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Abstract

Deep Learning has become interestingly popular in computer vision, mostly at-
taining near or above human-level performance in various vision tasks. But recent
work has also demonstrated that these deep neural networks are very vulnerable to
adversarial examples (adversarial examples - inputs to a model which are naturally
similar to original data but fools the model in classifying it into a wrong class).
Humans are very robust against such perturbations; one possible reason could be
that humans do not learn to classify based on an error between "target label" and
"predicted label" but possibly due to reinforcements that they receive on their pre-
dictions. In this work, we proposed a novel method to train deep learning models
on an image classification task. We used a reward-based optimization function,
similar to the vanilla policy gradient method used in reinforcement learning, to train
our model instead of conventional cross-entropy loss. An empirical evaluation on
the cifar10 dataset showed that our method learns a more robust classifier than the
same model architecture trained using cross-entropy loss function (on adversarial
training). At the same time, our method shows a better generalization with the
difference in test accuracy and train accuracy < 2% for most of the time compared
to the cross-entropy one, whose difference most of the time remains > 2%.

1 Introduction

There’s a tremendous increase in using deep learning models for various perceptual tasks in computer
vision. Thousands of new works are being published every year on attaining better accuracy on
different datasets [14]. But these deep neural networks are very vulnerable to adversarial examples
(adversarial examples - inputs to a model which are naturally similar to original data but fools the
model in classifying it into a wrong class) [10], which raises a concern about whether the model should
be used for real-time application purpose or not. While the past few years have seen intense research
in training robust models against adversarial attacks, most of them have focused on using various
adversarial training approaches, unlabelled data, or revisiting misclassified examples [15, 5, 21]. On
the other hand, humans are very robust against such perturbations. Previously, Engstrom et al. [8] and
Ilyas et al. [12] shown how adversarial perturbations correspond to non-robust but predictive features
and that adversarial robustness can indeed help deep neural networks in learning perceptually similar
features. This gives us a hint to look at the problem of adversarial robustness by introducing a more
human-like learning approach. So we tried to find a different approach to train deep neural networks
based on how possibly humans learn to classify images. Humans do not learn to classify based on
an absolute error between "target label" and "predicted label". Instead, they predict a label and then
get feedback from another person or a source, which results in a positive or negative reward for the
learner, and based on this reward; they learn to classify. Past research has also shown that if only one
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Figure 1: The complete flowchart for proposed reinforcement based classification model

type of reward is given, i.e., either a positive or negative reward, learning follows a simple rule-based
approach. But if both negative and positive rewards are given, learning follows an integration-based
approach [3, 2, 18].

In this work, we focused on introducing a new kind of objective function. We used a reward-based
optimization function, similar to the vanilla policy gradient method in reinforcement learning, to train
our model instead of conventional cross-entropy loss. Our formulation is fairly simple and similar
to the vanilla policy gradient [23]. We design the reward environment, which is as simple as giving
positive rewards for correct classification and negative rewards for the wrong classification. And in
the end, we train the model to maximize reward using a policy gradient. Here our policy is simply
the softmax probability distribution to classify the given input image among the various classes. We
trained a very minimal CNN architecture against FGSM attacks [10] using our method and cross-
entropy loss. We observed that even though the model trained using cross-entropy achieved higher
accuracy on the test set than our approach, the accuracy against adversarial examples (generated
using test data) was higher for our method. One more exciting result was that our method generalizes
much better than the model trained using cross-entropy loss, i.e., our training and validation accuracy
remains almost close to each other.

2 Method

A combination of deep learning and reinforcement learning (RL) is widely being used in state-based
decision-making tasks [16, 9]. But there are very few works that have focused on reinforcement-
based learning in classification tasks [22]. As per our knowledge, no evaluation is done on its
adversarial robustness, and generalization. Also, previous implementations of RL for classification
are more complex than ours. We propose a fairly simple implementation. We designed a simple
RL environment for the classification task, which will act similar to other RL environments used
to evaluate reinforcement learning algorithms. This environment can be used to run various RL
algorithms to train on any classification task. In this work, we used the basic formulation of the
Vanilla Policy Gradient (VPG) method to test our method [23]. In our formulation, the state st is the
input image, action at is the predicted class, and reward Rt depends upon at and actual class label yt.
If at = yt, we give a positive reward (+1) on the other hand if at 6= yt, we give a negative reward
(-1). Finally, we train the model using VPG loss (refer to Eq. 1). Here t is the example image in the
given training batch of size B.

