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ABSTRACT

Class Incremental Learning (CIL) enables models to adapt to evolving data distri-
butions by learning new classes over time without revisiting previous data. While
recent methods utilizing pre-trained models have shown promising results, they
often assume access to fully labeled data for each incremental task, which is often
impractical. In this paper, we instead tackle a more realistic scenario in which only
unlabeled data and the class-name set are available for each new class. Although
one could generate pseudo labels with a vision-language model and apply exist-
ing CIL methods, the inevitable noise in these pseudo labels tends to aggravate
catastrophic forgetting. To overcome this challenge, we propose a method named
N2L employing a regression objective with mean squared error loss, which can
be solved in a recursive manner. To refine the pseudo labels, N2L applies feature
dimensionality reduction to the extracted image features and iteratively updates the
labels using a classifier trained on these reduced features. Furthermore, a bi-level
weight adjustment strategy is proposed to downweight low-confidence pseudo
labels via intra-class adjustment and compensate for pseudo-label class imbalance
through inter-class adjustment. This incremental learning with adjustment can be
solved recursively, yielding identical performance to joint training with unlabeled
data and thereby mitigating forgetting. Our theoretical analysis supports the ef-
fectiveness of the pseudo label refinement process, and experiments on various
datasets demonstrate that our proposed method outperforms SOTA methods. Code
is provided in the appendix.

1 INTRODUCTION

Class Incremental learning (CIL) (Zhou et al., 2024c;a; Wang et al., 2024), has attracted sustained
attention in recent years due to its ability to adapt models to continuously evolving data scenarios,
enabling lifelong learning capabilities. In the CIL setting, new classes are introduced sequentially,
and the model must learn them without direct access to previously seen data, while maintaining a
unified model capable of recognizing all encountered classes. The core challenge lies in mitigating
catastrophic forgetting (French, 1999), a phenomenon where newly acquired knowledge overwrites
and degrades previously learned information.

Recent advances in CIL utilizing pre-trained model-based method (Zhou et al., 2024a), such as
Vision Transformers (ViT (Dosovitskiy et al., 2021)) and Contrastive Language-Image Pretraining
(CLIP (Radford et al., 2021)), have shown promising performance in CIL. Leveraging their rich prior
knowledge, these methods achieve competitive performance by fine-tuning only classification heads
and a subset of parameters. However, they typically assume fully labeled data for all incremental
tasks which is often impractical in real-world applications where annotations are scarce or costly. To
address this, as shown in Fig. 1, we propose a more realistic class incremental learning paradigm: at
each incremental task, the model receives only class names and unlabeled data for each category.

A straightforward solution is to exploit a pre-trained vision-language model: convert each class name
into its textual embedding, compute similarities between image and text embeddings, and use the
highest-scoring class as a pseudo label for each image. However, these pseudo labels are inherently
noisy, which degrades performance and exacerbates forgetting.

1
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Figure 1: Class incremental learning for vision-
language model with unlabeled data.

To address these challenges, we propose N2L,
a method for CIL with frozen vision-language
models and unlabeled data. Inspired by ana-
lytic CIL (Zhuang et al., 2022), N2L adopts
a mean squared error regression objective in-
stead of the standard cross-entropy loss, which
has been shown to be more robust to noisy la-
bels (Ghosh et al., 2017). Prior work (Zhuang
et al., 2022) has demonstrated that combining
such a regression loss with a recursive update
scheme in an incremental setting, effectively mit-
igating forgetting. Building on this foundation,
we first develop a novel pseudo label refinement
mechanism. Unlike previous method (Xu et al.,
2024) that increases feature dimensionality, our
method applies feature dimensionality reduction
and trains a label refinement classifier on the reduced features to iteratively update the pseudo labels.
We further provide theoretical guarantees for the effectiveness of this procedure. Additionally, N2L
incorporates a bi-level weight adjustment strategy: inter-class adjustment to address class imbalance
introduced by noisy pseudo labels, and intra-class adjustment to downweight low-confidence samples
that are more likely to be mislabeled. Finally, we derive a recursive formulation of regression with
weight adjustment, ensuring performance identical to joint training with unlabeled data and alleviating
forgetting.

In summary: (1) We propose a practical class incremental learning setting in which only unlabeled data
and class names are available at each task. (2) We propose a feature dimensionality reduction-based
pseudo label refinement method, supported by theoretical analysis. (3) We design inter-class and intra-
class adjustment schemes to compensate for pseudo-label class imbalance and incorporate confidence
information from noisy pseudo labels. (4) Experiments on various benchmarks demonstrate that N2L
outperforms state-of-the-art approaches by a large margin.

2 RELATED WORK

2.1 CLASS INCREMENTAL LEARNING

Class incremental learning methods can be broadly categorized into three directions: parameter
regularization, exemplar replay, and architectural expansion. Regularization-based methods introduce
additional constraints to limit changes in model parameters (Aljundi et al., 2018; Kirkpatrick et al.,
2017) or intermediate representations (Li & Hoiem, 2017; Zhang et al., 2020; Kang et al., 2022;
Li et al., 2024a), aiming to preserve performance without accessing previous data. Replay-based
approaches typically store representative samples or features from previous learned classes. Some
works focus on selecting more effective samples (Sun et al., 2023; Liu et al., 2020; Lopez-Paz & Ran-
zato, 2017), while others investigate how to and utilize the feature representation of each classes (Zhu
et al., 2021; Toldo & Ozay, 2022; Li et al., 2024b). Architecture-based methods (Douillard et al.,
2022; Wang et al., 2022a; Hu et al., 2023) dynamically expand model capacity by introducing new
parameter modules for new classes while keeping existing parameters fixed.

