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Abstract

In clinical oncology, tumor heterogeneity, data scarcity, and missing modalities are per-
vasive issues that significantly hinder the effectiveness of predictive models. Although mul-
timodal integration of Whole Slide Imaging (WSI) and molecular data has shown promise
in predicting overall survival (OS), current approaches often struggle when dealing with
scarce and incomplete multimodal datasets, a scenario that reflects the norm rather than
the exception in real-world clinical practice, especially in tasks like chemotherapy resistance
prediction, where data collection is substantially more challenging than for OS.

Accurately identifying patients who will not respond to chemotherapy is a critical clin-
ical need, enabling the timely redirection to alternative therapeutic strategies and avoid-
ing unnecessary toxicity. Hence, this paper introduces OXA-MISS, a novel multimodal
model for chemotherapy response prediction designed to handle missing modalities. In
the task of chemotherapy response prediction in ovarian cancer, OXA-MISS achieves a
20% absolute improvement in AUC over state-of-the-art models when trained on scarce
and incomplete WSI-transcriptomics datasets. To evaluate its generalizability, we bench-
marked OXA-MISS on OS prediction across three TCGA cancer types under both com-
plete and missing-modality conditions. In these settings, the results demonstrate that
OXA-MISS achieves performance comparable to that of state-of-the-art models. In con-
clusion, the proposed OXA-MISS is shown to be effective in OS prediction tasks, while
substantially improving predictive accuracy in realistic clinical settings, such as the pro-
posed prediction of chemotherapy response. The code for OXA-MISS is publicly available
at https://github.com/AI-BioInformatics/0XA-MISS.

Keywords: chemotherapy response, missing modalities, molecular data, multimodal
learning, overall survival, WSI, chemotherapy resistance

