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ABSTRACT

The reasoning ability of large language models (LLMs) can be unleashed with reinforcement learn-
ing (RL) (OpenAl, 2024; [DeepSeek-Al et al., 20254; [Zeng et al. [2025). The success of existing
RL attempts in LLMs usually relies on high-quality samples of thousands or beyond. In this paper,
we challenge fundamental assumptions about data requirements in RL for LLMs by demonstrating
the remarkable effectiveness of one-shot learning. Specifically, we introduce polymath learning,
a framework for designing one training sample that elicits multidisciplinary impact. We present
three key findings: (1) A single, strategically selected math reasoning sample can produce signifi-
cant performance improvements across multiple domains, including physics, chemistry, and biology
with RL; (2) The math skills salient to reasoning suggest the characteristics of the optimal polymath
sample; and (3) An engineered synthetic sample that integrates elements from multiple subjects
outperforms training with individual samples that naturally occur. Our approach achieves superior
performance to training with larger datasets across various reasoning benchmarks, demonstrating
that sample quality and design, rather than quantity, may be the key to unlock enhanced reasoning
capabilities in language models. Our results suggest a shift, dubbed as sample engineering, toward
precision engineering of training samples rather than simply increasing data volume.

1 INTRODUCTION
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Figure 1: Reasoning capabilities of in-context learning, comprehensive learning (in MATH and LIMR) and polymath
learning across different subject domains. The domain performance is averaged by subjects. We only mark the
strongest in-context learning and polymath learning sample for demonstration purpose. Polymath learning in both
natural sample and synthetic sample demonstrate significant gain over comprehensive learning in most domains.

Recent advances in Large Language Models (LLMs) have demonstrated the remarkable effectiveness of reinforcement

learning (RL) in enhancing complex reasoning capabilities. Models like o1 (OpenAlL[2024), Deepseek R1 (DeepSeek-|
/Al et al][2025a), and Kimil.5 (Team et al.|[2025a)) have shown that RL training is able to naturally induce sophisticated
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reasoning behaviors, including self-verification (Weng et al., 2023)), reflection (Shinn et al.,2023)), and extended chains
of thought. While these advances typically rely on large-scale training data, recent work has begun to challenge this
paradigm. |Li et al. (2025a) demonstrated with their LIMR approach that a strategically selected subset of just 1,389
samples can outperform the full 8k sample MATH dataset (Hendrycks et al.,[2021). More recently, Wang et al.|(2025a)
made the surprising observation that even one single sample can produce meaningful improvements in math reasoning
through RL, and Wang et al.| (2025b) achieved similar gains by distilling high-quality reasoning paths from strong
commercial models. However, this finding remains preliminary and math-specific, and leaves the critical questions
of cross-domain generalization with internal abilities of LLMs unanswered: whether reasoning improvements beyond
math can be achieved in similar manner? Whether a strategy exists in directing the optimal sample? Whether such
sample can be synthesized to enhance the sample quality?

In this paper, we build upon these emerging insights to systematically investigate the phenomenon of one-shot rein-
forcement learning in broad reasoning tasks termed as polymath learning. Our central finding is that a single, carefully
selected math reasoning sample is able to produce significant performance gains not only in mathematics but across
diverse domains including physics, chemistry, biology, as well as more general reasoning domains. This cross-domain
generalization suggests that RL. may enhance fundamental reasoning mechanisms rather than merely domain-specific
knowledge without saturated domain-specific training. Specifically, our work addresses three research questions:

Cross-Domain Generalization: Does a single mathematical reasoning sample yield improvements across diverse
knowledge domains through polymath learning? We investigate the transfer mechanisms that allow fundamental
reasoning patterns to transcend domain boundaries and observe that one single math sample selected on the math
categories elicits greater reasoning gains of LLM than comprehensive datasets with thousands of samples, and the
reasoning gains even extend to less quantitative subjects and domains that are distant from math.

Optimal Sample Selection: What characteristics define the ideal training sample for maximal impact in general
reasoning domains? Although the optimal polymath sample varies across domains, we find that their efficacy correlates
with the salient math skills critical to reasoning, particularly the skills in algebra and precalculus.

Synthetic Sample Construction: How can we engineer a hybrid “meta-sample” beyond naturally ocurred ones that
integrates multiple reasoning skills? We propose a synthesis technique based on salient skill identification to construct
the sample with comprehensive skills and multidisciplinary context. The results illustrate that the multidisciplinary
background supports the comprehensiveness of the salient skills, and therefore benefits the cross-domain reasoning
ability greater than the naturally-occurred samples that mainly possess math skills in limited categories and volumns.
It shows the power of a single sample can be further amplified by properly integrating multidisciplinary knowledge.

By demonstrating that a single sample can trigger broad reasoning improvements, our findings adjust the understanding
of data requirements in RL, suggesting that the field may benefit from a shift toward “sample engineering”: the
deliberate selection, and synthesis of training samples to unlock reasoning capabilities more efficiently, rather than
simply scaling data volume and potentially induce generalization degration (Yang et al.,|2024b).

2 RELATED WORK

Reinforcement Learning in Language Models Reinforcement learning has been applied to aligning language mod-
els with human intents (Christiano et al.l |2017) or instructions (Ouyang et al. 2022)) through learning from human
feedback. Later, it is extended to strengthen the long-form reasoning ability of models without relying on imitation
of high-quality reasoning data, specifically by employing Reinforcement Learning with Verifierable Reward (RLVR)
where the model outcomes can be verified and rewarded by verification functions with the advancement in RL al-
gorithms (Schulman et al., |2017; [Lambert et al.| 2025 |Hu et al., [2025a). However, training reliable outcome-based
reward models (Cobbe et al.,|2021) is challenging, and the rule-based reward function demonstrates effectiveness by
simplifying the implementation of critic models and mitigating reward hacking (Shao et al.,[2024). In this work, we
extend the reasoning ability to broader reasoning domains by learning rewards from the mathematical problems.

Data Efficiency in RL Training Xu et al,|(2025) selects subset responses based on variance for GRPO training.
And|Zhang et al.| (2025a)) employs the most recent reward information for filtering prompts, which is shown to benefit
GRPO training in|Yu et al.| (2025b). Other than focusing on the quality of prompt responses in RL training, |Li et al.
(2025a) highlights the significance of prompt quality by demonstrating the effectiveness of carefully selected training
subset. Further, |Shrestha et al.[ (2025) demonstrates cross-domain reasoning ability with less than 100 samples but
requires a pre-warmup distillation stage, and Wang et al| (2025a)) utilizes only one training sample and achieves a
notable improvement in mathematical reasoning. And [Zhao et al|(2025a) requires no human-expert data but still
relies on an external executor to generate valid answers to synthetic coding problems. However, these studies still
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focusing on the mathematical reasoning domain where the training data originates and neglect its broader impacts on
multiple disciplines where the reasoning ability essences.

Transfer Learning and Cross-Domain Generalization |Afzal et al.|(2024) demonstrates that small LLMs can catch
up with larger counterparts in domain adaptation with few examples. And |Chen et al.|(2024) adapts to new domain
by extracting domain-invariant features in existing domain. Specifically for reasoning problems, [Zhao et al.|(2025a)
unleashes improvement in mathematical reasoning soly based on training on programming data, and [Huan et al.
(2025) demonstrates that RL achieves better generalization from math to other domains than supervised fine-tuning,
without a deep dive into data efficiency. [Li et al.| (2025b)) investigates the cross-domain impact in math reasoning,
but only limits the study within logical-intensive domains like code and puzzle. In polymath learning, we enlarge the
reasoning scope to various subjects and investigate the learning impact from one labeled mathematical sample.

Sample Selection Strategies The effectiveness of finetuning large language models heavily relies on the quality of
data selection (Xie et al.,[2023). And well selected data samples can elicit powerful fine-tuning performance compared
to data volume of magnitudes larger (Wang et al.l [2023; |[Zhou et al., [2023)). [Xia et al.| (2024) relies on the gradient
information for data selection, while|Liu et al.|(2024b)) formulates data selection as an optimal transportation problem.
The effectiveness of data selection also extends to reasoning problems (Qin et al., 2024; |Ye et al.l [2025)). |Liu et al.
(2024a); [Li et al.|(2025c) apply LLM-based scores, justification, solve ratios (Havrilla et al.| [2025) and LLM-based
role-play (Luo et al., 2025a) to estimate sample diversity for data selection. Here we select polymath samples based
on the alignment with reinforcement learning dynamics to elicit the reasoning ability in multiple disciplines. And we
employ the salient-skill set to for selecting the synthesized data.

3 GRPO BAsICS

Given a dataset D = {(x, §)} where x and ¢ stand for the prompt and golden answer, RLVR relies on a policy model
mg(+|x) to generate correct reasoning trajectories without relying on trajectories generated by human-expert or teacher
models (Zhao et al.,2025a). In GRPO (Shao et al.;, 2024)), the advantage value is estimated within a group of responses
G responses {y1, Y2, ..., Y } to substitute the critic model in PPO while remaining effectiveness. Specifically,
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Here r; is computed by applying the reward function on the response and the golden answer r; = reward(y;, ¥;).
7o (Yit|T, Yi,<¢) identifies the likelihood of the ¢-th token in ¢-th response from the policy model. Unlike previous
efforts that assembles D with a comprehensive set of samples, in polymath learning, Dyoiymath = (x1,71)-

4 POLYMATH LEARNING

OpenAl et al.| (2024) unlocks complex reasoning ability of LLM through reinforcement learning, and DeepSeek-Al
et al.|(2025bfa) further demonstrates that such advanced reasoning ability can be elicited directly from pretrained base
models using rule-based rewards, without relying on imitation from high-quality supervised reasoning trajectories. Ex-
isting explorations mainly focus on math or synthetic logic (Zeng et al., 2025; Pan et al., 2025} [Xie et al.,[2025) where
large volumes of questions with rule-based verifiable answers are accessible. Beyond the success of comprehensive
learning: training models with thousands of comprehensive high-quality problems and beyond, [Wang et al.| (2025a)
shows that the reasoning ability can also be boosted by one single math sample with RL. Following this inquiry, we
investigate polymath learning: training with one sample that plays a polymath role and extends the model reasoning
power across domains. Similar toWang et al.| (2025a)), we conduct polymath learning from math reasoning problems.