B∑
t

− 1

B
log(P (at|st)) ∗Rt (1)

The complete flowchart is shown in Figure 1. Note that during training, the model takes action
by using random selection based on the softmax probability, which is extensively used in RL
to bring randomness during training. One direct benefit of this implementation is that we are
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Figure 2: CNN model architecture used for the study. All the convolutional layer have convolution
window of size 3 x 3. All the max pooling layers have pooling window of size 2 x 2.

penalizing/rewarding our network based on what predictions it makes. So if the network predicts a
wrong class, it will be penalized based on the gradients calculated using that specific wrong class,
which in comparison to cross-entropy depends only on the gradients calculated using the correct
label. Another advantage of using this method is that we can develop different strategies for assigning
rewards based on the networks’ prediction. For example, giving higher negative rewards to those
examples on which the network makes repeated wrong predictions could help improve the learning.

3 Experiment

The CNN architecture used for the study is shown in Figure 2. The architecture follows a similar
heuristic of convolution layers used in VGG16 architecture [19], but the network’s depth is relatively
less. One more important thing to note in the architecture we used is the "layer normalization" layer
just before the softmax activation, which we experimentally found to avoid obfuscated gradient
issue effectively [4]. We first performed the evaluation without any specific adversarial training
approach. We found that the RL method indeed showed better FGSM adversarial accuracy than
the CE method (refer to Appendices, Figure 5). But it was easy to attack the trained model via
AutoAttack (an ensemble of diverse parameter-free attacks [7]). We then performed adversarial
training by generating adversarial images using FGSM attack (at ε = 8/255). The adversarial
images were generated at the beginning of each training step (refer to Equation 1 in Appendices
for adversarial training algorithm). We trained the model on those adversarial images using both
the methods, i.e., cross-entropy (CE) one and our proposed method (RL) one for 220 epochs with
RMSprop optimizer at learning_rate = 0.0001 and decay = 1e−6 (The choice of hyperparameter
was taken from TensorFlow example model on cifar10). We initially made checkpoints of our model
at intervals of 20 epochs and reporting training, testing, and adversarial accuracy (on test data) at
those intervals (4). We picked the checkpoint at which the respective method performed best on
adversarial images generated using test data. For the RL model, it was the 220th epoch. And for
the CE model, it was the 60th epoch. Finally, the robustness of both of the models was tested using
AutoAttack. To test the CE method’s performance at near the 60th epoch, after which the CE model’s
performance starts to decrease and for the sake of generalization, we retrained the model from scratch
in which we recorded the training history till 150 epochs. We found similar results (Appendices,
Figure 6).
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Figure 3: Performance of the trained model
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Figure 4: Accuracy against FGSM attacks at various
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4 Results

The training performance for both the model is shown in Figure 3. The model trained using cross-
entropy loss is abbreviated as ‘CE’ while the model trained using our reinforcement-based method is
abbreviated as ‘RL.’ The CE model reaches its maximum adversarial accuracy at 60th epoch with
adversarial accuracy on FGSM attack 32.86% and reduces afterward. In contrast, the RL model
performance improved over successive epochs with adversarial accuracy on FGSM attack 37.66%
at the end of 220th epoch. We can also see that the RL model generalizes much better than the CE
model, with its training and testing curve to be very close to each other (Figure 3). We also tested the
robustness accuracy for both the models, i.e., CE and RL one, against different perturbations level
added to the original image. Results are shown in Figure 4. RL model always performed better than
the CE model, which was trained till 220 epochs. We also tested the CE model, which was trained till
60th epochs; we found that for eps ≤ 3/255, the CE model performed better than the RL model, but
its performance got worse on reaching eps = 8/255.

We further tested the robustness of both the model using AutoAttack (contains ensemble of various
adversarial attacks - consisting of apgd-ce, apgd-t, fab-t, and square attack [7, 1, 6]) to confirm the
robustness against several other adversarial attacks. We found that our model still performs much
better than the CE model (Table 1). Please note that all the reported accuracy are on cifar10’s test
data.