1 Introduction

Multimodal data integration, particularly of whole-slide imaging (WSI) and molecular data,
is increasingly recognized for its potential to enhance clinical outcomes. A surge of models
has demonstrated success in predicting overall survival (OS) using these data types (Hou
et al., 2023; Liu et al., 2025; Jaume et al., 2024), leveraging the complementary informa-
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tion captured by histological features and molecular profiles. WSI offers high-dimensional
spatial descriptions of tumors, capturing morphological patterns and cellular arrangements
(Jaume et al., 2024). Molecular data, on the other hand, provides a global view of gene
expression levels and molecular characteristics within the tumor (Jaume et al., 2024; Bar-
biero et al., 2020; Lovino et al., 2020). The integration of these modalities promises a more
comprehensive understanding of cancer biology and patient prognosis. Nevertheless, ex-
isting models often underperform when applied to more clinically complex tasks, such as
predicting response to chemotherapy. One of the key challenges lies in the limited avail-
ability of data related to very poor or refractory responses to chemotherapy, as well as
their complete molecular profiling. While OS is typically well-documented and based on
the objectively recorded status of whether a patient is alive at a specific time, chemother-
apy response requires expert evaluation on a case-by-case basis, often involving subjective
clinical judgment and complex criteria. Consequently, chemotherapy response datasets are
generally less common and suffer from limited data availability, making it particularly chal-
lenging to apply multimodal approaches that combine molecular data and WSI, as is now
standard practice for OS prediction. For instance, the three datasets used for OS predic-
tion in this study include 404, 502, and 397 patients respectively, all with matched WSI
and gene expression data. In contrast, for chemotherapy response prediction, our available
dataset comprises only 85 patients, of whom just 66 have both modalities. This scarcity is
a prevalent challenge in clinical settings, often due to high acquisition costs, limited acces-
sibility, and constraints imposed by specific clinical workflows (Hou et al., 2023; Wu et al.,
2024; Xu et al., 2025). As acquiring molecular data can be costly due to the technology and
infrastructure required for gene sequencing, especially in underdeveloped areas, the expec-
tation of having full access to complete modalities for integration is not always achievable
(Xu et al., 2025). Current methods often face significant challenges in effectively integrat-
ing information from available modalities when confronted with incomplete data, thereby
limiting their ability to generate reliable predictions for personalized medicine. Existing
strategies to address data incompleteness include zero padding, factorized representation
learning, and autoencoder-based techniques. However, these approaches are not readily
applicable to multimodal cancer survival prediction for several reasons. For instance, the
heterogeneity in medical data modalities presents a major obstacle: clinical records consist
of high-dimensional textual data, pathology slides are represented as gigapixel-scale im-
ages, and genomic profiles typically comprise tens of thousands of features. The substantial
disparity in dimensionality and structure across these types of data makes it inherently dif-
ficult to align and fuse multimodal features coherently and meaningfully (Hou et al., 2023).
Hence,, models capable of operating under missing-modality conditions have recently been
developed. ProSurv (Liu et al., 2025) constructs modality-specific prototype banks using
intra-modal contrastive learning to capture risk-relevant features, which are then aligned
and translated across modalities, with the entire framework optimized via a survival loss.
MUSE (Wu et al., 2024) employs a bipartite graph to model patient—-modality relation-
ships and addresses modality collapse through mutually consistent contrastive learning,
ensuring robust and modality-agnostic representations. HGCN (Hou et al., 2023) leverages
individual GCNs to learn intra-modal features, which are aggregated into hyperedges and
processed by a Hypergraph Convolutional Network to model complex inter-modal inter-
actions for improved survival prediction. While these models have achieved remarkable
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performance in OS prediction under missing-modality conditions, they exhibit significant
limitations when applied to chemotherapy response prediction in the presence of missing
modalities. This highlights a critical gap in the literature: the need for specialized mul-
timodal models capable of effectively handling i) missing modalities in a context of data
scarcity and ii) accurately predicting chemotherapy response. Therefore, this paper intro-
duces OXA-MISS (OXA-MISS: Optional Cross-Attention Model for Incomplete Modality
Integration of Whole Slide Imaging and Transcriptomics), a novel multimodal framework
designed to flexibly learn from both complete and incomplete modality inputs. By facil-
itating effective exchange of multimodal information through its optional cross-attention
mechanism and aligning both multimodal and unimodal representations within a shared
latent space, OXA-MISS enhances predictive accuracy and robustness in both complete
and missing modality settings. In particular, we compare our proposed OXA-MISS with
state-of-the-art models on a private multimodal ovarian cancer dataset—comprising WSI
and molecular data—for chemotherapy response prediction. To mitigate the limitations
imposed by data scarcity, this dataset is augmented, in training, with two publicly avail-
able WSl-only datasets to enhance the representation of WSIs. The results demonstrate
that OXA-MISS outperforms existing multimodal approaches, achieving a 20% absolute
improvement in AUC. These findings underscore OXA-MISS’s effectiveness in leveraging
available data and enhancing predictive accuracy in this clinically important task.
Contributions. i) We evaluate the performance of state-of-the-art multimodal models de-
signed to operate under missing-modality conditions for chemotherapy response prediction
in ovarian cancer; i7) we introduce OXA-MISS, a novel multimodal architecture explicitly
designed to handle missing modalities, which outperforms existing approaches by achiev-
ing a 20% absolute improvement in AUC on the chemotherapy response prediction task in
ovarian cancer; iii) we demonstrate the generalizability of OXA-MISS by validating its
performance on OS prediction across three TCGA cancer types, under both complete and
missing-modality conditions.

2 Datasets

This section elucidates the datasets employed in this investigation, with a focus on their

composition and relevance to the tasks of predicting chemotherapy response and OS.

Chemotherapy response. To evaluate this task, we exploited a curated subset from the

DECIDER project (DECIDER observational clinical trial - Multi-layer Data to Improve

Diagnosis, Predict Therapy Resistance and Suggest Targeted Therapies in HGSC; Clinical-

Trials.gov identifier: NCT04846933) and two publicly available ovarian cancer cohorts.