2.2 PRE-TRAINED MODEL BASED CIL

Recent CIL research leverages pre-trained models due to their rich prior knowledge. These methods
typically adopt parameter-efficient fine-tuning (PEFT) to adapt to new tasks while keeping the
backbone frozen. A large portion of these methods build on ViT. Some works (Wang et al., 2022c;b;
Smith et al., 2023; Wang et al., 2023; Li & Zhou, 2025) introducing learnable prompt parameters along
with corresponding prompt selection or weighting strategies. While others employ LoRA (Liang & Li,
2024; Wu et al., 2025) or Adapter (Tan et al., 2024; Zhou et al., 2024b) to achieve efficient adaptation.
More recently, there has been growing interest in using CLIP as the backbone, motivated by its
strong multimodal capabilities and generalization performance. Several studies (Zheng et al., 2023;
2024; Gao et al., 2024; Yu et al., 2024) aim to preserve CLIP’s generalization while adapting to new
tasks via parameter regularization or task identification mechanisms. Other approaches (Huang et al.,
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2024; Zhou et al., 2025a) leverage CLIP’s image-text alignment capability to maintain knowledge of
old classes and enhance discrimination of new classes through textual guidance or task adaptation
techniques. Additionally, some replay-based methods (Zhou et al., 2025b; Jha et al., 2024) improve
inter-class feature consistency under limited exemplar budgets using probabilistic modeling or task-
specific module expansion. However, all these methods assume that accurate label is available for
each training sample, which can be labor-intensive.

2.3 LEARNING FROM UNLABELED DATA

In many real world scenarios, category labels are scarce, and the majority of available data is unlabeled,
creating a demand for effective learning from unlabeled data. Pseudo labeling methods (Lee et al.,
2013; Rasmus et al., 2015; Sohn et al., 2020) have been widely used to address this challenge.
In the context of vision-language models, UPL (Huang et al., 2022) proposes generating more
reliable pseudo labels by selecting multiple examples with the highest confidence for each class.
LaFTer (Mirza et al., 2023) generates pseudo labels by training a pure text classifier on a corpus
of text data generated by a large language model. CPL (Zhang et al., 2024) introduces a candidate
pseudo label generation strategy that select reliable pseudo labels by intra-instance and inter-instance
confidence score. However, these methods assume a static learning scenario where all data is provided
at once. In this paper, we propose a new setting, class incremental learning with unlabeled data, in
which the model must continuously acquire new knowledge from unlabeled data while mitigating
forgetting of previously learned information.

3 METHOD

3.1 PRELIMINARIES

Problem definition. CIL with vision-language models considers the scenario where a pre-trained
model, such as CLIP, composing an image encoder and a text encoder V = (fimg, ftext), learns from a
sequence of tasks {T1, T2, . . . , TT }. Each task Tt introduces a disjoint set of classes Yt, satisfying
Yi ∩ Yj = ∅ for i ̸= j. At each task t, the model is trained with new data Dt but has no access
to previously seen datasets D1, . . . ,Dt−1. The goal is to update the model to recognize all classes
seen so far while mitigating catastrophic forgetting. In this work, we address a more realistic and
challenging setting in which nt unlabeled samples, Ut = {xj}nt

j=1, and a corresponding class name
set Ct = {cy|y ∈ Yt} are available. Hence, the dataset at task t is defined as Dt = {Ut, Ct}.

3.2 OVERVIEW

As shown in Fig. 2, the overall pipeline of N2L during task t has four steps: (1) Pseudo Label
Generation. Using the zero-shot capability of the pre-trained vision-language model, pseudo labels,
Ỹt, are assigned to unlabeled images based on the similarity between visual and textual features. (2)
Progressive Label Refinement. We apply feature dimensionality reduction to the extracted image
features Xt of task t, obtaining a reduced representation Xt,k. The pseudo label is iteratively updated
by a label refinement classifier, Ŵ′

t, which is learned using the reduced representation and pseudo
label with the objective of regression. (3) Bi-level Weight Adjustment. To compensate for pseudo-
label class imbalance and utilize the confidence information of samples, we propose a bi-level weight
adjustment strategy. A recursive solution is derived for learning with weight adjustment. (4) Finally,
an incremental classifier, Ŵt is learned using full features X, updated label Ỹ′

t.

3.3 ANALYTIC CIL WITH UNLABELED DATA

Pseudo Label Generation. The absence of labels necessitates reliable pseudo-labeling to associate
each image with a class. Leveraging the zero-shot capabilities of a pre-trained vision-language model
(e.g., CLIP), we generate a pseudo label ỹi for each unlabeled image xi ∈ Ut based on the similarity
between visual and textual features:

ỹi = argmax
c∈Ct

⟨fimg(xi), ftext(pc)⟩, (1)

3
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Figure 2: Overview of N2L during task t. First, each unlabeled image is assigned a pseudo label
using CLIP. To refine these noisy labels, feature dimensionality reduction is applied to the extracted
features, and the pseudo labels are iteratively updated using a label refinement classifier Ŵ′

t learned
by a regression objective. Meanwhile, intra-class and inter-class adjustment strategies are introduced
to leverage sample confidence and address class imbalance. Finally, the incremental classifier Ŵt is
learned using the updated pseudo labels and the weight adjustment strategy.

pc is the prompt for class c (e.g., “a photo of a [CLASS]”).

While this approach enables CIL without annotations, the generated pseudo labels are often noisy.
Although applying cross-entropy loss is the common approach for classification tasks, existing
method (Ghosh et al., 2017) has shown that mean squared error (MSE) loss is more robust to noise.
Recent studies in CIL (Zhuang et al., 2022; Xu et al., 2024; Zhuang et al., 2024; Fang et al., 2024)
further demonstrate that using MSE loss along with a recursive update of the classifier achieves
performance comparable to joint training, effectively mitigating forgetting.

