

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONE SAMPLE TO RULE THEM ALL: EXTREME DATA EFFICIENCY IN RL SCALING

Anonymous authors

Paper under double-blind review

ABSTRACT

The reasoning ability of large language models (LLMs) can be unleashed with reinforcement learning (RL) (OpenAI, 2024; DeepSeek-AI et al., 2025a; Zeng et al., 2025). The success of existing RL attempts in LLMs usually relies on high-quality samples of thousands or beyond. In this paper, we challenge fundamental assumptions about data requirements in RL for LLMs by demonstrating the remarkable effectiveness of one-shot learning. Specifically, we introduce **polymath learning**, a framework for designing one training sample that elicits multidisciplinary impact. We present three key findings: (1) A single, strategically selected math reasoning sample can produce significant performance improvements across multiple domains, including physics, chemistry, and biology with RL; (2) The math skills salient to reasoning suggest the characteristics of the optimal polymath sample; and (3) An engineered synthetic sample that integrates elements from multiple subjects outperforms training with individual samples that naturally occur. Our approach achieves superior performance to training with larger datasets across various reasoning benchmarks, demonstrating that sample quality and design, rather than quantity, may be the key to unlock enhanced reasoning capabilities in language models. Our results suggest a shift, dubbed as **sample engineering**, toward precision engineering of training samples rather than simply increasing data volume.

1 INTRODUCTION

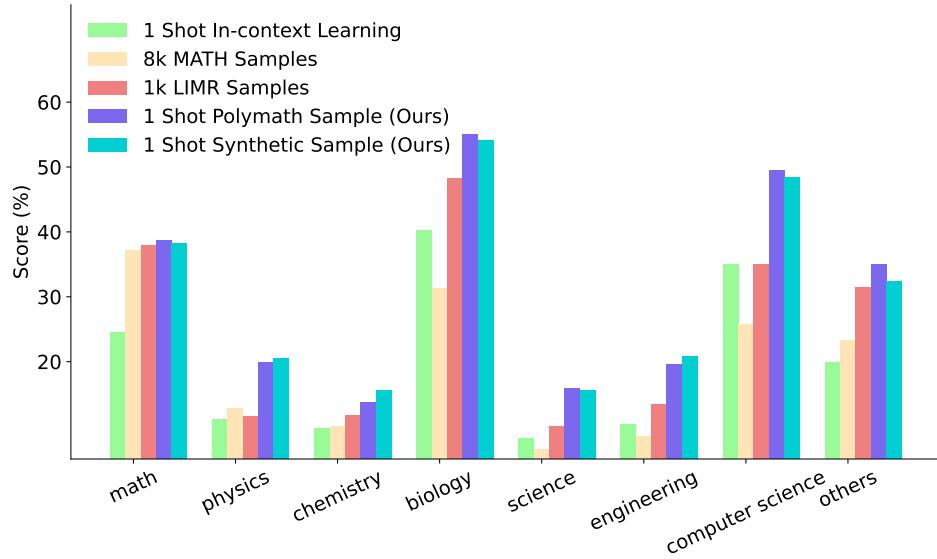


Figure 1: Reasoning capabilities of in-context learning, comprehensive learning (in MATH and LIMR) and polymath learning across different subject domains. The domain performance is averaged by subjects. We only mark the strongest in-context learning and polymath learning sample for demonstration purpose. Polymath learning in both natural sample and synthetic sample demonstrate significant gain over comprehensive learning in most domains.

Recent advances in Large Language Models (LLMs) have demonstrated the remarkable effectiveness of reinforcement learning (RL) in enhancing complex reasoning capabilities. Models like o1 (OpenAI, 2024), Deepseek R1 (DeepSeek-AI et al., 2025a), and Kimi1.5 (Team et al., 2025a) have shown that RL training is able to naturally induce sophisticated

054 reasoning behaviors, including self-verification (Weng et al., 2023), reflection (Shinn et al., 2023), and extended chains
 055 of thought. While these advances typically rely on large-scale training data, recent work has begun to challenge this
 056 paradigm. Li et al. (2025a) demonstrated with their LIMR approach that a strategically selected subset of just 1,389
 057 samples can outperform the full 8k sample MATH dataset (Hendrycks et al., 2021). More recently, Wang et al. (2025a)
 058 made the surprising observation that even one single sample can produce meaningful improvements in math reasoning
 059 through RL, and Wang et al. (2025b) achieved similar gains by distilling high-quality reasoning paths from strong
 060 commercial models. However, this finding remains preliminary and math-specific, and leaves the critical questions
 061 of cross-domain generalization with internal abilities of LLMs unanswered: whether reasoning improvements beyond
 062 math can be achieved in similar manner? Whether a strategy exists in directing the optimal sample? Whether such
 063 sample can be synthesized to enhance the sample quality?

064 In this paper, we build upon these emerging insights to systematically investigate the phenomenon of one-shot reinforcement
 065 learning in broad reasoning tasks termed as *polymath learning*. Our central finding is that a single, carefully
 066 selected math reasoning sample is able to produce significant performance gains not only in mathematics but across
 067 diverse domains including physics, chemistry, biology, as well as more general reasoning domains. This cross-domain
 068 generalization suggests that RL may enhance fundamental reasoning mechanisms rather than merely domain-specific
 069 knowledge without saturated domain-specific training. Specifically, our work addresses three research questions:

070 **Cross-Domain Generalization:** Does a single mathematical reasoning sample yield improvements across diverse
 071 knowledge domains through polymath learning? We investigate the transfer mechanisms that allow fundamental
 072 reasoning patterns to transcend domain boundaries and observe that one single math sample selected on the math
 073 categories elicits greater reasoning gains of LLM than comprehensive datasets with thousands of samples, and the
 074 reasoning gains even extend to less quantitative subjects and domains that are distant from math.

075 **Optimal Sample Selection:** What characteristics define the ideal training sample for maximal impact in general
 076 reasoning domains? Although the optimal polymath sample varies across domains, we find that their efficacy correlates
 077 with the salient math skills critical to reasoning, particularly the skills in algebra and precalculus.

078 **Synthetic Sample Construction:** How can we engineer a hybrid “meta-sample” beyond naturally occurred ones that
 079 integrates multiple reasoning skills? We propose a synthesis technique based on salient skill identification to construct
 080 the sample with comprehensive skills and multidisciplinary context. The results illustrate that the multidisciplinary
 081 background supports the comprehensiveness of the salient skills, and therefore benefits the cross-domain reasoning
 082 ability greater than the naturally-occurred samples that mainly possess math skills in limited categories and columns.
 083 It shows the power of a single sample can be further amplified by properly integrating multidisciplinary knowledge.

084 By demonstrating that a single sample can trigger broad reasoning improvements, our findings adjust the understanding
 085 of data requirements in RL, suggesting that the field may benefit from a shift toward “**sample engineering**”: the
 086 deliberate selection, and synthesis of training samples to unlock reasoning capabilities more efficiently, rather than
 087 simply scaling data volume and potentially induce generalization degradation (Yang et al., 2024b).

089 2 RELATED WORK

090 **Reinforcement Learning in Language Models** Reinforcement learning has been applied to aligning language models
 091 with human intents (Christiano et al., 2017) or instructions (Ouyang et al., 2022) through learning from human
 092 feedback. Later, it is extended to strengthen the long-form reasoning ability of models without relying on imitation
 093 of high-quality reasoning data, specifically by employing Reinforcement Learning with Verifiable Reward (RLVR)
 094 where the model outcomes can be verified and rewarded by verification functions with the advancement in RL
 095 algorithms (Schulman et al., 2017; Lambert et al., 2025; Hu et al., 2025a). However, training reliable outcome-based
 096 reward models (Cobbe et al., 2021) is challenging, and the rule-based reward function demonstrates effectiveness by
 097 simplifying the implementation of critic models and mitigating reward hacking (Shao et al., 2024). In this work, we
 098 extend the reasoning ability to broader reasoning domains by learning rewards from the mathematical problems.

099 **Data Efficiency in RL Training** Xu et al. (2025) selects subset responses based on variance for GRPO training.
 100 And Zhang et al. (2025a) employs the most recent reward information for filtering prompts, which is shown to benefit
 101 GRPO training in Yu et al. (2025b). Other than focusing on the quality of prompt responses in RL training, Li et al.
 102 (2025a) highlights the significance of prompt quality by demonstrating the effectiveness of carefully selected training
 103 subset. Further, Shrestha et al. (2025) demonstrates cross-domain reasoning ability with less than 100 samples but
 104 requires a pre-warmup distillation stage, and Wang et al. (2025a) utilizes only one training sample and achieves a
 105 notable improvement in mathematical reasoning. And Zhao et al. (2025a) requires no human-expert data but still
 106 relies on an external executor to generate valid answers to synthetic coding problems. However, these studies still

focusing on the mathematical reasoning domain where the training data originates and neglect its broader impacts on multiple disciplines where the reasoning ability essences.

Transfer Learning and Cross-Domain Generalization Afzal et al. (2024) demonstrates that small LLMs can catch up with larger counterparts in domain adaptation with few examples. And Chen et al. (2024) adapts to new domain by extracting domain-invariant features in existing domain. Specifically for reasoning problems, Zhao et al. (2025a) unleashes improvement in mathematical reasoning solely based on training on programming data, and Huan et al. (2025) demonstrates that RL achieves better generalization from math to other domains than supervised fine-tuning, without a deep dive into data efficiency. Li et al. (2025b) investigates the cross-domain impact in math reasoning, but only limits the study within logical-intensive domains like code and puzzle. In polymath learning, we enlarge the reasoning scope to various subjects and investigate the learning impact from one labeled mathematical sample.

Sample Selection Strategies The effectiveness of finetuning large language models heavily relies on the quality of data selection (Xie et al., 2023). And well selected data samples can elicit powerful fine-tuning performance compared to data volume of magnitudes larger (Wang et al., 2023; Zhou et al., 2023). Xia et al. (2024) relies on the gradient information for data selection, while Liu et al. (2024b) formulates data selection as an optimal transportation problem. The effectiveness of data selection also extends to reasoning problems (Qin et al., 2024; Ye et al., 2025). Liu et al. (2024a); Li et al. (2025c) apply LLM-based scores, justification, solve ratios (Havrilla et al., 2025) and LLM-based role-play (Luo et al., 2025a) to estimate sample diversity for data selection. Here we select polymath samples based on the alignment with reinforcement learning dynamics to elicit the reasoning ability in multiple disciplines. And we employ the salient-skill set to for selecting the synthesized data.

3 GRPO BASICS

Given a dataset $\mathcal{D} = \{(x, \hat{y})\}$ where x and \hat{y} stand for the prompt and golden answer, RLVR relies on a policy model $\pi_\theta(\cdot|x)$ to generate correct reasoning trajectories without relying on trajectories generated by human-expert or teacher models (Zhao et al., 2025a). In GRPO (Shao et al., 2024), the advantage value is estimated within a group of responses G responses $\{y_1, y_2, \dots, y_G\}$ to substitute the critic model in PPO while remaining effectiveness. Specifically,

$$\mathcal{L}_{GRPO} = \mathbb{E}_{[x \sim \mathcal{D}, \{y_i\} \sim \pi_{\theta_{old}}(\cdot|x)]} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \min(\tilde{r}_{i,t} A_i, \text{clip}(\tilde{r}_{i,t}, 1 - \epsilon, 1 + \epsilon) A_i) - \beta KL(\pi_\theta || \pi_{ref}) \right]$$

$$A_i = \frac{r_i - \text{mean}(r_1, r_2, \dots, r_G)}{\text{std}(r_1, r_2, \dots, r_G)}, \quad \tilde{r}_{i,t} = \frac{\pi_\theta(y_{i,t}|x, y_{i,<t})}{\pi_{\theta_{old}}(y_{i,t}|x, y_{i,<t})}$$

Here r_i is computed by applying the reward function on the response and the golden answer $r_i = \text{reward}(y_i, \hat{y}_i)$. $\pi_\theta(y_{i,t}|x, y_{i,<t})$ identifies the likelihood of the t -th token in i -th response from the policy model. Unlike previous efforts that assembles \mathcal{D} with a comprehensive set of samples, in polymath learning, $\mathcal{D}_{polymath} = (x_1, \hat{y}_1)$.

4 POLYMATHEMATIC LEARNING

OpenAI et al. (2024) unlocks complex reasoning ability of LLM through reinforcement learning, and DeepSeek-AI et al. (2025b;a) further demonstrates that such advanced reasoning ability can be elicited directly from pretrained base models using rule-based rewards, without relying on imitation from high-quality supervised reasoning trajectories. Existing explorations mainly focus on math or synthetic logic (Zeng et al., 2025; Pan et al., 2025; Xie et al., 2025) where large volumes of questions with rule-based verifiable answers are accessible. Beyond the success of *comprehensive learning*: training models with thousands of comprehensive high-quality problems and beyond, Wang et al. (2025a) shows that the reasoning ability can also be boosted by one single math sample with RL. Following this inquiry, we investigate *polymath learning*: training with one sample that plays a polymath role and extends the model reasoning power across domains. Similar to Wang et al. (2025a), we conduct polymath learning from math reasoning problems.

Polymath Learning with One Natural Sample LIMR (Li et al., 2025a) displays the potential of improving training efficiency in reinforcement learning by selecting a subset of samples from MATH that closely align with the training dynamics of RL. A preliminary model is trained in LIMR to record the reward trajectories during optimization. The sample learnability is then computed by comparing its reward with the dataset-wise mean reward. Higher LIMR scores indicate greater alignment between the model behavior on individual sample and the entire dataset. However, learning from samples with excessively high LIMR scores risks over-specialization in math reasoning at the expense of broader

162 reasoning capabilities. Therefore, we select LIMR samples with the lowest scores (0.6) in different math categories
 163 as polymath candidates to maintain the same learnability according to preliminary experiments (See Appendix C for
 164 details). One polymath sample is displayed in Table 1 and others are included in Appendix N.
 165

166 **Polymath Sample in Algebra**

168 **[Question]** A 100-gon P_1 is drawn in the Cartesian plane. The sum of the x -coordinates of the 100 vertices equals 2009.
 169 The midpoints of the sides of P_1 form a second 100-gon, P_2 . Finally, the midpoints of the sides of P_2 form a third
 170 100-gon, P_3 . Find the sum of the x -coordinates of the vertices of P_3 .