e DECIDER: Comprising 324 WSIs obtained at diagnosis from a cohort of 85 ovarian
cancer patients undergoing neoadjuvant chemotherapy, the DECIDER dataset includes
29 platinum-resistant and 56 platinum-sensitive cases. The tissue types represented en-
compass omentum, ovary, peritoneum, adnexa, lymph nodes, fallopian tubes, mesentery,
uterus, vagina, and bowel. Treatment response was determined through manual curation
based on RECIST 1.1 criteria Eisenhauer et al. (2009). For 66 out of 85 patients, both
WSIs and gene expression data are available. This dataset was used for both training
and evaluation purposes.

e PTRC: it comprises 326 WSIs from 155 ovarian cancer patients (67 refractory, 88 sen-
sitive), incorporating tissue samples from the omentum, ovary, fallopian tubes, vagina,
mesentery, uterus, peritoneum, bowel, adnexa, and lymph nodes. Resistance to platinum-



OXA-MISS: A MULTIMODAL ARCHITECTURE FOR CHEMOTHERAPY RESPONSE PREDICTION

based therapy is defined by disease progression observed during or within four weeks fol-
lowing treatment (Chowdhury et al., 2022). This dataset lacks molecular data; therefore,
it is exploited for training purposes only.

e OBR: 285 WSIs from 78 ovarian cancer patients (43 responsive, 35 resistant to beva-
cizumab). Only ovarian tissue is included (Wang et al., 2021)). Given the absence of
molecular data, this dataset is utilized solely for training purposes.

Overall, the chemotherapy response dataset used in this study comprises 318 patients, of
whom 66 have both gene expression and WSI data, while the remaining patients have WSI
data only. OXA-MISS is designed to fully exploit this limited yet comprehensive dataset,
currently the most complete public and private resource for this task. Given the lack of
agent-specific cohorts, the model is trained on multiple chemotherapy modalities to provide
a general prediction of response rather than being restricted to a single agent.

Overall Survival. For the task of predicting overall survival, we utilized three public
datasets from The Cancer Genome Atlas (TCGA) repository, a recognized resource offering
a wide array of cancer samples. Specifically, we focused on breast (BRCA), kidney (KIRC),
and lung (LUAD) cancers. We selected patients for whom both WSI and gene expression
data were available. This stringent selection methodology yielded the following cohort sizes
for each cancer type: BRCA (404 patients), KIRC (502 patients), and LUAD (397 patients).

Preprocessing. Each slide is processed with CLAM (Lu et al., 2021) to extract non-
overlapping patches p of dimensions 256 x 256 at up to 20x magnification and encoded
with UNT’s vision encoder (Chen et al., 2024) to obtain 1024-dimensional feature vectors.
For gene expression in the Chemotherapy Response task, we employed a curated set of 82
genes from (Afenteva et al., 2024). This set includes differentially expressed genes between
refractory and sensitive patients, as well as genes associated with the JAK-STAT and Hy-
poxia pathways, selected based on Progeny-derived activity differences. Instead, in the OS
prediction task, we used a set of 5 gene groups, comprising a total of 1,742 genes, obtained
from MSigDB website (Broad Institute and UC San Diego). The selected gene groups are
Tumor Suppression, Oncogenesis, Protein Kinases, Cellular Differentiation, and Cytokines
and Growth. Gene expression values were normalized using a standard z-score transforma-
tion computed on the training set. The normalization was applied feature-wise to each gene
and propagated to the validation/test sets. Gene expression vectors were then encoded to
match the dimensionality of the patient’s WSI embedding.

3 Proposed Method

We introduce OXA-MISS (OXA-MISS: Optional Cross-Attention Model for Incomplete
Modality Integration of Whole Slide Imaging and Transcriptomics), a novel multimodal deep
learning architecture specifically designed for the prediction of chemotherapy response. A
central innovation of OXA-MISS lies in its optional cross-attention branches, which enable
effective integration of Whole Slide Images (WSI) and genomic data when both modalities
are available; otherwise, the model seamlessly defaults to unimodal processing. Further-
more, OXA-MISS projects both unimodal and multimodal representations into a common
latent space—referred to as the patient embedding in Fig. 1—thereby promoting alignment
between the respective modality-specific encoders. This architectural design enhances the
model’s robustness and adaptability, making it particularly well-suited for real-world clinical
settings where data completeness is often inconsistent.
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Figure 1: Overview of our proposed OXA-MISS. The grey area indicates the optional
multimodal cross attention integration.