Polymath Learning with One Natural Sample LIMR (Li et al.|[2025a) displays the potential of improving training
efficiency in reinforcement learning by selecting a subset of samples from MATH that closely align with the training
dynamics of RL. A preliminary model is trained in LIMR to record the reward trajectories during optimization. The
sample learnability is then computed by comparing its reward with the dataset-wise mean reward. Higher LIMR scores
indicate greater alignment between the model behavior on individual sample and the entire dataset. However, learning
from samples with excessively high LIMR scores risks over-specialization in math reasoning at the expense of broader
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reasoning capabilities. Therefore, we select LIMR samples with the lowest scores (0.6) in different math categories
as polymath candidates to maintain the same learnability according to preliminary experiments (See Appendix |C| for
details). One polymath sample is displayed in Table[I]and others are included in Appendix

Polymath Sample in Algebra

[Question] A 100-gon P; is drawn in the Cartesian plane. The sum of the z-coordinates of the 100 vertices equals 2009.
The midpoints of the sides of P; form a second 100-gon, P». Finally, the midpoints of the sides of P> form a third
100-gon, Ps. Find the sum of the z-coordinates of the vertices of Ps.

[Answer]

Table 1: Polymath sample in algebra.

Polymath Learning with One Synthetic Sample Synthesizing reasoning trajectories have been shown beneficial in
boosting the reasoning ability in LLM in the pretraining (Ishibashi et al.,[2025]) and supervised-finetuning stage (Singh
et al.| [2024; [Yuan et al.,2024)). Careful problem synthesis also scales up the mathematical reasoning ability of models
by reinforcement learning (Setlur et al.| [2024). Since solving multidisciplinary problems and purely mathematical
problems are not require on the same base of expertise, existing problem synthesis approaches based on problem
imitation (Toshniwal et al., [2025), mutation (Havrilla et al.| 2025) or creation based on seed concept or problem
bank (Huang et al.| 2025} [Liang et al.| [2025 Zhao et al.l [2025bj Liu et al., 2025) do not directly apply. In practice,
we find it challenging to organically integrate and align information from problems in diverse disciplines. Therefore,
unlike [Setlur et al.| (2024) and [Wang et al.| (2025b)), we synthesize the polymath sample based on instruction without
relying on existing problems or models finetuned with question-generation (Ding et al.| 2025} [Wu et al.l2025b). Our
final problem synthesis pipeline includes two stages,

* Candidate problem generation We employ strong models like OpenAI-O3 (OpenAl, 2025a)), Gemini2.5-
Pro (Google, 2025)) and DeepSeek-R1 to include multidisciplinary knowledge from physics, chemistry and
biology. The golden answers are collected from joint success of problem solving in those models.

* Specialized problem selection After massive generation of candidate problems, we employ Qwen2.5-72B-
instruct to identify the salient math skills related in solving the problem given the problem text. The abun-
dance of skills in different math categories is employed to reflect the complexities and qualities of problems.
We then select the problems with the most specialized skills as the synthesized polymath samples, please
refer to Appendix [A] for the prompt employed and Appendix [K]for example.

We find this instruction-based approach unleashes the creativity of LLMs in producing complex multidisciplinary
problems. Specifically, we select the synthesized polymath sample with the most comprehensive skill spectrum (Syn-
thetic Prime, shown in Table[2). Solving the Synthetic Prime requires a complex set of knowledge, including the strand
sequence (biology), chemical bonds and energy to break bonds (chemistry), accumulating energy by collecting pho-
tons and estimating photon energy based on its wavelength (physics). The synthesis prompt is shown in Appendix [A]

5 EXPERIMENTAL SETUP

We choose Qwen2.5-7b-base (Qwen et al.l 2025) as the primary model, while Qwen2.5-math models (Yang et al.,
2024a)) demonstrate inferior performance on non-math benchmarks in preliminary experiments and are therefore not
considered. Similar to [Wang et al.| (2025a), we employ GRPO (Shao et al., 2024)) for RL training and augment the
polymath sample into the batch of 128, and sample 16 responses per prompt with temperature of 1.0. The prompt
template follows the design of [Hu et al.|(2025b). Following Huan et al.| (2025)), the model is trained for 140 steps since
the reasoning ability saturates. We only employ a 0-1 outcome reward with rule-based matching of the final answer
according to previous studies (Shao et al., [2024; [Yu et al., 2025b)), and exclude the format reward and the KL term
as they demonstrate inferior performance (Wang et all |2025a; [Yu et al.| [2025b)). In skill identification, we employ
Algebra to include salient skills from Prealgebra, Algebra and Intermediate Algebra to eliminate their large overlaps.

Our evaluation covers both math and non-math domains. Specifically, we select MATHS500, AIME in 2024 and 2025,
MinervaMath (Lewkowycz et al.| 2022)), GPQA-Diamond (Rein et al.,[2024), Scibench (Wang et al., [2024a)), MMLU-
Pro (Wang et al., 2024b) with randomly select 100 problems for each subject and SuperGPQA (Team et al., 2025b))
with 1500 random problems as the evaluation set. The full spectrum of subjects is listed in Appendix [B] The model
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Polymath Sample (Synthetic Prime)

[Question] A double-stranded DNA fragment of exactly 11 base pairs has the upper strand sequence
5’GCGCGCGCATAZ3.

Each adenine—thymine (A-T) base pair is held together by **2** hydrogen bonds, and each guanine—cytosine (G-C) base
pair by **3** hydrogen bonds.

The DNA molecule is irradiated with monochromatic light of wavelength A = 400nm. Assume that **100%** of every
photon’s energy is used exclusively to break hydrogen bonds between the two strands.

Use the exact data below (treat every value as exact):

* Enthalpy of one hydrogen bond AH = 20kJ - mol ~*

* Planck constant h = 6.6261072*J - s

* Speed of light ¢ = 3.0010%m- s~ *

* Avogadro constant N, = 6.02210**mol ~*

**Fill in the blank:** What is the minimum number of 400 nm photons required to supply exactly enough energy to
dissociate *all* hydrogen bonds in **one** molecule of this DNA fragment? (Answer with a single positive integer.)

[Answer]

Table 2: The synthetic prime polymath sample that incorporates multidisciplinary knowledge.

responses are generated with greedy decoding in single attempt, except for AIME, where the results are averaged from
32 attempts with temperature being 0.4 (additional configurations are included in Appendix [A).

6 RESULTS

6.1 CROSS-DOMAIN GENERALIZATION OF LEARNING ON SINGLE POLYMATH SAMPLE

Table [3|reports the reasoning performance aggregated by subject domains (e.g. Math includes all math problems from
MATHS00, AIME, MinervaMath and other benchmarks) by comparing model trained with different natural or syn-
thetic polymath samples against the base model. Other than the Synthetic Prime sample, we also construct several
synthetic specialist samples in different math categories by ranking the number of salient skills identified in these cat-
egories. We make several observations. Firstly, the base model exhibits skewed reasoning abilities: performing strong
in math but weak in other domains. Secondly, polymath learning delivers substantial improvements over in-context
learning across different subject domains. Thirdly, although comprehensive learning enhances the math reasoning
ability, especially with effective data selection methods like LIMR, most natural polymath samples demonstrate com-
parable performance to comprehensive learning on the math domain, and surpass it on non-math domains (Figure [T,
underscoring the potential of unleashing reasoning ability by one high-quality sample. Specifically, the polymath sam-
ples in prealgebra and precalculus stand out from all natural polymath samples, with their superior strength attributed
to the broad coverage of salient math skills. Lastly, the synthetic polymath samples further elevate the reasoning abil-
ity. Most specialist samples outperform their natural polymath sample counterparts and demonstrate domain-specific
advantages: geometry and algebra samples in engineering; number theory sample in math and probability sample in
science. Furthermore, the Synthetic Prime sample achieves the strongest overall performance and demonstrates partic-
ular strength in physics and chemistry, suggesting that the reasoning potential of individual samples can be amplified
through well-incorporation of multidisciplinary knowledge. Therefore we select the Synthetic Prime sample as the
primary synthetic sample for the following experiments. Notably, unlike data collection approaches that are based on
common-crawled data source (Wu et al.| 2025aj [He et al.| 2025} Zhang et al., [2025b)), we do not rely on seed data or
observe evidence of data contamination in the polymath samples. The specialist samples are included in Appendix

We also breakdown the performance of N sampling (0-shot pass rate@64), polymath learning and comprehensive
learning by subjects in Figure 2] with the subjects ordered by their similarities to math. The similarity is measured by
computing the subject embedding distance between the mean of embeddings of all problems in each subject and the
mean of problems in MATH500. We employ Text-Embedding-3-Small (OpenAll 2025b) with the dimension of 1024
to generate problem representations. The best performance of polymath learning and in-context learning of polymath
samples are displayed with triangles and stars respectively. We include our major findings as below
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Table 3: The performance of employing different sample strategies on different subject domains. The best performance
on each subject domain is bolded. Most natural polymath samples outperforms in-context learning and comprehensive
learning with LIMR selection. Most synthetic specialist samples outperforms the corresponding natural sample, and
the Synthetic Prime sample demonstrates the best performance. The dataset-wise results is included in Appendix E}

Polymath Subject Math Physics Chemistry Biology Science Engineering Computer Science Others Avg
N=64 Sampling (0-shot)
- 20.4 4.4 4.4 5.1 0.0 3.7 33 9.6 6.4
In-context Learning (1-shot)
Natural Sample

Geometry 24.5 8.0 7.2 24.4 43 6.0 29.0 11.6 144
Prealgebra 22.3 11.2 9.4 40.3 6.8 10.2 35.0 20.3 194
Algebra 21.4 10.9 9.8 38.7 8.3 104 35.0 20.6 194
Intermediate Algebra  22.7 8.0 7.0 21.8 4.5 9.5 32.0 15.5 15.1
Number Theory 21.7 10.9 8.7 31.9 54 6.6 28.0 15.8 16.1
Precalculus 21.6 8.3 59 20.2 5.2 6.8 26.0 11.9 13.2
Probability 224 9.7 7.2 24.4 5.6 7.7 22.0 13.2 14.0
Synthetic Sample
Prime 18.6 4.6 4.6 8.4 2.2 4.6 11.0 7.7 7.7

Comprehensive Learning (> 1k shots)
Natural Sample
MATH 37.2 12.8 10.0 314 6.5 8.6 25.8 234 19.5

LIMR 38.0 11.6 11.8 48.3 10.0 13.4 35.1 31.5 25.0
Polymath Learning (1-shot) - Ours
Natural Sample

Geometry 15.5 9.9 10.0 55.1 11.2 16.7 37.1 350 238
Prealgebra 38.0 17.4 12.2 51.7 15.1 16.5 49.5 335 29.2
Algebra 37.3 17.4 13.7 51.7 12.1 15.6 43.3 309 277
Intermediate Algebra  36.3 19.1 13.1 50.0 13.9 17.5 423 31.1 27.9
Number Theory 37.7 16.9 124 49.2 134 17.8 423 322 277
Precalculus 38.0 18.4 13.7 50.0 16.0 19.7 43.3 31.0 288
Probability 38.8 19.9 11.5 46.6 14.7 164 41.2 314 276
Synthetic Sample
Geometry 354 15.0 11.5 31.1 36.1 52.5 13.2 11.0 257
Algebra 37.3 16.9 12.6 31.5 41.2 52.5 18.6 139  28.1
Number Theory 384 18.2 12.0 32.1 36.1 475 18.6 138 27.1
Precalculus 37.1 20.3 15.3 329 443 48.3 20.8 16.5 29.4
Probability 37.1 16.7 13.9 30.1 46.4 50.0 19.7 10.8  28.1
Prime 383 20.6 15.7 54.2 15.6 20.8 48.5 324 308

Strong mathematical but skewed reasoning of the base model Due to the massive mathematical and coding data
participated in pretraining (Qwen et al.,|2025;|Wu et al.,[2025a)), the Qwen2.5-7b-base model achieves pass rate @64 >
0.5 in MATHS500, higher than all other subjects with significant margins. However, the strength in MATHS500 does not
naturally extend to other subjects. For example, the base model performs poorly on physics, chemistry and biology,
but demonstrates relative strength (pass rate@64 close to 0.2) in education, medicine, sociology and management,
which does not possess similar proportion of quantitative components as math does.