171 **[Answer]** 2009

174 Table 1: Polymath sample in algebra.
 175

176 **Polymath Learning with One Synthetic Sample** Synthesizing reasoning trajectories have been shown beneficial in
 177 boosting the reasoning ability in LLM in the pretraining (Ishibashi et al., 2025) and supervised-finetuning stage (Singh
 178 et al., 2024; Yuan et al., 2024). Careful problem synthesis also scales up the mathematical reasoning ability of models
 179 by reinforcement learning (Setlur et al., 2024). Since solving multidisciplinary problems and purely mathematical
 180 problems are not require on the same base of expertise, existing problem synthesis approaches based on problem
 181 imitation (Toshniwal et al., 2025), mutation (Havrilla et al., 2025) or creation based on seed concept or problem
 182 bank (Huang et al., 2025; Liang et al., 2025; Zhao et al., 2025b; Liu et al., 2025) do not directly apply. In practice,
 183 we find it challenging to organically integrate and align information from problems in diverse disciplines. Therefore,
 184 unlike Setlur et al. (2024) and Wang et al. (2025b), we synthesize the polymath sample based on instruction without
 185 relying on existing problems or models finetuned with question-generation (Ding et al., 2025; Wu et al., 2025b). Our
 186 final problem synthesis pipeline includes two stages,

- 187 • **Candidate problem generation** We employ strong models like OpenAI-O3 (OpenAI, 2025a), Gemini2.5-
 188 Pro (Google, 2025) and DeepSeek-R1 to include multidisciplinary knowledge from physics, chemistry and
 189 biology. The golden answers are collected from joint success of problem solving in those models.
- 190 • **Specialized problem selection** After massive generation of candidate problems, we employ Qwen2.5-72B-
 191 instruct to identify the salient math skills related in solving the problem given the problem text. The abundance
 192 of skills in different math categories is employed to reflect the complexities and qualities of problems.
 193 We then select the problems with the most specialized skills as the synthesized polymath samples, [please refer to Appendix A for the prompt employed and Appendix K for example](#).

196 We find this instruction-based approach unleashes the creativity of LLMs in producing complex multidisciplinary
 197 problems. Specifically, we select the synthesized polymath sample with the most comprehensive skill spectrum (*Synthetic Prime*, shown in Table 2). Solving the *Synthetic Prime* requires a complex set of knowledge, including the strand
 198 sequence (biology), chemical bonds and energy to break bonds (chemistry), accumulating energy by collecting photons
 199 and estimating photon energy based on its wavelength (physics). The synthesis prompt is shown in Appendix A.

202 **5 EXPERIMENTAL SETUP**

204 We choose Qwen2.5-7b-base (Qwen et al., 2025) as the primary model, while Qwen2.5-math models (Yang et al.,
 205 2024a) demonstrate inferior performance on non-math benchmarks in preliminary experiments and are therefore not
 206 considered. Similar to Wang et al. (2025a), we employ GRPO (Shao et al., 2024) for RL training and augment the
 207 polymath sample into the batch of 128, and sample 16 responses per prompt with temperature of 1.0. The prompt
 208 template follows the design of Hu et al. (2025b). Following Huan et al. (2025), the model is trained for 140 steps since
 209 the reasoning ability saturates. We only employ a 0-1 outcome reward with rule-based matching of the final answer
 210 according to previous studies (Shao et al., 2024; Yu et al., 2025b), and exclude the format reward and the KL term
 211 as they demonstrate inferior performance (Wang et al., 2025a; Yu et al., 2025b). In skill identification, we employ
 212 *Algebra* to include salient skills from *Prealgebra*, *Algebra* and *Intermediate Algebra* to eliminate their large overlaps.

213 Our evaluation covers both math and non-math domains. Specifically, we select MATH500, AIME in 2024 and 2025,
 214 MinervaMath (Lewkowycz et al., 2022), GPQA-Diamond (Rein et al., 2024), Scibench (Wang et al., 2024a), MMLU-
 215 Pro (Wang et al., 2024b) with randomly select 100 problems for each subject and SuperGPQA (Team et al., 2025b)
 with 1500 random problems as the evaluation set. The full spectrum of subjects is listed in Appendix B. The model

216
217
218 Polymath Sample (Synthetic Prime)
219
220

[Question] A double-stranded DNA fragment of exactly 11 base pairs has the upper strand sequence 5 'G C G C G C G C A T A 3'.

221 Each adenine–thymine (A·T) base pair is held together by **2** hydrogen bonds, and each guanine–cytosine (G·C) base
222 pair by **3** hydrogen bonds.

223 The DNA molecule is irradiated with monochromatic light of wavelength $\lambda = 400\text{nm}$. Assume that **100%** of every
224 photon's energy is used exclusively to break hydrogen bonds between the two strands.

225 Use the exact data below (treat every value as exact):

226 * Enthalpy of one hydrogen bond $\Delta H = 20\text{kJ} \cdot \text{mol}^{-1}$

227 * Planck constant $h = 6.62610^{-34}\text{J} \cdot \text{s}$

228 * Speed of light $c = 3.0010^8\text{m} \cdot \text{s}^{-1}$

229 * Avogadro constant $N_a = 6.02210^{23}\text{mol}^{-1}$

230 **Fill in the blank:** What is the minimum number of 400 nm photons required to supply exactly enough energy to
231 dissociate *all* hydrogen bonds in **one** molecule of this DNA fragment? (Answer with a single positive integer.)

232 [Answer] [2]

233
234 Table 2: The synthetic prime polymath sample that incorporates multidisciplinary knowledge.
235
236

237 responses are generated with greedy decoding in single attempt, except for AIME, where the results are averaged from
238 32 attempts with temperature being 0.4 (additional configurations are included in Appendix A).

240
241 6 RESULTS

242
243 6.1 CROSS-DOMAIN GENERALIZATION OF LEARNING ON SINGLE POLYMATH SAMPLE

244 Table 3 reports the reasoning performance aggregated by subject domains (e.g. *Math* includes all math problems from
245 MATH500, AIME, MinervaMath and other benchmarks) by comparing model trained with different natural or synthetic
246 polymath samples against the base model. Other than the *Synthetic Prime* sample, we also construct several
247 synthetic specialist samples in different math categories by ranking the number of salient skills identified in these
248 categories. We make several observations. Firstly, the base model exhibits skewed reasoning abilities: performing strong
249 in math but weak in other domains. Secondly, polymath learning delivers substantial improvements over in-context
250 learning across different subject domains. Thirdly, although comprehensive learning enhances the math reasoning
251 ability, especially with effective data selection methods like LIMR, most natural polymath samples demonstrate comparable
252 performance to comprehensive learning on the math domain, and surpass it on non-math domains (Figure 1), underscoring the potential of unleashing reasoning ability by one high-quality sample. Specifically, the polymath samples
253 in prealgebra and precalculus stand out from all natural polymath samples, with their superior strength attributed
254 to the broad coverage of salient math skills. Lastly, the synthetic polymath samples further elevate the reasoning ability.
255 Most specialist samples outperform their natural polymath sample counterparts and demonstrate domain-specific
256 advantages: geometry and algebra samples in engineering; number theory sample in math and probability sample in
257 science. Furthermore, the *Synthetic Prime* sample achieves the strongest overall performance and demonstrates particular
258 strength in physics and chemistry, suggesting that the reasoning potential of individual samples can be amplified
259 through well-incorporation of multidisciplinary knowledge. Therefore we select the *Synthetic Prime* sample as the
260 primary synthetic sample for the following experiments. Notably, unlike data collection approaches that are based on
261 common-crawled data source (Wu et al., 2025a; He et al., 2025; Zhang et al., 2025b), we do not rely on seed data or
262 observe evidence of data contamination in the polymath samples. The specialist samples are included in Appendix N.

263 We also breakdown the performance of N sampling (0-shot pass rate@64), polymath learning and comprehensive
264 learning by subjects in Figure 2, with the subjects ordered by their similarities to math. The similarity is measured by
265 computing the subject embedding distance between the mean of embeddings of all problems in each subject and the
266 mean of problems in MATH500. We employ Text-Embedding-3-Small (OpenAI, 2025b) with the dimension of 1024
267 to generate problem representations. The best performance of polymath learning and in-context learning of polymath
268 samples are displayed with triangles and stars respectively. We include our major findings as below

270 Table 3: The performance of employing different sample strategies on different subject domains. The best performance
 271 on each subject domain is bolded. Most natural polymath samples outperforms in-context learning and comprehensive
 272 learning with LIMR selection. Most synthetic specialist samples outperforms the corresponding natural sample, and
 273 the *Synthetic Prime* sample demonstrates the best performance. The dataset-wise results is included in Appendix C.

275 Polymath Subject	276 Math	277 Physics	278 Chemistry	279 Biology	280 Science	281 Engineering	282 Computer Science	283 Others	284 Avg
N=64 Sampling (0-shot)									
-	20.4	4.4	4.4	5.1	0.0	3.7	3.3	9.6	6.4
In-context Learning (1-shot)									
Natural Sample									
Geometry	24.5	8.0	7.2	24.4	4.3	6.0	29.0	11.6	14.4
Prealgebra	22.3	11.2	9.4	40.3	6.8	10.2	35.0	20.3	19.4
Algebra	21.4	10.9	9.8	38.7	8.3	10.4	35.0	20.6	19.4
Intermediate Algebra	22.7	8.0	7.0	21.8	4.5	9.5	32.0	15.5	15.1
Number Theory	21.7	10.9	8.7	31.9	5.4	6.6	28.0	15.8	16.1
Precalculus	21.6	8.3	5.9	20.2	5.2	6.8	26.0	11.9	13.2
Probability	22.4	9.7	7.2	24.4	5.6	7.7	22.0	13.2	14.0
Synthetic Sample									
Prime	18.6	4.6	4.6	8.4	2.2	4.6	11.0	7.7	7.7
Comprehensive Learning (> 1k shots)									
Natural Sample									
MATH	37.2	12.8	10.0	31.4	6.5	8.6	25.8	23.4	19.5
LIMR	38.0	11.6	11.8	48.3	10.0	13.4	35.1	31.5	25.0
Polymath Learning (1-shot) - Ours									
Natural Sample									
Geometry	15.5	9.9	10.0	55.1	11.2	16.7	37.1	35.0	23.8
Prealgebra	38.0	17.4	12.2	51.7	15.1	16.5	49.5	33.5	29.2
Algebra	37.3	17.4	13.7	51.7	12.1	15.6	43.3	30.9	27.7
Intermediate Algebra	36.3	19.1	13.1	50.0	13.9	17.5	42.3	31.1	27.9
Number Theory	37.7	16.9	12.4	49.2	13.4	17.8	42.3	32.2	27.7
Precalculus	38.0	18.4	13.7	50.0	16.0	19.7	43.3	31.0	28.8
Probability	38.8	19.9	11.5	46.6	14.7	16.4	41.2	31.4	27.6
Synthetic Sample									
Geometry	35.4	15.0	11.5	31.1	36.1	52.5	13.2	11.0	25.7
Algebra	37.3	16.9	12.6	31.5	41.2	52.5	18.6	13.9	28.1
Number Theory	38.4	18.2	12.0	32.1	36.1	47.5	18.6	13.8	27.1
Precalculus	37.1	20.3	15.3	32.9	44.3	48.3	20.8	16.5	29.4
Probability	37.1	16.7	13.9	30.1	46.4	50.0	19.7	10.8	28.1
Prime	38.3	20.6	15.7	54.2	15.6	20.8	48.5	32.4	30.8

311 **Strong mathematical but skewed reasoning of the base model** Due to the massive mathematical and coding data
 312 participated in pretraining (Qwen et al., 2025; Wu et al., 2025a), the Qwen2.5-7b-base model achieves pass rate@64 >
 313 0.5 in MATH500, higher than all other subjects with significant margins. However, the strength in MATH500 does not
 314 naturally extend to other subjects. For example, the base model performs poorly on physics, chemistry and biology,
 315 but demonstrates relative strength (pass rate@64 close to 0.2) in education, medicine, sociology and management,
 316 which does not possess similar proportion of quantitative components as math does.

317 **Comprehensive learning provides mathematical dominance, but not multidisciplinary** Comprehensive learning
 318 with MATH or LIMR sets demonstrate strong performance in MATH500, and remain competitive with the strongest
 319 polymath sample in other math subjects (math, minerva). However, their performance on most non-math subjects lags
 320 behind by a large margin from the best polymath results. Their reasoning strengths gained from math-specific training
 321 only generalizes to a limited number of subjects, like economics, health, psychology, education, and history where
 322 more than fourfold performance improvement over zero-shot sampling is observed. Nonetheless, quality-driven data
 323 selection stays beneficial in comprehensive learning, with LIMR consistently outperforming MATH in most subjects.

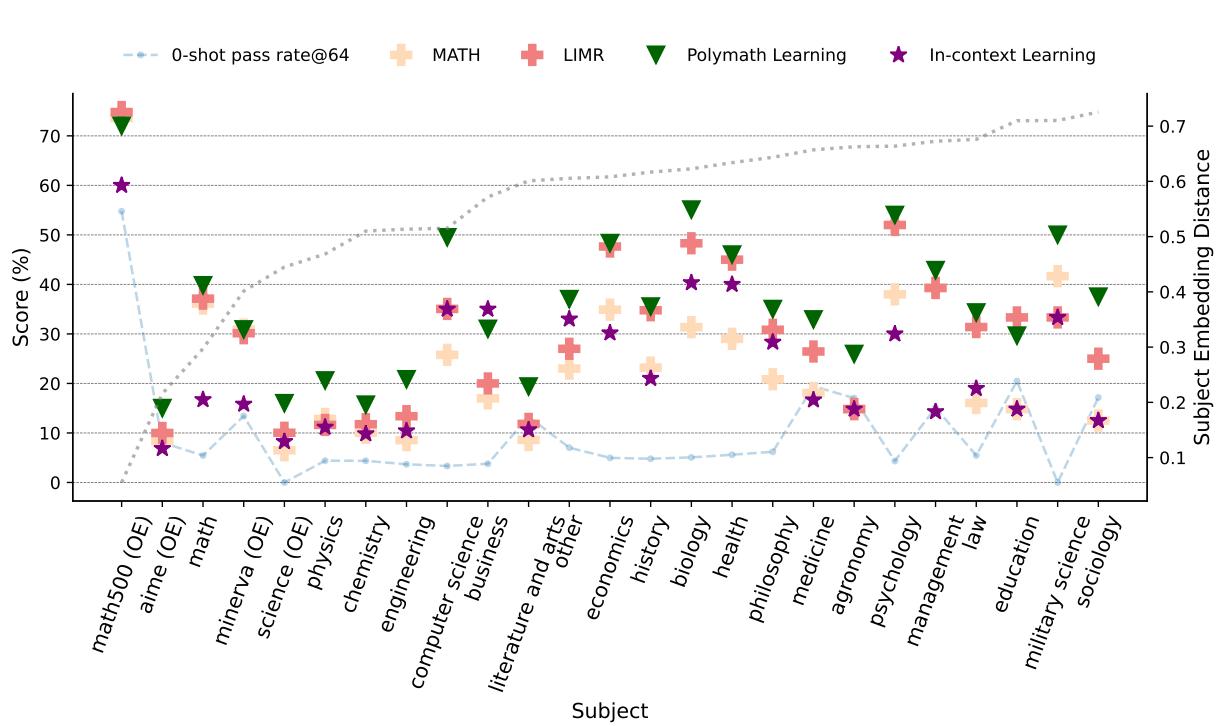


Figure 2: The subject-level performance of different learning strategies. *OE* stands for subjects with open-ended problems. The subjects are sorted by subject embedding distance to math (the grey dotted line), from low to high. The blue line represents pass ratio from 64 independent attempts of the base model. The stars and triangles represent best performance of in-context learning and polymath learning. Note that we only display the best polymath learning and in-context polymath learning results for demonstration.