3.1 OXA-MISS Architecture

As depicted in Fig. 1, our model receives two input branches: the patch embeddings of
shape (Np,1024) and the transcriptomic embeddings of shape (Ng, G;). These tensors are
projected into a shared representation space through fully connected layers, resulting in
representations of dimensions (Np, inner_dim) and (Ng, inner_dim), respectively.
Optional Multimodal Integration. When both modalities are available, a cross-attention
mechanism is activated to enable bidirectional information exchange between the WSI and
transcriptomics branches. Specifically, two cross-attention operations are performed: in
one, the patch embeddings from the WSI branch serve as queries while the genomic em-
beddings act as keys and values; in the other, the roles are reversed. The output of each
cross-attention module is then added to the corresponding query modality, facilitating multi-
modal interaction and alignment. In cases where one modality is missing, the cross-attention
module is deactivated and replaced with a neutral tensor, preserving the structure of the
computation without introducing additional information. To accommodate scenarios in
which only a single modality is available, we define the optional cross-attention mechanism
as a gated operation:

Xon = Xom + Tavait(Xn) - XA(Xom, Xny Xn), (1)
where X, and X, represent the embeddings of the querying and supporting modalities
(e.g., WSI and transcriptomics, or vice versa), and Iyvai(-) € {0,1} is an indicator function
that equals 1 if modality X, is available and 0 otherwise.

Each of the two cross-attention modules is parameterized by four learnable projection matri-
ces Wo, Wg, Wy, Wo € Rinner-dimxinner-dim - (Giyven a query tensor Q, and key—value tensors
K and V, the cross-attention XA output is computed as:

XA(Q, K, V) = Softmax ( \/gWK) > (VWy)Wo, (2)

where d = inner_dim denotes the dimensionality used for scaling. This design ensures
that in the absence of one modality, the cross-attention module is bypassed and the querying
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branch proceeds without alteration, while preserving structural consistency in the model’s
forward pass. This gating mechanism allows OXA-MISS to seamlessly adapt to both
unimodal and multimodal input configurations, enhancing its flexibility in real-world clinical
scenarios characterized by heterogeneous data availability.

WSI Branch. The WSI branch includes a gating mechanism that selectively minimize
the influence of patches considered less informative, thereby enhancing the relevance of the
features propagated through the network. Concurrently, a set of learnable latent queries
with dimensionality (N, inner_dim) is employed to generate diverse representations of the
patch embedding tensor via cross-attention. The gating scores are combined with the cross-
attention scores associated with the latent queries via a dot product, resulting in weights
that guide the formation of Ny, distinct linear combinations of the patch embeddings. The
resulting tensor is then flattened into a shape of (1, Ny - inner_dim) and subsequently
projected to a final representation of shape (1,inner_dim) called WSI embedding.
Transcriptomics Branch. This branch is responsible for generating the transcriptomic
embedding tensor. It is obtained by summing the Ng individual vector representations—each
of shape (1, inner_dim)—corresponding to distinct transcriptomics groups. The resulting
aggregated tensor has a final shape of (1, inner_dim).

Multimodal Representation. The WSI and transcriptomic embeddings are combined
via element-wise summation into a unified patient embedding. In cases where one modality
is unavailable, it is replaced with a neutral tensor that does not alter the result of the
summation. This approach ensures that unimodal and multimodal inputs are projected into
a shared representation space, thereby reducing the risk of the final fully connected layer,
responsible for mapping the patient’s embedding to the n,,;: output neurons, receiving out-
of-distribution inputs. Additionally, this design promotes alignment between the unimodal
encoders.

