-4 | 4635 | N/A 39.48 39.46 | 37.33 | 3999 | 3524 | 29.46

convnet-8 | 47.84 | N/A 41.35 40.98 | 38.23 N/A 36.39 | 29.13

convnet-16 | 49.02 | 42.1 42.1 41.44 | 38.45 | 41.59 | 38.16 | 30.74

Table 11: Results for MNIST variants under churn at cold accuracy metric across different sizes of
convolutional networks with initial sample size 1000..

32



Published as a conference paper at ICLR 2022

convnet-1 convnet-2 convnet-4 convnet-8 convnet-16

Dataset Error | Churn | Error [ Churn | Error [ Churn [ Error | Churn | Error | Churn
mnist 0.48 0.52 0.38 0.41 0.37 0.39 0.41 0.43 0.43 0.45
fashion mnist 0.52 0.58 0.56 0.59 0.55 0.59 0.56 0.59 0.59 0.62
emnist balanced | 0.59 0.61 0.69 0.7 0.73 0.73 0.77 0.76 0.68 0.69
emnist byclass | 0.58 0.65 0.68 0.72 0.71 0.73 0.6 0.64 | 0.62 0.76
emnist bymerge | 0.56 0.62 0.66 0.68 0.7 0.76 0.58 0.64 0.59 0.61
emnist letters 0.59 0.63 0.69 0.69 0.75 0.74 0.73 0.74 0.68 0.69
emnist digits 0.44 0.47 0.34 0.37 0.43 0.47 0.44 0.48 0.45 0.49
emnist mnist 0.44 0.46 0.35 0.36 0.39 0.41 0.41 0.46 0.4 0.43
kmnist 0.54 0.59 0.56 0.6 0.59 0.62 0.62 0.67 0.66 0.71
k49 mnist 0.63 0.62 0.72 0.68 0.74 0.75 0.76 0.75 0.69 0.68

Table 12: MNIST Error Bands with initial sample size 1000: Average standard errors for error and
churn across baselines for each dataset and network across 100 runs.

33




Published as a conference paper at ICLR 2022

| Dataset network | cold | warm [ s-perturb | mixup | Is [ co-dist | anchor | distill |

convnet-1 4.84 4.22 4.01 3.73 3.34 3.9 3.81 3.32
convnet-2 4.16 3.78 3.61 3.22 2.86 3.46 33 2.96
mnist convnet-4 4.06 3.66 3.49 3.09 2.72 34 3.2 2.93
convnet-8 4.29 4.01 3.81 3.35 2.99 3.79 3.54 3.19
convnet-16 | 4.47 4.04 3.97 3.44 3.08 3.84 3.65 3.2

convnet-1 | 1491 | 12.32 12.5 1226 | 11.98 | 11.65 11.46 7.81
convnet-2 | 13.82 | 11.96 11.9 11.77 | 11.41 | 11.29 11.12 7.5

fashion mnist convnet-4 | 13.04 | 11.52 11.42 11.3 10.93 | 10.77 10.64 6.78
convnet-8 | 1292 | 11.44 11.52 11.18 | 10.98 10.8 10.85 7.06
convnet-16 | 13.56 | 12.13 12.0 11.81 | 11.38 | 11.55 11.29 7.61
convnet-1 | 25.34 | 20.86 20.83 20.8 19.89 | 19.97 19.48 | 14.26
convnet-2 | 23.33 | 20.18 20.09 19.45 | 18.38 | 19.11 18.67 | 13.62
emnist balanced | convnet-4 | 24.71 | 19.93 19.76 19.07 17.5 19.0 18.07 13.0
convnet-8 | 22.49 | 20.17 20.12 19.21 | 17.62 | 19.35 18.48 | 13.22
convnet-16 | 22.48 | 20.09 20.3 19.35 | 17.48 | 19.52 18.35 134
convnet-1 | 23.66 | N/A 19.92 19.46 | 18.93 | 18.69 N/A 13.34
convnet-2 21.7 N/A 19.25 18.73 | 17.64 | 18.18 N/A 12.32
emnist byclass convnet-4 | 21.45 | N/A 19.01 18.71 | 17.41 | 18.09 18.39 | 11.76
convnet-8 | 21.47 | N/A 19.42 18.72 | 17.08 | 18.13 N/A 11.9
convnet-16 | 21.83 | N/A 19.63 18.82 | 17.28 | 18.68 18.78 | 12.71
convnet-1 21.1 17.78 17.35 17.44 | 16.67 | 16.61 16.98 | 12.09
convnet-2 | 19.27 | 17.02 16.74 16.33 | 1541 | 15.84 16.21 | 11.23
emnist bymerge | convnet-4 | 18.37 | 16.72 16.41 15.85 | 14.65 | 1542 1591 | 10.74
convnet-8 | 19.01 | 17.08 17.12 16.31 | 15.05 | 16.18 16.44 | 10.95
convnet-16 | 18.91 | N/A 17.49 16.56 | 15.08 16.5 16.66 | 11.11
convnet-1 | 17.17 | 14.29 14.25 13.82 | 13.03 | 13.56 13.09 | 10.47
convnet-2 | 15.44 | 13.62 13.51 12.9 11.74 | 12.96 12.39 9.82
emnist letters convnet-4 | 15.25 | 13.58 13.32 12.67 | 11.45 12.99 12.27 9.33
convnet-8 | 15.16 | 13.25 13.33 12.52 | 11.32 | 12.76 12.17 9.14
convnet-16 | 15.19 | 13.63 13.33 12.55 | 11.18 | 12.99 12.42 94

convnet-1 3.98 3.43 3.28 3.0 2.64 3.21 3.06 2.82
convnet-2 3.64 3.36 3.13 2.91 2.53 3.1 2.95 2.7

emnist digits convnet-4 | 3.59 | 324 3.17 2.77 2.37 3.07 2.88 2.56
convnet-8 3.89 341 3.33 2.88 2.58 33 3.16 2.73
convnet-16 4.0 3.56 3.52 2.96 2.63 3.34 3.24 2.74
convnet-1 4.09 3.5 3.39 3.14 2.84 3.29 3.17 2.93
convnet-2 3.69 3.33 3.11 2.78 2.42 3.02 291 2.65
emnist mnist convnet-4 3.64 3.36 3.22 2.86 2.5 3.15 3.04 2.74
convnet-8 3.76 34 341 2.92 2.55 3.35 3.13 2.73
convnet-16 | 3.94 3.6 3.51 2.98 2.63 3.41 3.23 2.93

convnet-1 899 | 7.31 7.2 6.76 6.18 7.07 6.64 6.17
convnet-2 | 791 6.96 6.73 6.17 5.48 6.63 6.28 5.62
kmnist convnet-4 | 7.69 6.8 6.66 6.07 5.24 6.57 6.22 5.42

convnet-8 | 7.93 6.71 6.74 6.03 5.26 6.6 6.23 5.52
convnet-16 | 8.07 | 6.99 6.89 6.02 | 5.35 6.72 6.29 5.81
convnet-1 | 27.34 | 21.79 21.76 21.62 | 20.83 | 20.8 19.27 | 17.11
convnet-2 | 23.82 | 19.97 20.03 19.27 | 1775 | 19.42 18.02 | 15.99
k49 mnist convnet-4 | 22.73 | 19.42 19.34 18.48 | 16.57 | 18.93 17.43 154
convnet-8 | 22.33 | 19.22 19.29 18.21 | 16.21 | 18.69 17.1 15.14
convnet-16 | 22.37 | 19.47 19.23 18.02 | 1591 | 18.94 17.19 | 15.46

Table 13: Results for MNIST variants with initial sample 10000 under churn at cold accuracy metric
across different sizes of convolutional networks.
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convnet-1 convnet-2 convnet-4 convnet-8 convnet-16

Dataset Error [ Churn | Error | Churn [ Error [ Churn | Error | Churn [ Error | Churn
mnist 0.34 0.36 0.31 0.32 0.38 0.39 0.43 0.44 0.46 0.47
fashion mnist 0.27 0.3 0.27 0.3 0.36 0.39 0.37 0.39 0.37 0.49
emnist balanced | 0.23 0.25 0.31 0.34 0.34 0.37 0.36 0.39 0.36 0.38
emnist byclass 0.23 0.3 0.26 0.32 0.29 0.35 0.29 0.33 0.31 0.35
emnist bymerge | 0.25 0.29 0.3 0.34 0.32 0.37 0.29 0.34 0.31 0.35
emnist letters 0.31 0.34 0.42 0.44 0.45 0.47 0.46 0.49 0.47 0.48
emnist digits 0.26 0.27 0.29 0.3 0.36 0.37 0.49 0.5 0.44 0.45
emnist mnist 0.29 0.31 0.28 0.29 0.41 0.42 0.48 0.49 0.43 0.44
kmnist 0.39 04 0.49 0.51 0.53 0.54 0.6 0.61 0.62 0.63
k49 mnist 0.41 0.42 0.45 0.46 0.54 0.55 0.54 0.54 0.57 0.56

Table 14: MNIST Error Bands with initial sample size 10000: Average standard errors for error and
churn across baselines for each dataset and network across 100 runs.

| Dataset | network [ cold [ warm [ s-perturb | mixup [ Is [ co-dist [ anchor | distill |
convnet-1 79.2 N/A N/A 77.2 78.4 N/A 80.8 70.8
convnet-2 81.2 79.9 N/A 80.3 81.2 82.6 83.4 74.1
svhn convnet-4 80.3 81.5 74.6 79.1 80.2 72.4 84.7 64.6
convnet-8 | 70.22 | 80.78 72.78 70.22 | 62.56 | 69.33 71.33 | 59.89
convnet-16 | 41.33 | 70.83 41.0 52.5 | 52.33 | 53.67 42.83 34.5
convnet- 1 77.9 N/A 76.3 N/A 76.0 75.5 N/A N/A
convnet-2 | 74.7 77.1 73.3 74.6 73.0 72.3 74.1 70.1
cifar10 | convnet-4 71.7 70.4 70.8 73.6 70.9 69.0 N/A 61.5
convnet-8 | 75.5 N/A N/A N/A N/A N/A N/A N/A
convnet-16 | 79.4 | 79.5 79.9 76.7 78.2 78.1 82.8 69.9

Table 15: Results for SVHN and CIFAR datasets with initial sample size 100 under churn at cold
accuracy metric across different sizes of convolutional networks..

convnet-1 convnet-2 convnet-4 convnet-8 convnet-16
Dataset | Error [ Churn | Error [ Churn | Error | Churn | Error [ Churn | Error | Churn
svhn 0.67 1.33 0.73 1.37 0.88 1.59 1.35 2.18 1.87 3.25
cifar10 0.4 0.89 0.39 0.85 0.41 0.9 0.4 1.0 0.43 1.1
cifar100 | 0.39 0.93 0.4 0.92 0.4 0.9 0.41 1.02 0.45 1.09

Table 16: SVHN and CIFAR with initial sample size 100 Error Bands: Average standard errors for
error and churn across baselines for each dataset and network across 100 runs.

| Dataset | network [ cold [ warm [ s-perturb | mixup [ Is [ co-dist [ anchor | distill |
convnet-1 31.1 N/A 24.44 2597 | 27.33 23.3 23.54 | 21.26
convnet-2 | 29.49 | 24.26 24.05 25.88 | 26.48 | 23.23 21.41 16.73
svhn convnet-4 | 32.12 | 26.88 27.39 29.2 29.21 26.01 2543 | 22.64
convnet-8 | 42.22 | 36.14 34.78 37.41 | 3691 34.82 35.46 | 28.55
convnet-16 | 50.94 | 46.12 37.26 37.87 | 42.62 | 44.44 41.01 29.65
convnet-1 50.82 | N/A 43.71 444 45.66 | 41.53 4437 | 29.45
convnet-2 | 52.16 | N/A 51.11 47.64 | 48.83 | 44.72 N/A 39.89
cifar10 convnet-4 | 52.01 | 47.57 46.36 4717 | 47.92 | 44.61 45.75 | 29.13
convnet-8 | 52.65 | N/A 47.42 4739 | 4829 | 44.34 47.07 | 34.17
convnet-16 | 53.24 | 46.97 48.43 48.2 48.79 | 44.83 47.59 | 34.54