The effectiveness of in-context learning of polymath samples The best in-context polymath learning sample outperforms 0-shot pass rate@64 baseline in most subjects, indicating the benefits of polymath sample even in the gradient-free learning setting. Specifically, we find that the polymath sample in prealgebra or algebra under in-context learning demonstrate on-par or superior performance compared to at least one of comprehensive learning results in more than 50% subjects, with details included in Appendix J.

Better generalization of polymath learning on math-distant subjects Even though the best polymath sample outperforms comprehensive learning in LIMR on subjects with heavy mathematical components like math and engineering. Its advantage is greater on subjects that are semantically distant from math. For example, around 10 points improvements in agronomy, literature and sociology. On average, polymath learning with the best natural samples achieves 14.5 points improvement on subjects with the 50% subjects farthest from MATH500 over comprehensive learning on the full MATH set, compared to 7.7 points on the 50% subjects that closest to MATH500, indicating that polymath learning confers stronger reasoning generalization on subjects that are semantically more math-distant.

6.2 CHARACTERISTICS OF OPTIMAL POLYMATHEMATIC SAMPLE

Data diversity is beneficial in training more capable reasoning LLMs (Zhang et al., 2025b), serving both regularization to the neural network (Ba et al., 2025) and a mean to mitigate performance saturation especially when leveraging synthetic data sources (Jung et al., 2025). In polymath learning, we extend beyond the diversity at the level of problem or trajectory (Yu et al., 2025a) and instead examine the composition of salient mathematical skills within individual polymath samples. The result in Figure 3 illustrates the key supporting role of algebra and precalculus skills in cross-domain reasoning. Polymath samples demonstrating stronger performance tend to exhibit high prevalence of these skills. Furthermore, synthetic specialist samples with multidisciplinary backgrounds span a broader range of skills than math-specialized samples of the same speciality, which accounts for their superior performance. Notably, the *Synthetic Prime* sample exhibits the highest concentration of salient skills, suggesting that solving such problems requires a complex interplay of knowledge and thus provides rich learning signals for training LLMs.

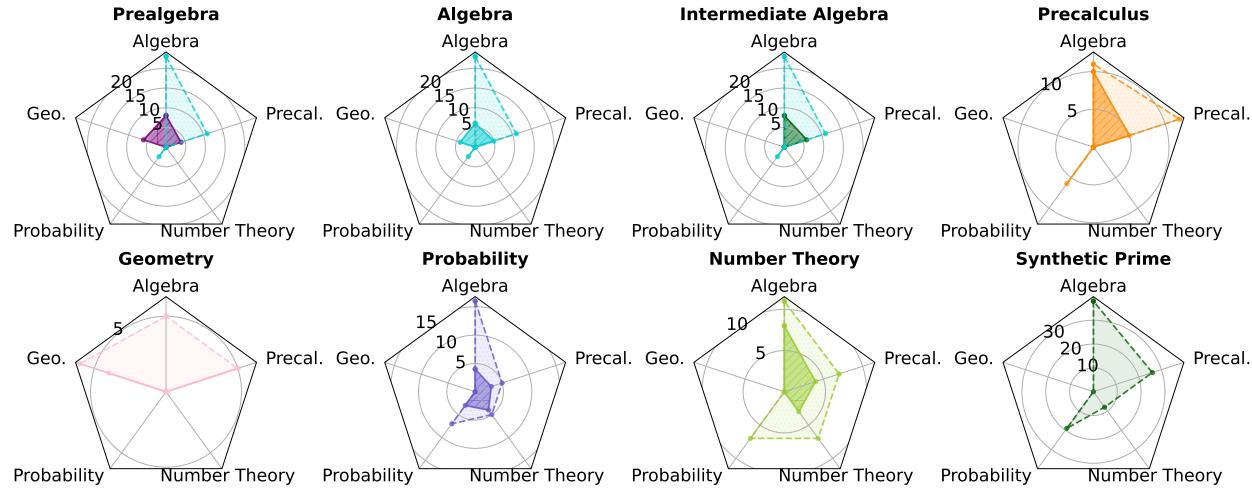


Figure 3: Skill spectrum between natural and synthetic polymath samples. The polygon represents number of salient skills identified in each math domain (*Geo.* and *Precal.* represents *Geometry* and *Precalculus* respectively). The real and dashed areas represent the natural and synthetic specialist samples. The last figure represents the *Synthetic Prime* sample, and the synthetic samples include more comprehensive salient skill sets than then natural polymath samples.

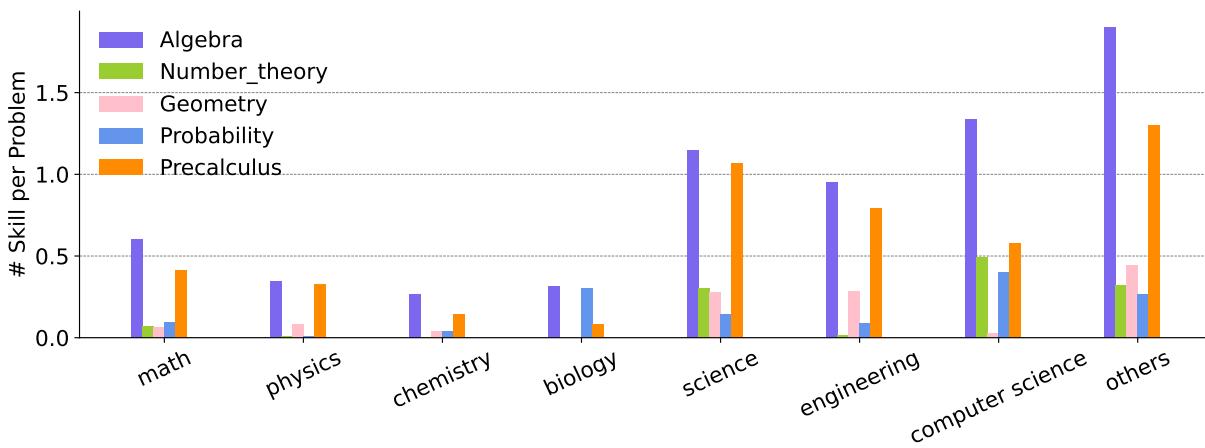


Figure 4: Average number of mathematical skills employed per problem in different subject domains. *Algebra* and *Precalculus* skills have the highest popularity in all subject domains.

The distribution of salient skills across subject domains further highlights the central roles of algebra and precalculus. Skill abundance also reflects the degree of domain specialization. For instance, in engineering, the most frequent algebraic and geometric skills are *unit conversion* and *trigonometry*. Figure 4 shows that algebra and precalculus consistently dominate in skill popularity, underscoring their foundational importance for quantitative reasoning (e.g., *unit conversion* and *arithmetic operations*). Moreover, domains with integrative knowledge skills, such as science and engineering, demand more comprehensive combinations of salient skills compared to discipline-focused domains such as math, physics, chemistry, or biology.

7 GENERALIZATION OF SELF-VERIFICATION

The verification mechanism act as a signal for models to reconsider and refine their initial solutions (DeepSeek-AI et al., 2025a). Verification feedback can further enhance decision-making (Madaan et al., 2023; Shinn et al., 2023). To analyze such behavior, several signature words have been proposed for monitoring self-verification patterns (Xie et al., 2025). Following this, we collect pattern statistics across polymath learning samples, adding the ‘code’ category to capture python-based program verification and excluding ‘reevaluate’ for its rare appearance. We find that polymath

learning in general demonstrates more frequent self-verification behavior than comprehensive learning. Moreover, the polymath sample in ‘number theory’ and ‘intermediate algebra’ exhibit strong tendencies in eliciting the self-checking (‘re-evaluate’) behavior and programming assistance (‘code’) respectively. Moreover, different polymath samples display distinct self-verification preferences depending on the subject domain, with details in Appendix M.

Similar to Shao et al. (2025), we observe frequent use of program verification in the polymath sample of ‘intermediate algebra’. However, the role of programs varies by domain: the programs in math are primarily used as part of the final answer generation process, including pseudo-execution errors like ‘Timed out’; in physics and chemistry, by contrast, the programs are employed more for result validation. Importantly, without the access of external executor, the integration of program does not necessarily yield reasoning gains. Illustrative examples are provided in Appendix L.

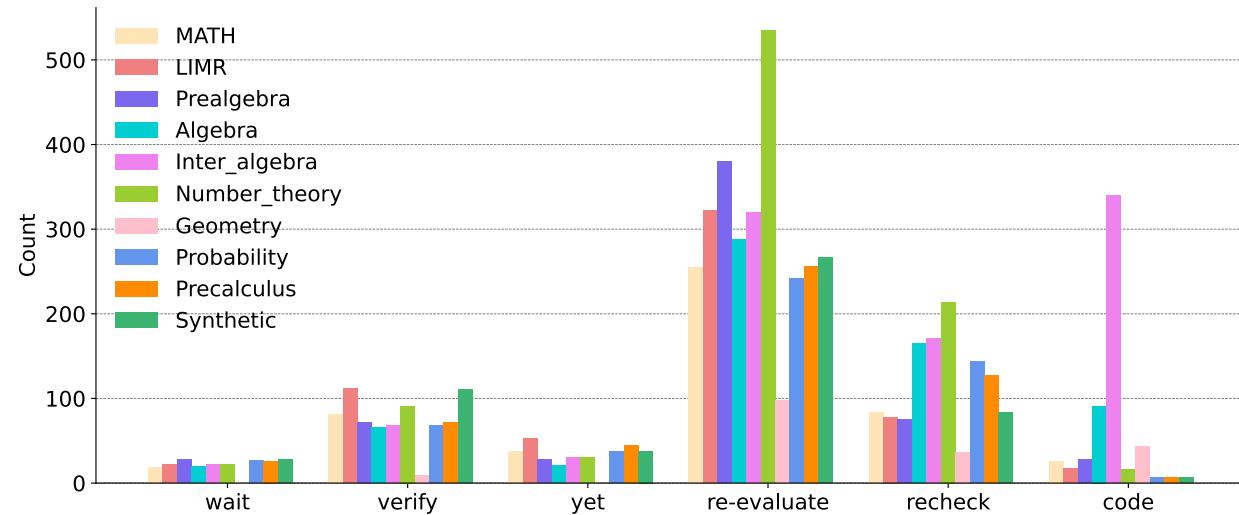


Figure 5: Self-verification patterns under different comprehensive and polymath samples across all subjects. Verification patterns like ‘re-evaluate’ and ‘recheck’ appear most frequently in polymath learning with the ‘number theory’ sample, and the ‘intermediate algebra’ sample elicits the most code blocks in reasoning.

8 LIMITATIONS AND FUTURE WORK

In polymath learning, we focus our study in the effectiveness of one single training sample in lifting interdisciplinary reasoning ability with reinforcement learning. Due to resource constraints, our study only covers a small set of samples without larger-scale experiments in 1-shot polymath learning. And the skill-based selection does not extend to scaled skill-based problem synthesis like Havrilla et al. (2025). Although we observe different verification pattern preferences by choosing polymath samples, we do not observe direct connection between the self-verification and the improvement in reasoning abilities. Besides, the polymath learning experiments are only conducted in open-ended format, while previous studies has demonstrated the benefits of incorporating diverse question-answer formats (Akter et al., 2025), especially for benchmarks that are in multiple-choice formats. Moreover, our study is limited in polymath samples from math and does not extend to other domains where reliable rewards are accessible.

9 CONCLUSION

While math reasoning ability has been considered the primary metric to mark the progress of the reasoning of LLMs, the broader multidisciplinary reasoning abilities remain relatively underexplored. Inspired by the success of boosting math reasoning ability using one single training sample, we introduce polymath learning and show that training LLMs with one selected math sample can rival or even surpass datasets by orders of magnitude in eliciting reasoning across diverse domains. Our findings show that polymath learning yields stronger cross-domain reasoning ability than learning with the comprehensive math dataset, and sample synthesis further elevates the performance. Crucially, we trace this multidisciplinary reasoning potency of polymath samples to the abundance of salient math skills, especially in algebra and precalculus, within the reasoning structures of problems. Moreover, the synthesized samples with comprehensive salient skills tend to confer greater multidisciplinary reasoning strength, highlighting the promise of careful sample engineering as an alternative to indiscriminate data scaling.

486 REFERENCES
487

488 Anum Afzal, Robin Chalumattu, Florian Matthes, and Laura Mascarell. AdaptEval: Evaluating large language
489 models on domain adaptation for text summarization. In Sachin Kumar, Vidhisha Balachandran, Chan Young Park,
490 Weijia Shi, Shirley Anugrah Hayati, Yulia Tsvetkov, Noah Smith, Hannaneh Hajishirzi, Dongyeop Kang, and
491 David Jurgens (eds.), *Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Cus-
492 tomizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)*, pp. 76–85, Miami, Florida,
493 USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.customnlp4u-1.8. URL
494 <https://aclanthology.org/2024.customnlp4u-1.8/>.

495 Syeda Nahida Akter, Shrimai Prabhumoye, Matvei Novikov, Seungju Han, Ying Lin, Evelina Bakhturina, Eric Nyberg,
496 Yejin Choi, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-crossthink: Scaling self-
497 learning beyond math reasoning, 2025. URL <https://arxiv.org/abs/2504.13941>.