4 Experiments
In our experiments, we compare the proposed OXA-MISS with state-of-the-art models

for multimodal integration of WSI and transcriptomics, including SurvPath (Jaume et al.,
2024), ProSurv (Liu et al., 2025), HGCN (Hou et al., 2023), and MUSE (Wu et al., 2024).
In all tables, bold values indicate the best-performing model, while underlined scores denote
the second-best. To ensure a fair comparison, we use each model’s recommended hyper-
parameters, learning rate scheduler, and optimizer settings. We evaluate all models on
both chemotherapy response and overall survival prediction tasks under missing-modality
conditions. The chemotherapy response task is framed as a binary classification problem
and assessed using AUC, accuracy, and Fl-score. To further test robustness despite the
limited availability of chemotherapy response data, we also benchmarked OXA-MISS on
the OS prediction task using three independent TCGA cohorts, thereby validating its gener-
alizability across settings. For overall survival prediction, we adopt the formulation used in
SurvPath (Jaume et al., 2024) and employ the concordance index (c-index) as the evaluation
metric.

For the chemotherapy response prediction task, we perform experiments on our private mul-
timodal dataset (DECIDER), which we augment with two public unimodal WSI datasets
(OBR and PTRC). To assess the robustness of our approach, we employ a 5-fold cross-
validation strategy and report the mean and standard deviation for each evaluation metric.
Since only DECIDER contains both modalities, we partition it into five hold-out folds,



OXA-MISS: A MULTIMODAL ARCHITECTURE FOR CHEMOTHERAPY RESPONSE PREDICTION

Table 1: Comparison of chemotherapy response prediction in ovarian cancer between state-
of-the-art models and the proposed OXA-MISS on DECIDER dataset.

Metric SurvPath HGCN MUSE ProSurv OXA-MISS

AUC 0.609 £+ 0.057 0.536 + 0.081 0.629 + 0.141 0.418 & 0.066 0.824 + 0.067
Accuracy 0.666 + 0.019 0.599 + 0.057 0.614 + 0.093 0.616 £ 0.066 0.752 £+ 0.075
Fl-score 0.490 + 0.054 0.424 4+ 0.045 0.543 4+ 0.105 0.396 £+ 0.048 0.726 £+ 0.078

Table 2: OS performance comparison with models trained on complete-modality data.

Test H Dataset H SurvPath HGCN MUSE ProSurv OXA-MISS
BLCA 0.561 + 0.077 0.563 + 0.086 0.543 + 0.030 0.570 + 0.004 0.593 + 0.019

Complete KIRC 0.644 + 0.077 0.734 + 0.014 0.624 + 0.075 0.691 + 0.012 0.732 + 0.006
LUAD 0.578 + 0.067 0.585 + 0.014 0.561 + 0.070 0.576 £+ 0.003 0.606 + 0.019

BLCA N.A. 0.561 4+ 0.023 0.535 + 0.027 0.572 + 0.005 0.588 + 0.024

WSI-only KIRC N.A. 0.724 + 0.016 0.601 4+ 0.079 0.692 4+ 0.014 0.652 4+ 0.015
LUAD N.A. 0.579 + 0.013 0.576 4+ 0.039 0.567 4+ 0.004 0.536 + 0.027

Transcrint BLCA N.A. 0.556 4+ 0.003 0.542 + 0.010 0.515 £+ 0.007 0.584 + 0.028
omics—orll)l KIRC N.A. 0.602 4= 0.009 0.599 + 0.093 0.661 + 0.004 0.714 + 0.016
Y LUAD N.A. 0.554 4+ 0.008 0.567 + 0.071 0.581 4+ 0.008 0.594 + 0.052

while augmenting the training set in each fold with the public WSI-only datasets. This
augmentation increases the number of training samples, albeit unimodal, thereby creating
a challenging multimodal learning scenario characterized by a high proportion of missing-
modality samples. The results, presented in Tab. 1, show that OXA-MISS outperforms
state-of-the-art models by approximately 20% in AUC and 18% in F1-score. All models are
trained using the same data splits under the augmented training setting of OXA-MISS,
which includes WSI-only patients of both public and private datasets. Notably, SurvPath
does not support missing modalities, hence it is instead trained only on complete private
samples. In this setting, OXA-MISS demonstrates superior performance by a substantial
margin, highlighting its effectiveness in learning under conditions of severe data scarcity and
incomplete modality availability. Meanwhile, ProSurv and HGCN underperform compared
to SurvPath, with MUSE being the only model capable of surpassing it. This outcome
underscores the difficulty even models specifically designed to handle missing-modality sce-
narios face when learning in low-data regimes.