Analytic CIL. Given extracted features of unlabeled data of task 1 to T , X1:T , (each row consists
of a image feature, fimg(x), for the unlabeled data x) and one-hot label tensor Y1:T , the training
objective of joint training on all tasks is formed as ridge regression (Zhuang et al., 2022):

L(WT ) = ∥X1:TWT −Y1:T ∥2F + λ∥WT ∥2F . (2)

The closed-form solution of WT is:

ŴT = argmin
WT

L(WT ) = (AT + λI)−1CT , (3)

where matrix AT and CT can be calculated in an recursive form, with A0 and C0 are initialized as
zero matrices:

At = At−1 +Xt
⊤Xt, Ct = Ct−1 +Xt

⊤Yt. (4)

Then, by obtaining and updating the matrix At and Ct during the training of each task t, the final
classifier ŴT converges to the same solution as that obtained through joint training. The derivation
is provided in Appendix. F.

3.4 PROGRESSIVE LABEL REFINEMENT

In the task of CIL with unlabeled data, the pseudo label generated by zero-shot CLIP can be noisy,
and to tackle this problem, we propose a label refinement method based on the dimensionality-
reduced features. For the task t, we first apply singular value decomposition (SVD) to the extracted
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feature matrix with feature dimension d, Xt = UDV⊤, where Xt ∈ Rnt×d, U ∈ Rnt×nt ,
V = [v1, · · · ,vd] ∈ Rd×d. The i-th diagonal elements of D is di. We select the top-k singular
vectors Vk = [v1, · · · ,vk] whose singular values are above the threshold θ, and project the features
as: Xt,k = XtVk ∈ Rnt×k. We then perform regression using the reduced features Xk,t and pseudo
label Ỹt to obtain a refining classifier Ŵ′

t. The refined pseudo labels are computed as:

Ỹ′
t = argmaxXt,kŴ

′
t. (5)

This process is iterated several times to progressively refine the pseudo labels.

We provide a theoretical guarantee for the effectiveness of our pseudo label refinement method:

Theorem 1. Consider the regression model with noisy labels: y = Xw∗ + ε, where features are
X ∈ Rn×d, w∗ ∈ Rd is the true regression coefficient vector, and ε is the noise with zero mean and
variance σ2. Let the SVD of X = UDV⊤, V = [v1, · · · ,vd]. αi is the i-th coordinate of vector
α∗ = V⊤w∗.

If σ2 ≥ (2λ + d2j ) (α
∗
j )

2, projecting X onto the eigenvectors without j-th components (denoted
X′ = UDV⊤V′) yields a smaller expected mean squared error:

E
[
∥X′ŵ′ −Xw∗∥2F

]
≤ E

[
∥Xŵ −Xw∗∥2F

]
, (6)

where ŵ and ŵ′ are the regression solutions using X and X′, V′ = [v1, . . . ,vj−1,vj+1, · · · ,vd],λ
is the regularization hyperparameter in ridge regression, typically set to 0.1.

Proof. Provided in Appendix. E.1.

In this theorem, α∗
j represents how much of the w∗ lies in the j-th singular direction of X, and dj is

the singular value corresponding to that direction. This theorem implies that when α∗
j is small (little

true signal) or dj is small (poor information of X contained in the j-th direction), the model is more
likely to overfit noise in that direction. Then, including this direction harms rather than helps.

In practice (Appendix. E.2), we empirically observe that σ2 ≤ 2λ(α∗
i )

2 for most α∗
i . This leads to a

threshold of θ =
√

σ2

(α∗
i )

2 − 2λ. In our experiments, we use θ = 10, and k in Eq.5 corresponds to the
largest index such that the singular value dk ≥ θ. Analysis for different values of θ is provided in
Fig.5.

3.5 BI-LEVEL WEIGHT ADJUSTMENT

Although the pseudo labels generated by the pre-trained vision-language model are refined using
the proposed method, the learning process still faces two challenges: (1) The number of samples
per class predicted by pseudo label varies, which hinders the learning of the minor classes. (2) The
pseudo labels are hard 0-1 labels obtained via the argmax operation, which discards useful confidence
information embedded in the soft predictions. To address these issues, we propose a weight adjustment
strategy, which consists of two components: inter-class adjustment and intra-class adjustment,
allowing dynamic weight assignment to individual samples.

Inter-class Adjustment. For task t, given nt samples with features Xt and their corresponding
pseudo labels Ỹ′

t, let Nt,i denotes the number of samples belong to class ci. To balance the samples
from different classes, we define an adjustment factor minter ∈ Rnt as:

minter,i =
nt

Nt,i ∗ |Ct|
. (7)

This ensures that the total weight assigned to each class is normalized to nt

|Ct| , effectively balancing
different classes during training.

Intra-class Adjustment. To incorporate prediction confidence, we propose an intra-class adjustment
strategy based on entropy of the logit. For task t, given the logits Xt,kŴ

′
t (as described in Eq. 5), we

compute the entropy for each sample, yielding E = (E1, · · · , Ent
). A lower entropy indicates higher

confidence, suggesting that such samples should be weighted more heavily. While a naive choice
might be 1

E , this risks numerical instability when entropy values are close to zero. Additionally,

5
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Table 1: Comparison of different methods. Best scores are in bold. The second-best scores are in
underline.