498 Yang Ba, Michelle V. Mancenido, and Rong Pan. Data diversity as implicit regularization: How does diversity shape
499 the weight space of deep neural networks?, 2025. URL <https://arxiv.org/abs/2410.14602>.

500

501 Yue Chen, Chen Huang, Yang Deng, Wenqiang Lei, Dingnan Jin, Jia Liu, and Tat-Seng Chua. STYLE: Improving
502 domain transferability of asking clarification questions in large language model powered conversational agents. In
503 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics:
504 ACL 2024*, pp. 10633–10649, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
505 10.18653/v1/2024.findings-acl.632. URL <https://aclanthology.org/2024.findings-acl.632/>.

506 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement
507 learning from human preferences. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
508 wanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Asso-
509 ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf.

510

511 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry
512 Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math
513 word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

514

515 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
516 Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li,
517 Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi
518 Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
519 Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
520 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan,
521 Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin
522 Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
523 Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng
524 Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen,
525 R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu,
526 Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
527 T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L.
528 Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao
529 Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
530 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.
531 Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
532 Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou,
533 Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang
534 Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun
535 Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen
536 Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
537 Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning
538 capability in llms via reinforcement learning, 2025a. URL <https://arxiv.org/abs/2501.12948>.

539

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun
Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng

540 Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong
 541 Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao
 542 Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu,
 543 Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang,
 544 Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu,
 545 Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu,
 546 Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghai Lu, Shangyan Zhou, Shanhuan Chen, Shaoqing Wu, Shengfeng Ye,
 547 Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao
 548 Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun
 549 Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang,
 550 Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
 551 Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan
 552 Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu,
 553 Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan
 554 Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang
 555 Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong,
 556 Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren,
 557 Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin
 558 Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu,
 559 Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report,
 560 2025b. URL <https://arxiv.org/abs/2412.19437>.

561 Yuyang Ding, Xinyu Shi, Xiaobo Liang, Juntao Li, Zhaopeng Tu, Qiaoming Zhu, and Min Zhang. Unleashing llm
 562 reasoning capability via scalable question synthesis from scratch, 2025. URL <https://arxiv.org/abs/2410.18693>.

563 Google. Gemini-2.5-pro, 2025. URL <https://deepmind.google/models/gemini/pro/>.

564 Alex Havrilla, Edward Hughes, Mikayel Samvelyan, and Jacob Abernethy. Sparq: Synthetic problem generation for
 565 reasoning via quality-diversity algorithms, 2025. URL <https://arxiv.org/abs/2506.06499>.

566 Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen Liang,
 567 Wenxuan Wang, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Deepmath-103k: A
 568 large-scale, challenging, decontaminated, and verifiable mathematical dataset for advancing reasoning, 2025. URL
 569 <https://arxiv.org/abs/2504.11456>.

570 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In *Thirty-fifth Conference
 571 on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL <https://openreview.net/forum?id=7Bywt2mQsCe>.

572 Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with robustness to both
 573 prompt and reward models, 2025a. URL <https://arxiv.org/abs/2501.03262>.

574 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-reasoner-zero:
 575 An open source approach to scaling up reinforcement learning on the base model, 2025b. URL <https://arxiv.org/abs/2503.24290>.

576 Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Poovendran, Graham Neubig,
 577 and Xiang Yue. Does math reasoning improve general llm capabilities? understanding transferability of llm
 578 reasoning, 2025. URL <https://arxiv.org/abs/2507.00432>.

579 Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, Yelong Shen, Nan Duan, and Weizhu Chen. Key-point-driven
 580 data synthesis with its enhancement on mathematical reasoning. *Proceedings of the AAAI Conference on Artificial
 581 Intelligence*, 39(23):24176–24184, Apr. 2025. doi: 10.1609/aaai.v39i23.34593. URL <https://ojs.aaai.org/index.php/AAAI/article/view/34593>.

582 Yoichi Ishibashi, Taro Yano, and Masafumi Oyamada. Mining hidden thoughts from texts: Evaluating continual
 583 pretraining with synthetic data for llm reasoning, 2025. URL <https://arxiv.org/abs/2505.10182>.

584 Jaehun Jung, Seungju Han, Ximing Lu, Skyler Hallinan, David Acuna, Shrimai Prabhumoye, Mostafa Patwary, Mo-
 585 hammad Shoeybi, Bryan Catanzaro, and Yejin Choi. Prismatic synthesis: Gradient-based data diversification boosts
 586 generalization in llm reasoning, 2025. URL <https://arxiv.org/abs/2505.20161>.

594 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V.
 595 Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D. Hwang, Jiangjiang
 596 Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep
 597 Dasigi, and Hannaneh Hajishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL
 598 <https://arxiv.org/abs/2411.15124>.

599 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose
 600 Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant
 601 Misra. Solving quantitative reasoning problems with language models. In S. Koyejo, S. Mohamed, A. Agar-
 602 wal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp.
 603 3843–3857. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf.

604 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling, 2025a. URL <https://arxiv.org/abs/2502.11886>.

605 Yu Li, Zhuoshi Pan, Honglin Lin, Mengyuan Sun, Conghui He, and Lijun Wu. Can one domain help others? a data-
 606 centric study on multi-domain reasoning via reinforcement learning, 2025b. URL <https://arxiv.org/abs/2507.17512>.

607 Zhuo Li, Yuhao Du, Xiaoqi Jiao, Yiwen Guo, Yuege Feng, Xiang Wan, Anningzhe Gao, and Jinpeng Hu. Add-one-in:
 608 Incremental sample selection for large language models via a choice-based greedy paradigm, 2025c. URL
 609 <https://arxiv.org/abs/2503.02359>.

610 Xiao Liang, Zhong-Zhi Li, Yeyun Gong, Yang Wang, Hengyuan Zhang, Yelong Shen, Ying Nian Wu, and Weizhu
 611 Chen. Sws: Self-aware weakness-driven problem synthesis in reinforcement learning for llm reasoning, 2025. URL
 612 <https://arxiv.org/abs/2506.08989>.

613 Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for alignment? a comprehen-
 614 sive study of automatic data selection in instruction tuning. In *The Twelfth International Conference on Learning
 615 Representations*, 2024a. URL <https://openreview.net/forum?id=BTKAeLqLMw>.

616 Weize Liu, Yongchi Zhao, Yijia Luo, Mingyu Xu, Jiaheng Liu, Yanan Li, Xiguo Hu, Yuchi Xu, Wenbo Su, and
 617 Bo Zheng. Designer: Design-logic-guided multidisciplinary data synthesis for llm reasoning, 2025. URL <https://arxiv.org/abs/2508.12726>.

618 Zifan Liu, Amin Karbasi, and Theodoros Rekatsinas. Tsds: Data selection for task-specific model fine-
 619 tuning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang
 620 (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 10117–10147. Curran Asso-
 621 ciates, Inc., 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/13848b5893119ff772b69812c95914fa-Paper-Conference.pdf.

622 Jing Luo, Longze Chen, Run Luo, Liang Zhu, Chang Ao, Jiaming Li, Yukun Chen, Xin Cheng, Wen Yang, Jiayuan
 623 Su, Ahmadreza Argha, Hamid Alinejad-Rokny, Chengming Li, Shiwen Ni, and Min Yang. Personamath: Boost-
 624 ing mathematical reasoning via persona-driven data augmentation, 2025a. URL <https://arxiv.org/abs/2410.01504>.

625 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai, Jef-
 626 frey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
 627 o1-preview with a 1.5b model by scaling rl. <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca3>

628 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,
 629 Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean
 630 Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback. In *Thirty-
 631 seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=S37h0erQLB>.

632 OpenAI. Learning to reason with llms, september 2024, 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>.

648 OpenAI. Introducing openai o3 and o4-mini, 2025a. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.

649

650

651 OpenAI. Openai text-embedding-3-small, 2025b. URL <https://platform.openai.com/docs/models/text-embedding-3-small>.

652

653 OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaressi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish, Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai o1 system card, 2024. URL <https://arxiv.org/abs/2412.16720>.

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 27730–27744. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

688

689

690

691

692

693

694 Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero. <https://github.com/Jiayi-Pan/TinyZero>, 2025. Accessed: 2025-01-24.

695

696

697

698

699

700

701

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector Liu, Yuanzhi Li, et al. O1 replication journey: A strategic progress report–part 1. *arXiv preprint arXiv:2410.18982*, 2024.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu,

702 Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su,
 703 Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 704 URL <https://arxiv.org/abs/2412.15115>.

705 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael,
 706 and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark. In *First Conference on Language
 707 Modeling*, 2024. URL <https://openreview.net/forum?id=Ti67584b98>.

708 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
 709 algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

710 Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RL
 711 on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. In A. Globerson,
 712 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances
 713 in Neural Information Processing Systems*, volume 37, pp. 43000–43031. Curran Associates, Inc.,
 714 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/4b77d5b896c321a29277524a98a50215-Paper-Conference.pdf.

715 Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du, Nathan Lambert,
 716 Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei Koh, and Luke Zettlemoyer. Spurious
 717 rewards: Rethinking training signals in rlvr, 2025. URL <https://arxiv.org/abs/2506.10947>.

718 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu, and Daya
 719 Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint
 720 arXiv:2402.03300*, 2024.

721 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion: language
 722 agents with verbal reinforcement learning. In *Thirty-seventh Conference on Neural Information Processing Systems*,
 723 2023. URL <https://openreview.net/forum?id=vAE1hFcKW6>.

724 Safal Shrestha, Minwu Kim, Aadim Nepal, Anubhav Shrestha, and Keith Ross. Warm up before you train: Unlocking
 725 general reasoning in resource-constrained settings, 2025. URL <https://arxiv.org/abs/2505.13718>.

726 Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J Liu, James
 727 Harrison, Jaehoon Lee, Kelvin Xu, Aaron T Parisi, Abhishek Kumar, Alexander A Alemi, Alex Rizkowsky, Azade
 728 Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Fathy Elsayed, Hanie Sedghi, Igor Mordatch, Isabelle Simpson,
 729 Izzeddin Gur, Jasper Snoek, Jeffrey Pennington, Jiri Hron, Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan,
 730 Laura A Culp, Lechao Xiao, Maxwell Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin,
 731 Yamini Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond human data:
 732 Scaling self-training for problem-solving with language models. *Transactions on Machine Learning Research*,
 733 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=1NAyUngGFK>. Expert Certification.

734 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang
 735 Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming Yuan, Enzhe Lu, Fengxiang Tang,
 736 Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang,
 737 Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan,
 738 Jia Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu,
 739 Lidong Shi, Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei
 740 Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong, Weiran He,
 741 Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingze Wu, Xinran Xu, Xinxing Zu,
 742 Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu,
 743 Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang,
 744 Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and
 745 Zonghan Yang. Kimi k1.5: Scaling reinforcement learning with llms, 2025a. URL <https://arxiv.org/abs/2501.12599>.

746 M-A-P Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, Kang Zhu, Minghao Liu, Yiming
 747 Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixing Deng, Shuyue Guo, Shian Jia, Sichao Jiang, Yiyuan Liao,
 748 Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, Dehua Ma, Yuansheng Ni, Haoran Que, Qiya Wang, Zhoufutu
 749 Wen, Siwei Wu, Tianshun Xing, Ming Xu, Zhenzhu Yang, Zekun Moore Wang, Junting Zhou, Yuelin Bai, Xingyuan
 750 Bu, Chenglin Cai, Liang Chen, Yifan Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun
 751 Huang, Yaoru Li, Yizhe Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Zhongyuan

756 Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Yizhou Tan, Zili Wang, Chenqing Wang, Hao Wang, Yiya Wang,
 757 Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin Yuan, Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jingyang Zhang,
 758 Xiyue Zhang, Xingjian Zhang, Yue Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun
 759 Li, Dayiheng Liu, Qian Liu, Tianyu Liu, Shiwen Ni, Junran Peng, Yujia Qin, Wenbo Su, Guoyin Wang, Shi Wang,
 760 Jian Yang, Min Yang, Meng Cao, Xiang Yue, Zhaoxiang Zhang, Wangchunshu Zhou, Jiaheng Liu, Qunshu Lin,
 761 Wenhao Huang, and Ge Zhang. Supergpqa: Scaling llm evaluation across 285 graduate disciplines, 2025b. URL
 762 <https://arxiv.org/abs/2502.14739>.

763 Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
 764 Openmathinstruct-2: Accelerating AI for math with massive open-source instruction data. In *The Thirteenth Interna-*
 765 *tional Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=mTCbq2QssD>.

766 Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R. Loomba, Shichang
 767 Zhang, Yizhou Sun, and Wei Wang. SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of
 768 Large Language Models. In *Proceedings of the Forty-First International Conference on Machine Learning*, 2024a.

769 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai He, Kuan Wang,
 770 Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong Shen. Reinforcement learning for
 771 reasoning in large language models with one training example. *arXiv preprint arXiv:2504.20571*, 2025a.

772 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Ha-
 773 jishirzi. Self-instruct: Aligning language models with self-generated instructions. In Anna Rogers, Jordan Boyd-
 774 Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational
 775 Linguistics (Volume 1: Long Papers)*, pp. 13484–13508, Toronto, Canada, July 2023. Association for Computational
 776 Linguistics. doi: 10.18653/v1/2023.acl-long.754. URL [https://aclanthology.org/2023.acl-long.754/](https://aclanthology.org/2023.acl-long.754).

777 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran Arulraj,
 778 Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue, and Wenhui Chen.
 779 MMLU-pro: A more robust and challenging multi-task language understanding benchmark. In *The Thirty-eight
 780 Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024b. URL <https://openreview.net/forum?id=y10DM6R2r3>.

781 Yubo Wang, Ping Nie, Kai Zou, Lijun Wu, and Wenhui Chen. Unleashing the reasoning potential of pre-trained llms
 782 by critique fine-tuning on one problem. *arXiv preprint arXiv:2506.03295*, 2025b.

783 Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao. Large
 784 language models are better reasoners with self-verification. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
 785 *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 2550–2575, Singapore, December
 786 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.167. URL <https://aclanthology.org/2023.findings-emnlp.167/>.

787 Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao Zhou, Huijie Lv,
 788 Ming Zhang, Yanwei Fu, Qin Liu, Songyang Zhang, and Qi Zhang. Reasoning or memorization? unreliable results
 789 of reinforcement learning due to data contamination, 2025a. URL <https://arxiv.org/abs/2507.10532>.

790 Zijian Wu, Jinjie Ni, Xiangyan Liu, Zichen Liu, Hang Yan, and Michael Qizhe Shieh. Synthrl: Scaling visual reasoning
 791 with verifiable data synthesis, 2025b. URL <https://arxiv.org/abs/2506.02096>.