Model Natural Acc. Adversarial Acc.
RL (220th epoch) 52.85% 30.41%
CE (60th epoch) 50.96% 26.36%

CE (220th epoch) 59.12% 17.95%

Table 1: Accuracy of both the models against AutoAttack (eps = 8/255) on test data

There are some concerns regarding the issue of label leaking with the FGSM method for adversarial
training [13]. Therefore we also evaluated the performance CE case with adversarial training using
PGD-Linf attack (eps = 8/255, step_size=2/255, and num_step=5)[15]. We show that even if we train
the network using cross-entropy loss on adversarial images generated using PGD-Linf attack, the RL
method’s performance remains better than the CE method. The best accuracy against AutoAttack for
CE method trained using PGD-Linf attack on test data was 27.76%. Moreover, some recent work
suggests that the FGSM based method can be used for adversarial training with proper early stopping
[24].
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5 Discussion

In this work, we proposed a fairly simple method to introduce reinforcement-based learning for
classification tasks. Our method shows an initial sign of improvements for better generalization and
more robustness to adversarial attacks than the same model architecture trained on cross-entropy loss.
Even though our present model does not beat the SOTA results if we consider some recent work
involving faster training for a robust model against adversarial attack. Our model performance is
quite comparable and outperforms [20] which shows 29.35% accuracy on cifar10 against AutoAttack
[7]. But considering that this is a preliminary result, we still need to evaluate our method on a larger
scale with a more complex model known to perform best on cifar10 and better parameter tuning.

On the other hand, our RL formulation for classification task could probably benefit other computer
vision problems such as datasets having imbalanced class in which we can change the magnitude of
positive or negative reward for different classes to remove discrepancy due to imbalanced data. For
future research, it would also be interesting to evaluate how the model performs if we change the
reward assignment method. It would also be interesting to test model trained using RL method on
predicting human similarity judgments (Peterson et al. [17]).

Finally, we hope that this result will bring on exciting discussions on the intersection of cognitive
sciences and artificial intelligence in understanding how humans might be learning to classify different
objects.
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Appendices

A. Adversarial Training Algorithm

The pseudo-code shown below does not show the FGSM attack algorithm [10] and RMSprop [11].
Both are very widely known, and their algorithms can be referred from the original work.

Algorithm 1: FGSM adversarial training for T epochs; perturbation strength of ε; batch size of
B; data size of N ; x is the overall dataset; y is labels for the dataset; fθ is the network; θ is weight
of the network
for t = 1, 2, . . . T do

xshuffle = shuffle_dataset(x) ;

for b = 1, 2, . . . N/B do
xb, yb = xshuffle[(b− 1) ∗B : b ∗B], y[(b− 1) ∗B : b ∗B] ;

xadv = FGSM_attack(xb, yb, ε) ; // perform FGSM attack

// Calculate ∇θ using RMSprop optimiser
∇θ = RMSprop_optimiser(loss(fθ(xadv), yb), θ) ;
θ = θ −∇θ ; // update θ

end
end

B. Results Without Any Adversarial Training Against FGSM Attacks

We also performed the evaluation without any adversarial training against FGSM attack for which the
RL model indeed showed better FGSM adversarial accuracy than the CE model. But as stated before,
AutoAttack very easily attacked this.

Figure 5: Results without adversarial training. We can see RL method still performs better than the
CE method. Adversarial accuracy (FGSM) is calculated for eps = 8/255
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C. Adversarial Accuracy vs Epochs on Another Training Instance (with adversarial training)

We initially made checkpoints of our model at intervals of 20 epochs. To test the model’s performance
at near the 60th epoch, after which the CE model’s performance starts to decrease and for the sake of
generalization, we retrained the model from scratch in which we recorded the training history till 150
epochs. It again resulted in similar results. Results are shown in Figure 6.

Figure 6: Adversarial accuracy on cifar10 test data (FGSM) vs epochs for eps = 8/255

D. Examples of Gradient Calculated on Models Trained Using Both Methods

To look further into the kind of features learned by both types of the objective function. We checked
the gradients calculated during the FGSM attack on both the models. While for many of the examples,
we did not find any useful differences between the two methods, some of the examples were worth
adding here in which we did find the difference between the two methods. A closer look into various
examples is needed to make any clear distinction.
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