Method
Aircraft Cars CIFAR100

B0Inc10 B50Inc10 B0Inc10 B50Inc10 B0Inc10 B50Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

ZS-CLIP 26.61 17.16 21.66 17.16 82.90 76.73 78.74 76.73 81.81 71.38 76.49 71.38
Label 66.38 56.31 59.18 56.31 93.57 89.15 90.92 89.14 88.52 81.92 85.23 81.92
CODA-Prompt 26.56 17.79 18.11 12.28 79.69 69.03 67.81 56.59 79.36 67.74 66.94 54.64
MoE-Adapter 26.73 17.92 22.19 17.52 83.16 77.02 79.21 77.72 81.86 71.53 76.57 71.49
RAPF 29.07 19.52 20.83 18.46 83.77 73.26 75.73 71.56 84.47 76.08 77.30 74.33
RAIL 36.23 33.59 23.75 25.99 88.64 84.68 82.72 82.13 87.34 80.37 81.44 78.89
ENGINE 34.77 25.41 26.94 23.56 86.90 78.76 82.67 79.93 85.15 77.11 79.89 76.15
N2L 43.73 40.21 29.69 32.42 92.38 87.50 86.42 85.45 87.80 81.13 82.92 80.30

Method
CUB ObjectNet UCF

B0Inc20 B100Inc20 B0Inc20 B100Inc20 B0Inc10 B50Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

ZS-CLIP 75.47 63.72 69.06 63.72 38.43 26.43 31.12 26.43 75.88 67.79 71.68 67.79
Label 86.43 79.05 82.29 79.06 53.18 45.27 49.71 45.26 98.74 97.75 98.37 97.75
CODA-Prompt 67.40 51.91 53.24 37.64 38.25 26.23 26.22 19.22 81.61 75.18 67.06 58.87
MoE-Adapter 73.69 63.07 68.29 63.09 40.14 28.70 32.45 28.53 75.35 67.36 72.28 69.07
RAPF 72.08 58.14 62.27 56.02 39.16 25.88 28.93 24.70 85.99 81.10 75.70 74.31
RAIL 81.64 73.93 73.08 70.91 39.80 35.13 31.21 30.19 90.18 89.90 81.05 84.27
ENGINE 77.06 65.07 70.85 64.92 44.57 31.24 34.62 29.96 87.85 84.46 82.30 81.04
N2L 83.41 76.48 75.16 73.40 49.31 41.59 41.42 38.65 95.00 93.29 86.41 87.87

variations in entropy across different datasets make it challenging for a single function to generalize
effectively. Instead, we sample weights from a gaussian distribution N (1, σ2) and sort them in
ascending order.

m′
1,m

′
2, . . . ,m

′
nt

∼ N (1, σ2), (8)
where m′

1 ≤ m′
2 ≤ · · · ≤ m′

nt
. Then we rearrange the weight according to the order of the entropy:

mintra,i = m′
(rank(Ei))

, (9)

where, rank(Ei) denotes the position of Ei among E when the values are sorted in descending order.
Further analysis is provided in Table.3 in experiment section.

Finally, the weight for the i-th sample is computed as:
mi = mintra,i ∗minter,i. (10)

Analytic CIL with Weight Adjustment. With the computed weights, the optimization
objective (Eq. 2) is reformed as:

(X1:TWT −Y1:T )
⊤M(X1:TWT −Y1:T ) + λ∥WT ∥2F , (11)

where M = diag(M1, · · · ,MT ). Mt is the diagonal weight matrix for task t, whose
diagonal elements are mi. The closed-form solution for WT can be recursively calculated:

ŴT = argmin
WT

L(WT ) = (AT + λI)−1CT , (12)

with
At = At−1 +Xt

⊤MtXt, Ct = Ct−1 +Xt
⊤MtYt. (13)

The derivation is provided in Appendix. F.

Finally, at task t, the incremental image classifier, Ŵt is learned recursively for different classes
using the feature Xt, updated label Ỹt, the stored matrix At−1, Ct−1 and weigh adjustment strategy.
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Figure 3: Comparison of ZS-CLIP, RAIL, N2L
and, N2L with ground truth labels.
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Figure 4: Ablation study of different com-
ponents on Aircraft-B0Inc10.

3.6 INFERENCE STEP

During inference, following the strategy of RAIL (Xu et al., 2024), we compute the final prediction
by taking a weighted sum of the zero-shot prediction logits and the learned classification head logits.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Datasets. Following prior works (Zhou et al., 2025a;b), we evaluate our method on six widely
used benchmark datasets: FGVCAircraft (Maji et al., 2013), StanfordCars (Krause et al., 2013),
CIFAR100 (Krizhevsky et al., 2009), CUB200 (Wah et al., 2011), ObjectNet (Barbu et al., 2019), and
UCF (Soomro et al., 2012). The classes in each dataset are split according to two class incremental
learning protocols: (1) No base classes: all classes are evenly and disjointly split into 10 tasks. (2)
With base classes: the first task includes half of the total classes as base classes, and the remaining
classes are divided into 5 incremental tasks.

Evaluation Metrics. Following prior works (Zhou et al., 2025a), we report two metrics to evaluate
the performance: AB and Ā. AB represents the accuracy at the final task. Ā represents average
accuracy across all tasks, computed as Ā = 1

B

∑B
b=1 Ab.

Comparison Methods. We compare our method with existing CIL methods based on vision-language
models, including non-exemplar-based methods: MoE-Adapters (Yu et al., 2024), RAPF (Huang
et al., 2024), ENGINE (Zhou et al., 2025a), RAIL (Xu et al., 2024) and unimodal CIL baseline
CODA-Prompt (Smith et al., 2023). ENGINE proposed a re-ranking method to boost performance.
For fair comparison, we report the results before applying re-ranking. The zero-shot prediction of
CLIP is utilized to generate the pseudo labels for comparison methods. Additionally, we report results
for zero-shot CLIP (denoted as ZS-CLIP) and N2L trained with ground truth labels for each sample,
serving as the upper bound in this setting (denoted as Label). All methods use the same LAION-400M
pre-trained CLIP ViT-B/16 backbone and identical task splits. Additional experiments with OpenAI
pre-trained CLIP ViT-B/16 and comparison with exemplar-based methods, PROOF (Zhou et al.,
2025b) and CLAP4CLIP (Jha et al., 2024), are provided in Appendix. C.

Implementation Details. For hyperparameters, the threshold θ for feature dimensionality reduction
is set to 10, and pseudo-labels are updated over 3 iterations. The standard deviation σ to sample
intra-class weights is set to 0.5. All results are averaged over three runs. Experiments are conducted
using PyTorch on an NVIDIA RTX 4090 GPU.