Table 17: Results for SVHN and CIFAR under churn at cold accuracy metric across network sizes.
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convnet-1 convnet-2 convnet-4 convnet-8 convnet-16
Dataset | Error [ Churn [ Error | Churn [ Error | Churn | Error [ Churn | Error [ Churn
svhn 0.53 0.77 0.61 0.97 0.6 1.45 0.73 2.19 1.4 2.67

cifar10 | 0.41 0.65 0.41 0.62 0.39 0.62 0.39 0.64 0.41 0.66

Table 18: SVHN and CIFAR with initial sample size 1000 Error Bands: Average standard errors for
error and churn across baselines for each dataset and network across 100 runs.

| Dataset | network | cold [ warm | s-perturb [ mixup [ Is | co-dist | anchor | distill |
convnet-1 | 1543 | N/A 11.29 12.08 | 12.01 | 10.63 9.94 6.37
convnet-2 | 14.29 | N/A 12.43 12.15 | 1143 | 10.97 N/A 6.99
svhn convnet-4 | 14.25 | N/A 13.27 12.16 | 11.38 | 11.16 9.34 7.43
convnet-8 | 14.61 | N/A 11.9 11.92 | 11.04 | 11.08 9.09 7.09
convnet-16 | 24.35 | 16.97 16.81 16.0 | 15.89 | 17.04 15.39 9.68
convnet-1 | 41.28 | N/A 28.82 299 | 29.61 | 27.47 28.5 14.08
convnet-2 39.5 N/A 31.67 31.23 | 31.96 | 28.75 N/A 16.03
cifarl0 | convnet-4 | 3947 | N/A 334 329 | 31.18 N/A N/A 18.7
convnet-8 | 39.67 | N/A 32.78 31.53 | 30.87 | 30.56 2542 | 16.87
convnet-16 | 40.75 | N/A 33.94 N/A 31.6 N/A N/A | 20.12

Table 19: Results for SVHN and CIFAR datasets with initial sample size 10000 under churn at cold
accuracy metric across different sizes of convolutional networks..

convnet-1 convnet-2 convnet-4 convnet-8 convnet-16
Dataset | Error [ Churn [ Error | Churn [ Error | Churn | Error [ Churn | Error [ Churn
svhn 0.28 0.29 0.33 0.35 0.43 0.45 0.49 0.51 0.86 1.8
cifar10 | 0.16 0.26 0.16 0.26 0.17 0.26 0.18 0.24 0.39 0.67

Table 20: SVHN and CIFAR with initial sample size 10000 Error Bands: Average standard errors for
error and churn across baselines for each dataset and network across 100 runs.
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| Dataset network | cold [ warm [ s-perturb [ mixup [ Is [ co-dist | anchor | distill |
convnet-1 | 5.08 | N/A 3.41 4.45 1.11 1.9 5.48 0.04
convnet-2 | 5.57 | N/A 3.29 4.28 223 2.86 N/A 0.16
5 o Clock Shadow | convnet-4 | 4.97 | N/A 3.69 4.05 2.11 2.44 N/A 0.08
convnet-8 | 4.84 | N/A 2.95 2.86 1.03 2.08 N/A 0.01
convnet-16 | 4.49 | 3.81 232 2.02 0.37 1.74 4.57 0.06
convnet-1 | 19.39 | N/A 18.04 14.6 N/A | 13.77 N/A 1.97
convnet-2 | 20.83 | 20.17 18.86 17.21 | 1536 | 1497 21.2 1.32
Arched Eyebrows | convnet-4 | 17.66 | N/A 15.71 13.74 | 15.2 13.17 N/A 0.97
convnet-8 | 16.99 | N/A 14.54 11.22 | 11.68 | 12.7 N/A 0.79
convnet-16 | 16.96 | 15.49 12.35 8.59 6.26 9.77 N/A 0.34
convnet-1 | 36.39 | 35.27 35.45 3443 | 37.04 | 3297 | 36.42 | 30.17
convnet-2 | 37.0 | 36.5 34.84 36.24 | 36.7 | 3459 | 3884 | 27.0
Attractive convnet-4 | 37.9 | 37.46 36.38 36.73 | 37.22 | 3593 | 40.48 | 29.28
convnet-8 | 40.86 | N/A 40.14 39.71 | 39.36 | 38.49 41.6 | 32.93
convnet-16 | 44.17 | 41.65 40.81 4231 | 42.15 | 4138 | 43.67 | 37.37
convnet-1 | 11.22 | N/A 7.77 9.09 5.04 4.2 N/A 0.13
convnet-2 | 11.46 | 11.6 9.13 9.67 6.2 6.13 11.69 | 0.25
Bags Under Eyes | convnet-4 | 12.14 | 10.92 8.06 7.75 4.39 4.69 10.57 | 0.16
convnet-8 | 10.01 | N/A 6.74 791 3.21 4.16 N/A 0.2
convnet-16 | 7.36 8.4 5.18 5.8 2.31 2.63 N/A 0.01
convnet-1 | 0.62 | N/A 0.41 0.43 0.0 0.26 0.0 0.0
convnet-2 | 0.58 | N/A 0.5 N/A 0.06 0.31 0.6 0.04
Bald convnet-4 | 0.71 N/A 0.45 N/A 0.04 0.39 0.75 0.02
convnet-8 | 0.74 | N/A 0.25 0.5 0.03 0.33 0.53 0.0
convnet-16 | 0.78 | N/A 0.3 0.35 0.0 0.24 0.53 0.0
convnet-1 | 11.62 | N/A N/A 10.06 | 10.09 | 9.88 N/A N/A
convnet-2 | 12.77 | N/A 12.02 9.5 10.32 | 10.65 | 12.16 | 6.97
Bangs convnet-4 | 12.11 | 11.35 11.4 9.55 9.64 10.7 11.63 | 7.34
convnet-8 | 12.67 | N/A 11.79 10.02 | 9.66 | 11.08 | 1241 | 5.84
convnet-16 | 13.61 | N/A 12.92 10.69 | 11.7 11.51 12.76 | 8.21
convnet-1 | 3.89 4.1 0.78 1.36 N/A 1.11 N/A 0.06
convnet-2 | 5.01 N/A 1.99 2.0 N/A 2.65 N/A 0.31
Big Lips convnet-4 | 3.79 | N/A 2.19 2.28 N/A 2.33 N/A 0.21
convnet-8 2.1 N/A 1.36 0.75 N/A 1.45 N/A 0.05
convnet-16 | 2.56 | N/A 0.89 0.37 0.94 0.79 N/A 0.01
convnet-1 | 14.24 | N/A 11.52 12.31 | 10.3 6.85 N/A 0.36
convnet-2 | 15.33 | 14.56 11.85 13.72 | 11.49 | 10.19 | 1497 | 0.73
Big Nose convnet-4 | 11.32 | N/A N/A N/A N/A | 10.14 N/A 24
convnet-8 | 13.76 | 12.49 10.95 11.26 | 8.83 7.81 1423 | 0.29
convnet-16 | 11.7 | 12.16 9.26 9.43 7.12 6.84 12.15 04
convnet-1 | 19.43 | 20.03 20.82 N/A 19.7 | 18.78 N/A N/A
convnet-2 | 21.93 | 20.7 20.07 2092 | 2048 | 18.96 | 21.73 | 16.49
Black Hair convnet-4 | 22.01 | 20.72 20.07 20.71 | 20.8 | 20.15 | 22.05 | 15.07
convnet-8 | 23.02 | 21.72 20.8 2192 [ 2093 | 1946 | 2049 | 15.59
convnet-16 | 21.57 | 21.94 20.44 21.33 | 19.86 | 18.84 | 22.31 | 15.74
convnet-1 | 11.79 | 11.13 11.38 973 | 11.27 | 10.67 | 1226 | 7.31
convnet-2 | 12.76 | N/A 12.23 10.69 | 11.86 | 11.43 | 13.67 | 6.62
Blond Hair convnet-4 | 11.69 | N/A 114 1044 | 11.51 | 10.81 12.37 | 6.97
convnet-8 | 12.18 | N/A N/A 10.13 | 11.38 | 11.36 N/A 8.66
convnet-16 | 13.51 | 11.94 11.85 9.83 | 1226 | 11.8 12.64 | 7.26

Table 21: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks with initial sample 100. Part 1 of 4.
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| Dataset | network [ cold | warm [ s-perturb [ mixup [ Is [ co-dist [ anchor [ distill |
convnet-1 0.03 N/A 0.03 0.01 N/A N/A 0.01 0.0
convnet-2 0.0 N/A 0.0 0.0 0.0 0.0 N/A 0.0
Blurry convnet-4 | 0.03 N/A 0.0 0.0 N/A 0.0 N/A 0.0
convnet-8 | 0.14 | 0.07 0.0 0.0 0.01 0.0 0.06 0.0

convnet-16 | 0.02 | N/A 0.02 0.02 0.02 0.02 N/A 0.01
convnet-1 | 14.11 | N/A 12.46 6.42 9.48 8.39 N/A 0.46
convnet-2 | 14.79 | 12.54 11.45 593 9.5 8.38 1533 | 0.27

Brown Hair convnet-4 | 13.88 | 14.21 12.12 6.01 9.22 8.71 16.76 0.47
convnet-8 | 1421 | N/A 12.64 5.19 7.52 8.54 N/A 0.4

convnet-16 | 13.14 | 13.45 9.99 4.18 3.1 7.23 N/A 0.07
convnet-1 5.5 4.55 2.81 3.27 2.66 2.33 6.1 0.06
convnet-2 | 5.05 N/A 4.44 4.89 34 3.27 N/A 0.16

Bushy Eyebrows | convnet-4 5.15 N/A 3.95 3.7 3.5 2.94 N/A 0.17
convnet-8 | 6.17 | N/A 3.42 3.14 1.83 2.45 N/A 0.01

convnet-16 | 4.2 4.03 2.54 1.59 1.62 1.99 N/A 0.08

convnet-1 1.01 N/A 0.66 1.03 0.15 0.39 N/A 0.0
convnet-2 1.49 1.2 0.58 0.89 0.11 0.46 1.5 0.0
Chubby convnet-4 1.31 1.52 0.89 1.16 0.21 0.63 1.6 0.02

convnet-8 1.35 1.6 0.93 0.97 0.3 0.59 N/A 0.03
convnet-16 | 0.94 | N/A 0.38 0.58 0.06 0.32 N/A 0.0

convnet-1 0.81 N/A 0.41 0.7 0.1 0.27 N/A 0.0
convnet-2 0.91 N/A 0.48 0.98 0.08 0.21 N/A 0.0
Double Chin convnet-4 1.14 N/A 0.66 0.9 0.21 0.53 1.12 0.08

convnet-8 | 0.82 | N/A 0.37 0.48 0.04 0.38 0.85 0.01
convnet-16 | 0.7 N/A 0.17 0.43 0.07 0.18 N/A 0.0

convnet-1 | 4.21 4.1 4.07 3.82 2.6 3.48 441 2.1
convnet-2 | 433 | N/A 3.95 3.82 35 3.57 4.49 243
Eyeglasses convnet-4 | 422 | N/A 4.03 3.76 2.93 3.34 4.34 2.26

convnet-8 | 4.48 | 3.97 3.78 3.96 291 3.38 4.09 2.38
convnet-16 | 4.76 | N/A 3.64 3.91 2.34 2.86 4.1 2.25

convnet-1 1.83 N/A 1.24 1.78 0.18 0.38 2.18 0.02
convnet-2 1.67 N/A I.15 1.35 0.24 0.72 N/A 0.01
Goatee convnet-4 2.23 1.6 0.9 1.43 0.38 0.46 1.61 0.07
convnet-8 1.48 N/A 0.82 1.08 0.14 0.33 1.74 0.01

convnet-16 | 1.01 1.03 0.59 0.48 0.09 0.29 1.04 0.0
convnet-1 242 | 2.04 1.66 1.82 0.17 1.5 2.08 0.02
convnet-2 | 2.41 2.24 2.07 1.92 0.25 1.75 2.14 0.03