Comprehensive learning provides mathematical dominance, but not multidisciplinary Comprehensive learning
with MATH or LIMR sets demonstrate strong performance in MATH500, and remain competitive with the strongest
polymath sample in other math subjects (math, minerva). However, their performance on most non-math subjects lags
behind by a large margin from the best polymath results. Their reasoning strengths gained from math-specific training
only generalizes to a limited number of subjects, like economics, health, psychology, education, and history where
more than fourfold performance improvement over zero-shot sampling is observed. Nonetheless, quality-driven data
selection stays beneficial in comprehensive learning, with LIMR consistently outperforming MATH in most subjects.
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Figure 2: The subject-level performance of different learning strategies. OF stands for subjects with open-ended
problems. The subjects are sorted by subject embedding distance to math (the grey dotted line), from low to high. The
blue line represents pass ratio from 64 independent attempts of the base model. The stars and triangles represent best
performance of in-context learning and polymath learning. Note that we only display the best polymath learning and
in-context polymath learning results for demonstration.

The effectiveness of in-context learning of polymath samples The best in-context polymath learning sample
outperforms 0-shot pass rate@64 baseline in most subjects, indicating the benefits of polymath sample even in the
gradient-free learning setting. Specifically, we find that the polymath sample in prealgebra or algebra under in-context
learning demonstrate on-par or superior performance compared to at least one of comprehensive learning results in
more than 50% subjects, with details included in Appendix [J]

Better generalization of polymath learning on math-distant subjects Even though the best polymath sample
outperforms comprehensive learning in LIMR on subjects with heavy mathematical components like math and engi-
neering. Its advantage is greater on subjects that are semantically distant from math, For example, around 10 points
improvements in agronomy, literature and sociology. On average, polymath learning with the best natural samples
achieves 14.5 points improvement on subjects with the 50% subjects farthest from MATHS500 over comprehensive
learning on the full MATH set, compared to 7.7 points on the 50% subjects that closet to MATH500, indicating that
polymath learning confers stronger reasoning generalization on subjects that are semantically more math-distant.

6.2 CHARACTERISTICS OF OPTIMAL POLYMATH SAMPLE

Data diversity is beneficial in training more capable reasoning LLMs (Zhang et al.| |2025b)), serving both regularization
to the neural network (Ba et al. 2025) and a mean to mitigate performance saturation especially when leveraging
synthetic data sources (Jung et al.,|2025). In polymath learning, we extend beyond the diversity at the level of problem
or trajectory (Yu et al., 2025a)and instead examine the composition of salient mathematical skills within individual
polymath samples. The result in Figure [3]illustrates the key supporting role of algebra and precalculus skills in cross-
domain reasoning. Polymath samples demonstrating stronger performance tend to exhibit high prevalence of these
skills. Furthermore, synthetic specialist samples with multidisciplinary backgrounds span a broader range of skills
than math-specialized samples of the same speciality, which accounts for their superior performance. Notably, the
Synthetic Prime sample exhibits the highest concentration of salient skills, suggesting that solving such problems
requires a complex interplay of knowledge and thus provides rich learning signals for training LLMs.
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Figure 3: Skill spectrum between natural and synthetic polymath samples. The polygon represents number of salient
skills identified in each math domain (Geo. and Precal. represents Geometry and Precalculus respectively). The real
and dashed areas represent the natural and synthetic specialist samples. The last figure represents the Synthetic Prime
sample, and the synthetic samples include more comprehensive salient skill sets than then natural polymath samples.
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Figure 4: Average number of mathematical skills employed per problem in different subject domains. Algebra and
Precalculus skills have the highest pupoluarities in all subject domains.

The distribution of salient skills across subject domains further highlights the central roles of algebra and precalculus.
Skill abundance also reflects the degree of domain specialization. For instance, in engineering, the most frequent
algebraic and geometric skills are unit conversion and trigonometry. Figure [] shows that algebra and precalculus
consistently dominate in skill popularity, underscoring their foundational importance for quantitative reasoning (e.g.,
unit conversion and arithmetic operations). Moreover, domains with integrative knowledge skills, such as science and
engineering, demand more comprehensive combinations of salient skills compared to discipline-focused domains such
as math, physics, chemistry, or biology.

7 GENERALIZATION OF SELF-VERIFICATION

The verification mechanism act as a signal for models to reconsider and refine their initial solutions (DeepSeek-Al
et al.}2025a). Verification feedback can further enhance decision-making (Madaan et al.,|2023} Shinn et al.,2023). To
analyze such behavior, several signature words have been proposed for monitoring self-verification patterns (Xie et al.|
20235). Following this, we collect pattern statistics across polymath learning samples, adding the ‘code’ category to
capture python-based program verification and excluding ‘reevaluate’ for its rare appearance. We find that polymath
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learning in general demonstrates more frequent self-verification behavior than comprehensive learning. Moreover, the
polymath sample in ‘number theory’ and ‘intermediate algebra’ exhibit strong tendencies in eliciting the self-checking
(‘re-evaluate’) behavior and programming assistance (‘code’) respectively. Moreover, different polymath samples
display distinct self-verification preferences depending on the subject domain, with details in Appendix [M]

Similar to[Shao et al.| (2025), we observe frequent use of program verification in the polymath sample of ‘intermediate
algebra’. However, the role of programs varies by domain: the programs in math are primarily used as part of the
final answer generation process, including pseudo-execution errors like ‘Timed out’; in physics and chemistry, by con-
trast, the programs are employed more for result validation. Importantly, without the access of external executor, the
integration of program does not necessarily yield reasoning gains. Illustrative examples are provided in Appendix [[]

MATH
5007 LIMR
I Prealgebra
400 I Algebra
Inter_algebra
Number_theory
§ 3001 (?.nnmnfry
8 [ Probability
Precalculus
200 1 mmm  Synthetic
100

0,

wait verify yet re-evaluate recheck code

Figure 5: Self-verification patterns under different comprehensive and polymath samples across all subjects. Verifi-
cation patterns like ‘re-evaluate’ and ‘recheck’ appear most frequently in polymath learning with the ‘number theory’
sample, and the ‘intermediate algebra’ sample elicits the most code blocks in reasoning.

8 LIMITATIONS AND FUTURE WORK

In polymath learning, we focus our study in the effectiveness of one single training sample in lifting interdisciplinary
reasoning ability with reinforcement learning. Due to resource constraints, our study only covers a small set of samples
without larger-scale experiments in 1-shot polymath learning. And the skill-based selection does not extend to scaled
skill-based problem synthesis like[Havrilla et al.| (2025)). Although we observe different verification pattern preferences
by choosing polymath samples, we do not observe direct connection between the self-verification and the improvement
in reasoning abilities. Besides, the polymath learning experiments are only conducted in open-ended format, while
previous studies has demonstrated the benefits of incorporating diverse question-answer formats (Akter et al. [2025)),
especially for benchmarks that are in multiple-choice formats. Moreover, our study is limited in polymath samples
from math and does not extend to other domains where reliable rewards are accessible.

9 CONCLUSION

While math reasoning ability has been considered the primary metric to mark the progress of the reasoning of LLMs,
the broader multidisciplinary reasoning abilities remain relatively underexplored. Inspired by the success of boost-
ing math reasoning ability using one single training sample, we introduce polymath learning and show that training
LLMs with one selected math sample can rival or even surpass datasets by orders of magnitude in eliciting reasoning
across diverse domains. Our findings show that polymath learning yields stronger cross-domain reasoning ability than
learning with the comprehensive math dataset, and sample synthesis further elevates the performance. Crucially, we
trace this multidisciplinary reasoning potency of polymath samples to the abundance of salient math skills, especially
in algebra and precalculus, within the reasoning structures of problems. Moreover, the synthesized samples with com-
prehensive salient skills tend to confer greater multidisciplinary reasoning strength, highlighting the promise of careful
sample engineering as an alternative to indiscriminate data scaling.



Under review as a conference paper at ICLR 2026

REFERENCES

Anum Afzal, Ribin Chalumattu, Florian Matthes, and Laura Mascarell. AdaptEval: Evaluating large language mod-
els on domain adaptation for text summarization. In Sachin Kumar, Vidhisha Balachandran, Chan Young Park,
Weijia Shi, Shirley Anugrah Hayati, Yulia Tsvetkov, Noah Smith, Hannaneh Hajishirzi, Dongyeop Kang, and
David Jurgens (eds.), Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Cus-
tomizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U), pp. 76-85, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.customnlp4u-1.8. URL
https://aclanthology.org/2024.customnlp4u—-1.8/.