4.2 MAIN RESULTS

Table. 1 summarizes the performance comparison across six datasets under various class-incremental
settings. It can be observed that, the CIL methods designed for unimodel ViT achieve inferior
performance, and even worse than the ZS-CLIP on some datasets such as Cars, CIFAR100 and CUB.
This is because they only use the visual part of the CLIP, without utilizing the ability of aligning
image and text in CLIP. The noisy pseudo label also hinders the learning of these methods and
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Figure 5: Left: MSE between the true labels and the predictions of classifiers learned on reduced
features of different tasks across different thresholds. Different colors denote different tasks. Right:
the classification accuracy across different thresholds.

exacerbates forgetting. Our method consistently outperforms existing approaches in all scenarios.
Notably, on datasets with large distribution shifts from CLIP’s pre-training data (e.g., Aircraft and
ObjectNet), our method surpasses the second-best method by a significant margin of 2.75%-8.46%.
For the remaining datasets, we also achieve consistent improvements of at least 2.82%, 0.46%, 1.77%,
and 3.39% on Cars, CIFAR100, CUB, and UCF, respectively.

To further analyze the gap between learning without labels and learning with perfect labels, Fig. 3
and Table. 1 presents the results of ZS-CLIP, the second-best method RAIL, our method N2L, and
an upper bound represented by N2L trained with ground truth labels. In addition to significantly
outperforming both ZS-CLIP and RAIL, N2L narrows the gap to the upper bound by nearly 50% on
Cars, ObjectNet and UCF, highlighting its effectiveness in incremental learning with unlabeled data.

In Table. 2, we compare our method with the unlabeled data learning approach CPL (Zhang et al.,
2024). Specifically, we integrate CPL with various methods by replacing the pseudo labels with
those produced by CPL. The results show that even when enhanced with CPL, existing methods
still underperform compared to N2L. Furthermore, N2L itself achieves better performance when
combined with CPL.

These improvements stem from our feature dimensionality reduction-based pseudo label refinement
strategy, which further refines noisy labels. Additionally, the proposed inter-class and intra-class
weight adjustment schemes help balance class frequency and leverage prediction confidence. More-
over, our regression-based learning objective with weight adjustment is inherently more robust to
label noise than the traditional cross-entropy loss and can be solved in a recursive manner, thereby
mitigating forgetting.

4.3 FURTHER ANALYSIS.

Effectiveness of Different Components. Fig. 4 presents an ablation study on different components
of our approach. The baseline method is RAIL (Xu et al., 2024), which employs the ridge regression
in Eq.2 to optimize the classifier. RAIL outperforms ZS-CLIP on most tasks, benefiting from its
noise-robust regression objective and the recursively calculated classifier, which can be solved in a
recursive manner.

Results show that incorporating inter-class adjustment improves performance, which can be attributed
to its effectiveness in alleviating class frequency imbalance caused by imperfect pseudo labels.
Moreover, the proposed intra-class adjustment strategy further enhances performance by assigning
greater weight to high-confidence samples and reducing the influence of low-confidence ones, thereby
minimizing the impact of erroneous pseudo labels. Finally, the proposed pseudo label refinement
further leads to a dramatic performance gain on all tasks.

Progressive Label Refinement. The core of this component lies in the feature dimensionality
reduction strategy, supported by the theoretical guarantee provided in Theorem 1. To evaluate
whether removing certain singular directions of the feature matrix X leads to lower mean squared
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Table 2: Comparison of different methods com-
bined with unlabeled learning method CPL.

Method
Aircraft-B0 CUB-B0
Ā AB Ā AB

RAIL 36.23 33.59 81.64 73.93
RAIL + CPL 43.61 35.80 81.93 74.89
ENGINE 34.77 25.41 77.06 65.07
ENGINE + CPL 37.07 25.47 78.80 68.53
N2L 43.71 40.21 83.41 76.48
N2L + CPL 47.48 42.99 83.50 77.69

Table 3: Ablation of different intra-class adjust-
ment methods on Aircraft-B0Inc10 setting.

Method
Aircraft-B0
Ā AB

w/o. Intra-class Adjustment 43.39 39.69
w/. Intra-class 1

E
43.25 38.45

w/. Intra-class U(0.5, 1.5) 43.71 40.08
w/. Intra-class U(0.25, 1.75) 43.55 40.12
w/. Intra-class N (1, 1

16
) 43.61 40.23

w/. Intra-class N (1, 1
4
) 43.73 40.21

error (MSE), we show the MSE between the true labels without noise and the predictions of classifiers
learned on reduced features across different threshold values θ. Results for various tasks under the
Aircraft-B0Inc10 setting are shown in the left of Fig. 5. The error curves exhibit a clear U-shape across
tasks: as θ increases, more singular directions satisfying the inequality σ2 ≥ (2λ + d2i ) (α

∗
i )

2 are
removed, which leads to a drop in error. However, when θ becomes too large, even singular directions
that do not meet this condition are eliminated, resulting in increased error. The corresponding
accuracy curves for different θ values, shown on the right, follow a similar trend. We empirically set
θ = 10.
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Figure 6: Norm of the classifier for different classes.

Bi-level Weight Adjustment. To eval-
uate inter-class adjustment, we visual-
ize the norm of the classifier for differ-
ent classes across tasks in the Aircraft-
B0Inc10 setting in Fig. 6. The re-
sults demonstrate that the proposed
inter-class adjustment strategy signifi-
cantly suppresses large norms, prevent-
ing classes with more samples from
dominating the classifier and thereby
improving class balance. Table. 3
presents the performance of various
intra-class adjustment strategies. The
first row, which omits intra-class adjust-
ment, yields the lowest performance, highlighting the necessity of incorporating such techniques.
When intra-class adjustment is applied, using the reciprocal of entropy as the weighting factor results
in lower performance compared to not applying weight adjustment. This is because it assigns ex-
cessively large weights to low entropy (high confidence) samples, which may dominate the learning
and bias the model. Weight generation strategies that sample from predefined distributions, such
as uniform and Gaussian, demonstrate improved performance. Among them, the Gaussian distri-
bution N (1, 1

4 ) achieves better overall results on both Ā and AB . Therefore, we adopt N (1, 1
4 ) for

intra-class adjustment in our approach.