Gray Hair convnet-4 2.82 N/A 2.32 247 0.55 1.77 2.33 0.05
convnet-8 | 2.54 | N/A 1.83 2.04 0.33 1.3 2.27 0.15

convnet-16 | 2.58 | N/A 1.99 1.97 0.16 1.59 2.37 0.04
convnet-1 | 33.24 | N/A 32.88 32.09 | 33.07 | 31.89 | 34.89 | 28.94
convnet-2 | 3333 | N/A N/A 31.73 | 33.04 | N/A N/A | 30.77

Heavy Makeup convnet-4 | 3425 | N/A 32.64 31.62 | 3273 | 31.38 N/A | 27.21
convnet-8 | 34.66 | 36.17 33.25 33.08 | 33.03 | 33.12 362 | 26.42

convnet-16 | 37.36 | 35.43 34.73 32,62 | 3498 | 35.18 | 3591 | 29.18
convnet-1 | 42.29 | N/A 43.53 41.0 N/A | 41.86 N/A N/A
convnet-2 | 43.96 | 43.86 41.62 41.11 | 4238 | 40.82 | 4329 | 37.8

High Cheekbones | convnet-4 | 42.79 | N/A N/A 43.1 44.1 | 43.45 474 | 41.11
convnet-8 | 42.15 | N/A 40.87 40.02 | 41.99 | 41.39 N/A | 37.68

convnet-16 | 44.06 | 42.6 41.34 39.23 | 42.28 | 42.03 | 43.09 | 35.13

Table 22: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks with initial sample 100. Part 2 of 4.
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| Dataset network | cold | warm [ s-perturb [ mixup | Is [ co-dist [ anchor [ distill |

convnet-1 32.43 N/A 32.08 32.34 | 31.49 N/A 33.36 | 27.92
convnet-2 327 | 32.02 32.23 32.63 | 32.03 | 31.82 33.32 | 28.17
Male convnet-4 | 31.72 | N/A N/A 31.34 | 30.87 | 30.75 3275 | 25.78
convnet-8 34.85 | 32.86 334 34.14 | 33.96 | 32.84 34.52 | 26.24
convnet-16 | 37.02 | N/A 35.57 36.9 3591 | 35.21 36.84 | 29.26
convnet-1 4493 | 46.3 4495 45.8 N/A | 44.73 4742 | 46.37
convnet-2 46.1 45.38 46.17 4632 | 46.9 45.13 N/A 42.84
Mouth Slightly Open | convnet-4 | 45.31 N/A 45.69 4416 | 45.62 | 44.84 47776 | 42.58
convnet-8 | 45.74 | 48.62 N/A N/A N/A 46.68 N/A 47.03
convnet-16 | 51.37 N/A N/A N/A N/A N/A N/A N/A
convnet-1 0.3 0.41 0.04 0.22 0.02 0.06 N/A 0.01
convnet-2 0.27 N/A 0.07 0.07 0.01 0.03 0.3 0.0
Mustache convnet-4 0.6 0.45 0.18 0.28 0.09 0.17 0.69 0.03
convnet-8 0.39 0.5 0.13 0.19 0.09 0.17 0.56 0.05
convnet-16 | 0.21 0.2 0.07 0.08 0.04 0.05 0.19 0.02
convnet-1 0.08 0.17 0.02 0.03 N/A 0.07 N/A 0.02
convnet-2 0.11 N/A 0.01 0.01 N/A 0.03 0.07 0.0
Narrow Eyes convnet-4 0.57 0.14 0.06 0.07 0.39 0.15 0.26 0.05
convnet-8 0.09 N/A 0.03 0.03 N/A N/A N/A 0.0
convnet-16 | 0.04 N/A 0.01 0.01 0.02 0.05 N/A 0.01
convnet-1 11.04 | N/A 10.86 11.74 | 12.13 7.67 13.68 0.95
convnet-2 12.31 | 11.91 12.61 12.16 | 9.93 7.81 12.0 2.54
No Beard convnet-4 134 13.82 10.83 11.8 6.17 8.72 13.28 0.49
convnet-8 12.85 N/A 10.39 11.29 | 7.11 7.29 10.95 0.05
convnet-16 | 11.34 | 10.31 8.75 9.88 4.16 5.53 10.26 0.15
convnet-1 9.89 N/A 7.95 8.49 N/A 53 N/A 0.58
convnet-2 13.65 13.6 7.52 9.02 10.89 7.86 14.03 0.63
Oval Face convnet-4 11.1 N/A 7.48 6.62 N/A 6.42 N/A 0.63
convnet-8 7.54 N/A 4.49 3.66 6.6 4.44 N/A 0.18
convnet-16 | 8.97 7.4 3.53 2.63 3.73 4.29 7.81 0.2
convnet-1 1.51 N/A 1.15 0.74 0.03 0.74 1.2 0.0
convnet-2 1.42 N/A N/A N/A 0.23 0.92 1.76 0.01
Pale Skin convnet-4 1.25 1.32 0.96 0.76 0.12 0.52 N/A 0.03
convnet-8 1.21 N/A 0.73 0.84 0.11 0.55 N/A 0.05
convnet-16 1.9 1.19 0.69 0.45 0.11 0.41 1.05 0.01

convnet-1 | 13.35 | 13.06 8.18 8.8 11.93 | 7.32 N/A 0.82
convnet-2 | 1422 | N/A 8.32 8.34 N/A 7.52 N/A 0.78
Pointy Nose convnet-4 | 10.51 | N/A 6.62 6.75 N/A 7.34 N/A 0.79

convnet-8 | 10.21 10.3 4.12 2.65 6.38 5.53 N/A 0.28
convnet-16 8.4 6.03 3.13 2.26 3.13 4.33 N/A 0.35
convnet-1 2.44 N/A 2.24 2.13 0.31 1.09 N/A 0.0
convnet-2 3.15 3.49 2.33 2.14 0.66 1.69 2.74 0.03

Receding Hairline convnet-4 3.2 N/A 23 243 0.87 1.54 N/A 0.03
convnet-§ 2.83 N/A 222 1.64 0.34 1.64 N/A 0.01
convnet-16 | 3.03 2.64 2.0 1.45 0.37 1.22 32 0.04

convnet-1 1.66 N/A 0.63 0.94 0.16 0.41 N/A 0.02
convnet-2 1.8 1.67 0.48 0.58 0.22 0.41 1.33 0.01
Rosy Cheeks convnet-4 1.28 1.03 0.43 0.54 0.31 0.28 N/A 0.02
convnet-§ 0.98 N/A 0.35 0.27 0.1 0.31 N/A 0.0
convnet-16 | 0.65 0.59 0.18 0.27 0.06 0.19 N/A 0.0

Table 23: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks with initial sample 100. Part 3 of 4.
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| Dataset network | cold [ warm [ s-perturb [ mixup [ Is [ co-dist | anchor | distill |
convnet-1 1.48 N/A 0.84 1.18 0.07 0.2 1.28 0.01
convnet-2 1.87 N/A 0.99 1.7 0.2 0.53 1.88 0.0
Sideburns convnet-4 1.72 N/A 1.04 1.29 0.15 0.5 1.63 0.04
convnet-8 1.44 N/A 0.79 1.25 0.26 0.39 N/A 0.05
convnet-16 | 0.77 N/A 0.5 0.66 0.0 0.22 N/A 0.0

convnet-1 | 42.83 | 42.46 42.17 4171 | N/A | 40.72 N/A | 40.15
convnet-2 | 42.82 | N/A 41.86 42.56 | 42.63 | 41.52 N/A N/A
Smiling convnet-4 | 44.26 | N/A N/A 4351 | N/A | 4341 N/A N/A
convnet-8 | 45.69 | 45.97 45.27 44.87 | 4501 | 44.48 | 46.89 | 41.71
convnet-16 | 47.36 | 49.32 46.42 47.13 | 47.14 | 46.85 | 5039 | 43.22
convnet-1 | 294 | 291 1.43 1.61 2.63 1.15 N/A 0.12
convnet-2 | 3.86 | N/A 1.85 2.18 4.14 1.84 N/A 0.19
Straight Hair convnet-4 | 3.77 | N/A 1.35 1.72 N/A 1.87 N/A 0.21
convnet-8 | 2.19 | N/A 1.51 1.23 N/A 1.48 N/A 0.07
convnet-16 | 233 | N/A 0.84 0.62 0.8 1.17 N/A 0.03
convnet-1 | 27.48 | 24.54 23.44 20.77 | 24.68 | 21.24 | 2577 | 17.54
convnet-2 | 24.67 | N/A 25.29 23.02 | N/A | 22.82 N/A | 22.78
Wavy Hair convnet-4 | 26.69 | N/A 25.02 21.85 | N/A | 2259 N/A N/A
convnet-8 | 24.65 | N/A 24.16 21.01 | N/A | 23.29 N/A 23.5
convnet-16 | 25.68 | 26.74 23.53 17.7 2277 | 2147 | 2547 | 16.2
convnet-1 | 6.61 | N/A 3.82 4.14 3.84 2.06 N/A 0.01
convnet-2 | 7.24 | N/A 4.44 5.05 4.0 2.86 N/A 0.21
Wearing Earrings | convnet-4 | 552 | N/A 3.83 3.36 4.28 1.92 N/A 0.08
convnet-8 | 3.85 | N/A 291 2.3 2.52 2.56 N/A 0.07
convnet-16 | 4.41 4.65 1.68 1.61 1.61 2.12 N/A 0.13
convnet-1 | 3.52 | 3.61 3.43 3.38 2.33 2.92 3.35 1.94
convnet-2 | 3.82 | 3.89 3.58 3.58 2.88 3.23 3.54 2.36
Wearing Hat convnet-4 | 3.33 3.64 3.63 3.86 2.46 3.35 3.39 1.79
convnet-8 | 3.95 | N/A N/A N/A 3.01 N/A N/A 2.53
convnet-16 | 393 | 3.59 3.1 3.67 | 1.75 2.83 3.43 1.97
convnet-1 | 33.01 | 33.37 32.15 3232 | 32.06 | 31.24 32.8 | 27.09
convnet-2 | 32.99 | N/A 32.23 3245 | 3259 | 31.67 | 33.89 | 28.27
Wearing Lipstick | convnet-4 | 3436 | N/A N/A 33.77 | 33.88 | N/A N/A | 29.93
convnet-8 | 36.84 | N/A N/A 36.27 | 35.6 | 35.16 | 3895 | 29.11
convnet-16 | 384 | N/A 37.44 3724 | 3747 | 36.44 | 37.14 | 30.81
convnet-1 1.03 | N/A 0.21 0.3 0.3 0.16 N/A 0.0
convnet-2 | 1.39 | N/A 0.37 0.54 1.25 0.45 N/A 0.02
Wearing Necklace | convnet-4 | 0.94 | N/A 0.28 0.15 0.75 0.47 N/A 0.0
convnet-8 1.2 N/A 0.59 0.21 0.31 0.49 N/A 0.05
convnet-16 | 0.9 0.69 0.49 0.15 0.19 0.27 N/A 0.04
convnet-1 5.1 5.48 5.12 4.88 3.14 4.54 5.62 2.08
convnet-2 | 5.11 N/A 4.99 5.07 3.23 4.54 5.09 1.96
Wearing Necktie convnet-4 5.64 N/A N/A N/A 3.94 4.96 5.61 2.53
convnet-8 | 5.51 | N/A N/A 5.15 3.85 4.78 N/A 1.51
convnet-16 | 525 | N/A 5.11 4.98 2.39 44 5.08 1.59
convnet-1 | 15.03 | 14.34 12.91 13.25 | 12.65 | 10.12 16.0 2.63
convnet-2 | 15.15 | 15.94 13.72 12.88 | 10.28 | 10.82 | 15.26 | 1.05
Young convnet-4 | 1553 | N/A 13.24 13.1 | 1428 | 11.15 | 1429 | 0.72
convnet-8 | 14.18 | 15.34 11.96 11.72 | 947 | 1025 | 1433 | 0.51
convnet-16 | 13.18 | N/A 12.24 11.56 | 10.2 | 10.22 N/A 0.36

Table 24: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks with initial sample 100. Part 4 of 4.