Syeda Nahida Akter, Shrimai Prabhumoye, Matvei Novikov, Seungju Han, Ying Lin, Evelina Bakhturina, Eric Nyberg,
Yejin Choi, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-crossthink: Scaling self-
learning beyond math reasoning, 2025. URL https://arxiv.org/abs/2504.13941l

Yang Ba, Michelle V. Mancenido, and Rong Pan. Data diversity as implicit regularization: How does diversity shape
the weight space of deep neural networks?, 2025. URL https://arxiv.org/abs/2410.14602,

Yue Chen, Chen Huang, Yang Deng, Wenqiang Lei, Dingnan Jin, Jia Liu, and Tat-Seng Chua. STYLE: Improving
domain transferability of asking clarification questions in large language model powered conversational agents. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics:
ACL 2024, pp. 10633-10649, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024 findings-acl.632. URL https://aclanthology.org/2024.findings—acl.632/|

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
d5e2c0adad503c91£91df240d0cd4ed49-Paper.pdfl

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry
Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math
word problems, 2021. URL https://arxiv.org/abs/2110.14168.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li,
Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan,
Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng
Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen,
R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu,
Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L.
Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao
Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqgiang Guo, Yuan Ou,
Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang
Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun
Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen
Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning
capability in llms via reinforcement learning, 2025a. URL |https://arxiv.org/abs/2501.12948|

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun
Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng

10


https://aclanthology.org/2024.customnlp4u-1.8/
https://arxiv.org/abs/2504.13941
https://arxiv.org/abs/2410.14602
https://aclanthology.org/2024.findings-acl.632/
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948

Under review as a conference paper at ICLR 2026

Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong
Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao
Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu,
Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu,
Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu,
Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye,
Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao
Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wengin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang,
Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu,
Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan
Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang
Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong,
Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren,
Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin
Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu,
Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report,
2025b. URL https://arxiv.org/abs/2412.19437.

Yuyang Ding, Xinyu Shi, Xiaobo Liang, Juntao Li, Zhaopeng Tu, Qiaoming Zhu, and Min Zhang. Unleashing llm
reasoning capability via scalable question synthesis from scratch, 2025. URL https://arxiv.org/abs/
2410.18693.

Google. Gemini-2.5-pro, 2025. URL https://deepmind.google/models/gemini/pro/.

Alex Havrilla, Edward Hughes, Mikayel Samvelyan, and Jacob Abernethy. Sparq: Synthetic problem generation for
reasoning via quality-diversity algorithms, 2025. URL https://arxiv.org/abs/2506.06499.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen Liang,
Wenxuan Wang, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Deepmath-103k: A
large-scale, challenging, decontaminated, and verifiable mathematical dataset for advancing reasoning, 2025. URL
https://arxiv.orqg/abs/2504.11456.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021. URL https:
//openreview.net/forum?id=7Bywt2mQsCe,.

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with robustness to both
prompt and reward models, 2025a. URL https://arxiv.org/abs/2501.03262,

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-reasoner-zero:
An open source approach to scaling up reinforcement learning on the base model, 2025b. URL https://arxiv.
org/abs/2503.24290.

Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Poovendran, Graham Neu-
big, and Xiang Yue. Does math reasoning improve general llm capabilities? understanding transferability of llm
reasoning, 2025. URL https://arxiv.org/abs/2507.00432.

Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, Yelong Shen, Nan Duan, and Weizhu Chen. Key-point-driven
data synthesis with its enhancement on mathematical reasoning. Proceedings of the AAAI Conference on Artificial
Intelligence, 39(23):24176-24184, Apr. 2025. doi: 10.1609/aaai.v39i23.34593. URL https://ojs.aaai.
org/index.php/AAAI/article/view/34593.

Yoichi Ishibashi, Taro Yano, and Masafumi Oyamada. Mining hidden thoughts from texts: Evaluating continual
pretraining with synthetic data for llm reasoning, 2025. URL https://arxiv.org/abs/2505.10182,

Jaehun Jung, Seungju Han, Ximing Lu, Skyler Hallinan, David Acuna, Shrimai Prabhumoye, Mostafa Patwary, Mo-
hammad Shoeybi, Bryan Catanzaro, and Yejin Choi. Prismatic synthesis: Gradient-based data diversification boosts
generalization in 1lm reasoning, 2025. URL |https://arxiv.org/abs/2505.20161,

11


https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2410.18693
https://arxiv.org/abs/2410.18693
https://deepmind.google/models/gemini/pro/
https://arxiv.org/abs/2506.06499
https://arxiv.org/abs/2504.11456
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2501.03262
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/2507.00432
https://ojs.aaai.org/index.php/AAAI/article/view/34593
https://ojs.aaai.org/index.php/AAAI/article/view/34593
https://arxiv.org/abs/2505.10182
https://arxiv.org/abs/2505.20161

Under review as a conference paper at ICLR 2026

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V.
Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D. Hwang, Jiangjiang
Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep
Dasigi, and Hannaneh Hajishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL
https://arxiv.org/abs/2411.15124.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose
Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant
Misra. Solving quantitative reasoning problems with language models. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
3843-3857. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/18abbeef8cfe9203fdf9053¢c9c4fel9l-Paper-Conference.pdf.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling, 2025a. URL https://arxiv.
org/abs/2502.11886.

Yu Li, Zhuoshi Pan, Honglin Lin, Mengyuan Sun, Conghui He, and Lijun Wu. Can one domain help others? a data-
centric study on multi-domain reasoning via reinforcement learning, 2025b. URL https://arxiv.org/abs/
2507.17512.

Zhuo Li, Yuhao Du, Xiaoqi Jiao, Yiwen Guo, Yuege Feng, Xiang Wan, Anningzhe Gao, and Jinpeng Hu. Add-one-
in: Incremental sample selection for large language models via a choice-based greedy paradigm, 2025c. URL
https://arxiv.org/abs/2503.02359.

Xiao Liang, Zhong-Zhi Li, Yeyun Gong, Yang Wang, Hengyuan Zhang, Yelong Shen, Ying Nian Wu, and Weizhu
Chen. Sws: Self-aware weakness-driven problem synthesis in reinforcement learning for 1lm reasoning, 2025. URL
https://arxiv.org/abs/2506.08989.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for alignment? a comprehen-
sive study of automatic data selection in instruction tuning. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=BTKAeLgLMw.

Weize Liu, Yongchi Zhao, Yijia Luo, Mingyu Xu, Jiaheng Liu, Yanan Li, Xiguo Hu, Yuchi Xu, Wenbo Su, and
Bo Zheng. Designer: Design-logic-guided multidisciplinary data synthesis for 1lm reasoning, 2025. URL https:
//arxiv.org/abs/2508.12726.

Zifan Liu, Amin Karbasi, and Theodoros Rekatsinas. Tsds: Data selection for task-specific model fine-
tuning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang
(eds.), Advances in Neural Information Processing Systems, volume 37, pp. 10117-10147. Curran Asso-
ciates, Inc., 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
13848b5893119f£f772b69812c95914fa-Paper—-Conference.pdfl.

Jing Luo, Longze Chen, Run Luo, Liang Zhu, Chang Ao, Jiaming Li, Yukun Chen, Xin Cheng, Wen Yang, Jiayuan
Su, Ahmadreza Argha, Hamid Alinejad-Rokny, Chengming Li, Shiwen Ni, and Min Yang. Personamath: Boost-
ing mathematical reasoning via persona-driven data augmentation, 2025a. URL https://arxiv.org/abs/
2410.01504.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai, Jef-
frey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. = Deepscaler: Surpassing
ol-preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-0Ol-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca:
2025b. Notion Blog.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,
Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean
Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?i1d=S37hOerQLB.

OpenAl. Learning to reason with 1lms, september 2024, 2024. URL https://openai.com/index/
learning-to-reason-with—-11lms/\

12


https://arxiv.org/abs/2411.15124
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://arxiv.org/abs/2502.11886
https://arxiv.org/abs/2502.11886
https://arxiv.org/abs/2507.17512
https://arxiv.org/abs/2507.17512
https://arxiv.org/abs/2503.02359
https://arxiv.org/abs/2506.08989
https://openreview.net/forum?id=BTKAeLqLMw
https://arxiv.org/abs/2508.12726
https://arxiv.org/abs/2508.12726
https://proceedings.neurips.cc/paper_files/paper/2024/file/13848b5893119ff772b69812c95914fa-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/13848b5893119ff772b69812c95914fa-Paper-Conference.pdf
https://arxiv.org/abs/2410.01504
https://arxiv.org/abs/2410.01504
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Under review as a conference paper at ICLR 2026

OpenAl Introducing openai 03 and o4-mini, 2025a. URL https://openai.com/index/
introducing-o3-and-o4-mini/\.

OpenAl Openai text-embedding-3-small, 2025b. URL https://platform.openai.com/docs/models/
text-embedding—3-smalll

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard Passos, Alexander Neitz,
Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone,
Andrew Duberstein, Andrew Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret
Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin, Cary
Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger,
Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David
Dohan, David Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman,
Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan
Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von
Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman,
Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren,
Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge
Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry
Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quifionero Candela, Joe Palermo, Joel
Parish, Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost
Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood,
Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang,
Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz
Kuhn, Lukas Kondraciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz, Melody Y.
Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe, Michael Malek, Michele Wang,
Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa
Rohaninejad, Nat McAleese, Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir
Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny
Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi Jain, Sam Alt-
man, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago Hernandez, Sasha Baker, Scott
McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang,
Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao
Wang, Taylor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao
Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie Qi, Vi-
neet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech
Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang,
Zheng Shao, and Zhuohan Li. Openai ol system card, 2024. URL|https://arxiv.org/abs/2412.16720.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training language models to
follow instructions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 27730-27744. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
blefdeb3be364a73914£58805a001731-Paper—-Conference.pdf.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero. https://github.com/Jiayi-
Pan/TinyZero, 2025. Accessed: 2025-01-24.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector Liu,
Yuanzhi Li, et al. Ol replication journey: A strategic progress report—part 1. arXiv preprint arXiv:2410.18982,
2024.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou,
Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu,

13


https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://platform.openai.com/docs/models/text-embedding-3-small
https://platform.openai.com/docs/models/text-embedding-3-small
https://arxiv.org/abs/2412.16720
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su,
Yichang Zhang, Yu Wan, Yuqgiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URLhttps://arxiv.org/abs/2412.15115.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael,
and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark. In First Conference on Language
Modeling, 2024. URL https://openreview.net/forum?id=Ti675840b98.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RI
on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances
in Neural Information Processing Systems, volume 37, pp. 43000-43031. Curran Associates, Inc.,
2024. URL |https://proceedings.neurips.cc/paper_files/paper/2024/file/
4b77d5b896c321a29277524a98a50215-Paper—Conference.pdfl

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du, Nathan Lambert,
Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei Koh, and Luke Zettlemoyer. Spurious
rewards: Rethinking training signals in rlvr, 2025. URL https://arxiv.org/abs/2506.10947,

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu, and Daya
Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv preprint
arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion: language
agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=vAE1hFcKW6.