5 CONCLUSION

In this work, we introduce a more realistic paradigm for class incremental learning with vision-
language model in which, at each task, only class names and unlabeled data for new categories
are provided. To tackle this problem, we proposed N2L, a method that combines the regression
learning objective with two key mechanisms. First, a pseudo label refinement method is proposed
to iteratively refine initial pseudo labels by learning a label refinement classifier on features after
dimensionality reduction, with theoretical guarantees on its denoising effectiveness. Second, we
adopt a learning strategy comprising inter-class adjustment to address class imbalance introduced by
pseudo labels, and intra-class adjustment to downweight low-confidence samples, thereby reducing
the impact of noisy supervision. This regression with weight adjustment can be solved in a recursive
form, achieving identical performance to joint training with unlabeled data and mitigating forgetting.
Our work paves the way for more annotation-efficient incremental learning.
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A LIMITATION

In this paper, we propose a setting where only unlabeled data and class names are provided for each
incremental task. We assume that the unlabeled data strictly corresponds to the given class names.
However, in real-world scenarios, this assumption may not hold, the collected data could include
samples from previously seen classes as well as from unseen future classes not included in either the
current or past tasks. As part of future work, we plan to explore a more challenging setting where the
unlabeled data may contain a mix of past, present, and future classes.

B CODE

We provide the core implementation of the training process in code.py. The
incremental train() function serves as the main entry point for performing incremental
training, while the train() function carries out the training for each incremental task.

C MORE RESULTS

C.1 DIFFERENT EPOCHS OF PROGRESSIVE LABEL REFINEMENT
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Figure 7: Results on Aircraft B0Inc10 with different epochs of progressive label refinement.

In Fig. 7, we present an ablation study on the number of epochs used for label refinement. Setting the
number of epochs to 0, meaning the pseudo label refinement strategy is not applied, results in the
lowest performance. When the refinement strategy is incorporated, there is a significant improvement
in performance. Moreover, the results remain stable when the number of epochs is set between 2 and
5. Based on these observations, we choose 3 epochs as the default setting in our experiments.

C.2 COMPARISON WITH EXEMPLAR-BASED METHODS

In Table 4, we compare our method with existing exemplar-based approaches, PROOF (Zhou et al.,
2025b) and CLAP4CLIP (Jha et al., 2024). Following their setting, the exemplar buffer uses a fixed
memory strategy that stores 20 samples per class. In contrast, our method does not use any exemplars,
i.e., the exemplar buffer size is zero. Results show that even without storing exemplars, N2L
outperforms existing methods on all datasets, except for the setting with base classes on CIFAR100,
CUB, and ObjectNet, where the performance gap is only 0.27%, 0.58%, and 0.43% respectively.
These results highlight N2L’s strong ability to mitigate forgetting, primarily due to the recursively
computed closed-form solution for the classification head, along with intra-class and inter-class
adjustment strategies. Additionally, the proposed pseudo-label refinement method contributes to
more accurate label refinement.
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Table 4: Comparison with exemplar-based methods. Best scores are in bold. The second-best scores
are in underline.

Method
Aircraft Cars CIFAR100

B0Inc10 B50Inc10 B0Inc10 B50Inc10 B0Inc10 B50Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

ZS-CLIP 26.61 17.16 21.66 17.16 82.90 76.73 78.74 76.73 81.81 71.38 76.49 71.38
CLAP4CLIP 41.15 35.81 26.88 28.43 90.02 86.46 79.68 75.88 86.34 79.11 82.90 80.57
PROOF 38.10 33.62 28.10 28.15 89.23 85.09 83.83 83.03 84.85 77.47 79.17 76.36
N2L 43.73 40.21 29.69 32.42 92.38 87.50 86.42 85.45 87.80 81.13 82.92 80.30

Method
CUB ObjectNet UCF

B0Inc20 B100Inc20 B0Inc20 B100Inc20 B0Inc10 B50Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

ZS-CLIP 75.47 63.72 69.06 63.72 38.43 26.43 31.12 26.43 75.88 67.79 71.68 67.79
CLAP4CLIP 82.45 74.85 75.74 72.71 49.00 38.55 41.85 37.77 87.10 83.82 81.38 83.50
PROOF 80.50 73.98 73.74 71.83 45.46 34.93 35.36 32.16 89.41 86.00 81.23 81.76
N2L 83.41 76.48 75.16 73.40 49.31 41.59 41.42 38.65 95.00 93.29 86.41 87.87

Table 5: Comparison of different methods with OpenAI pre-trained weight. Best scores are in bold.
The second-best scores are in underline.

Method
Aircraft Cars CIFAR100

B0Inc10 B50Inc10 B0Inc10 B50Inc10 B0Inc10 B50Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

ZS-CLIP 32.96 21.96 27.40 21.96 71.99 56.36 64.51 56.36 78.66 68.22 72.97 68.22
Label 64.11 53.42 57.04 53.45 87.79 79.22 83.60 79.23 87.23 79.94 82.40 79.98
CODA-Prompt 32.59 22.89 22.30 15.75 68.91 53.34 54.89 43.56 77.94 64.98 64.21 52.00
MoE-Adapter 33.37 22.87 27.75 22.55 70.64 56.39 63.43 55.88 80.17 69.69 74.44 69.86
RAPF 36.10 25.68 26.57 23.63 73.36 57.02 61.55 55.10 83.43 74.84 76.08 73.26
RAIL 42.44 37.72 27.86 28.77 80.33 69.55 66.96 63.88 85.59 77.78 77.81 75.82
ENGINE 38.40 27.97 30.30 25.45 76.72 62.14 69.38 62.42 82.94 73.29 77.03 72.85
N2L 46.75 42.11 30.46 32.88 83.65 75.47 74.32 71.94 86.35 79.00 79.38 78.03