792 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting influential
 793 data for targeted instruction tuning, 2024. URL <https://arxiv.org/abs/2402.04333>.

794 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language models via importance
 795 resampling, 2023. URL <https://arxiv.org/abs/2302.03169>.

796 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhirong Wu, and
 797 Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement learning, 2025. URL <https://arxiv.org/abs/2502.14768>.

798 Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-sampling rollouts in llm
 799 reinforcement learning, 2025. URL <https://arxiv.org/abs/2504.13818>.

810 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jin
 811 gren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and Zhenru
 812 Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement, 2024a. URL
 813 <https://arxiv.org/abs/2409.12122>.

814

815 Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu, Pheng-Ann Heng, and Wai Lam. Unveiling the generalization
 816 power of fine-tuned large language models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings*
 817 *of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human*
 818 *Language Technologies (Volume 1: Long Papers)*, pp. 884–899, Mexico City, Mexico, June 2024b. Association
 819 for Computational Linguistics. doi: 10.18653/v1/2024.nacl-long.51. URL <https://aclanthology.org/2024.nacl-long.51/>.

820

821 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for reasoning, 2025.
 822 URL <https://arxiv.org/abs/2502.03387>.

823

824 Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Training LLMs for divergent
 825 reasoning with minimal examples. In *Forty-second International Conference on Machine Learning*, 2025a. URL
 826 <https://openreview.net/forum?id=qyMxunrR2j>.

827

828 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan, Gaohong
 829 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan
 830 Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song,
 831 Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and
 832 Mingxuan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025b. URL <https://arxiv.org/abs/2503.14476>.

833

834 Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and Jingren
 835 Zhou. Scaling relationship on learning mathematical reasoning with large language models, 2024. URL <https://openreview.net/forum?id=cij00f8u35>.

836

837 Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model and 8k exam-
 838 ples: Emerging reasoning with reinforcement learning is both effective and efficient. <https://hkust-nlp.notion.site/simplerl-reason>, 2025. Notion Blog.

839

840

841 Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie Wang, Yinghan
 842 Cui, Chao Wang, Junyi Peng, Shimiao Jiang, Shiqi Kuang, Shouyu Yin, Chaohang Wen, Haotian Zhang, Bin Chen,
 843 and Bing Yu. Srpo: A cross-domain implementation of large-scale reinforcement learning on llm, 2025a. URL
 844 <https://arxiv.org/abs/2504.14286>.

845

846

847 Xuemiao Zhang, Chengying Tu, Can Ren, Rongxiang Weng, Hongfei Yan, Jingang Wang, and Xunliang Cai. Large-
 848 scale diverse synthesis for mid-training, 2025b. URL <https://arxiv.org/abs/2508.01326>.

849

850 Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi Wang, Qingyun Wu,
 851 Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data, 2025a. URL <https://arxiv.org/abs/2505.03335>.

852

853 Xueliang Zhao, Wei Wu, Jian Guan, and Lingpeng Kong. PromptCoT: Synthesizing olympiad-level problems for
 854 mathematical reasoning in large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
 855 hammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 18167–
 856 18188, Vienna, Austria, July 2025b. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi:
 857 10.18653/v1/2025.findings-acl.935. URL <https://aclanthology.org/2025.findings-acl.935/>.

858

859 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
 860 Ping Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. Lima:
 861 Less is more for alignment. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
 862 (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 55006–55021. Curran Asso-
 863 ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf.

864 **A CONFIGURATIONS**
865

866 We employ a learning rate of 1e-6 during training. And the maximum generation length is 2048. The configuration to
867 collect zero-shot sampling for base model is listed in Table 4. The prompt used is displayed in Table 5, and the prompt
868 to synthesize polymath samples is shown in Table 6. Around 500 candidate problems are synthesized on the candidate
869 problem generation stage. The prompt employed for math skill identification is displayed in Table 7.
870

HYPERPARAMETER	VALUE
temperature	0.5
top k	10
top p	0.8

871 Table 4: Hyperparameters for computing 0-shot pass rate@k of the base model.
872873 **Prompt for Training**

874 A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks
875 about the reasoning process in the mind and then provides the user with the answer. User: You must put your answer inside
876 $\boxed{\text{}}$ and Your final answer will be extracted automatically by the $\boxed{\text{}}$ tag. For multiple choice questions,
877 the final answer in $\boxed{\text{}}$ should be the option letter (A, B, C, D, etc.).
878 [PROBLEM]
879 Assistant:

880 Table 5: Training Prompt, where [PROBLEM] is the placeholder for the problem.
881882 **Prompt for Synthesizing Polymath Sample**

883 You are a professor proficient in physics, chemistry, and biology, tasked with creating a highly integrated problem for
884 students that encompasses knowledge from all three disciplines. This problem should be a fill-in-the-blank question, and
885 the final answer must be a precise integer (a positive integer between 1-1000). The difficulty of this question should be at
886 the high school to university level. Furthermore, it should not involve any estimation, and complex calculations should be
887 avoided as much as possible to ensure the robustness of the evaluation.

888 Table 6: Prompt for synthesizing polymath sample.
889890 **Prompt for Skill Identification**

891 Here is a reasoning problem, and your job is to identify the concepts and skills in the scope of [CATEGORY] that are
892 related to solve the problem.
893 Please separate the concepts or skills with ;, and if there is no skills or concepts identified, please answer with None. Please
894 put your answer within `<answer></answer>`.
895 For example: compute derivatives is the skill in precalculus.
896 Question:
897 [QUESTION]

898 Table 7: Prompt for skill identification. The [CATEGORY] and [QUESTION] are the placeholder for math category
899 (e.g. algebra) and problem respectively.
900911 **B FULL SUBJECT LIST**
912

913 The full list of reasoning subjects being evaluated is displayed in Table 8.
914

918 **C RESULTS BY DATASETS**

919
 920 Table 9 includes results by datasets on polymath learning and comprehensive learning, with the synthetic sample still
 921 performing the strongest.
 922

SUBJECT DOMAIN	SUBJECT	SOURCE	# SAMPLES
Math	AIME	AIME2024, AIME2025	60
	MATH500	MATH	500
	Minerva	MinervaMath	272
	math	Scibench, MMLU-Pro	299
Physics	physics	GPQA-Diamond, Scibench, MMLU-Pro	413
Chemistry	chemistry	GPQA-Diamond, Scibench, MMLU-Pro	459
Biology	biology	GPQA-Diamond, Scibench, MMLU-Pro	118
Science	science	SuperGPQA	557
Engineering	engineering	SuperGPQA	447
Computer Science	computer science	MMLU-Pro	100
Others	military science	SuperGPQA	12
	business	MMLU-Pro	100
	philosophy	MMLU-Pro, SuperGPQA	120
	economics	MMLU-Pro, SuperGPQA	149
	management	SuperGPQA	28
	health	MMLU-Pro	100
	psychology	MMLU-Pro	100
	medicine	SuperGPQA	155
	education	SuperGPQA	27
	agronomy	SuperGPQA	27
	literature and arts	SuperGPQA	93
	law	MMLU-Pro, SuperGPQA	137
	history	MMLU-Pro, SuperGPQA	138
	sociology	SuperGPQA	8
	other	MMLU-Pro	100

948 Table 8: Evaluation reasoning benchmarks with subjects included.
 949
 950
 951
 952953 **D LIMR SCORE BASICS**

954
 955 The LIMR score Li et al. (2025a) is computed by measuring the sample-wise training reward with the dataset-wise
 956 average. Specifically,
 957

$$s_i = 1 - \frac{\sum_{i=1}^K (r_i^k - \bar{r}^k)^2}{\sum_{i=1}^K (1 - \bar{r}^k)^2}, \quad \bar{r}^k = \frac{1}{N} \sum_{i=1}^N r_i^k$$

958
 959 where r_i^k is the reward of sample i in the k -th epoch, and \bar{r}^k is the average reward of training set in the k -th epoch.
 960
 961

962 **E SAMPLE PREFERENCE WITH LIMR SCORES**

963
 964 We include the results from selecting different LIMR scores from two math categories, *prealgebra* and *probability*,
 965 that demonstrate strong multidisciplinary reasoning ability. The results in Figure 6 show that the samples with LIMR
 966 score equals 0.6 perform best.
 967

972 Table 9: Results on different reasoning benchmarks, where *OE* refers to benchmarks of open-ended problems:
973 MATH500, AIME2024, AIME2025, Minerva and Scibench, while *MCQ* refers to benchmarks of multiplechoice
974 problems. The best performance is bolded and the best polymath learning performance is underlined if not optimal.

Polymath Subject	MATH500	AIME2024	AIME2025	Minerva	GPQA-Diamond N=64 Sampling (0 shot)	SuperGPQA	MMLU-Pro	SciBench	AVG-OE	AVG-MCQ	AVG-All
-	54.8	9.0	7.1	13.4	13.1	15.7	4.7	9.8	23.6	11.3	15.9
In-context Learning (1 shot)											
Natural Sample											
Geometry	60.0	8.2	4.7	15.4	9.6	4.5	20.5	6.8	19.0	11.5	16.2
Prealgebra	55.0	9.2	4.5	10.7	16.2	9.2	28.8	6.4	17.2	18.1	17.5
Algebra	48.0	8.2	3.1	15.8	14.6	10.7	25.6	6.7	16.4	17.0	16.6
Intermediate Algebra	59.6	5.1	4.5	12.1	14.1	7.3	20.5	5.7	17.4	14.0	16.1
Number Theory	52.8	8.5	3.9	11.8	16.7	6.3	23.4	5.9	16.6	15.5	16.2
Precalculus	51.8	6.7	3.9	15.8	13.1	4.9	19.0	5.2	16.7	12.3	15.0
Probability	54.2	7.3	4.0	13.6	11.1	6.3	19.7	5.8	17.0	12.4	15.2
Synthetic Sample											
Synthetic	44.2	4.8	2.4	15.1	5.6	2.8	10.6	3.8	14.1	6.3	11.2
Comprehensive Learning (> 1k shots)											
Natural Sample											
MATH (8k)	73.6	13.0	7.9	30.9	11.7	10.3	22.5	23.1	29.7	14.8	24.1
LIMR (1k)	74.8	12.6	8.9	30.1	13.2	15.8	31.5	22.7	29.8	20.2	26.2
Polymath Learning (1 shot)											
Natural Sample											
Geometry	26.6	0.0	0.0	19.9	23.9	18.5	33.1	7.9	10.9	25.2	16.2
Prealgebra	71.2	13.3	13.3	30.9	18.3	19.4	35.0	21.4	30.0	24.2	27.9
Algebra	72.0	6.7	0.0	30.9	16.2	17.3	34.9	22.8	26.5	22.8	25.1
Intermediate Algebra	71.2	13.3	0.0	28.7	20.3	18.9	34.5	22.0	27.0	24.6	26.1
Number Theory	69.6	16.7	10.0	30.9	17.8	18.2	35.0	22.3	29.9	23.7	27.6
Precalculus	71.6	10.0	10.0	30.5	18.8	20.9	34.1	22.4	28.9	24.6	27.3
Probability	71.6	13.3	16.7	29.8	14.2	18.9	34.9	22.7	30.8	22.7	27.8
Synthetic Sample											
Geometry	71.4	10.2	6.7	27.2	15.7	16.9	30.7	21.4	27.4	21.1	25.0
Algebra	71.6	10.2	6.7	30.9	20.3	19.3	33.6	21.8	28.2	24.4	26.8
Number Theory	73.8	11.7	7.1	29.8	14.2	19.3	34.6	23.1	29.1	22.7	26.7
Precalculus	71.8	11.4	7.7	29.4	19.8	21.5	35.8	22.8	28.6	25.7	27.5
Probability	71.8	11.6	7.2	28.3	16.8	17.5	36.4	22.1	28.2	23.6	26.5
Prime	71.4	10.1	7.2	30.9	21.3	20.5	38.4	22.3	28.4	26.7	27.8

Skill Identification Sample - Science

[Question] A particle of mass 1 kg is moving in the $x - y$ plane and its potential energy U in joule obeys the law $U = 6x + 8y$, where (x, y) are the coordinates of the particle in meter. If the particle starts from rest at $(9,3)$ at time $t = 0$, then

(A): The speed of the particle when it crosses the y axis is $5\sqrt{3}m/s$
 (B): The speed of the particle when it crosses y axes is $7\sqrt{3}m/s$
 (C): Magnitude of acceleration of particle is $10m/s^2$
 (D): The speed of the particle when it crosses y axes is $11\sqrt{3}m/s$
 (E): Acceleration of particle is zero
 (F): The speed of the particle when it crosses y axes is $8\sqrt{3}m/s$
 (G): The speed of the particle when it crosses y axes is $9\sqrt{3}m/s$
 (H): The speed of the particle when it crosses y axes is $12\sqrt{3}m/s$
 (I): The speed of the particle when it crosses y axes is $10\sqrt{3}m/s$

[Skills in Algebra]

Interpreting physical laws in mathematical form
 Understanding the relationship between potential energy and force
 Using the gradient to find force components
 Applying the work-energy theorem
 Solving for velocity using energy conservation
 Understanding the relationship between force and acceleration
 Solving for acceleration using newton's second law
 Analyzing motion in two dimensions
 Solving for the time when a particle crosses a specific axis
 Evaluating expressions involving square roots

Table 10: Skills identified from a sample science problem. Salient skills in other math categories are not identified.

F ROBUSTNESS OF THE RESULTS

We include the results of comprehensive learning in MATH dataset and polymath learning in the synthetic prime sample with 3 independent runs on Qwen2.5-7b-base. The results in Table 11 shows that the comprehensive learning

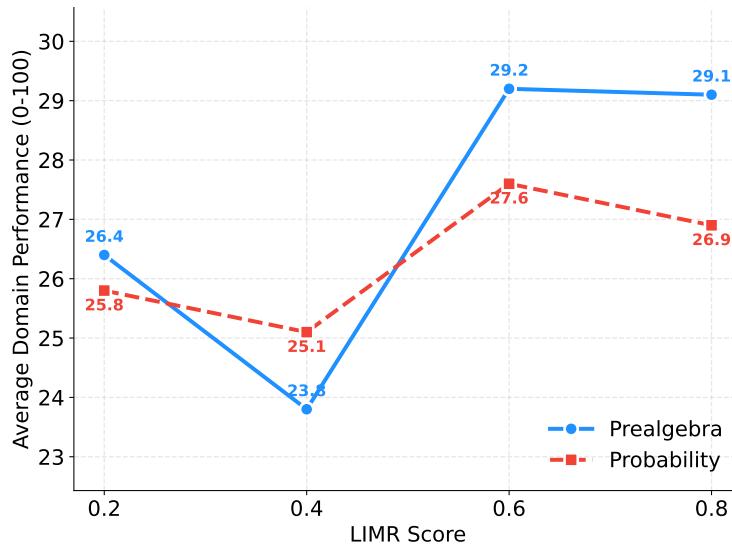


Figure 6: Average domain performance over samples of different LIMR scores. The performance is reported the same way as in Table 3. The samples with LIMR score being 0.6 outperform others.

on 8k MATH samples demonstrate stronger reasoning in math benchmarks, but the synthetic prime sample outperforms the 8k MATH training set in most other benchmarks as well as the average performance.