Safal Shrestha, Minwu Kim, Aadim Nepal, Anubhav Shrestha, and Keith Ross. Warm up before you train: Unlocking
general reasoning in resource-constrained settings, 2025. URL https://arxiv.org/abs/2505.13718,

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J Liu, James
Harrison, Jachoon Lee, Kelvin Xu, Aaron T Parisi, Abhishek Kumar, Alexander A Alemi, Alex Rizkowsky, Azade
Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Fathy Elsayed, Hanie Sedghi, Igor Mordatch, Isabelle Simpson,
Izzeddin Gur, Jasper Snoek, Jeffrey Pennington, Jiri Hron, Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan,
Laura A Culp, Lechao Xiao, Maxwell Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin,
Yamini Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond human data:
Scaling self-training for problem-solving with language models. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=1NAyUngGFK. Expert Certification.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang
Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming Yuan, Enzhe Lu, Fengxiang Tang,
Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang,
Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan,
Jia Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu,
Lidong Shi, Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei
Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong, Weiran He,
Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu,
Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu,
Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang,
Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and
Zonghan Yang. Kimi k1.5: Scaling reinforcement learning with 1llms, 2025a. URL https://arxiv.org/
abs/2501.125909.

M-A-P Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, Kang Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixing Deng, Shuyue Guo, Shian Jia, Sichao Jiang, Yiyan Liao,
Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, Dehua Ma, Yuansheng Ni, Haoran Que, Qiyao Wang, Zhoufutu
Wen, Siwei Wu, Tianshun Xing, Ming Xu, Zhenzhu Yang, Zekun Moore Wang, Junting Zhou, Yuelin Bai, Xingyuan
Bu, Chenglin Cai, Liang Chen, Yifan Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun
Huang, Yaoru Li, Yizhe Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Zhongyuan

14


https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/1707.06347
https://proceedings.neurips.cc/paper_files/paper/2024/file/4b77d5b896c321a29277524a98a50215-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4b77d5b896c321a29277524a98a50215-Paper-Conference.pdf
https://arxiv.org/abs/2506.10947
https://openreview.net/forum?id=vAElhFcKW6
https://arxiv.org/abs/2505.13718
https://openreview.net/forum?id=lNAyUngGFK
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599

Under review as a conference paper at ICLR 2026

Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Yizhou Tan, Zili Wang, Chenqing Wang, Hao Wang, Yiya Wang,
Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin Yuan, Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jingyang Zhang,
Xiyue Zhang, Xingjian Zhang, Yue Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun
Li, Dayiheng Liu, Qian Liu, Tianyu Liu, Shiwen Ni, Junran Peng, Yujia Qin, Wenbo Su, Guoyin Wang, Shi Wang,
Jian Yang, Min Yang, Meng Cao, Xiang Yue, Zhaoxiang Zhang, Wangchunshu Zhou, Jiaheng Liu, Qunshu Lin,
Wenhao Huang, and Ge Zhang. Supergpqa: Scaling llm evaluation across 285 graduate disciplines, 2025b. URL
https://arxiv.org/abs/2502.14739.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
Openmathinstruct-2: Accelerating Al for math with massive open-source instruction data. In The Thirteenth In-
ternational Conference on Learning Representations, 2025. URL |https://openreview.net/forum?id=
mTCbg2QssDl

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqgiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R. Loomba, Shichang
Zhang, Yizhou Sun, and Wei Wang. SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of
Large Language Models. In Proceedings of the Forty-First International Conference on Machine Learning, 2024a.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai He, Kuan Wang,
Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong Shen. Reinforcement learning for
reasoning in large language models with one training example. arXiv preprint arXiv:2504.20571, 2025a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Ha-
jishirzi. Self-instruct: Aligning language models with self-generated instructions. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 13484—13508, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-1long.
754/

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran Arulraj,
Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen.
MMLU-pro: A more robust and challenging multi-task language understanding benchmark. In The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024b. URL https:
//openreview.net/forum?id=y10DM6R2r3l

Yubo Wang, Ping Nie, Kai Zou, Lijun Wu, and Wenhu Chen. Unleashing the reasoning potential of pre-trained llms
by critique fine-tuning on one problem. arXiv preprint arXiv:2506.03295, 2025b.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao. Large
language models are better reasoners with self-verification. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 2550-2575, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.167. URL https://
aclanthology.org/2023.findings—-emnlp.167/.

Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao Zhou, Huijie Lv,
Ming Zhang, Yanwei Fu, Qin Liu, Songyang Zhang, and Qi Zhang. Reasoning or memorization? unreliable results
of reinforcement learning due to data contamination, 2025a. URL https://arxiv.org/abs/2507.10532.

Zijian Wu, Jinjie Ni, Xiangyan Liu, Zichen Liu, Hang Yan, and Michael Qizhe Shieh. Synthrl: Scaling visual reasoning
with verifiable data synthesis, 2025b. URL https://arxiv.org/abs/2506.02096/

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqgi Chen. Less: Selecting influential
data for targeted instruction tuning, 2024. URL https://arxiv.org/abs/2402.04333.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language models via importance
resampling, 2023. URL https://arxiv.org/abs/2302.03169.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yugian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhirong Wu, and
Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement learning, 2025. URL https:
//arxiv.org/abs/2502.14768.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-sampling rollouts in llm
reinforcement learning, 2025. URL https://arxiv.org/abs/2504.13818|

15


https://arxiv.org/abs/2502.14739
https://openreview.net/forum?id=mTCbq2QssD
https://openreview.net/forum?id=mTCbq2QssD
https://aclanthology.org/2023.acl-long.754/
https://aclanthology.org/2023.acl-long.754/
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
https://aclanthology.org/2023.findings-emnlp.167/
https://aclanthology.org/2023.findings-emnlp.167/
https://arxiv.org/abs/2507.10532
https://arxiv.org/abs/2506.02096
https://arxiv.org/abs/2402.04333
https://arxiv.org/abs/2302.03169
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2504.13818

Under review as a conference paper at ICLR 2026

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jin-
gren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and Zhenru
Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement, 2024a. URL
https://arxiv.org/abs/2409.12122.

Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu, Pheng-Ann Heng, and Wai Lam. Unveiling the generalization
power of fine-tuned large language models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 884-899, Mexico City, Mexico, June 2024b. Association
for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.51. URL https://aclanthology.org/
2024 .naacl-long.51/.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for reasoning, 2025.
URLhttps://arxiv.org/abs/2502.03387.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Training LLMs for divergent
reasoning with minimal examples. In Forty-second International Conference on Machine Learning, 2025a. URL
https://openreview.net/forum?id=gyMxunrR2 J.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan
Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song,
Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and
Mingxuan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025b. URL https://
arxiv.org/abs/2503.14476.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqgi Tan, Chang Zhou, and Jingren
Zhou. Scaling relationship on learning mathematical reasoning with large language models, 2024. URL https:
//openreview.net/forum?id=c1j00£8u35.

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model and 8k exam-
ples: Emerging reasoning with reinforcement learning is both effective and efficient. https://hkust-nlp.
notion.site/simplerl-reason, 2025. Notion Blog.

Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie Wang, Yinghan
Cui, Chao Wang, Junyi Peng, Shimiao Jiang, Shiqi Kuang, Shouyu Yin, Chaohang Wen, Haotian Zhang, Bin Chen,
and Bing Yu. Srpo: A cross-domain implementation of large-scale reinforcement learning on 1lm, 2025a. URL
https://arxiv.org/abs/2504.14286.

Xuemiao Zhang, Chengying Tu, Can Ren, Rongxiang Weng, Hongfei Yan, Jingang Wang, and Xunliang Cai. Large-
scale diverse synthesis for mid-training, 2025b. URL https://arxiv.org/abs/2508.01326.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi Wang, Qingyun Wu,
Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data, 2025a. URL https:
//arxiv.org/abs/2505.03335.

Xueliang Zhao, Wei Wu, Jian Guan, and Lingpeng Kong. PromptCoT: Synthesizing olympiad-level problems for
mathematical reasoning in large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
hammad Taher Pilehvar (eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 18167-
18188, Vienna, Austria, July 2025b. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi:
10.18653/v1/2025 findings-acl.935. URL https://aclanthology.org/2025.findings—-acl. 935/l

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. Lima:
Less is more for alignment. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 55006-55021. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
ac662d74829e4407celdl26477f4a03a-Paper—-Conference.pdfl

16


https://arxiv.org/abs/2409.12122
https://aclanthology.org/2024.naacl-long.51/
https://aclanthology.org/2024.naacl-long.51/
https://arxiv.org/abs/2502.03387
https://openreview.net/forum?id=qyMxunrR2j
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://openreview.net/forum?id=cijO0f8u35
https://openreview.net/forum?id=cijO0f8u35
https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason
https://arxiv.org/abs/2504.14286
https://arxiv.org/abs/2508.01326
https://arxiv.org/abs/2505.03335
https://arxiv.org/abs/2505.03335
https://aclanthology.org/2025.findings-acl.935/
https://proceedings.neurips.cc/paper_files/paper/2023/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

A CONFIGURATIONS

We employ a learning rate of 1e-6 during training. And the maximum generation length is 2048. The configuration to
collect zero-shot sampling for base model is listed in Table[d The prompt used is displayed in Table[5} and the prompt
to synthesize polymath samples is shown in Table[6} Around 500 candidate problems are synthesized on the candidate
problem generation stage. The prompt employed for math skill identification is displayed in Table

HYPERPARAMETER ‘ VALUE

temperature | 0.5
top k | 10
top p | 0.8

Table 4: Hyperparameters for computing 0-shot pass rate @k of the base model.

Prompt for Training

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks
about the reasoning process in the mind and then provides the user with the answer. User: You must put your answer inside
\\boxed{} and Your final answer will be extracted automatically by the \\boxed{} tag. For multiple choice questions,
the final answer in \ \boxed{} should be the option letter (A, B, C, D, etc.).

[PROBLEM]

Assistant:

Table 5: Training Prompt, where [PROBLEM] is the placeholder for the problem.

Prompt for Synthesizing Polymath Sample

You are a professor proficient in physics, chemistry, and biology, tasked with creating a highly integrated problem for
students that encompasses knowledge from all three disciplines. This problem should be a fill-in-the-blank question, and
the final answer must be a precise integer (a positive integer between 1-1000). The difficulty of this question should be at
the high school to university level. Furthermore, it should not involve any estimation, and complex calculations should be
avoided as much as possible to ensure the robustness of the evaluation.

Table 6: Prompt for synthesizing polymath sample.

Prompt for Skill Identification

Here is a reasoning problem, and your job is to identify the concepts and skills in the scope of [CATEGORY] that are
related to solve the problem.