Furthermore, we conducted the overall survival prediction task on three TCGA cancer
types: BLCA, KIRC, and LUAD. Owing to the greater data availability in these cohorts,
we included only patients with complete WSI and transcriptomics information in our anal-
ysis. We trained the models only with complete samples and evaluated performance under
three testing conditions: using complete data, WSI-only (by removing transcriptomics),
and transcriptomics-only (by removing WSI). To assess the statistical significance of the
results, we employed a 5-fold cross-validation strategy and report the mean and standard
deviation of each metric across three different seeds. As shown in Tab. 2, our OXA-MISS
achieves performance comparable to state-of-the-art models in multimodal overall survival
prediction under missing-modality conditions. Finally, to further evaluate the models’ ca-
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Table 3: Comparison for OS prediction training with a 60% missing-modality rate applied
only during training, where either WSI or transcriptomics is randomly dropped
for each incomplete sample. Testing conditions remain identical to Tab. 2, i.e.,

evaluation is performed on complete data, WSI-only, and transcriptomics-only.

Test | | Dataset | | HGCN MUSE ProSurv OXA-MISS
BLCA 0.575 + 0.007 0.520 £ 0.033 0.553 + 0.011 0.562 + 0.014

Complete KIRC 0.671 £ 0.002 0.583 £ 0.029 0.660 + 0.008 0.683 + 0.003
LUAD 0.545 4+ 0.027 0.577 4+ 0.021 0.555 + 0.027 0.642 + 0.013

BLCA 0.580 + 0.007 0.529 £ 0.059 0.552 + 0.012 0.548 + 0.007

WSI-only KIRC 0.666 + 0.007 0.617 £ 0.035 0.641 &+ 0.006 0.659 &+ 0.005
LUAD 0.542 4+ 0.018 0.546 £+ 0.031 0.565 + 0.024 0.550 + 0.019

Transcrint BLCA 0.519 4+ 0.013 0.526 4 0.016 0.519 + 0.010 0.575 4+ 0.013
omics—orll)l KIRC 0.570 4+ 0.012 0.580 £ 0.025 0.659 + 0.015 0.676 &+ 0.019
Y LUAD 0.535 4+ 0.023 0.530 £ 0.010 0.547 + 0.011 0.571 4+ 0.023

pabilities on the overall survival task, we repeated the previous experiment by introducing
a 60% missing-modality rate during the training phase. Specifically, for 60% of the train-
ing samples, one modality—either WSI or transcriptomics—was randomly omitted. As in
previous experiments, we employed a 5-fold cross-validation strategy across three different
seeds. The results, presented in Tab. 3, demonstrate that OX A-MISS remains competitive
with state-of-the-art models under these missing-modality conditions.

5 Conclusion

In this work, we presented OXA-MISS, a novel multimodal framework designed to address
the challenges of data scarcity and missing modalities in clinical oncology by integrating
whole slide imaging and transcriptomic data. OXA-MISS is specifically tailored to op-
erate under incomplete data conditions, making it particularly well-suited for real-world
applications. Our experiments demonstrate that OXA-MISS achieves substantial perfor-
mance gains in predicting chemotherapy response in ovarian cancer, with a 20% absolute
improvement in AUC over state-of-the-art baselines. Furthermore, OXA-MISS maintains
competitive performance in overall survival prediction across multiple TCGA cancer types,
under both complete and incomplete data scenarios. The proposed OXA-MISS is designed
to cope with clinically relevant scenarios characterized by data scarcity and incomplete
modalities. Nevertheless, we also demonstrated its good performance under wider data
availability conditions. In future work, additional datasets will be analysed to further assess
its generalizability. Current results highlight the model’s robustness, flexibility, and poten-
tial for deployment in data-constrained clinical environments. Finally, this work underscores
the need for multimodal frameworks that are resilient to real-world data limitations and
adaptable to diverse clinical prediction tasks.
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