Table 11: The results of comprehensive learning on MATH and polymath learning on synthetic prime sample with 3 independent runs in Qwen2.5-7b-base. Polymath learning with the synthetic prime sample outperforms on most benchmarks as well as the overall performance.

Polymath Subject	MATH500	AIME2024	AIME2025	Minerva	GPOA-Diamond	SuperGPQA	MMLU-Pro	SciBench	AVG-OE	AVG-MCQ	AVG-All
Comprehensive Learning (> 1k shots)											
MATH (8k)	73.0 ±0.59	15.6 ±4.16	6.7±0.0	29.5±1.24	11.9±0.24	11.6±1.75	25.0±2.94	23.5 ±0.37	29.7 ±0.73	16.2±1.53	24.6±0.72
Prime	71.7±0.34	12.2±1.56	10.0 ±4.71	31.0 ±1.07	20.3 ±0.71	20.8 ±0.31	38.1 ±0.69	21.9±0.33	29.4 ±1.03	26.4 ±0.29	28.2 ±0.62

G PERFORMANCE ON MMLU-PRO AND SUPERGPQA

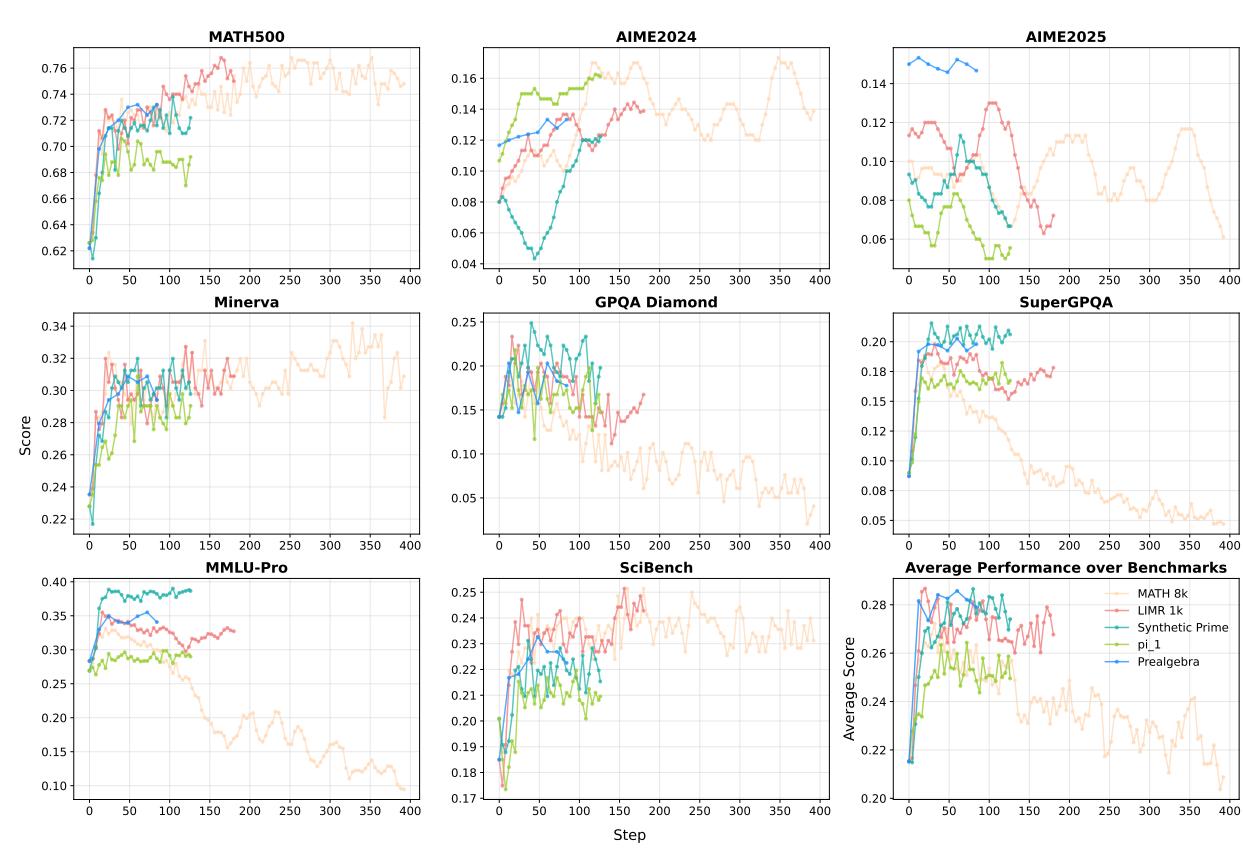
The results on the full set of MMLU-Pro and SuperGPQA of comprehensive learning in 8k MATH samples and polymath learning in the synthetic prime sample trained with Qwen2.5-7b-base and greedy decoding are included in Table 12. Polymath learning in the synthetic prime sample significantly outperforms both 0-shot and comprehensive learning in 8k MATH samples.

Table 12: Performance of comprehensive learning in the 8k MATH samples and polymath learning in the synthetic prime sample on the full set of MMLU-Pro and SuperGPQA, the synthetic prime sample performs best.

Data	MMLU-Pro	SuperGPQA
0-shot	30.3	16.8
MATH (8k)	31.7	16.6
Prime	37.6	21.7

1080 H TRAINING DYNAMICS OF POLYMATH LEARNING

1081
 1082 Figure 7 illustrates the training dynamics of comprehensive learning and polymath learning across natural and synthetic samples. We specifically prolong the training on the 8k MATH training set to better observe convergence. We
 1083 observe that comprehensive learning, on either the 8k MATH training set or the LIMR subset, yields progressive
 1084 improvement on MATH500, but exhibits pronounced overfitting on multidisciplinary benchmarks such as GPQA Diamond,
 1085 SuperGPQA, and MMLU-Pro. And training with the MATH set exacerbates this effect. Polymath learning, on
 1086 the other hand, demonstrates substantially greater robustness on multidisciplinary reasoning benchmarks. Moreover,
 1087 both the synthetic prime sample and natural polymath sample in prealgebra deliver stronger multidisciplinary reasoning
 1088 performance than the π_1 employed in prior works (Wang et al., 2025a;b), which is selected from a dataset more
 1089 challenging than MATH.
 1090



1118 Figure 7: The evaluation results of benchmarks between comprehensive learning and different polymath learning
 1119 samples (synthetic prime sample, natural prealgebra sample, π_1) trained in Qwen2.5-7b-base. The results are collected
 1120 in greedy decoding and rolling average is applied to AIME2024, AIME2025 for demonstration purpose.
 1121

1125 I POLYMATH LEARNING WITH OTHER 1-SHOT SAMPLE

1126
 1127 Previous success in reinforcement learning with one example (Wang et al., 2025a;b) selects π_1 from DeepScaleR (Luo
 1128 et al., 2025b) (see Table 14), a curated dataset of challenging mathematical competition problems. Results in Table 13
 1129 demonstrate the effectiveness of synthetic prime sample over both π_1 and comprehensive learning with 8k MATH
 1130 samples in both Qwen2.5-7b-base and Qwen2.5-14b-base.
 1131

1132 J REASONING BREAKDOWN BY SUBJECT

1133 Figure 8 illustrates the best polymath sample for different subjects.

1134
 1135 Table 13: The results between comprehensive learning on 8k MATH samples and polymath learning on the synthetic
 1136 prime sample and π_1 in Qwen2.5-7b-base and Qwen2.5-14b-base. The synthetic prime sample consistently outper-
 1137 forms the other two data choices across models.

Data	Math	Physics	Chemistry	Biology	Science	Engineering	Computer Science	Others	Avg
Qwen2.5-7b-base									
N=64 Sampling (0-shot)									
-	20.4	4.4	4.4	5.1	0.0	3.7	3.3	9.6	6.4
Comprehensive Learning (> 1k shots)									
MATH	37.2	12.8	10.0	31.4	6.5	8.6	25.8	23.4	19.5
Polymath Learning (1-shot)									
π_1 (DeepScaleR)	35.5	14.3	11.3	28.4	35.1	44.1	13.8	10.4	24.1
Prime	38.3	20.6	15.7	54.2	15.6	20.8	48.5	32.4	30.8
Qwen2.5-14b-base									
N=64 Sampling (0-shot)									
-	37.7	26.2	22.2	28.1	41.2	39.0	20.8	14.3	28.7
Comprehensive Learning (> 1k shots)									
MATH	42.7	26.4	20.5	44.7	49.5	64.4	22.3	15.6	35.8
Polymath Learning (1-shot)									
π_1 (DeepScaleR)	40.4	27.6	20.0	39.4	51.5	57.6	22.1	17.1	34.5
Prime	44.0	32.7	22.7	42.3	56.7	58.5	31.0	20.6	38.6

1153 The π_1 Sample

1154
 1155 [Question] The pressure P exerted by wind on a sail varies jointly as the area A of the sail and the cube of the wind's
 1156 velocity V . When the velocity is 8 miles per hour, the pressure on a sail of 2 square feet is 4 pounds. Find the wind velocity
 1157 when the pressure on 4 square feet of sail is 32 pounds.

1158 [Answer] 12.8

1160
 1161 Table 14: The π_1 sample.

1162 K EXAMPLE OF SALIENT MATH SKILL IN THE REASONING PROBLEM

1163 A sample science problem and relevant algebra skills to solve is displayed in Table 10.

1164 L SELF-VERIFICATION EXAMPLES

1165 Table 15, Table 16 and Table 17 include examples in math, physics, and chemistry problems where program verifica-
 1166 tion emerges in polymath learning with the polymath sample in 'intermediate algebra'.

1167 M SELF-VERIFICATION BY SUBJECT DOMAINS

1168 We list the self-verification statistics by different subject domains in Figure 9 and Figure 10. Specifically, we found that
 1169 'verify' is more preferred in math problems while 're-evaluate' is appeared more frequently in science and engineering
 1170 problems. Besides, polymath learning with the 'intermediate algebra' sample elicits the most coding verification
 1171 among all the polymath and comprehensive samples.

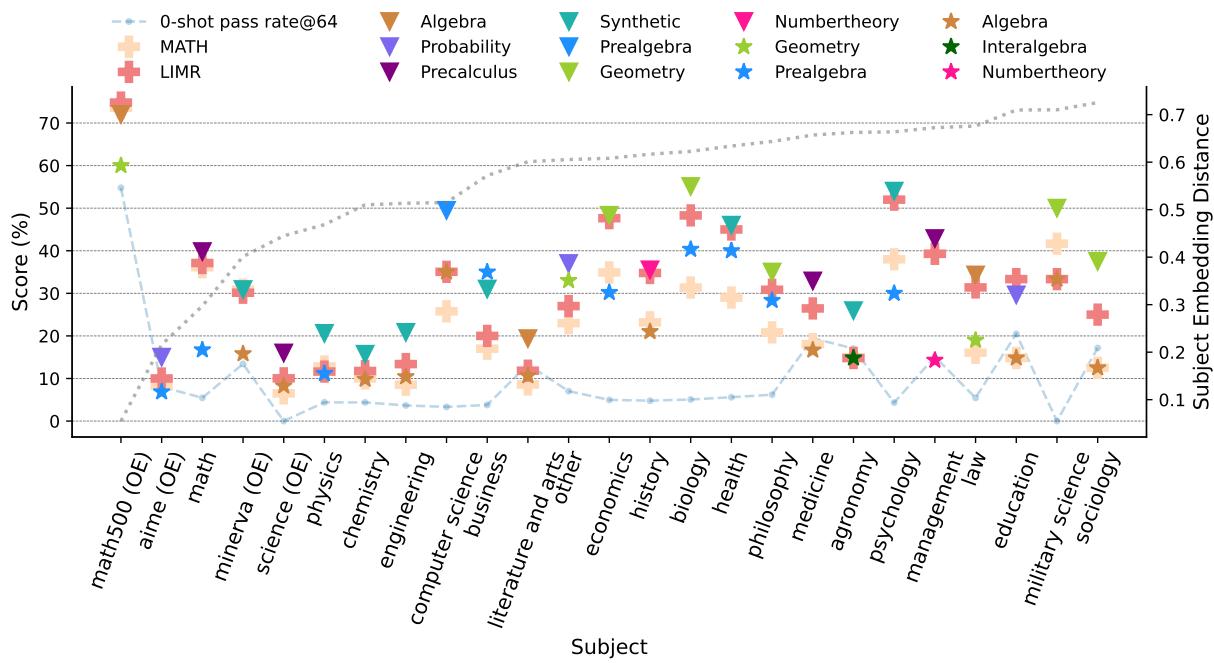


Figure 8: The subject-level performance of different learning strategies. *OE* stands for subjects with open-ended problems. The subjects are sorted by subject embedding distance to math (the grey dotted line), from low to high. The blue line represents pass ratio from 64 independent attempts of the base model. The stars and triangles represent best performance of in-context learning and polymath learning. Note that we only display the best polymath learning and in-context polymath learning results for demonstration, and *Synthetic* represents the *Synthetic Prime* sample.

1242
1243
1244

Self Verification - Math

1245 [Question] The intensity of light with wavelength λ traveling through a diffraction grating with N slits at an angle θ is
1246 given by $I(\theta) = N^2 \sin^2 k / k^2$, where $k = (\pi N d \sin \theta) / \lambda$ and d is the distance between adjacent slits. A helium-neon
1247 laser with wavelength $\lambda = 632.8 \times 10^{-9}$ m is emitting a narrow band of light, given by $-10^{-6} < \theta < 10^{-6}$, through
1248 a grating with 10,000 slits spaced 10^{-4} m apart. Use the Midpoint Rule with $n = 10$ to estimate the total light intensity
1249 $\int_{-10^{-6}}^{10^{-6}} I(\theta) d\theta$ emerging from the grating.