Please separate the concepts or skills with ;, and if there is no skills or concepts identified, please answer with None. Please
put your answer within <answer></answer>.

For example: compute derivatives is the skill in precalculus.

Question:

[QUESTION]

Table 7: Prompt for skill identification. The [CATEGORY] and [QUESTION] are the placeholder for math category
(e.g. algebra) and problem respectively.

B FULL SUBJECT LIST

The full list of reasoning subjects being evaluated is displayed in Table
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C RESULTS BY DATASETS

Table 9 includes results by datasets on polymath learning and comprehensive learning, with the synthetic sample still
performing the strongest.

SUBJECT DOMAIN | SUBJECT SOURCE | # SAMPLES |

Math AIME AIME2024, AIME2025 60

MATHS500 MATH 500

Minerva MinervaMath 272

math Scibench, MMLU-Pro 299
Physics | physics | GPQA-Diamond, Scibench, MMLU-Pro | 413 \
Chemistry | chemistry | GPQA-Diamond, Scibench, MMLU-Pro | 459 \
Biology | biology | GPQA-Diamond, Scibench, MMLU-Pro | 118 \
Science | science \ SuperGPQA \ 557 \
Engineering | engineering \ SuperGPQA \ 447 \
Computer Science | computer science \ MMLU-Pro \ 100 \

Others military science SuperGPQA 12

business MMLU-Pro 100

philosophy MMLU-Pro, SuperGPQA 120

economics MMLU-Pro, SuperGPQA 149

management SuperGPQA 28

health MMLU-Pro 100

psychology MMLU-Pro 100

medicine SuperGPQA 155

education SuperGPQA 27

agronomy SuperGPQA 27

literature and arts SuperGPQA 93

law MMLU-Pro, SuperGPQA 137

history MMLU-Pro, SuperGPQA 138

sociology SuperGPQA 8
other MMLU-Pro 100

Table 8: Evaluation reasoning benchmarks with subjects included.

D LIMR SCORE BASICS

The LIMR score L1 et al.[(2025a) is computed by measuring the sample-wise training reward with the dataset-wise
average. Specifically,

K _ N
_q_ 21::1(7”5 — )’ L k
8i = K —k\2 = N Zri
Zi:l(l_r ) i=1

where ¥ is the reward of sample 7 in the k-th epoch, and 7* is the average reward of training set in the k-th epoch.

E SAMPLE PREFERENCE WITH LIMR SCORES

We include the results from selecting different LIMR scores from two math categories, prealgebra and probability,
that demonstrate strong multidisciplinary reasoning ability. The results in Figure 6] show that the samples with LIMR
score equals 0.6 perform best.
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Table 9: Results on different reasoning benchmarks, where OFE refers to benchmarks of open-ended problems:
MATHS500, AIME2024, AIME2025, Minerva and Scibench, while MCQ refers to benchmarks of multiplechoice prob-
lems. The best performance is bolded and the best polymath learning performance is underlined if not optimal.

Polymath Subject MATHS500 AIME2024 AIME2025 Minerva GPQA-Diamond SuperGPQA MMLU-Pro SciBench AVG-OE AVG-MCQ AVG-All
N=64 Sampling (0 shot)
- 54.8 9.0 7.1 13.4 13.1 15.7 4.7 9.8 23.6 113 159
In-context Learning (1 shot)
Natural Sample

Geometry 60.0 8.2 4.7 15.4 9.6 4.5 20.5 6.8 19.0 115 16.2
Prealgebra 55.0 9.2 45 10.7 16.2 9.2 28.8 6.4 17.2 18.1 17.5
Algebra 48.0 82 3.1 15.8 14.6 10.7 25.6 6.7 16.4 17.0 16.6
Intermediate Algebra 59.6 5.1 4.5 12.1 14.1 7.3 20.5 5.7 17.4 14.0 16.1
Number Theory 52.8 8.5 39 11.8 16.7 6.3 234 59 16.6 155 16.2
Precalculus 51.8 6.7 39 15.8 13.1 4.9 19.0 52 16.7 12.3 15.0
Probability 54.2 7.3 4.0 13.6 11.1 6.3 19.7 5.8 17.0 12.4 152
Synthetic Sample
Synthetic 442 4.8 24 15.1 5.6 2.8 10.6 3.8 14.1 6.3 112

Comprehensive Learning (> 1k shots)
Natural Sample
MATH (8k) 73.6 13.0 79 30.9 11.7 10.3 225 23.1 29.7 14.8 24.1
LIMR (1k) 74.8 12.6 8.9 30.1 132 15.8 315 22.7 29.8 20.2 26.2
Polymath Learning (1 shot)
Natural Sample

Geometry 26.6 0.0 0.0 19.9 239 18.5 33.1 7.9 10.9 25.2 16.2
Prealgebra 71.2 133 13.3 30.9 18.3 19.4 35.0 21.4 30.0 242 279
Algebra 72.0 6.7 0.0 30.9 16.2 17.3 34.9 22.8 26.5 22.8 25.1
Intermediate Algebra 71.2 133 0.0 28.7 20.3 18.9 345 22.0 27.0 24.6 26.1
Number Theory 69.6 16.7 10.0 30.9 17.8 18.2 35.0 223 29.9 23.7 27.6
Precalculus 71.6 10.0 10.0 30.5 18.8 20.9 34.1 224 28.9 24.6 27.3
Probability 71.6 13.3 16.7 29.8 142 18.9 34.9 22.7 30.8 22.7 27.8
Synthetic Sample
Geometry 714 10.2 6.7 27.2 15.7 16.9 30.7 214 274 21.1 25.0
Algebra 71.6 10.2 6.7 30.9 20.3 193 33.6 21.8 28.2 244 26.8
Number Theory 73.8 11.7 7.1 29.8 14.2 193 34.6 23.1 29.1 22.7 26.7
Precalculus 71.8 114 7.7 294 19.8 21.5 35.8 228 28.6 25.7 27.5
Probability 71.8 11.6 72 28.3 16.8 17.5 36.4 22.1 28.2 23.6 26.5
Prime 71.4 10.1 72 30.9 213 20.5 384 223 284 26.7 27.8

Skill Identification Sample - Science

[Question] A particle of mass 1 kg is moving in the  — y plane and its potential energy U in joule obeys the law
U = 6z + 8y, where (x, y) are the coordinates of the particle in meter. If the particle starts from rest at (9,3) at time ¢ = 0,
then

(A): The speed of the particle when it crosses the y axis is 5v/3m,/s
(B): The speed of the particle when it crosses y axes is 7v/3m /s
(C): Magnitude of acceleration of particle is 10m, /s>

(D): The speed of the particle when it crosses y axes is 11v/3m /s
(E): Acceleration of particle is zero

(F): The speed of the particle when it crosses y axes is 8v/3m /s
(G): The speed of the particle when it crosses y axes is 9v/3m/s
(H): The speed of the particle when it crosses y axes is 12v/3m/s
(I): The speed of the particle when it crosses y axes is 10v/3m/s
[Skills in Algebra]

Interpreting physical laws in mathematical form

Understanding the relationship between potential energy and force
Using the gradient to find force components

Applying the work-energy theorem

Solving for velocity using energy conservation

Understanding the relationship between force and acceleration
Solving for acceleration using newton’s second law

Analyzing motion in two dimensions

Solving for the time when a particle crosses a specific axis
Evaluating expressions involving square roots

Table 10: Skills identified from a sample science problem. Salient skills in other math categories are not identified.

F ROBUSTNESS OF THE RESULTS

We include the results of comprehensive learning in MATH dataset and polymath learning in the synthetic prime
sample with 3 independent runs on Qwen2.5-7b-base. The results in Table |l I|shows that the comprehensive learning
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Figure 6: Average domain performance over samples of different LIMR scores. The performance is reported the same
way as in Table @ The samples with LIMR score being 0.6 outperform others.

on 8k MATH samples demonstrate stronger reasoning in math benchmarks, but the synthetic prime sample outperforms
the 8k MATH training set in most other benchmarks as well as the average performance.

Table 11: The results of comprehensive learning on MATH and polymath learning on synthetic prime sample with
3 independent runs in Qwen2.5-7b-base. Polymath learning with the synthetic prime sample outperforms on most
benchmarks as well as the overall performance.

Polymath Subject MATHS500 AIME2024 AIME2025 Minerva GPQA-Diamond SuperGPQA MMLU-Pro SciBench AVG-OE AVG-MCQ AVG-All
Comprehensive Learning (> 1k shots)

MATH (8k) 73.0+£0.59  15.6+4.16 6.7+0.0 29.5+1.24 11.940.24 11.6+1.75 25.0+2.94  23.5+£0.37 29.74+0.73  16.2£1.53  24.6+0.72
Polymath Learning (1 shot)
Prime 71.7£0.34 12.2£1.56 10.0+4.71  31.0+1.07 20.3+0.71 20.8+0.31 38.1+0.69 21.9+0.33 29.4+1.03 26.4+0.29 28.2+0.62

G PERFORMANCE ON MMLU-PRO AND SUPERGPQA

The results on the full set of MMLU-Pro and SuperGPQA of comprehensive learning in 8k MATH samples and
polymath learning in the synthetic prime sample trained with Qwen2.5-7b-base and greedy decoding are included in

Table [I2] Polymath learning in the synthetic prime sample significantly outperforms both 0-shot and comprehensive
learning in 8k MATH samples.

Table 12: Performance of comprehensive learning in the 8k MATH samples and polymath learning in the synthetic
prime sample on the full set of MMLU-Pro and SuperGPQA, the synthetic prime sample performs best.

Data MMLU-Pro SuperGPQA
0-shot 30.3 16.8
MATH (8k) 31.7 16.6
Prime 37.6 21.7
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H TRAINING DYNAMICS OF POLYMATH LEARNING

Figure [7] illustrates the training dynamics of comprehensive learning and polymath learning across natural and syn-
thetic samples. We specifically prolong the training on the 8k MATH training set to better observe convergence. We
observe that comprehensive learning, on either the 8k MATH training set or the LIMR subset, yields progressive
improvement on MATHS500, but exhibits pronounced overfitting on multidisciplinary benchmarks such as GPQA Dia-
mond, SuperGPQA, and MMLU-Pro. And training with the MATH set exacerbates this effect. Polymath learning, on
the other hand, demonstrates substantially greater robustness on multidisciplinary reasoning benchmarks. Moreover,
both the synthetic prime sample and natural polymath sample in prealgebra deliver stronger multidisciplinary reason-
ing performance than the pi, employed in prior works (Wang et all [2025ab), which is selected from a dataset more
challenging than MATH.
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Figure 7: The evaluation results of benchmarks between comprehensive learning and different polymath learning
samples (synthetic prime sample, natural prealgebra sample, pi, ) trained in Qwen2.5-7b-base. The results are collected
in greedy decoding and rolling average is applied to AIME2024, AIME2025 for demonstration purpose.