40



Published as a conference paper at ICLR 2022

convnet-1 convnet-2 convnet-4 convnet-8 convnet-16

Dataset Error | Churn | Error | Churn [ Error [ Churn | Error | Churn [ Error | Churn
5 o Clock Shadow 0.8 1.1 0.77 1.07 0.82 1.14 0.81 1.13 0.83 1.13
Arched Eyebrows 0.83 1.73 0.82 1.73 0.82 1.78 0.82 1.89 0.84 1.88
Attractive 0.4 1.3 0.41 1.36 0.39 1.57 0.42 1.86 0.42 1.97
Bags Under Eyes 0.85 1.54 0.88 1.55 0.87 1.55 0.86 1.54 0.87 1.55
Bald 0.41 0.43 0.44 0.49 0.47 0.51 0.53 0.57 0.48 0.51
Bangs 0.79 1.13 0.83 1.15 0.82 1.14 0.84 1.18 0.86 1.26
Big Lips 0.74 1.46 0.77 1.54 0.79 1.6 0.79 1.55 0.74 1.46
Big Nose 0.82 1.6 0.83 1.63 0.82 1.65 0.82 1.68 0.84 1.71
Black Hair 0.82 1.42 0.8 1.39 0.82 1.48 0.83 1.56 0.81 1.52
Blond Hair 0.83 1.17 0.85 1.15 0.84 1.18 0.84 1.18 0.85 1.27
Blurry 0.5 0.57 0.53 0.58 0.5 0.56 0.55 0.6 0.59 0.66
Brown Hair 0.84 1.51 0.84 1.53 0.85 1.55 0.87 1.63 0.86 1.62
Bushy Eyebrows 0.84 1.25 0.83 1.23 0.82 1.25 0.84 1.27 0.79 1.21
Chubby 0.63 0.73 0.64 0.75 0.63 0.74 0.69 0.81 0.63 0.73
Double Chin 0.58 0.66 0.61 0.7 0.62 0.74 0.58 0.67 0.59 0.67
Eyeglasses 0.7 0.81 0.68 0.81 0.65 0.78 0.71 0.84 0.72 0.86
Goatee 0.69 0.83 0.66 0.8 0.68 0.81 0.73 0.85 0.65 0.77
Gray Hair 0.55 0.63 0.61 0.69 0.6 0.7 0.66 0.75 0.66 0.75
Heavy Makeup 0.62 1.38 0.62 1.42 0.63 1.46 0.64 1.67 0.68 1.8

High Cheekbones 0.46 1.35 0.48 1.43 0.51 1.58 0.59 1.82 0.7 2.1

Male 0.49 1.22 0.49 1.3 0.5 1.31 0.53 1.53 0.58 1.65
Mouth Slightly Open | 0.4 1.39 043 1.51 0.47 1.56 0.63 2.04 0.78 2.82
Mustache 0.49 0.54 0.53 0.58 0.58 0.64 0.57 0.64 0.51 0.56
Narrow Eyes 0.65 0.87 0.65 0.86 0.71 0.94 0.69 0.92 0.7 091
No Beard 0.84 1.35 0.87 1.37 0.86 1.4 0.89 1.48 0.87 1.44
Oval Face 0.76 1.83 0.78 1.84 0.79 1.85 0.78 1.86 0.76 1.99
Pale Skin 0.6 0.68 0.62 0.71 0.65 0.74 0.57 0.68 0.6 0.69
Pointy Nose 0.76 1.84 0.78 1.87 0.79 1.9 0.78 1.88 0.75 1.86
Receding Hairline 0.69 0.87 0.73 0.91 0.73 0.92 0.76 0.97 0.75 0.97
Rosy Cheeks 0.64 0.77 0.62 0.74 0.62 0.74 0.68 0.8 0.67 0.78
Sideburns 0.6 0.71 0.64 0.78 0.63 0.76 0.71 0.85 0.65 0.78
Smiling 0.39 1.27 0.39 1.39 0.41 1.44 0.48 1.66 0.71 2.03
Straight Hair 0.76 1.37 0.79 1.41 0.82 1.47 0.8 1.5 0.74 1.34
Wavy Hair 0.73 1.53 0.74 1.55 0.73 1.69 0.75 1.78 0.73 1.83
Wearing Earrings 0.81 1.42 0.85 1.48 0.82 1.43 0.83 1.43 0.82 1.42
Wearing Hat 0.6 0.68 0.64 0.73 0.62 0.7 0.66 0.76 0.65 0.76
Wearing Lipstick 0.4 1.1 0.39 1.16 0.41 1.32 0.43 1.51 0.44 1.67
Wearing Necklace 0.75 1.01 0.77 1.05 0.77 1.02 0.8 1.07 0.74 0.99
Wearing Necktie 0.7 0.86 0.67 0.83 0.72 0.87 0.77 0.93 0.75 0.93
Young 0.82 1.46 0.85 1.5 0.88 1.57 0.85 1.54 0.87 1.66

Table 25: CelebA Error Bands with initial sample 100: Average standard errors for error and churn
across baselines for each dataset and network across 100 runs.
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| Dataset | network [ cold | warm [ s-perturb [ mixup [ Is [ co-dist [ anchor | distill |

convnet-1 7.17 N/A 5.75 5.27 4.75 5.39 N/A 1.0
convnet-2 7.26 N/A N/A 6.28 475 54 N/A 1.11
5 o Clock Shadow | convnet-4 7.64 N/A 6.71 6.29 5.41 5.79 N/A 1.29
convnet-8 6.52 N/A N/A 6.0 5.51 5.86 N/A 2.16
convnet-16 | 5.81 N/A 5.09 5.15 4.29 4.96 N/A 1.19
convnet-1 19.42 | N/A N/A 16.14 N/A 15.52 N/A 12.26
convnet-2 19.72 | 17.63 17.96 16.18 | 19.56 16.19 N/A 6.66
Arched Eyebrows | convnet-4 | 21.16 | N/A N/A 18.0 N/A 17.15 N/A | 12.34
convnet-8 | 20.23 | N/A 18.22 16.77 | 16.93 17.3 N/A 3.84
convnet-16 | 18.21 N/A 17.59 16.43 | 16.83 16.37 N/A 11.43
convnet-1 22.41 N/A 20.62 N/A N/A N/A N/A N/A
convnet-2 | 25.48 | 22.66 2271 23.22 N/A 20.95 23.52 N/A
Attractive convnet-4 23.51 N/A 21.25 N/A 22.17 20.04 N/A 13.73
convnet-8 | 24.05 | 22.27 22.04 2229 | 2273 | 21.09 22.41 9.39
convnet-16 | 24.17 | N/A 21.85 21.22 | 22.03 | 20.32 21.95 | 12.02
convnet-1 13.52 | N/A 11.88 10.28 N/A 10.07 N/A 2.11
convnet-2 14.87 | N/A 12.15 12.12 | 13.11 11.32 N/A 3.73
Bags Under Eyes | convnet-4 | 13.15 | N/A 12.19 11.77 | 11.56 | 10.52 N/A 2.44
convnet-8 12.87 | N/A 11.75 11.18 9.97 10.96 N/A 2.27
convnet-16 | 12.13 | N/A 10.53 9.29 7.24 8.47 N/A 1.88
convnet-1 1.25 1.32 1.05 0.99 0.63 0.9 0.71 0.27
convnet-2 1.23 N/A 0.98 1.06 0.63 0.95 0.69 0.15
Bald convnet-4 1.31 N/A 1.34 N/A 0.92 1.22 N/A 0.34
convnet-8 1.24 1.25 091 0.96 0.59 0.86 0.72 0.3
convnet-16 1.03 N/A 0.74 0.86 0.56 0.82 0.56 0.25
convnet-1 6.92 6.31 6.28 6.08 6.28 5.74 5.89 3.23
convnet-2 7.44 6.76 6.52 6.28 6.34 6.21 6.46 2.92
Bangs convnet-4 7.78 7.21 7.08 6.87 7.04 6.38 6.63 3.48
convnet-8 8.36 8.07 7.7 7.84 7.65 7.39 7.53 4.0
convnet-16 | 7.45 N/A 7.45 6.74 N/A 5.75 N/A 542
convnet-1 7.46 N/A 5.89 N/A N/A N/A N/A 1.24
convnet-2 7.39 N/A 5.86 N/A N/A N/A N/A 1.44
Big Lips convnet-4 6.08 N/A 4.7 N/A N/A N/A N/A 1.34
convnet-8 6.27 N/A N/A N/A N/A N/A N/A N/A
convnet-16 | 4.68 N/A 4.04 4.32 3.77 N/A N/A N/A
convnet-1 14.84 | N/A 12.46 13.11 N/A 12.06 N/A 2.66
convnet-2 | 15.35 N/A N/A N/A N/A N/A N/A N/A
Big Nose convnet-4 15.2 N/A 13.56 13.64 N/A 12.48 N/A 2.6
convnet-8 14.0 N/A 13.31 1345 | 12.86 12.73 N/A 2.74
convnet-16 | 13.81 N/A 13.19 13.04 | 12.65 12.5 N/A 3.02
convnet-1 15.1 N/A 12.96 N/A 13.72 12.45 13.88 6.63
convnet-2 14.7 N/A N/A N/A N/A 13.08 N/A 10.36
Black Hair convnet-4 15.32 N/A N/A N/A 14.68 N/A N/A N/A
convnet-8 14.2 N/A 14.35 N/A N/A 13.16 13.28 8.52
convnet-16 | 14.41 | 14.52 14.02 N/A 14.04 12.81 14.12 8.58
convnet-1 7.95 6.95 6.57 6.47 6.57 6.07 5.69 3.28

convnet-2 8.36 7.89 73 7.24 7.59 6.93 6.89 2.99
Blond Hair convnet-4 8.33 7.97 7.81 7.21 7.71 7.11 7.71 3.37
convnet-8 9.08 8.69 8.57 8.14 8.58 7.8 8.16 3.18
convnet-16 | 9.37 N/A 9.0 8.56 8.99 8.1 8.73 5.74