1250 [Answer] 59.4

1251
1252

[Intermediate Algebra] To solve this problem, we follow these steps:

1. Define the function $I(\theta) = N^2 \sin^2 \left(\frac{\pi N d \sin \theta}{\lambda} \right) / \left(\frac{\pi N d \sin \theta}{\lambda} \right)^2$.
2. Substitute the given values $N = 10000$, $d = 10^{-4}$, and $\lambda = 632.8 \times 10^{-9}$.
3. Use the Midpoint Rule with $n = 10$ to approximate the integral $\int_{-10^{-6}}^{10^{-6}} I(\theta) d\theta$. Let's break it down into manageable parts and implement it in Python using the sympy library.1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520
180521
180522
180523
180524
180525
180526
180527
180528
180529
180530
180531
180532
180533
180534
180535
180536
180537
180538
180539
180540
180541
180542
180543
180544
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571
180572
180573
180574
180575
180576
180577
180578
180579
180580
180581
180582
180583
180584
180585
180586
180587
180588
180589
180590
180591
180592
180593
180594
180595
180596
180597
180598
180599
180600
180601
180602
180603
180604
180605
180606
180607
180608
180609
180610
180611
180612
180613
180614
180615
180616
180617
180618
180619
180620
180621
180622
180623
180624
180625
180626
180627
180628
180629
180630
180631
180632
180633
180634
180635
180636
180637
180638
180639
180640
180641
180642
180643
180644
180645
180646
180647
180648
180649
180650
180651
180652
180653
180654
180655
180656
180657
180658
180659
180660
180661
180662
180663
180664
180665
180666
180667
180668
180669
180670
180671
180672
180673
180674
180675
180676
180677
180678
180679
180680
180681
180682
180683
180684
180685
180686
180687
180688
180689
180690
180691
180692
180693
180694
180695
180696
180697
180698
180699
180700
180701
180702
180703
180704
180705
180706
180707
180708
180709
180710
180711
180712
180713
180714
180715
180716
180717
180718
180719
180720
180721
180722
180723
180724
180725
180726
180727
180728
180729
180730
180731
180732
180733
180734
180735
180736
180737
180738
180739
180740
180741
180742
180743
180744
180745
180746
180747
180748
180749
180750
180751
180752
180753
180754
180755
180756
180757
180758
180759
180760
180761
180762
180763
180764
180765
180766
180767
180768
180769
180770
180771
180772
180773
180774
180775
180776
180777
180778
180779
180780
180781
180782
180783
180784
180785
180786
180787
180788
180789
180790
180791
180792
180793
180794
180795
180796
180797
180798
180799
180800
180801
180802
180803
180804
180805
180806
180807
180808
180809
180810
180811
180812
180813
180814
180815
180816
180817
180818
180819
180820
180821
180822
180823
180824
180825
180826
180827
180828
180829
180830
180831
180832
180833
180834
180835
180836
180837
180838
180839
180840
180841
180842
180843
180844
180845
180846
180847
180848
180849
180850
180851
180852
180853
180854
180855
180856
180857
180858
180859
180860
180861
180862
180863
180864
180865
180866
180867
180868
180869
180870
180871
180872
180873
180874
180875
180876
180877
180878
180879
180880
180881
180882
180883
180884
180885
180886
180887
180888
180889
180890
180891
180892
180893
180894
180895
180896
180897
180898
180899
180900
180901
180902
180903
180904
180905
180906
180907
180908
180909
180910
180911
180912
180913
180914
180915
180916
180917
180918
180919
180920
1809

1296
1297
1298
1299
13001301 **Self Verification - Physics**
13021303 **[Question]** We know that the negative charge on the electron and the positive charge on the proton are equal. Suppose,
1304 however, that these magnitudes differ from each other by 0.00010%. With what force would two copper coins, placed
1305 1.0 m apart, repel each other? Assume that each coin contains 3×10^{22} copper atoms. (Hint: A neutral copper atom
1306 contains 29 protons and 29 electrons.)1307 **[Answer]** 1.71308 **[Intermediate Algebra]** To solve this problem, we need to follow these steps:1309 1. Calculate the charge difference between the electron and the proton.
1310 2. Determine the total charge on each copper coin.
1311 3. Use Coulomb's law to find the force between the two copper coins.

1312 Let's break it down:

1313 1. **Calculate the charge difference:**1314 - The charge of an electron is $e = -1.602 \times 10^{-19}$ C.
1315 - The charge of a proton is $e = 1.602 \times 10^{-19}$ C.
1316 - The difference in charge is $\Delta e = 0.00010\% \times 1.602 \times 10^{-19}$ C.
1317 - $0.00010\% = 0.000001$, so $\Delta e = 0.000001 \times 1.602 \times 10^{-19} = 1.602 \times 10^{-25}$ C.1318 2. **Determine the total charge on each copper coin:**1319 - Each copper atom has 29 protons and 29 electrons, so the net charge of a neutral copper atom is zero.
1320 - Each copper coin contains 3×10^{22} copper atoms, so the total charge on each coin is $3 \times 10^{22} \times 1.602 \times 10^{-25} =$
1321 4.806×10^{-3} C.1322 3. **Use Coulomb's law to find the force between the two copper coins:**1323 - Coulomb's law states that the force F between two point charges q_1 and q_2 separated by a distance r is given by
1324 $F = k \frac{q_1 q_2}{r^2}$, where k is the Coulomb constant $8.99 \times 10^9 \frac{N \cdot m^2}{C^2}$.
1325 - Here, $q_1 = q_2 = 4.806 \times 10^{-3}$ C and $r = 1.0$ m.
1326 - So, $F = 8.99 \times 10^9 \times \frac{(4.806 \times 10^{-3})^2}{1.0^2} = 8.99 \times 10^9 \times 2.31 \times 10^{-5} = 2.07 \times 10^5$ N.

1327 Let's implement this in Python to ensure the accuracy of the result:

```

1330 # Constants
1331 e = 1.602e-19 # charge of an electron (and proton)
1332 delta_e = 0.00010 / 100 * e # charge difference
1333 num_atoms = 3e22 # number of copper atoms in each coin
1334 charge_per_atom = e # charge of a single copper atom
1335 total_charge_per_coin = num_atoms * charge_per_atom # total charge on each coin
1336 k = 8.99e9 # Coulomb constant
1337 distance = 1.0 # distance between the coins in meters
1338
1339 # Calculate the force using Coulomb's law
1340 force = k * (total_charge_per_coin ** 2) / (distance ** 2)
1341 print(force)

```

1342 **output:** 206673.01343 The force between the two copper coins, each containing 3×10^{22} copper atoms, placed 1.0 meter apart, with a charge
1344 difference of 0.00010% between the electron and the proton, is 2.07×10^5 N.1345 Table 16
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356
1357**Self Verification - Chemistry**1359 [Question] Assume all gases are perfect unless stated otherwise. Note that $1 \text{ atm} = 1.01325 \text{ bar}$. Unless otherwise stated,
1360 thermochemical data are for 298.15 K . Concerns over the harmful effects of chlorofluorocarbons on stratospheric ozone
1361 have motivated a search for new refrigerants. One such alternative is 2,2-dichloro-1,1,1-trifluoroethane (refrigerant 123).
1362 Younglove and McLinden published a compendium of thermophysical properties of this substance (J. Phys. Chem. Ref.
1363 Data 23, 7 (1994)), from which properties such as the Joule-Thomson coefficient μ can be computed. Compute μ at 1.00
1364 bar and 50°C given that $(\partial H/\partial p)_T = -3.29 \times 10^3 \text{ J MPa}^{-1} \text{ mol}^{-1}$ and $C_{p,m} = 110.0 \text{ J K}^{-1} \text{ mol}^{-1}$.
1365**[Answer]** 29.91366 [Intermediate Algebra] To compute the Joule-Thomson coefficient μ at 1.00 bar and 50°C , we can use the following
1367 formula:
1368

1369
$$\mu = \left(\frac{\partial T}{\partial p} \right)_H$$

1370

1371 The Joule-Thomson coefficient can also be expressed in terms of the enthalpy and temperature derivatives as follows:
1372

1373
$$\mu = \frac{1}{C_{p,m}} \left(\frac{\partial H}{\partial p} \right)_T$$

1374

Given:
1375

1376
$$\left(\frac{\partial H}{\partial p} \right)_T = -3.29 \times 10^3 \text{ J MPa}^{-1} \text{ mol}^{-1}$$

1377
1378
$$C_{p,m} = 110.0 \text{ J K}^{-1} \text{ mol}^{-1}$$

1379 We can substitute these values into the formula to find μ :
1380

1381
$$\mu = \frac{1}{110.0} \times (-3.29 \times 10^3) \text{ K MPa}^{-1}$$

1382

Let's calculate this using Python to ensure accuracy.
13831384
1385 # Given values
1386 dH_dp_T = -3.29e3 # J MPa^-1 mol^-1
1387 Cp_m = 110.0 # J K^-1 mol^-1
1388
Calculate the Joule-Thomson coefficient
mu = dH_dp_T / Cp_m # K MPa^-1
1389 print(mu)1390 Output: -29.90909090909091
1391The Joule-Thomson coefficient μ at 1.00 bar and 50°C is:
1392

1393
$$-29.91 \text{ K MPa}^{-1}$$

1394

1395
1396 Table 17: Chemistry example of self-verification in polymath learning.
1397
1398
1399
1400
1401
1402
1403

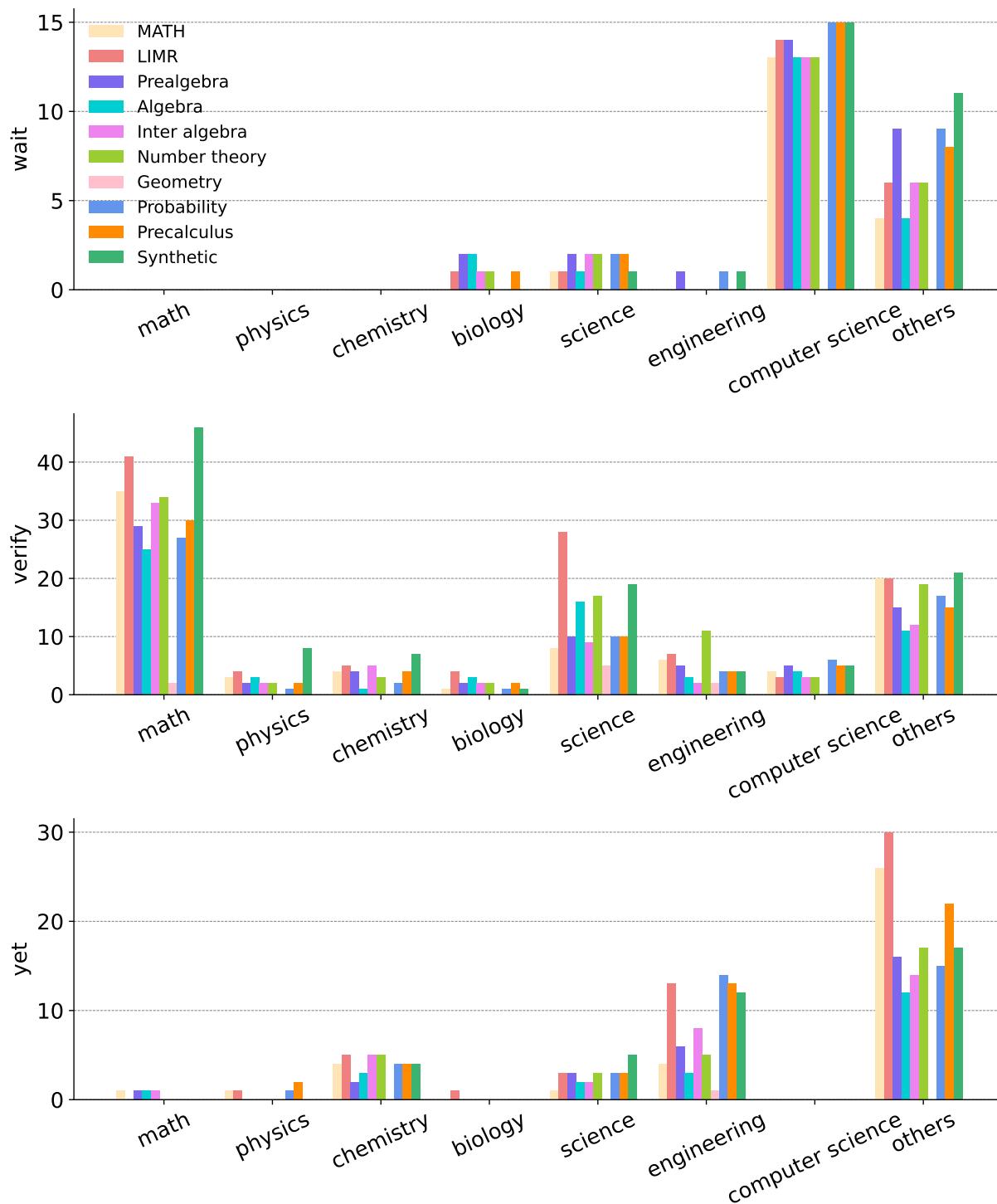


Figure 9: The verification patterns identified for ‘wait’, ‘verify’ and ‘yet’ in different subject domains. The ‘wait’ rates in computer science problems are highly attributed from terms in the question stems.