Method
CUB ObjectNet UCF

B0Inc20 B100Inc20 B0Inc20 B100Inc20 B0Inc10 B50Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

ZS-CLIP 68.48 54.04 59.95 54.04 45.61 33.01 38.16 33.01 79.92 70.75 76.22 70.75
Label 84.55 76.45 79.92 76.46 57.81 47.93 52.99 47.90 98.73 97.32 98.26 97.32
CODA-Prompt 64.40 46.89 47.75 35.09 42.45 30.11 31.24 23.43 82.23 74.84 68.27 58.96
MoE-Adapter 67.93 54.44 59.37 54.52 44.83 33.46 38.24 33.79 80.09 71.66 74.96 70.62
RAPF 69.33 51.58 56.96 48.94 48.91 34.92 38.83 33.63 89.10 83.11 79.37 76.51
RAIL 78.57 70.01 66.58 65.01 48.37 41.22 39.08 36.59 91.86 90.70 82.93 84.96
ENGINE 72.80 58.29 64.34 58.32 50.00 35.58 40.49 34.53 90.02 85.73 84.76 82.85
N2L 81.18 72.58 69.99 68.01 54.99 45.21 45.26 42.09 95.58 93.57 89.16 89.91

C.3 DIFFERENT PRE-TRAINED WEIGHTS

In the main paper, we compare various methods using the CLIP model pre-trained on LAION400M1.
In Table 5, we present the results using the CLIP model pre-trained by OpenAI2. The results
demonstrate that N2L consistently outperforms other methods across both settings.

1https://github.com/mlfoundations/open clip
2https://github.com/openai/CLIP
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Table 6: Comparison of different methods on Food, ImageNet-R, and SUN datasets.

Method
Food ImageNet-R SUN

B0Inc10 B50Inc10 B0Inc20 B100Inc20 B0Inc30 B150Inc30
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

ZS-CLIP 87.86 81.99 84.78 81.99 83.12 76.62 79.23 76.62 79.45 72.14 74.99 72.14
ENGINE 88.30 81.78 84.72 81.55 84.14 76.93 79.26 76.56 83.04 76.17 78.06 75.10
ENGINE + Label 88.52 81.85 85.08 81.59 84.61 77.12 79.96 76.78 83.51 76.21 78.83 75.20
N2L 90.58 85.50 87.18 85.01 86.00 81.06 81.89 80.29 84.38 78.85 79.15 77.40
N2L + Label 90.95 85.84 88.38 85.84 86.61 81.52 83.88 81.51 87.42 81.50 84.31 81.50

C.4 MORE DATASETS

Following the setting of ENGINE (Zhou et al., 2025a), in Table 6, we also report the results of
three datasets: Food (Bossard et al., 2014), ImageNet-R (Hendrycks et al., 2021), and SUN (Xiao
et al., 2010). ENGINE + Label and N2L + Label represent providing the methods with annotated
data instead of unlabeled data in ENGINE and N2L. In these datasets, results show that the gap
between learning with unlabeled data and annotated data is small. This is because these datasets
have a high zero-shot performance, making the generated pseudo labels more reliable, which aids the
learning with unlabeled data. On these datasets, N2L with unlabeled data even achieves comparable
performance to the ENGINE + Label.

D INTRODUCTION ABOUT COMPARISON METHODS

ZS-CLIP. This method enables direct inference without requiring training on specific downstream
tasks. It leverages the pretrained image-text alignment ability of CLIP to recognize images.

CODA-Prompt (Smith et al., 2023). This method introduces an attention-based end-to-end key-
query framework. It learns a set of prompt components and combines them using input-conditioned
attention weights to generate input-aware prompts, thereby enhancing the model’s adaptability to
new tasks. This method relies solely on the visual branch of CLIP.

MoE-Adapters (Yu et al., 2024). This method adapts to continuously arriving tasks by dynamically
inserting Mixture-of-Experts adapters into a pre-trained CLIP model. It enables progressive model
expansion without altering the original backbone, effectively mitigating forgetting in long-term
continual learning.

RAPF (Huang et al., 2024). This method is built upon a frozen pre-trained CLIP. During the training
of new tasks, it measures the influence of new classes on old ones using textual features and adaptively
adjusts the representations of old classes. In the adapter fine-tuning phase, a decomposed parameter
fusion strategy is introduced to further mitigate forgetting.

RAIL (Xu et al., 2024). This method employs a recursive ridge regression-based adapter to learn
tasks across multiple domains and decouples inter-domain correlations by projecting features into a
higher-dimensional space. It also uses a training-free fusion module to preserve zero-shot capability
without the need for reference data.

ENGINE (Zhou et al., 2025a). This method employs a dual-branch tuning framework: the visual
branch enriches image features through data augmentation, the textual branch leverages GPT-4 to
generate more discriminative class descriptions, and during inference, a re-ranking strategy is applied
to further improve prediction results.

The following are two exemplar-based methods. For a fair comparison, we adopt a storage strategy
of 20 samples per class for both methods.

CLAP4CLIP (Jha et al., 2024). This method performs probabilistic modeling over the visual-guided
textual features for each task, enabling a more reliable continual learning fine-tuning strategy. Unlike
traditional forgetting-mitigation methods that rely on large amounts of data, it leverages the rich prior
knowledge of CLIP for parameter initialization and distribution regularization.
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PROOF (Zhou et al., 2025b). This method trains task-specific projection modules for each task,
expands new projections while keeping the old ones fixed, and introduces a fusion module to jointly
adjust visual and textual features.