Table 26: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks. Part 1 of 4.
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| Dataset | network [ cold | warm | s-perturb | mixup | Is [ co-dist [ anchor | distill |
convnet-1 | 0.03 N/A 0.03 N/A N/A N/A N/A N/A
convnet-2 | 0.22 N/A 0.22 N/A N/A N/A N/A N/A
Blurry convnet-4 | 0.21 N/A 0.21 0.27 N/A N/A N/A N/A
convnet-8 | 0.28 N/A 0.28 N/A N/A N/A N/A N/A
convnet-16 | 0.22 N/A 0.2 N/A 0.2 N/A N/A N/A

convnet-1 14.06 | N/A 13.06 10.9 13.23 | 11.82 N/A 6.16
convnet-2 | 13.06 | N/A N/A N/A N/A N/A N/A 6.37
Brown Hair convnet-4 | 13.46 | N/A 13.05 11.23 N/A 11.31 N/A 7.81
convnet-8 13.2 | 12.61 N/A 11.05 13.2 11.86 N/A 3.66
convnet-16 | 13.79 | N/A 12.79 10.76 12.9 11.53 N/A 3.63
convnet-1 7.31 N/A 6.19 6.07 5.52 5.51 N/A 1.02
convnet-2 7.02 N/A 6.23 6.38 5.65 6.32 74 1.0
Bushy Eyebrows | convnet-4 | 7.01 N/A 6.4 6.48 N/A 6.56 N/A 1.34
convnet-8 6.71 N/A 6.09 6.44 5.8 N/A N/A 2.16
convnet-16 | 5.15 N/A 5.24 N/A 4.49 N/A N/A N/A

convnet-1 221 N/A 1.87 1.91 1.22 1.78 N/A 0.4
convnet-2 | 2.33 N/A 2.11 2.23 1.56 1.94 N/A 0.43
Chubby convnet-4 | 2.57 N/A 2.12 2.17 1.62 2.18 N/A 0.41
convnet-8 2.04 | N/A 1.6 2.08 1.32 1.7 N/A 0.49
convnet-16 | 1.81 N/A 1.66 1.7 1.12 1.58 N/A 0.43
convnet-1 2.04 | N/A 1.43 1.6 1.0 1.55 N/A 0.37

convnet-2 1.39 | N/A 1.45 N/A 0.64 1.22 N/A 0.18
Double Chin convnet-4 | 2.04 | N/A 1.57 2.14 1.15 1.63 N/A 0.47

convnet-8 | 2.38 | N/A 1.7 2.08 1.38 1.86 N/A 0.55
convnet-16 | 1.26 | N/A 1.22 N/A 0.7 N/A N/A 0.35
convnet-1 3.14 | N/A 2.94 2.6 2.5 242 2.67 1.96
convnet-2 | 2.91 N/A 2.78 2.73 2.46 2.49 2.71 1.46
Eyeglasses convnet-4 3.07 N/A 2.75 2.65 2.44 2.39 2.73 0.77

convnet-8 | 3.28 | N/A 291 2.92 2.83 2.61 2.85 N/A
convnet-16 | 3.11 | N/A N/A N/A 2.58 2.51 N/A N/A
convnet-1 | 3.19 | N/A N/A N/A 1.93 N/A N/A 1.01
convnet-2 | 3.46 | N/A 3.28 3.48 2.07 2.46 N/A 0.58
Goatee convnet-4 | 322 | N/A 2.79 3.01 1.53 2.39 N/A 0.47
convnet-8 | 3.05 | N/A 2.54 2.69 1.24 1.93 2.97 0.39
convnet-16 | 2.66 | N/A 2.46 2.45 1.13 1.95 N/A 0.4
convnet-1 | 2.63 | N/A 2.25 2.32 1.89 2.04 N/A 0.76
convnet-2 | 235 | N/A 2.31 2.04 2.03 223 2.51 0.49
Gray Hair convnet-4 | 2.67 | N/A 243 234 2.18 22 275 0.88
convnet-8 | 3.06 | N/A 3.18 2.95 2.83 2.89 2.85 1.42
convnet-16 | 321 | 2.66 2.71 2.63 1.98 2.19 1.93 0.67
convnet-1 | 17.61 | N/A 16.25 16.27 | N/A | 1445 N/A N/A
convnet-2 | 17.56 | N/A 16.22 15.81 | N/A | 14.73 N/A N/A
Heavy Makeup convnet-4 | 19.8 | N/A 18.69 1795 | N/A | 16.71 18.03 N/A
convnet-8 | 20.46 | N/A 20.03 20.16 | N/A | 17.65 N/A N/A
convnet-16 | 224 | N/A 20.09 1948 | 21.11 | 1873 | 20.07 | 12.52
convnet-1 | 20.08 | N/A 17.11 N/A N/A N/A N/A N/A
convnet-2 | 20.35 | N/A 18.38 N/A N/A | 16.79 N/A N/A
High Cheekbones | convnet-4 | 23.14 | N/A 20.56 N/A N/A | 18.68 N/A N/A
convnet-8 | 249 | N/A 22.56 N/A N/A N/A N/A N/A
convnet-16 | 29.46 | N/A 27.22 26.76 | N/A | 25.42 N/A N/A

Table 27: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks. Part 2 of 4.
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Dataset network [ cold [ warm [ s-perturb | mixup [ Is [ co-dist | anchor [ distill |

convnet-1 14.08 | N/A 10.88 11.53 | 10.88 | 10.68 10.74 N/A
convnet-2 13.93 N/A 12.23 12.7 N/A N/A N/A N/A
Male convnet-4 15.16 | N/A 13.89 13.32 | 12.99 | 12.48 12.5 10.07
convnet-8 16.31 N/A 15.26 1533 | 1492 | 14.62 N/A 12.87
convnet-16 | 16.86 | 15.56 15.79 1577 | 1591 | 14.98 14.92 | 10.73
convnet-1 22.17 | N/A 17.62 N/A N/A | 16.96 N/A N/A
convnet-2 | 22.29 | N/A 20.38 N/A N/A N/A N/A N/A
Mouth Slightly Open | convnet-4 | 23.01 N/A N/A N/A N/A N/A N/A N/A
convnet-8 | 26.52 N/A N/A N/A N/A N/A N/A N/A
convnet-16 | 31.25 | 29.07 29.08 28.74 | 2895 | 27.64 30.03 | 23.06
convnet-1 0.7 N/A 0.44 0.64 0.21 0.52 N/A 0.07
convnet-2 0.61 N/A 0.66 N/A 0.42 0.8 N/A 0.17
Mustache convnet-4 0.77 N/A 0.4 0.86 0.38 0.68 N/A 0.11
convnet-8 0.62 N/A 0.5 N/A 0.41 0.65 0.41 0.18
convnet-16 | 0.54 N/A 0.38 N/A 0.34 N/A N/A 0.14
convnet-1 0.97 N/A 0.36 0.54 0.74 0.66 N/A 0.09

convnet-2 1.0 N/A 0.75 1.07 N/A N/A N/A 0.34
Narrow Eyes convnet-4 0.48 N/A 0.32 N/A 0.56 N/A N/A N/A
convnet-8 | 0.48 N/A N/A N/A N/A N/A N/A N/A
convnet-16 | 0.19 N/A 0.18 N/A N/A N/A N/A N/A

convnet-1 12.32 | N/A 10.85 11.5 N/A 9.95 11.34 7.4
convnet-2 12.82 | 11.52 10.9 11.05 | 10.91 9.95 11.34 4.02
No Beard convnet-4 12.21 N/A 11.92 11.64 N/A 10.59 N/A 6.4
convnet-8 13.59 | N/A 12.55 11.99 | 12.61 | 1091 13.0 6.16
convnet-16 | 13.75 | 12.59 12.35 12.1 12.19 | 11.45 12.77 6.25
convnet-1 14.15 N/A 12.26 N/A N/A N/A N/A 2.43
convnet-2 16.24 | N/A 14.91 14.84 | N/A N/A N/A 3.21
Oval Face convnet-4 13.96 N/A 12.65 13.23 N/A 14.23 N/A 2.77
convnet-8 12.14 | N/A 11.65 10.94 | 10.82 N/A N/A 2.54
convnet-16 | 10.69 | N/A N/A 8.81 N/A N/A N/A 1.91
convnet-1 2.09 N/A 2.08 1.87 1.5 1.98 N/A 1.26

convnet-2 1.93 2.08 1.51 1.66 1.04 1.58 2.27 0.34
Pale Skin convnet-4 2.13 N/A 1.87 1.94 1.42 1.9 N/A 0.46
convnet-8 1.98 1.88 1.4 1.41 0.83 1.52 1.89 0.29

convnet-16 | 1.44 N/A N/A N/A 1.0 1.56 N/A N/A
convnet-1 | 15.42 | N/A 13.99 N/A N/A N/A N/A 2.65
convnet-2 | 16.07 | N/A 14.29 13.62 | N/A N/A N/A N/A

Pointy Nose convnet-4 | 13.81 | N/A 12.23 12.73 | N/A N/A N/A 3.06
convnet-8 | 11.64 | N/A 9.99 N/A | 11.61 | N/A N/A 2.3

convnet-16 | 9.84 N/A 10.12 9.1 9.44 N/A N/A 3.94
convnet-1 4.18 N/A 3.37 3.07 2.55 2.96 3.44 0.63
convnet-2 4.42 N/A 4.32 4.37 3.7 3.89 N/A 1.08

Receding Hairline convnet-4 4.62 N/A 4.17 N/A 3.31 3.76 N/A 1.44
convnet-8 4.5 N/A 4.42 4.38 3.83 4.24 N/A 1.83

convnet-16 | 3.76 N/A 3.38 297 2.5 N/A N/A 0.89
convnet-1 2.54 N/A 2.09 2.05 1.16 1.97 N/A 0.38

convnet-2 2.38 N/A 23 2.14 1.25 2.28 N/A 0.35
Rosy Cheeks convnet-4 3.0 N/A 2.43 2.51 1.9 241 N/A 0.57
convnet-8 2.23 N/A 1.86 1.86 1.44 N/A N/A 0.45

convnet-16 | 1.58 N/A 1.37 1.48 0.84 N/A N/A 0.33

Table 28: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks. Part 3 of 4.
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| Dataset network | cold | warm [ s-perturb | mixup | Is [ co-dist [ anchor | distill |

convnet-1 294 | N/A 2.86 2.44 1.1 2.26 N/A 0.39
convnet-2 | 2.81 2.55 2.72 2.28 1.15 2.03 2.85 04

Sideburns convnet-4 | 3.64 | N/A 243 2.78 1.39 1.98 2.89 0.38
convnet-8 | 2.74 | N/A 2.48 2.56 1.12 1.72 N/A 0.24
convnet-16 | 3.68 3.45 3.0 3.01 1.97 2.68 3.34 0.73

convnet-1 | 15.69 | N/A 13.19 N/A N/A 12.1 11.68 7.9
convnet-2 146 | N/A 12.49 N/A N/A 12.1 N/A N/A
Smiling convnet-4 | 1551 | N/A 13.95 N/A N/A 12.93 1293 | 10.51
convnet-8 | 18.75 | N/A 15.82 16.83 | N/A | 1542 N/A N/A
convnet-16 | 23.22 | N/A 20.93 20.69 | 20.7 | 19.72 21.27 N/A
convnet-1 5.75 N/A 3.71 4.29 5.56 4.46 N/A 0.85
convnet-2 | 6.46 | N/A 5.28 6.14 N/A N/A N/A 1.08
Straight Hair convnet-4 | 6.05 | N/A 5.02 N/A N/A N/A N/A 1.28
convnet-8 4.52 N/A 4.55 N/A N/A N/A N/A 1.2
convnet-16 | 547 | N/A 5.58 N/A | 4.68 N/A N/A N/A
convnet-1 | 19.16 | N/A 17.36 1753 | N/A 16.15 N/A 9.73
convnet-2 | 20.05 | N/A 19.23 19.77 | N/A | 18.29 N/A N/A
Wavy Hair convnet-4 | 19.38 | N/A 17.93 17.01 | 20.82 | 16.92 N/A 7.53
convnet-8 | 19.13 | N/A 17.86 17.5 18.6 17.5 18.9 | 12.31
convnet-16 | 19.23 | N/A 19.7 1736 | 1897 | 16.75 N/A | 11.37
convnet-1 | 12.07 | 10.52 9.43 8.34 7.36 9.14 11.0 1.78
convnet-2 | 10.98 | N/A 9.78 9.8 N/A 8.77 N/A 1.97
Wearing Earrings | convnet-4 | 10.41 | N/A 9.21 9.22 8.72 8.79 N/A 2.15
convnet-8 | 7.05 N/A 7.31 7.54 6.44 N/A N/A 1.71
convnet-16 | 7.73 N/A 7.58 6.49 5.52 N/A N/A 1.53
convnet-1 2.73 2.35 2.26 2.3 2.11 2.1 2.09 1.23
convnet-2 | 2.33 N/A 2.25 2.39 2.06 222 2.18 1.44
Wearing Hat convnet-4 2.57 2.58 2.42 2.57 2.15 2.2 2.17 0.93
convnet-8 3.0 2.83 2.71 2.89 2.49 2.32 2.54 1.01
convnet-16 | 3.09 | N/A 3.03 N/A 2.83 2.81 2.73 242
convnet-1 | 15.83 | N/A 14.95 N/A N/A N/A N/A N/A
convnet-2 | 14.95 | 13.66 13.89 13.55 | 13.95 | 13.03 1226 | 8.63
Wearing Lipstick | convnet-4 | 17.23 | N/A 15.16 15.08 | 15.28 | 14.37 N/A 11.92
convnet-8 18.3 N/A 16.93 16.46 | N/A | 15.27 N/A N/A
convnet-16 | 20.15 | 17.99 17.87 1728 | 18.2 16.93 17.86 | 12.74
convnet-1 2.08 | N/A 1.62 N/A 1.67 N/A N/A N/A
convnet-2 | 2.37 | N/A 1.87 N/A 221 N/A N/A N/A
Wearing Necklace | convnet-4 1.81 N/A 1.63 N/A N/A N/A N/A N/A
convnet-8 | 2.04 | N/A N/A N/A 1.76 N/A N/A N/A
convnet-16 | 1.46 | N/A 1.42 N/A 1.06 N/A N/A N/A
convnet-1 4.21 N/A 3.76 3.83 3.45 3.66 3.57 3.26
convnet-2 | 4.03 N/A 371 3.8 3.82 3.39 3.64 1.06
Wearing Necktie convnet-4 | 4.45 N/A 4.28 N/A 4.24 4.03 4.37 N/A
convnet-8 | 4.75 | 4.04 3.88 4.02 3.94 3.51 413 2.01
convnet-16 | 4.78 | 4.06 4.03 3.96 42 3.95 4.0 1.72
convnet-1 | 13.17 | N/A N/A N/A N/A | 10.53 N/A N/A
convnet-2 139 | N/A 12.1 1229 | N/A 11.5 N/A 4.24
Young convnet-4 | 13.59 | N/A 12.1 11.88 | N/A N/A N/A 5.21
convnet-8 | 13.73 | N/A 12.73 12.24 | N/A | 11.89 N/A N/A
convnet-16 | 12.62 | N/A 12.06 1193 | N/A 11.22 N/A 6.54