I POLYMATH LEARNING WITH OTHER 1-SHOT SAMPLE

Previous success in reinforcement learning with one example (Wang et al., [2025alb) selects 71 from DeepScaleR
2025b) (see Table[T4), a curated dataset of challenging mathematical competition problems. Results in Table[I3)|
demonstrate the effectiveness of synthetic prime sample over both m; and comprehensive learning with 8k MATH
samples in both Qwen2.5-7b-base and Qwen2.5-14b-base.

J REASONING BREAKDOWN BY SUBJECT

Figure [8]illustrates the best polymath sample for different subjects.
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Table 13: The results between comprehensive learning on 8k MATH samples and polymath learning on the synthetic
prime sample and 7; in Qwen2.5-7b-base and Qwen2.5-14b-base. The synthetic prime sample consistently outper-
forms the other two data choices across models.

Data Math Physics Chemistry Biology Science Engineering Computer Science Others Avg
Qwen2.5-7b-base
N=64 Sampling (0-shot)

- 20.4 4.4 4.4 5.1 0.0 3.7 33 9.6 6.4
Comprehensive Learning (> 1k shots)
MATH 37.2 12.8 10.0 31.4 6.5 8.6 25.8 23.4 19.5
Polymath Learning (1-shot)
m (DeepScaleR) ~ 35.5 14.3 11.3 28.4 35.1 44.1 13.8 104 24.1
Prime 38.3 20.6 15.7 54.2 15.6 20.8 48.5 324 30.8

Qwen2.5-14b-base
N=64 Sampling (0-shot)

- 37.7 26.2 222 28.1 41.2 39.0 20.8 14.3 28.7
Comprehensive Learning (> 1k shots)
MATH 42.7 26.4 20.5 44.7 49.5 64.4 22.3 15.6 35.8
Polymath Learning (1-shot)
m (DeepScaleR)  40.4 27.6 20.0 394 51.5 57.6 22.1 17.1 34.5
Prime 44.0 32.7 22.7 423 56.7 58.5 31.0 20.6  38.6

[Question] The pressure P exerted by wind on a sail varies jointly as the area A of the sail and the cube of the wind’s
velocity V. When the velocity is 8 miles per hour, the pressure on a sail of 2 square feet is 4 pounds. Find the wind velocity
when the pressure on 4 square feet of sail is 32 pounds.

[Answer]

Table 14: The 71 sample.

K EXAMPLE OF SALIENT MATH SKILL IN THE REASONING PROBLEM

A sample science problem and relevant algebra skills to solve is displayed in Table

L  SELF-VERIFICATION EXAMPLES

Table Table 16| and Table |1 7|include examples in math, physics, and chemistry problems where program verifica-
tion emerges in polymath learning with the polymath sample in ‘intermediate algebra’.

M  SELF-VERIFICATION BY SUBJECT DOMAINS

We list the self-verification statistics by different sbuject domains in Figure[0]and Figure[I0} Specifically, we found that
‘verify’ is more preferred in math problems while ‘re-evaluate’ is appeared more frequently in science and engineering
problems. Besides, polymath learning with the ‘intermediate algebra’ sample elicits the most coding verification
among all the polymath and comprehensive samples.
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Figure 8: The subject-level performance of different learning strategies. OE stands for subjects with open-ended
problems. The subjects are sorted by subject embedding distance to math (the grey dotted line), from low to high. The
blue line represents pass ratio from 64 independent attempts of the base model. The stars and triangles represent best
performance of in-context learning and polymath learning. Note that we only display the best polymath learning and
in-context polymath learning results for demonstration, and Synthetic represents the Synthetic Prime sample.
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Self Verification - Math

[Question] The intensity of light with wavelength A traveling through a diffraction grating with NNV slits at an angle 0 is
given by I(f) = N?sin® k/k*, where k = (7 Ndsin@)/) and d is the distance between adjacent slits. A helium-neon
laser with wavelength A = 632.8 x 10~° m is emitting a narrow band of light, given by —107% < # < 107, through
a grating with 10,000 slits spaced 10~* m apart. Use the Midpoint Rule with n = 10 to estimate the total light intensity

j(l);_GG 1(0)df emerging from the grating.

[Answer]

[Intermediate Algebra] To solve this problem, we follow these steps:

1. Define the function I(f) = N?sin® (ZNdsin) /(zNdsinf) %,

2. Substitute the given values N = 10000, d = 10~*, and A = 632.8 x 107°.

3. Use the Midpoint Rule with n = 10 to approximate the integral | i?;fﬁ 1(0) d6. Let’s break it down into manageable
parts and implement it in Python using the sympy library.

import sympy as sp
# - he variables

theta = sp.symbols (’theta’

4 en va e
N 10000

d = 10x%-4

lambda_val = 632.8 x 10*xx-9

# Define the unction (theta)

k = (sp.pi * N » d % sp.sin(theta)) / lambda_val
I_theta = N*%2 % sp.sin(k)*%2 / k*x2

# Def NE he 1 its of nteg a on

a = —-10*x-6

b = 10%xx-6

n = 10

# Midpoint Rul

delta_theta = (b - a) / n

midpoints = [a + (1 + 0.5) * delta_theta for i in range(n)]

integral_approx = sum(I_theta.subs (theta, midpoint) for midpoint in midpoints) x delta_theta
t Evaluate the integral approximation

integral_approx_evaluated = integral_approx.evalf ()
print (integral_approx_evaluated)

Output: TimeoutError: 'Timed Out’ It seems that the computation took too long to complete. This might
be due to the complexity of the function and the large number of terms involved in the Midpoint Rule. Let’s simplify the
problem by breaking it down further and using numerical integration instead of symbolic integration.

We can use the ‘scipy.integrate.quad‘ function to perform the numerical integration. This function is designed to handle
such integrals efficiently.

Here’s the updated code using numerical integration:

import numpy as np
from scipy.integrate import quad
Given ilue
N = 10000
d = 10x%-4
lambda_val = 632.8 x 10%%-9
# Define the function I(theta)
def I_theta(theta):
k = (np.pi * N » d = np.sin(theta)) / lambda_val
return Nx*2 * np.sin(k)**2 / k**2
# Define the imits of integration
Sa = -10%x%-6%
Sb = 10x%x-6$
# Perforn e numer al >gratio
integral_approx, error = quad(I_theta, a, b)
rint the result
print (integral_approx)

10-6

Output: 10000000000.0 The numerical integration result for the total light intensity (| | _s

from the grating is | 10000000000.0 |.

1(0)df) emerging

Table 15
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Self Verification - Physics

[Question] We know that the negative charge on the electron and the positive charge on the proton are equal. Suppose,
however, that these magnitudes differ from each other by 0.00010%. With what force would two copper coins, placed
1.0 m apart, repel each other? Assume that each coin contains 3 x 1022 copper atoms. (Hint: A neutral copper atom
contains 29 protons and 29 electrons.)

[Answer]

[Intermediate Algebra] To solve this problem, we need to follow these steps:
1. Calculate the charge difference between the electron and the proton.

2. Determine the total charge on each copper coin.

3. Use Coulomb’s law to find the force between the two copper coins.

Let’s break it down:

1. **Calculate the charge difference:**

- The charge of an electron is e = —1.602 x 107° C.

- The charge of a proton is e = 1.602 x 10~ C.

- The difference in charge is Ae = 0.00010% x 1.602 x 107 C.

-0.00010% = 0.000001, so Ae = 0.000001 x 1.602 x 10~"? = 1.602 x 10~%° C.

2. **Determine the total charge on each copper coin:**

- Each copper atom has 29 protons and 29 electrons, so the net charge of a neutral copper atom is zero.

- Each copper coin contains 3 x 10?2 copper atoms, so the total charge on each coin is 3 x 10?2 x 1.602 x 10%% =
4.806 x 107° C.

3. #**Use Coulomb’s law to find the force between the two copper coins:**
- Coulomb’s law states that the force F' between two point charges g1 and g2 separated by a distance r is given by

F = k%42, where k is the Coulomb constant 8.99 x 10° N(‘;Sz .
-Here, ¢ = g2 = 4.806 x 1073 Candr = 1.0 m.
- —3\2
-So, F = 8.99 x 10° x 4:806x10 7)° _ g 99 x 10° x 2.31 x 107° = 2.07 x 10° N.

1.0

Let’s implement this in Python to ensure the accuracy of the result:

it nstants
e = 1.602e-19 charge of
delta_e = 0.00010 / 100 = e # charge difference

an electron (and proton)

num_atoms = 3e22 # number of copper atoms each co

charge_per_atom = e # charge of a single copper ato

total_charge_per_coin = num_atoms » charge_per_atom # total charge on each in
k = 8.99e9 # Coulomb constant

distance = 1.0 # distance betwee he coins meters

lc e e rce i o] 1 b N
force = k » (total_charge_per_coin ** 2) / (distance »*x 2)
print (force)

output: 206673.0
The force between the two copper coins, each containing 3 x 10?2 copper atoms, placed 1.0 meter apart, with a charge

difference of 0.00010% between the electron and the proton, is | 2.07 x 10° N |

Table 16
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Self Verification - Chemistry

[Question] Assume all gases are perfect unless stated otherwise. Note that 1 atm = 1.013 25 bar. Unless otherwise stated,
thermochemical data are for 298.15 K. Concerns over the harmful effects of chlorofluorocarbons on stratospheric ozone
have motivated a search for new refrigerants. One such alternative is 2,2-dichloro-1,1,1-trifluoroethane (refrigerant 123).
Younglove and McLinden published a compendium of thermophysical properties of this substance (J. Phys. Chem. Ref.
Data 23, 7 (1994)), from which properties such as the Joule-Thomson coefficient ;1 can be computed. Compute x4 at 1.00
bar and 50°C given that (OH/0p)r = —3.29 x 10* JMPa™! mol™! and Cp, , = 110.0 JK~! mol™*.