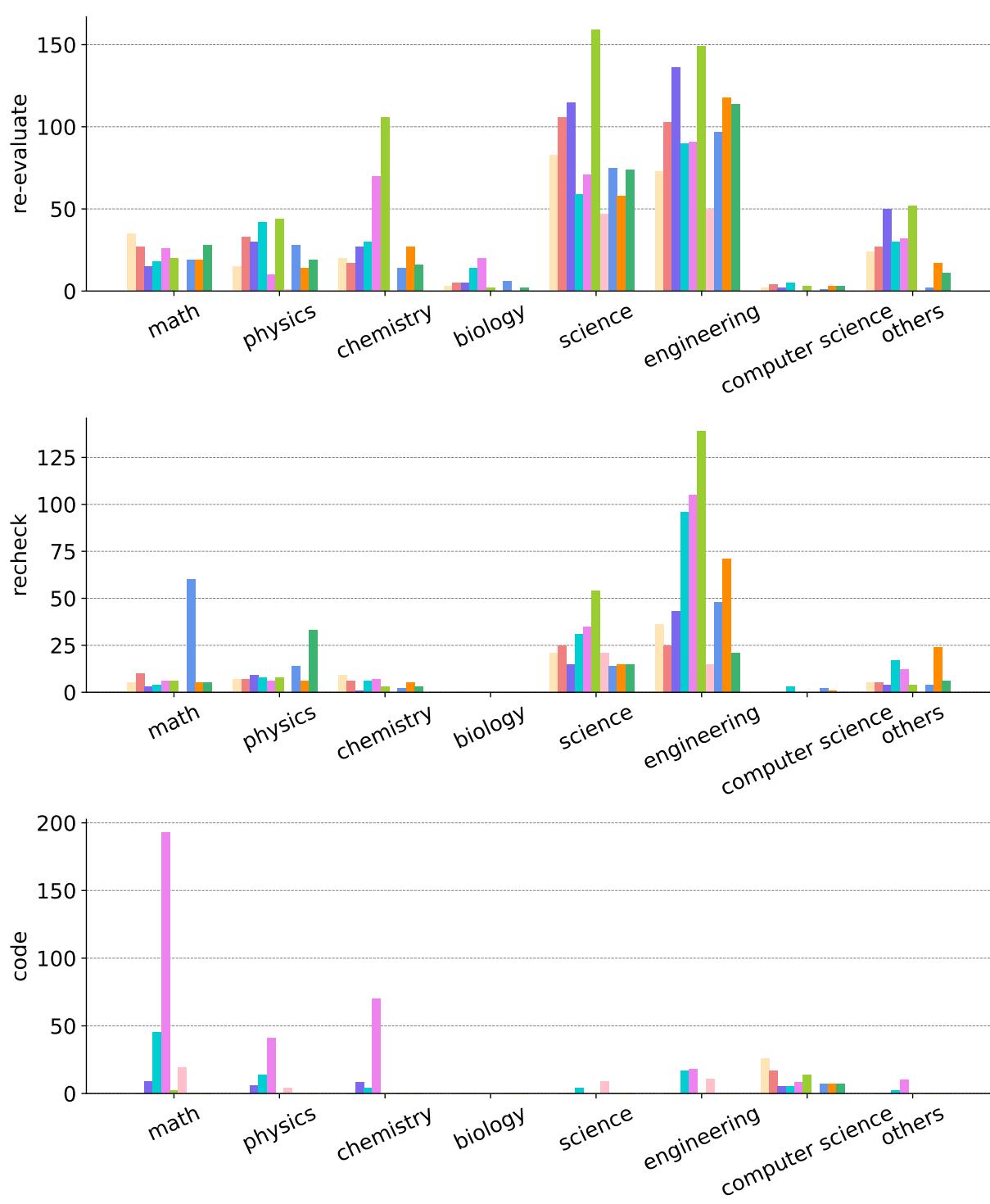


Figure 10: The verification patterns identified for ‘re-evaluate’, ‘recheck’ and ‘code’ in different subject domains.

N OTHER POLYMATHE SAMPLES

We list the other natural polymath samples from Table 18 to Table 24, and synthetic specialist samples from Table 25 to Table 29.

1512

Polymath Sample in Geometry

1513

1514

[Question] A white cylindrical silo has a diameter of 30 feet and a height of 80 feet. A red stripe with a horizontal width of 3 feet is painted on the silo, as shown, making two complete revolutions around it. What is the area of the stripe in square feet?

1515

```
[asy]
size(250);defaultpen(linewidth(0.8));
draw(ellipse(origin, 3, 1));
fill((3,0)–(3,2)–(-3,2)–(-3,0)–cycle, white);
draw((3,0)–(3,16)h-3,0)–(-3,16));
draw((0, 15)–(3, 12)h0, 16)–(3, 13));
filldraw(ellipse((0, 16), 3, 1), white, black);
draw((-3,11)–(3, 5)h-3,10)–(3, 4));
draw((-3,2)–(0,-1)h-3,1)–(-1,-0.89));
draw((0,-1)–(0,15), dashed);
draw((3,-2)–(3,-4)h-3,-2)–(-3,-4));
draw((-7,0)–(-5,0)h-7,16)–(-5,16));
draw((3,-3)–(-3,-3), Arrows(6));
draw((-6,0)–(-6,16), Arrows(6));
draw((-2,9)–(-1,9), Arrows(3));
label("3", (-1.375,9.05), dir(260), UnFill);
label("A", (0,15), N);
label("B", (0,-1), NE);
label("30", (0, -3), S);
label("80", (-6, 8), W);
[/asy]
```

1516

[Answer] 240

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

Table 18: Polymath sample in geometry.

1540

1541

Polymath Sample (Probability)

1542

1543

[Question] Bicycle license plates in Flatville each contain three letters. The first is chosen from the set $\{C, H, L, P, R\}$, the second from $\{A, I, O\}$, and the third from $\{D, M, N, T\}$.

1544

When Flatville needed more license plates, they added two new letters. The new letters may both be added to one set or one letter may be added to one set and one to another set. What is the largest possible number of ADDITIONAL license plates that can be made by adding two letters?

1545

[Answer] 40

1546

1547

1548

1549

1550

1551

1552

Polymath Sample in Algebra

1553

1554

1555

1556

[Question] A 100-gon P_1 is drawn in the Cartesian plane. The sum of the x -coordinates of the 100 vertices equals 2009. The midpoints of the sides of P_1 form a second 100-gon, P_2 . Finally, the midpoints of the sides of P_2 form a third 100-gon, P_3 . Find the sum of the x -coordinates of the vertices of P_3 .

1557

1558

[Answer] 2009

1559

1560

1561

1562

1563

1564

1565

Table 20: Polymath sample in algebra.

O LARGE LANGUAGE MODEL USAGE

The large language model is employed to provide writing suggestions for polishing purposes.

1566
1567
1568

1569 Polymath Sample in Intermediate Algebra

1570
1571 [Question] Let a, b, c be nonzero real numbers such that

1572
1573
$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 7 \quad \text{and} \quad \frac{b}{a} + \frac{c}{b} + \frac{a}{c} = 9.$$

1574 Find

1575
1576
$$\frac{a^3}{b^3} + \frac{b^3}{c^3} + \frac{c^3}{a^3}.$$

1577
1578 [Answer] 157

1580

1581 Table 21: Polymath sample in intermediate algebra.
1582

1583

1584

1585

1586

1587

1588

1589

Polymath Sample in Precalculus

1590

1591 [Question] For a certain value of k , the system

1592
1593
$$\begin{aligned} x + ky + 3z &= 0, \\ 3x + ky - 2z &= 0, \\ 2x + 4y - 3z &= 0 \end{aligned}$$

1594 has a solution where x, y , and z are all nonzero. Find $\frac{xz}{y^2}$.
15951596 [Answer] 10
1597

1598

1599

1600 Table 22: Polymath sample in precalculus.
1601

1602

1603

1604

1605

1606

1607

1608

Polymath Sample in Number Theory

1609

1610 [Question] The American Mathematics College is holding its orientation for incoming freshmen. The incoming freshman
1611 class contains fewer than 500 people. When the freshmen are told to line up in columns of 23, 22 people are in the last
1612 column. When the freshmen are told to line up in columns of 21, 14 people are in the last column. How many people are
1613 in the incoming freshman class?
1614[Answer] 413

1615

1616

1617

1618

1619

Table 23: Polymath Sample in Number Theory.

1620
1621
1622
1623

1624 Polymath Sample in Prealgebra

1625 [Question] A region is bounded by semicircular arcs constructed on the side of a square whose sides measure $2/\pi$, as
1626 shown. What is the perimeter of this region?
16271628 [asy]
1629 path a=(10,0)..(5,5)..(5,-5)..cycle;
1630 path b=(0,10)..(5,5)..(-5,5)..cycle;
1631 path c=(-10,0)..(-5,5)..(-5,-5)..cycle;
1632 path d=(0,-10)..(-5,5)..(-5,-5)..cycle;
1633 path e=(5,5)..(-5,-5)..(-5,5)..cycle;
1634 fill(e,gray(0.6));
1635 fill(a,gray(0.8));
1636 fill(b,gray(0.8));
1637 fill(c,gray(0.8));
1638 fill(d,gray(0.8));
1639 draw(a,linewidth(0.7));
1640 draw(b,linewidth(0.7));
1641 draw(c,linewidth(0.7));
1642 draw(d,linewidth(0.7));
1643 [/asy]

1644 [Answer] 4

1645
1646 Table 24: Polymath sample in prealgebra.
1647
1648
1649
1650
1651
1652
16531654 Synthetic Specialist Sample in Precalculus
16551656 [Question] A chemical factory discharges waste into a river at a rate of 500 cubic meters per day. The waste has an
1657 untreated pollutant concentration of 100 mg/L. The river has a flow rate of 24,500 cubic meters per day, and the waste
1658 mixes completely and instantly with the river flow. The pollutant degrades following first-order kinetics with a half-life of
1659 5 days. The time for water to travel from the discharge point to a critical fish habitat is 5 days. To protect an endangered
1660 fish species (reflecting ethical considerations of intrinsic value in philosophy), the pollutant concentration at the habitat
1661 must not exceed 0.1 mg/L. If the concentration exceeds this limit, the probability of harm to the fish is 0.05 per mg/L of
1662 excess concentration. Due to legal regulations (incorporating law), if harm occurs, the factory is fined \$10,000 per day.
1663 The factory can treat the waste to reduce the pollutant concentration before discharge. The treatment cost is \$0.005 per
1664 cubic meter per mg/L reduction in concentration (incorporating economics and chemistry). Calculate the optimal initial
1665 concentration of pollutant in the treated waste (in mg/L) that minimizes the total daily cost (treatment cost plus expected
1666 fine), considering the interdisciplinary aspects of physics (degradation kinetics and flow), biology (fish protection), and
1667 mathematics (optimization).
1668

1669 [Answer] 10

1670 Table 25: Synthetic Specialist Sample in Precalculus.
1671
1672
1673

1674

1675

1676 Synthetic Specialist Sample in Number Theory

1677

1678 [Question] A pharmaceutical company develops a new drug for treating a specific condition. The drug has a biological
 1679 half-life of 4 hours in the human body and a volume of distribution of 50 liters. Clinical trials determine that the minimum
 1680 therapeutic concentration required for efficacy is 10 mg/L. The drug is administered as a single intravenous bolus dose at
 1681 the beginning of each day to maintain concentrations at or above the therapeutic level for exactly 8 hours.
 1682 The manufacturing cost analysis shows that each 500 mg vial of the drug costs \$2.50 to produce, and the entire vial must be
 1683 used if opened. Regulatory requirements (reflecting legal and ethical considerations) mandate that the drug concentration
 1684 must not drop below the therapeutic level during the 8-hour treatment period.
 1685 Considering the exponential decay of the drug concentration, calculate the required dose in milligrams. Then, determine
 1686 the daily cost in dollars for administering this dose, providing the cost to one decimal place.

1687 [Answer] 10

1688

1689 Table 26: Synthetic Specialist Sample in Number Theory.

1690

1691

1692

1693

1694 Synthetic Specialist Sample in Geometry

1695

1696 [Question] A model cell membrane is represented by a cube-shaped vesicle with a side length of 10.0 nm. The membrane
 1697 is a phospholipid bilayer made of two leaflets. Each phospholipid occupies exactly 1.50 nm^2 of surface area within a
 1698 single leaflet. Assuming both leaflets cover the entire outer surface of the cube and ignoring membrane thickness and edge
 1699 effects, how many phospholipid molecules are present in the bilayer?

1700 [Answer] 800

1701

1702

1703 Table 27: Synthetic Specialist Sample in Geometry.

1704

1705

1706

1707

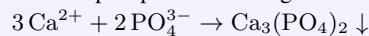
1708 Synthetic Specialist Sample in Probability

1709

1710 [Question] A molecular-biology lab purifies a circular plasmid that is exactly 3000 base pairs (bp) long.
 1711 • Each base pair contains two deoxyribonucleotides, and every nucleotide carries one phosphate (PO_4^{3-}) group.
 1712 • While the cells were growing, the medium contained the β -emitter ^{32}P , so every phosphate in the plasmid is
 ^{32}P -labelled.
 1713 • The radioactive isotope ^{32}P has a half-life of 14.0 days.

1714 Immediately after purification, a tube that contains precisely 100 identical plasmid molecules shows an activity of 1024
 1715 disintegrations per minute (dpm). The tube is stored in a freezer, and—after an integral number of whole half-lives—the
 1716 activity is measured again and found to be exactly 4 dpm.

1717 To cross-check the number of phosphate groups, the plasmid DNA is then completely hydrolysed and the liberated
 1718 phosphate is quantitatively precipitated as calcium phosphate according to



1719 The precipitation requires exactly 5.0×10^{-7} mol of Ca^{2+} ions, confirming the amount of DNA present (the stoichiometry
 1720 is consistent and needs no further calculation here).

1721 What is the number of ^{32}P half-lives that have elapsed between the two activity measurements?

1722 [Answer] 8

1723

1724

1725

1726

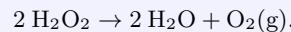
1727

Table 28: Synthetic Specialist Sample in Probability.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744

Synthetic Specialist Sample in Algebra

1745
 1746 [Question] A plant that is heterozygous for two independent genes, G and H (genotype GgHh), is self-pollinated. Exactly
 1747 640 seeds are obtained.
 1748 **Biology:** Only seeds that are homozygous recessive for both genes (gghh) can synthesize the enzyme “Catalase-X”.
 1749 **Chemistry:** Every gghh seed is placed in its own vial containing 0.0800 mol of hydrogen peroxide. Catalase-X instantly
 1750 and completely decomposes the peroxide according to



1751 Thus each qualifying vial releases pure O₂ gas.
 1752

1753 **Physics:** The O₂ is dried, transferred to a 1.00 L rigid cylinder at 298 K, and all molecules are singly ionised
 1754 (O₂ → O₂⁺ + e⁻). The ions are accelerated so that each has speed *v* that makes its circular path radius exactly 0.0400 m
 1755 in a uniform magnetic field *B* = 1.00 T perpendicular to their velocity (*m*(O₂) = 32 u, 1 u = 1.66 × 10⁻²⁷ kg,
 1756 *q* = 1.60 × 10⁻¹⁹ C). Immediately after acceleration an electronic gate allows only the very first O₂⁺ ion to continue;
 1757 all later ions are blocked. That single ion has a 50% chance of striking a narrow slit that leads to a detector; otherwise
 1758 nothing is recorded.

1759 A vial is counted as a “success” if its lone transmitted ion hits the detector. All vials operate independently.

1760 What is the expected number of “successes” after all 640 seeds have been processed?

1761 [Answer] [20]

1762 Table 29: Synthetic Specialist Sample in Algebra.
 1763

1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781