Table 29: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks. Part 4 of 4.
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convnet-1 convnet-2 convnet-4 convnet-8 convnet-16

Dataset Error | Churn | Error | Churn [ Error [ Churn | Error | Churn [ Error | Churn
5 o Clock Shadow 0.79 0.98 0.78 0.98 0.78 0.98 0.83 1.06 0.83 1.07
Arched Eyebrows 0.82 1.2 0.81 1.23 0.84 1.21 0.84 1.38 0.81 1.36
Attractive 0.37 0.79 0.36 0.92 0.37 0.83 0.38 0.97 04 0.85
Bags Under Eyes 0.84 1.2 0.87 1.25 0.86 1.24 0.86 1.32 0.87 1.38
Bald 0.38 0.42 0.43 0.47 0.48 0.54 0.44 0.48 0.54 0.58
Bangs 0.77 0.83 0.8 0.88 0.8 0.85 0.83 0.93 0.82 0.91
Big Lips 0.8 1.51 0.82 1.55 0.81 1.53 0.8 1.53 0.76 1.56
Big Nose 0.81 1.23 0.82 1.18 0.82 1.25 0.82 1.36 0.81 1.37
Black Hair 0.78 0.96 0.79 1.01 0.78 0.97 0.78 0.98 0.8 1.04
Blond Hair 0.8 0.86 0.8 0.91 0.82 0.95 0.82 0.94 0.83 0.96
Blurry 0.59 0.66 0.55 0.66 0.57 0.67 0.58 0.67 0.55 0.63
Brown Hair 0.83 1.2 0.83 1.14 0.84 1.17 0.87 1.21 0.83 1.3
Bushy Eyebrows 0.83 1.09 0.82 1.12 0.86 1.16 0.85 1.22 0.82 1.14
Chubby 0.62 0.72 0.65 0.77 0.65 0.78 0.64 0.76 0.64 0.77
Double Chin 0.58 0.68 0.6 0.69 0.59 0.69 0.6 0.72 0.59 0.69
Eyeglasses 0.6 0.68 0.64 0.7 0.63 0.68 0.61 0.69 0.66 0.73
Goatee 0.67 0.8 0.66 0.78 0.69 0.81 0.69 0.82 0.66 0.8
Gray Hair 0.54 0.59 0.54 0.59 0.61 0.68 0.62 0.72 0.59 0.67
Heavy Makeup 0.56 0.74 0.58 0.75 0.59 0.83 0.6 0.92 0.59 0.92
High Cheekbones 0.45 0.76 0.45 0.77 0.49 1.09 0.47 1.05 0.5 1.31
Male 0.45 0.54 0.47 0.61 0.45 0.65 0.48 0.64 0.47 0.71
Mouth Slightly Open | 0.39 0.67 0.4 0.83 0.38 0.92 0.45 1.44 0.57 1.78
Mustache 0.5 0.55 0.54 0.61 0.55 0.62 0.5 0.57 0.54 0.61
Narrow Eyes 0.73 0.97 0.76 1.06 0.76 1.02 0.76 1.04 0.73 0.97
No Beard 0.83 1.01 0.83 1.07 0.84 1.11 0.85 1.11 0.86 1.19
Oval Face 0.79 1.54 0.83 1.51 0.79 1.57 0.77 1.59 0.79 1.85
Pale Skin 0.63 0.71 0.59 0.68 0.63 0.74 0.61 0.72 0.61 0.73
Pointy Nose 0.79 1.46 0.79 1.45 0.78 1.55 0.77 1.66 0.75 1.62
Receding Hairline 0.66 0.78 0.7 0.85 0.75 0.92 0.71 0.87 0.72 0.91
Rosy Cheeks 0.67 0.8 0.69 0.83 0.69 0.89 0.69 0.86 0.66 0.79
Sideburns 0.66 0.77 0.62 0.73 0.65 0.77 0.63 0.78 0.62 0.96
Smiling 0.35 0.59 0.34 0.51 0.35 0.69 0.39 0.85 0.42 1.35
Straight Hair 0.81 1.38 0.83 1.48 0.83 1.42 0.81 1.39 0.82 1.76
Wavy Hair 0.72 0.98 0.73 1.06 0.72 1.06 0.71 1.09 0.72 1.14
Wearing Earrings 0.87 1.32 0.84 1.27 0.87 1.41 0.84 1.36 0.85 1.38
Wearing Hat 0.53 0.55 0.57 0.58 0.62 0.65 0.59 0.63 0.63 0.67
Wearing Lipstick 04 0.56 0.39 0.61 04 0.66 0.38 0.62 0.39 0.7
Wearing Necklace 0.75 1.05 0.78 1.06 0.8 1.11 0.78 1.08 0.76 1.06
Wearing Necktie 0.66 0.7 0.71 0.75 0.71 0.78 0.73 0.78 0.71 0.78
Young 0.85 1.11 0.85 1.18 0.85 1.19 0.87 1.21 0.82 1.17

Table 30: CelebA Error Bands: Average standard errors for error and churn across baselines for each
dataset and network across 100 runs.
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| Dataset | network [ cold [ warm [ s-perturb [ mixup [ Is [ co-dist [ anchor [ distill |

convnet-1 6.65 N/A 6.51 547 | NJA'| N/A N/A 1.65
convnet-2 6.5 N/A 6.29 N/A | N/A | N/A N/A 1.87
5 o Clock Shadow | convnet-4 6.33 N/A 5.85 5.6 N/A | N/A N/A 1.79
convnet-8 6.1 N/A N/A N/A | NJA | N/A N/A 1.61
convnet-16 | 6.67 N/A 6.32 552 | N/JA| 555 N/A 1.67
convnet-1 15.6 N/A 12.64 1244 | NJA | N/A N/A 3.73
convnet-2 15.8 N/A 14.01 N/A | N/A | N/A N/A 5.24
Arched Eyebrows | convnet-4 | 14.87 | N/A 13.34 N/A | NJA | N/A N/A 3.92
convnet-8 | 15.52 | N/A N/A N/A | N/A | N/A N/A 5.16
convnet-16 | 15.72 | N/A 12.99 1291 | N/A | 12.17 N/A 3.8

convnet-1 | 16.61 | N/A N/A N/A | N/A | N/A N/A 5.33
convnet-2 | 16.67 | N/A 14.58 N/A | N/A | N/A N/A 4.25
Attractive convnet-4 | 16.01 | N/A 15.36 N/A | NJA | N/A N/A 4.15
convnet-8 | 16.63 | N/A 14.49 N/A | NJA | N/A N/A 4.02
convnet-16 | 16.45 | N/A 14.96 N/A | N/A | N/A N/A 4.05
convnet-1 | 10.22 | N/A 8.62 N/A | N/A | N/A N/A 2.48
convnet-2 | 10.07 | N/A 8.58 N/A | N/A | N/A N/A 2.5

Bags Under Eyes | convnet-4 9.14 N/A N/A N/A | NJA | N/A N/A 3.54
convnet-8 9.5 N/A 8.52 N/A | NJA | N/A N/A 24

convnet-16 | 9.47 N/A N/A N/A | NJA'| N/A N/A N/A

convnet-1 1.61 N/A 1.3 1.32 | 1.15 1.2 1.13 0.44
convnet-2 1.58 N/A 1.35 1.3 1.24 1.29 1.44 0.5
Bald convnet-4 1.38 N/A 1.24 1.27 1.1 1.22 1.02 0.39
convnet-8 1.42 N/A 1.33 1.25 1.17 1.21 1.1 0.45

convnet-16 | 1.14 N/A 1.17 1.15 ] 093 1.06 0.79 0.33
convnet-1 5.69 N/A 491 N/A | NJA | 421 N/A 1.76
convnet-2 5.64 N/A N/A N/A | N/JA| 4.38 N/A 1.82

Bangs convnet-4 5.51 N/A N/A N/A | NJA | N/A N/A 2.58
convnet-8 5.48 N/A 5.28 N/A | N/A | 458 N/A | 221

convnet-16 | 5.52 N/A N/A N/A | N/A | N/A N/A | 2.02
convnet-1 8.07 N/A 7.58 N/A | N/A | N/A N/A 1.98
convnet-2 7.91 N/A 7.31 N/A | N/A | N/A N/A 1.79

Big Lips convnet-4 | 7.72 N/A N/A N/A | NJA | N/A N/A N/A
convnet-8 6.37 N/A N/A N/A | N/A | N/A N/A 1.51

convnet-16 | 4.48 N/A N/A N/A | N/A | N/A N/A 1.0
convnet-1 | 12.13 | N/A 10.63 N/A | N/A | N/A N/A | 4.06
convnet-2 | 12.06 | N/A 10.75 N/A | N/A | N/A N/A | 2.86

Big Nose convnet-4 | 11.45 | N/A N/A N/A | NJA | N/A N/A N/A
convnet-8 | I1.16 | N/A N/A N/A | N/A | N/A N/A 2.8

convnet-16 | 11.82 | N/A 10.64 N/A | N/A | N/A N/A | 2.81
convnet-1 | 11.61 | N/A 10.19 N/A | N/A | 8.78 N/A 2.98
convnet-2 10.9 N/A 10.05 N/A | N/A | N/A N/A | 3.02

Black Hair convnet-4 | 10.37 | N/A 10.09 N/A | NJA | N/A N/A | 2.96
convnet-8 | 10.61 | N/A 10.57 N/A | N/A | N/A N/A 2.97

convnet-16 | 10.68 | N/A 10.27 N/A | N/A | N/A N/A 2.9
convnet-1 5.74 N/A N/A N/A | N/A | N/A N/A 2.09
convnet-2 5.62 N/A 5.37 N/A [ N/A | 452 N/A 1.88