[Answer]

[Intermediate Algebra] To compute the Joule-Thomson coefficient y at 1.00 bar and 50°C, we can use the following

forlnula:
ép H

The Joule-Thomson coefficient can also be expressed in terms of the enthalpy and temperature derivatives as follows:

_ 1 (%)
= Com \Op ),

(B—H) = -3.29 x 10 JMPa ! mol™*!
op ) p

Given:

Cpm =110.0J K" mol™!
We can substitute these values into the formula to find p:

1 3 =il
—— x (3.2 10°) KMP
110.0><(39>< 0%) a
Let’s calculate this using Python to ensure accuracy.

n =

dH_dp_T = -3.29e3 # J MPa$’ $ mo
Cp_m = 110.0 if 1}$ molS ™ {-1}¢

# Calcula i oule— mson coeffic
mu = dH_dp_T / Cp_m # MPa$”~ {-1}$
print (mu)

Output: -29.90909090909091

The Joule-Thomson coefficient y at 1.00 bar and 50°C is:

—29.91 K MPa™*

Table 17: Chemistry example of self-verification in polymath learning.
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Figure 9: The verification patterns identified for ‘wait’, ‘verify’ and ‘yet’ in different subject domains. The ‘wait’ rates

in computer science problems are highly attributed from terms in the question stems.
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Polymath Sample in Geometry

[Question] A white cylindrical silo has a diameter of 30 feet and a height of 80 feet. A red stripe with a horizontal width
of 3 feet is painted on the silo, as shown, making two complete revolutions around it. What is the area of the stripe in
square feet?

[asy]
size(250);defaultpen(linewidth(0.8));
draw(ellipse(origin, 3, 1));
fill((3,0)—(3,2)—(-3,2)—(-3,0)—cycle, white);
draw((3,0)—(3,16)h-3,0)—(-3,16));
draw((0, 15)—(3, 12)h0, 16)—(3, 13));
filldraw(ellipse((0, 16), 3, 1), white, black);
draw((-3,11)-(3, 5)h-3,10)-(3, 4));
draw((-3,2)—(0,-1)h-3,1)—(-1,-0.89));
draw((0,-1)—(0,15), dashed);
draw((3,-2)—(3,-4)h-3,-2)—(-3,-4));
draw((-7,0)—(-5,0)h-7,16)—(-5,16));
draw((3,-3)—(-3,-3), Arrows(6));
draw((-6,0)—(-6,16), Arrows(6));
draw((-2,9)-(-1,9), Arrows(3));

label(3”, (-1.375,9.05), dir(260), UnFill);
label("A”, (0,15), N);

label(”B”, (0,-1), NE);

label(307, (0, -3), S);

label(807, (-6, 8), W);

[/asy]

[Answer]

Table 18: Polymath sample in geometry.

Polymath Sample (Probability)

[Question] Bicycle license plates in Flatville each contain three letters. The first is chosen from the set {C, H, L, P, R},
the second from {4, I, O}, and the third from {D, M, N, T'}.

When Flatville needed more license plates, they added two new letters. The new letters may both be added to one set or
one letter may be added to one set and one to another set. What is the largest possible number of ADDITIONAL license
plates that can be made by adding two letters?

[Answer] 40

Table 19: Polymath sample in counting and probability.

Polymath Sample in Algebra

[Question] A 100-gon P; is drawn in the Cartesian plane. The sum of the z-coordinates of the 100 vertices equals 2009.
The midpoints of the sides of P; form a second 100-gon, FP». Finally, the midpoints of the sides of P> form a third
100-gon, Ps. Find the sum of the z-coordinates of the vertices of Ps.

[Answer]

Table 20: Polymath sample in algebra.

O LARGE LANGUAGE MODEL USAGE

The large language model is employed to provide writing suggestions for polishing purposes.
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Polymath Sample in Intermediate Algebra

[Question] Let a, b, c be nonzero real numbers such that

Find

[Answer]

Table 21: Polymath sample in intermediate algebra.

Polymath Sample in Precalculus

[Question] For a certain value of k, the system

r+ ky+32=0,
3z + ky — 22 =0,
20 +4y — 32 =0

has a solution where z, y, and z are all nonzero. Find i—;

[Answer]

Table 22: Polymath sample in precalculus.

Polymath Sample in Number Theory

[Question] The American Mathematics College is holding its orientation for incoming freshmen. The incoming freshman
class contains fewer than 500 people. When the freshmen are told to line up in columns of 23, 22 people are in the last
column. When the freshmen are told to line up in columns of 21, 14 people are in the last column. How many people are
in the incoming freshman class?

[Answer]

Table 23: Polymath Sample in Number Theory.
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Polymath Sample in Prealgebra

[Question] A region is bounded by semicircular arcs constructed on the side of a square whose sides measure 2/, as
shown. What is the perimeter of this region?

[asy]

path a=(10,0)..(5,5)—(5,-5)..cycle;
path b=(0,10)..(5,5)—(-5,5)..cycle;
path c=(-10,0)..(-5,5)—(-5,-5)..cycle;
path d=(0,-10)..(-5,-5)—(5,-5)..cycle;
path e=(5,5)—(5,-5)—(-5,-5)—(-5,5)—cycle;
fill(e,gray(0.6));

fill(a,gray(0.8));

fill(b,gray(0.8));

fill(c,gray(0.8));

fill(d,gray(0.8));
draw(a,linewidth(0.7));
draw(b,linewidth(0.7));
draw(c,linewidth(0.7));
draw(d,linewidth(0.7));
draw(e,linewidth(0.7));

[/asy]

[Answer]

Table 24: Polymath sample in prealgebra.

Synthetic Specialist Sample in Precalculus

[Question] A chemical factory discharges waste into a river at a rate of 500 cubic meters per day. The waste has an
untreated pollutant concentration of 100 mg/L. The river has a flow rate of 24,500 cubic meters per day, and the waste
mixes completely and instantly with the river flow. The pollutant degrades following first-order kinetics with a half-life of
5 days. The time for water to travel from the discharge point to a critical fish habitat is 5 days. To protect an endangered
fish species (reflecting ethical considerations of intrinsic value in philosophy), the pollutant concentration at the habitat
must not exceed 0.1 mg/L. If the concentration exceeds this limit, the probability of harm to the fish is 0.05 per mg/L of
excess concentration. Due to legal regulations (incorporating law), if harm occurs, the factory is fined $10,000 per day.
The factory can treat the waste to reduce the pollutant concentration before discharge. The treatment cost is $0.005 per
cubic meter per mg/L reduction in concentration (incorporating economics and chemistry). Calculate the optimal initial
concentration of pollutant in the treated waste (in mg/L) that minimizes the total daily cost (treatment cost plus expected
fine), considering the interdisciplinary aspects of physics (degradation kinetics and flow), biology (fish protection), and
mathematics (optimization).

[Answer]

Table 25: Synthetic Specialist Sample in Precalculus.

31



Under review as a conference paper at ICLR 2026

Synthetic Specialist Sample in Number Theory

[Question] A pharmaceutical company develops a new drug for treating a specific condition. The drug has a biological
half-life of 4 hours in the human body and a volume of distribution of 50 liters. Clinical trials determine that the minimum
therapeutic concentration required for efficacy is 10 mg/L. The drug is administered as a single intravenous bolus dose at
the beginning of each day to maintain concentrations at or above the therapeutic level for exactly 8 hours.

The manufacturing cost analysis shows that each 500 mg vial of the drug costs $2.50 to produce, and the entire vial must be
used if opened. Regulatory requirements (reflecting legal and ethical considerations) mandate that the drug concentration
must not drop below the therapeutic level during the 8-hour treatment period.

Considering the exponential decay of the drug concentration, calculate the required dose in milligrams. Then, determine
the daily cost in dollars for administering this dose, providing the cost to one decimal place.

[Answer]

Table 26: Synthetic Specialist Sample in Number Theory.

Synthetic Specialist Sample in Geometry

[Question] A model cell membrane is represented by a cube-shaped vesicle with a side length of 10.0 nm. The membrane
is a phospholipid bilayer made of two leaflets. Each phospholipid occupies exactly 1.50 nm? of surface area within a
single leaflet. Assuming both leaflets cover the entire outer surface of the cube and ignoring membrane thickness and edge
effects, how many phospholipid molecules are present in the bilayer?

[Answer]

Table 27: Synthetic Specialist Sample in Geometry.

Synthetic Specialist Sample in Probability

[Question] A molecular-biology lab purifies a circular plasmid that is exactly 3000 base pairs (bp) long.

e Each base pair contains two deoxyribonucleotides, and every nucleotide carries one phosphate (POif) group.

e While the cells were growing, the medium contained the S-emitter 2P, so every phosphate in the plasmid is
32P_Jabelled.

o The radioactive isotope *>P has a half-life of 14.0 days.

Immediately after purification, a tube that contains precisely 100 identical plasmid molecules shows an activity of 1024
disintegrations per minute (dpm). The tube is stored in a freezer, and—after an integral number of whole half-lives—the
activity is measured again and found to be exactly 4 dpm.

To cross-check the number of phosphate groups, the plasmid DNA is then completely hydrolysed and the liberated
phosphate is quantitatively precipitated as calcium phosphate according to

3 Ca2+ +2 POi_ — Cag(PO4)2 1
The precipitation requires exactly 5.0 x 10~ mol of Ca** ions, confirming the amount of DNA present (the stoichiometry
is consistent and needs no further calculation here).

What is the number of >?P half-lives that have elapsed between the two activity measurements?

[Answer]

Table 28: Synthetic Specialist Sample in Probability.
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Synthetic Specialist Sample in Algebra

[Question] A plant that is heterozygous for two independent genes, G and H (genotype GgHh), is self-pollinated. Exactly
640 seeds are obtained.

Biology: Only seeds that are homozygous recessive for both genes (gghh) can synthesize the enzyme “Catalase-X".
Chemistry: Every gghh seed is placed in its own vial containing 0.0800 mol of hydrogen peroxide. Catalase-X instantly
and completely decomposes the peroxide according to

2 H202 — 2 HQO + Oz(g)

Thus each qualifying vial releases pure O gas.

Physics: The O is dried, transferred to a 1.00 L rigid cylinder at 298 K, and all molecules are singly ionised
(O2 — OF +e7). The ions are accelerated so that each has speed v that makes its circular path radius exactly 0.0400 m
in a uniform magnetic field B = 1.00 T perpendicular to their velocity (m(Oz2) = 32 u, 1 u = 1.66 x 10™%7 kg,
g = 1.60 x 10~'° C). Immediately after acceleration an electronic gate allows only the very first O;L ion to continue;
all later ions are blocked. That single ion has a 50% chance of striking a narrow slit that leads to a detector; otherwise
nothing is recorded.

A vial is counted as a “success” if its lone transmitted ion hits the detector. All vials operate independently.

What is the expected number of “successes’ after all 640 seeds have been processed?

[Answer]

Table 29: Synthetic Specialist Sample in Algebra.
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