Blond Hair convnet-4 5.51 N/A 5.39 4.9 N/A | 4.49 N/A 1.97
convnet-8 5.62 N/A 4.95 488 | 477 452 4.54 1.93

convnet-16 | 5.48 N/A 5.07 504 [ 486 | 4.64 4.73 1.94

Table 31: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks with initial sample 10000. Part 1 of 4.
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| Dataset | network [ cold [ warm [ s-perturb | mixup [ Is [ co-dist [ anchor | distill |

convnet-1 | 0.08 | N/A 0.06 N/A | NNA | N/A N/A N/A
convnet-2 | 0.08 N/A 0.09 N/A | NNA | N/A N/A N/A
Blurry convnet-4 | 0.04 N/A N/A N/A | NJA | N/A N/A N/A
convnet-8 | 0.08 N/A N/A N/A | NJA | N/A N/A N/A
convnet-16 | 0.04 N/A N/A N/A | NNA | N/A N/A N/A
convnet-1 | 11.37 | N/A 10.55 N/A | NNA | N/A N/A 3.63
convnet-2 | 11.18 | N/A 11.02 N/A | NNA | N/A N/A 2.88
Brown Hair convnet-4 | 1091 | N/A N/A N/A | NJA | N/A N/A 3.0
convnet-8 | 10.87 | N/A 10.56 N/A | NNA | N/A N/A 2.85
convnet-16 | 10.93 | N/A 10.55 N/A | NNA | N/A N/A 2.64
convnet-1 | 7.34 | N/A 6.85 N/A | NNJA | N/A N/A 2.38
convnet-2 | 7.24 | N/A 6.19 N/A | NNA | N/A N/A 1.77
Bushy Eyebrows | convnet-4 | 7.18 | N/A 7.07 N/A | NJA | N/A N/A 2.38
convnet-8 | 6.96 | N/A 6.86 N/A | NNA | N/A N/A 1.77
convnet-16 | 6.79 | N/A 6.65 N/A | NNA| N/A N/A 1.69

convnet-1 3.01 N/A 2.7 N/A | 228 | N/A N/A 0.73
convnet-2 | 299 | N/A 2.78 N/A | NJA | N/A N/A 0.85
Chubby convnet-4 | 2.82 | N/A 2.71 N/A | NJA'| N/A N/A 0.83

convnet-8 2.47 N/A 2.49 N/A N/A N/A N/A 0.74
convnet-16 | 2.36 N/A N/A N/A N/A N/A N/A 0.66
convnet-1 2.4 N/A 2.18 N/A 1.99 N/A N/A 0.62
convnet-2 2.13 N/A N/A N/A 1.95 N/A N/A 0.63
Double Chin convnet-4 2.07 N/A 1.94 N/A N/A N/A N/A 0.63

convnet-8 | 2.11 | N/A 1.9 N/A | NNJA | N/A N/A | 0.58
convnet-16 | 1.94 | N/A 2.02 N/A [ N/A| N/A N/A | 0.59
convnet-1 | 2.52 2.0 2.09 1.98 | 1.87 1.8 1.76 0.9
convnet-2 | 2.44 | N/A 2.25 201 [192] 1.83 N/A | 0.84
Eyeglasses convnet-4 | 2.33 | N/A 1.97 2.0 1.87 1.79 N/A 0.81
convnet-8 | 2.34 | N/A 224 22 | NJA| 1.81 N/A 1.08

convnet-16 | 2.25 2.01 1.93 2.05 1.82 1.75 1.93 0.79
convnet-1 3.55 N/A 3.38 N/A | NJA | N/A N/A 1.28
convnet-2 | 3.46 | N/A N/A N/A | NJA | N/A N/A 1.7

Goatee convnet-4 | 3.56 | N/A N/A N/A | NJA'| N/A N/A 1.56
convnet-8 | 3.27 | N/A 3.07 N/A | NJA' | N/A N/A 0.95

convnet-16 | 3.23 N/A 3.09 N/A | NJA | N/A N/A 0.96

convnet-1 | 2.62 | N/A 2.41 204 | NJA | 2.05 N/A 0.85
convnet-2 | 2.57 | N/A 2.39 2.16 23 2.04 N/A 0.87
Gray Hair convnet-4 | 249 | N/A 2.45 2.2 N/A | 212 N/A 0.82

convnet-8 2.5 N/A 2.37 229 | N/A 22 2.32 0.85
convnet-16 | 2.4 N/A 2.22 201 [ 216 | 198 2.14 | 0.77
convnet-1 112 | N/A 9.59 879 | N/A 7.8 N/A 3.04
convnet-2 | 10.72 | N/A 9.53 N/A | NNA| N/A N/A 3.92
Heavy Makeup convnet-4 | 10.53 | N/A 9.35 N/A | N/A | 8.12 N/A 3.24
convnet-8 | 10.67 | N/A 9.93 N/A | N/A | 8.18 N/A 3.17
convnet-16 | 10.96 | N/A 9.76 N/A | N/A | 8.07 N/A 34
convnet-1 | 12.86 | N/A 10.43 N/A | NJA | 9.04 N/A 3.04
convnet-2 | 1242 | N/A 10.41 N/A | NNA| N/A N/A 3.04
High Cheekbones | convnet-4 12.1 N/A 10.4 N/A | NJA'| N/A N/A 3.04
convnet-8 | 12.37 | N/A 9.83 N/A | N/A | 8.65 N/A 2.87
convnet-16 | 13.01 | N/A 11.45 N/A | NNA | N/A N/A 4.27

Table 32: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks with initial sample 10000. Part 2 of 4.
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| Dataset network | cold | warm [ s-perturb [ mixup | Is [ co-dist [ anchor | distill |
convnet-1 8.42 6.21 6.31 6.2 6.18 5.79 5.5 3.08
convnet-2 8.11 N/A 6.39 6.43 6.14 6.03 5.51 3.27
Male convnet-4 7.65 6.08 6.15 6.03 6.03 5.79 5.37 3.18
convnet-8 8.04 6.52 6.61 6.34 6.38 6.17 5.67 3.09
convnet-16 | 8.06 6.45 6.6 6.5 6.49 6.25 5.83 3.21

convnet-1 12.43 | N/A 10.22 N/A N/A N/A N/A N/A
convnet-2 | 12.16 | N/A 9.61 N/A N/A 7.94 N/A 2.86
Mouth Slightly Open | convnet-4 12.54 | N/A 10.41 N/A N/A N/A N/A 2.82
convnet-8 | 12.31 | N/A 9.84 N/A N/A 7.82 N/A 3.36
convnet-16 | 14.93 | N/A 10.6 N/A N/A N/A N/A N/A
convnet-1 1.94 N/A N/A N/A 1.49 N/A N/A 0.51
convnet-2 1.86 N/A N/A N/A 1.49 N/A N/A 0.52
Mustache convnet-4 2.09 N/A 1.88 N/A 1.83 N/A N/A 0.58
convnet-8 1.98 N/A N/A N/A | 1.56 N/A N/A N/A
convnet-16 | 1.64 N/A 1.56 N/A 1.33 N/A N/A 0.49
convnet-1 4.11 N/A 3.43 N/A N/A N/A N/A 0.94
convnet-2 3.58 N/A N/A N/A N/A N/A N/A 0.97

Narrow Eyes convnet-4 3.14 N/A 2.63 N/A | N/A N/A N/A 0.69
convnet-§ 2.0 N/A N/A N/A | NJA | N/A N/A | 0.44
convnet-16 | 1.06 N/A 0.9 N/A | N/A N/A N/A 0.18

convnet-1 8.44 N/A 6.59 N/A | N/A 6.04 N/A 2.22
convnet-2 8.27 N/A 7.63 N/A N/A 6.26 N/A 2.27

No Beard convnet-4 7.97 N/A 6.93 N/A N/A 6.18 N/A 2.36
convnet-8 8.0 N/A 7.26 N/A N/A 6.26 N/A 2.31
convnet-16 | 8.34 N/A 7.29 7.2 N/A 6.2 6.79 2.25

convnet-1 14.2 N/A 13.96 N/A N/A N/A N/A 3.5

convnet-2 1439 | N/A 13.74 N/A N/A N/A N/A 3.66
Oval Face convnet-4 | 14.24 N/A N/A N/A N/A N/A N/A N/A
convnet-8 14.14 | N/A 12.29 N/A N/A N/A N/A 3.09
convnet-16 | 12.36 | N/A 12.19 N/A N/A N/A N/A 2.75

convnet-1 2.74 N/A 2.17 23 2.25 2.03 N/A 0.65
convnet-2 2.29 N/A 2.3 N/A N/A N/A N/A 0.58
Pale Skin convnet-4 2.44 N/A 2.22 N/A | 232 2.13 N/A 0.61
convnet-8 2.38 N/A 2.17 2.2 N/A 2.05 N/A 0.75
convnet-16 | 2.23 N/A 2.3 N/A N/A 2.11 N/A 0.58

convnet-1 | 15.58 | N/A 15.39 N/A | N/A N/A N/A 3.7

convnet-2 15.4 N/A 15.14 N/A | N/A N/A N/A 3.68
Pointy Nose convnet-4 | 15.23 | N/A 13.25 N/A N/A N/A N/A 344
convnet-8 | 13.53 | N/A N/A N/A | N/A N/A N/A N/A
convnet-16 | 11.39 | N/A N/A N/A | N/A N/A N/A 2.86
convnet-1 4.57 N/A 4.2 N/A | N/A N/A N/A 1.25
convnet-2 4.28 N/A 4.1 N/A | N/A N/A N/A 1.15
Receding Hairline convnet-4 4.4 N/A 4.56 N/A N/A N/A N/A 1.67
convnet-8 441 N/A 4.26 N/A | N/A N/A N/A 1.63
convnet-16 | 4.18 N/A N/A N/A | N/A N/A N/A 1.21
convnet-1 4.15 N/A 3.84 3.23 3.69 N/A N/A 1.23
convnet-2 4.49 N/A 4.26 3.66 | 3.88 3.61 N/A 1.23
Rosy Cheeks convnet-4 4.28 N/A 4.0 3.37 N/A 3.46 N/A 1.16
convnet-8 3.86 N/A 3.71 3.31 3.44 N/A N/A 1.05
convnet-16 | 3.83 N/A 3.65 3.16 | N/A 3.38 N/A 0.94

Table 33: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks with initial sample 10000. Part 3 of 4.
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| Dataset network | cold | warm [ s-perturb [ mixup | Is | co-dist | anchor | distill |

convnet-1 3.19 N/A N/A 2.52 | N/A 2.36 N/A 0.9
convnet-2 3.07 N/A 2.95 N/A | N/A N/A N/A 1.14
Sideburns convnet-4 3.13 N/A 2.74 2.62 N/A 2.48 N/A 0.96
convnet-8 2.93 N/A 2.75 2.64 | N/A 2.38 N/A 0.89
convnet-16 | 2.91 N/A 2.71 2.62 | N/A 2.37 N/A 0.79
convnet-1 9.61 N/A 7.58 7.66 | N/A 7.18 N/A 4.44
convnet-2 9.43 N/A 8.35 N/A | N/A 7.0 N/A 3.04

Smiling convnet-4 9.4 N/A 9.14 N/A | NJA | 691 N/A 3.09
convnet-8 9.81 N/A 7.69 793 | N/A | 684 744 | 2.58
convnet-16 | 10.19 | 7.42 7.73 7.9 758 | 7.18 7.4 2.81

convnet-1 6.64 N/A 6.34 N/A | N/A | N/A N/A 1.58
convnet-2 6.96 N/A N/A N/A | N/A | N/A N/A 1.62
Straight Hair convnet-4 | 7.33 N/A N/A N/A | NJA | N/A N/A N/A
convnet-8 6.47 N/A N/A N/A | N/A | N/A N/A 1.54
convnet-16 | 5.95 N/A N/A N/A | N/A | N/A N/A 1.24
convnet-1 | 16.13 | N/A N/A N/A | N/A | N/A N/A N/A
convnet-2 | 1631 | N/A N/A N/A | N/A | N/A N/A 5.63
Wavy Hair convnet-4 15.8 N/A 14.23 1427 | N/A | 13.68 N/A 3.97
convnet-8 | 15.76 | N/A N/A N/A | N/A | N/A N/A | 3.84
convnet-16 | 1525 | N/A 13.89 N/A | N/A | N/A N/A 3.81
convnet-1 | 12.37 | N/A 10.47 9.11 | N/A | N/A N/A | 2.94
convnet-2 | 12.09 | N/A 11.23 N/A | N/A | N/A N/A 3.23
Wearing Earrings | convnet-4 | 12.05 | N/A 10.72 995 | NJA | N/A N/A 3.37
convnet-8 | I1.55 | N/A 10.6 9.83 | N/A | 9.68 N/A | 3.35
convnet-16 | 11.33 | N/A 10.42 961 | N/A | 944 N/A 2.95
convnet-1 1.9 N/A 1.58 1.61 | 1.52 | 143 1.39 0.64
convnet-2 1.95 N/A 1.81 1.82 | 1.71 1.66 1.58 0.73
Wearing Hat convnet-4 1.86 N/A N/A N/A | N/A 1.53 N/A 0.9

convnet-8 1.86 N/A N/A N/A | N/A | 1.54 N/A 0.85
convnet-16 | 1.88 1.66 1.77 1.78 1.6 1.6 1.59 0.71
convnet-1 9.1 N/A 7.6 7.14 | N/A | 647 N/A | 3.29
convnet-2 9.07 N/A 7.96 755 | N/A| 6.77 N/A 2.83
Wearing Lipstick | convnet-4 8.46 N/A N/A 754 | N/A | 684 N/A 2.86
convnet-8 8.67 N/A N/A N/A | N/A 6.8 N/A | 2.93
convnet-16 | 9.18 N/A 7.83 N/A | N/A | 697 N/A 2.99
convnet-1 0.94 N/A 0.75 N/A | N/A | N/A N/A N/A
convnet-2 1.64 N/A 1.45 N/A | N/A | N/A N/A N/A
Wearing Necklace | convnet-4 1.36 N/A 1.14 N/A | NJA | N/A N/A 0.41
convnet-8 1.51 N/A 1.45 N/A | N/A | N/A N/A 0.41
convnet-16 | 0.99 N/A N/A N/A | N/A | N/A N/A 0.25
convnet-1 3.34 N/A 3.03 2.86 | N/A 2.8 N/A 0.98
convnet-2 3.04 N/A N/A N/A | N/A | N/A N/A 0.97
Wearing Necktie convnet-4 3.43 N/A 2.99 297 1302 | 285 N/A 1.05
convnet-8 3.28 N/A 3.06 307 | NJA | 275 N/A 1.04
convnet-16 | 3.26 N/A N/A N/A | N/A | 287 N/A 1.53
convnet-1 | 10.65 | N/A 9.59 832 | NJA | N/A N/A | 2.52
convnet-2 | 10.51 | N/A 9.54 N/A | N/A | N/A N/A 2.9

Young convnet-4 | 10.08 | N/A 9.21 N/A | NJA | N/A N/A 2.81
convnet-8 | 10.02 | N/A 9.42 N/A | N/A | N/A N/A | 2.79
convnet-16 | 9.67 N/A N/A N/A | N/A 8.3 N/A | 2.63

Table 34: Results for CelebA tasks under churn at cold accuracy metric across different sizes of
convolutional networks with initial sample 10000. Part 4 of 4.
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convnet-1 convnet-2 convnet-4 convnet-8 convnet-16

Dataset Error | Churn | Error | Churn [ Error [ Churn | Error | Churn [ Error | Churn
5 o Clock Shadow 0.67 0.77 0.68 0.78 0.65 0.75 0.67 0.79 0.7 0.82
Arched Eyebrows 0.59 0.75 0.61 0.79 0.61 0.78 0.61 0.77 0.61 0.79
Attractive 0.14 0.36 0.14 0.35 0.15 0.38 0.14 0.37 0.14 0.4
Bags Under Eyes 0.67 0.92 0.69 0.94 0.69 0.95 0.69 0.94 0.68 0.95
Bald 0.33 0.35 0.36 0.39 0.39 0.42 0.34 0.37 0.37 0.4
Bangs 0.66 0.7 0.67 0.73 0.64 0.68 0.65 0.71 0.68 0.73
Big Lips 0.67 1.18 0.65 1.19 0.68 1.23 0.67 1.27 0.67 1.31
Big Nose 0.64 09 0.65 0.92 0.65 09 0.65 0.94 0.65 0.94
Black Hair 0.6 0.67 0.61 0.69 0.61 0.69 0.59 0.68 0.6 0.67
Blond Hair 0.72 0.77 0.7 0.74 0.7 0.74 0.68 0.71 0.69 0.72
Blurry 0.54 0.61 0.56 0.64 0.55 0.62 0.51 0.58 0.54 0.6
Brown Hair 0.65 0.82 0.66 0.81 0.67 0.83 0.66 0.82 0.67 0.84
Bushy Eyebrows 0.67 0.82 0.69 0.84 0.7 0.84 0.68 0.84 0.73 0.9
Chubby 0.57 0.64 0.58 0.65 0.54 0.6 0.58 0.65 0.56 0.64
Double Chin 0.53 0.58 0.53 0.58 0.53 0.58 0.55 0.61 0.49 0.54
Eyeglasses 0.56 0.58 0.57 0.59 0.53 0.55 0.54 0.57 0.55 0.58
Goatee 0.59 0.63 0.56 0.6 0.57 0.61 0.57 0.61 0.58 0.63
Gray Hair 0.48 0.51 0.52 0.54 0.54 0.57 0.52 0.55 0.5 0.53
Heavy Makeup 0.36 0.39 0.36 0.38 0.37 0.37 0.36 0.4 0.37 0.38
High Cheekbones 0.21 0.32 0.21 0.35 0.22 0.34 0.21 0.33 0.23 0.49
Male 0.26 0.29 0.26 0.3 0.26 0.29 0.26 0.3 0.27 0.3
Mouth Slightly Open | 0.16 0.28 0.15 0.29 0.16 0.29 0.15 0.28 0.57 0.77
Mustache 0.51 0.56 0.45 0.49 0.47 0.52 0.45 0.51 0.45 0.5
Narrow Eyes 0.71 09 0.71 0.9 0.72 0.94 0.69 0.93 0.71 0.96
No Beard 0.68 0.77 0.67 0.76 0.66 0.74 0.66 0.74 0.66 0.77
Oval Face 0.6 1.05 0.61 1.03 0.61 1.06 0.61 1.12 0.61 1.2
Pale Skin 0.55 0.6 0.48 0.55 0.54 0.61 0.56 0.64 0.51 0.58
Pointy Nose 0.61 1.09 0.61 1.05 0.62 1.11 0.61 1.11 0.63 1.26
Receding Hairline 0.66 0.76 0.63 0.72 0.64 0.73 0.62 0.72 0.65 0.73
Rosy Cheeks 0.55 0.61 0.58 0.65 0.63 0.7 0.6 0.67 0.58 0.67
Sideburns 0.58 0.62 0.56 0.61 0.55 0.59 0.52 0.57 0.53 0.58
Smiling 0.13 0.25 0.14 0.23 0.13 0.23 0.14 0.26 0.16 0.49
Straight Hair 0.71 1.14 0.71 1.13 0.72 1.14 0.72 1.16 0.72 1.19
Wavy Hair 0.52 0.69 0.52 0.68 0.52 0.69 0.52 0.73 0.51 0.71
Wearing Earrings 0.69 0.89 0.69 0.89 0.69 0.9 0.7 0.91 0.71 0.94
Wearing Hat 0.5 0.51 0.56 0.6 0.54 0.56 0.51 0.53 0.52 0.54
Wearing Lipstick 0.17 0.21 0.16 0.21 0.16 0.21 0.16 0.2 0.16 0.21
Wearing Necklace 0.7 0.97 0.73 1.0 0.73 0.99 0.72 0.98 0.73 1.0
Wearing Necktie 0.62 0.65 0.58 0.61 0.59 0.62 0.59 0.61 0.61 0.7
Young 0.65 0.87 0.66 0.88 0.66 0.88 0.67 0.9 0.66 0.9

Table 35: CelebA Error Bands with initial sample 10000: Average standard errors for error and churn
across baselines for each dataset and network across 100 runs.
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| Dataset | Architecture [ cold [ warm [ sperturb [ mixup |

Is

| codist [ anchor | distill (ours) |

cifar10 ResNet-50 | 49.85 | 46.4 46.6 46.45 | 44.4 N/A | 45.35 42.85
cifarl00 | ResNet-50 | 89.05 | 85.9 83.7 85.05 | 81.95 | N/A 84.45 72.05
cifarl0 | ResNet-101 | 50.65 | 48.2 46.25 4845 | N/A N/A 46.8 43.85
cifarl00 | ResNet-101 | 88.9 | 87.8 86.75 87.75 | 86.4 N/A 86.25 71.75
cifarl0 | ResNet-152 | 469 | 47.7 47.7 47.1 50.0 N/A 46.4 43.4
cifarl00 | ResNet-152 | 89.4 | 86.9 85.9 86.3 84.1 N/A 83.8 78.6

Table 36: Results for CIFAR10 and CIFAR100 under churn at cold accuracy metric across ResNet-50,
ResNet-101 and ResNet-152. Initial sample size and batch size is fixed at 1000..

| Initial Sample |  network | cold [ warm [ s-perturb [ mixup [ Is [ co-dist [ anchor | distill |
transformer-1 38.34 | 36.72 37.36 N/A | 36.35 N/A N/A N/A
transformer-2 37.33 N/A N/A N/A 35.99 N/A N/A N/A
100 transformer-4 40.78 N/A 39.48 N/A 38.07 N/A N/A 34.38
transformer-8 | 44.32 | N/A 45.67 N/A | 42.65 N/A 439 | 38.96
transformer-16 | 50.87 | 46.87 46.99 N/A 47.27 45.49 45.38 | 40.05
transformer-1 15.69 N/A 15.31 N/A N/A 13.41 10.33 7.78
transformer-2 16.62 | 14.35 15.1 N/A 13.0 15.1 13.11 7.0
1000 transformer-4 18.79 N/A N/A N/A N/A N/A 16.72 | 14.24
transformer-8 | 20.11 | N/A 19.79 N/A 17.56 18.3 17.51 | 12.93
transformer-16 | 24.06 N/A 22.4 N/A 20.27 21.36 20.43 | 15.75
transformer-1 8.87 N/A N/A N/A N/A N/A 8.48 6.4
transformer-2 9.0 N/A N/A N/A N/A N/A N/A 6.83
10000 transformer-4 9.24 N/A N/A N/A N/A N/A N/A 6.55
transformer-8 9.95 N/A N/A N/A 6.74 N/A N/A 6.74
transformer-16 | 12.73 N/A N/A N/A N/A N/A N/A N/A

Table 37: Results for IMDB under churn at cold accuracy metric across different sizes of transformer
networks and initial sample sizes. Batch size is fixed at 1000.

transformer-1

transformer-2

transformer-4

transformer-8

transformer-16

Iniitial Sample

Error | Churn

Error | Churn

Error | Churn

Error | Churn

Error | Churn

100 0.51 1.31 0.53 1.44 | 0.57 1.36 | 0.62 1.74 | 0.71 2.27
1000 0.45 0.61 0.48 0.67 0.52 0.9 0.61 1.0 0.74 1.57
10000 0.18 0.33 0.19 0.31 0.23 0.32 0.3 0.4 0.84 1.56

Table 38: IMDB Error Bands: Mean standard errors for error and churn across baselines for each

dataset and network across 100 runs.
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Figure 4: IMDB dataset with transformer. Pareto frontier for each baseline and costs of each method,
where the cost is a convex combination between the error and the churn, as we vary the weight
between churn and accuracy. Top two: Initial batch size 100. Middle: Initial batch size 1000.
Bottom: Initial batch size 10000.
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