E DETAILS OF THEOREM 1

E.1 PROOF OF THEOREM 1

Theorem 1. Consider the regression model with noisy labels: y = Xw∗ + ε, where features are
X ∈ Rn×d, w∗ ∈ Rd is the true regression coefficient vector, and ε is the noise with zero mean and
variance σ2. Let the SVD of X = UDV⊤, V = [v1, · · · ,vd]. αi is the i-th coordinate of vector
α∗ = V⊤w∗.

If σ2 ≥ (2λ + d2j ) (α
∗
j )

2, projecting X onto the eigenvectors without j-th components (denoted
X′ = UDV⊤V′) yields a smaller expected mean squared error:

E
[
∥X′ŵ′ −Xw∗∥2F

]
≤ E

[
∥Xŵ −Xw∗∥2F

]
, (14)

where ŵ and ŵ′ are the regression solutions using X and X′, V′ = [v1, . . . ,vj−1,vj+1, · · · ,vd].

Proof.

The objective function of Ridge Regression is given by:

min
w

∥y −Xw∥2F + λ∥w∥2F , (15)

whose analytical solution is:
ŵ = (X⊤X+ λI)−1X⊤y. (16)

Substituting the SVD into the ridge solution, we get:

ŵ = (X⊤X+ λI)−1X⊤y

= (VD2V⊤ + λI)−1VDU⊤y.

= V(D2 + λI)−1DU⊤y.

(17)

According to the definition α∗ = V⊤w∗ = (α∗
1, α

∗
2, . . . )

⊤, we have Xw∗ = UDα∗.

Let α̂ = (D2 + λI)−1DU⊤y , then according to Eq. 17, Xŵ = UDα̂.

The mean squared error of the prediction is:

MSE = E
[
∥Xŵ −Xw∗∥2F

]
= E

[
∥UD(α̂−α∗)∥2F

]
= E

[
∥D(α̂−α∗)∥2F

]
=

d∑
i=1

d2i E
[
(α̂i − α∗

i )
2
]

=

d∑
i=1

d2i (E[α̂i]− α∗
i )

2︸ ︷︷ ︸
Bias2i

+d2i Var(α̂i)︸ ︷︷ ︸
Vari

.

(18)

The α̂ can also be represented as:

α̂ = (D2 + λI)−1DU⊤y

= (D2 + λI)−1DU⊤ (Xw∗ + ε)

= (D2 + λI)−1DU⊤ (UDα∗ + ε)

= (D2 + λI)−1D(Dα∗ +U⊤ε),

(19)

17
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which can be decomposed into signal and noise components:

α̂i =
d2i

d2i + λ
α∗
i +

di
d2i + λ

(u⊤
i ε), i = 1, . . . , d. (20)

Bias: The expectation of the α̂i:

Biasi = E[α̂i]− α∗
i

=
d2i

d2i + λ
α∗
i +

di
d2i + λ

E[u⊤
i ε]− α∗

i

=

(
d2i

d2i + λ
− 1

)
α∗
i

= − λ

d2i + λ
α∗
i .

(21)

And the squared bias is:

Bias2i =

(
λ

d2i + λ

)2

(α∗
i )

2. (22)

Variance: The variance of α̂i:

Var(α̂i) = Var

(
d2i

d2i + λ
α∗
i +

di
d2i + λ

u⊤
i ε

)
= Var

(
di

d2i + λ
u⊤
i ε

)
=

d2i
(d2i + λ)2

σ2.

(23)

Then the mean squared error is:

MSE =

d∑
i=1

d2i

[
(E[α̂i]− α∗

i )
2
+Var(α̂i)

]
=

d∑
i=1

d2i

[(
λ

d2i + λ

)2

(α∗
i )

2 +
d2i

(d2i + λ)2
σ2

]

=

d∑
i=1

(λdi)
2

(d2i + λ)2
(α∗

i )
2 +

d∑
i=1

d4i
(d2i + λ)2

σ2.

(24)

Consider removing the j-th singular direction:

X′ = XV′

= UDV⊤V′

= [d1u1, · · · , di−1ui−1, di+1ui+1, · · · , dnun] (25)

= U′D′

where U′ is removing j-th column of U, and D′ is removing j-th column and row of D.

The objective function of Ridge Regression is:

min
w

∥y −X′w∥2F + λ∥w∥2F , (26)

whose analytical solution is:
ŵ′ = (X′⊤X′ + λI)−1X′⊤y.

= (D′2 + λI)−1D′U′⊤y.
(27)
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Similar to the definition of α̂, we also define α̂′
j = (D′2 + λI)−1D′U′⊤y then we have:

α̂′ = ŵ′ = (D′2 + λI)−1D′U′⊤y

= (D′2 + λI)−1D′(D′α∗ +U′⊤ε),
(28)

where

α̂′
i =


d2i

d2i + λ
α∗
i +

di
d2i + λ

(u⊤
i ε) = α̂i, i = 1, . . . , j − 1 (29)

d2i+1

d2i+1 + λ
α∗
i+1 +

di+1

d2i+1 + λ
(u⊤

i+1ε) = α̂i+1, i = j, . . . , d− 1 (30)

Then the prediction error of using Xk is:

MSE′ = E
[
∥X′ŵ′ −Xw∗∥2F

]
= E

[
∥U′D′α̂′ −UDα∗∥2F

]
=

j−1∑
i=1

d2i E
[
(α̂′

i − α∗
i )

2
]
+

d−1∑
i=j

d2i E
[
(α̂′

i − α∗
i+1)

2
]
+ d2j E

[
(α∗

j )
2
]

=

j−1∑
i=1

d2i E
[
(α̂i − α∗

i )
2
]
+

d∑
i=j+1

d2i E
[
(α̂i − α∗

i )
2
]
+ d2j E

[
(α∗

j )
2
]

= MSE − E
[
(α̂j − α∗

j )
2
]
+ d2j E

[
(α∗

j )
2
]

= MSE − d2j

[(
E[α̂j ]− α∗

j

)2
+Var(α̂j)

]
+ d2j E

[
(α∗

j )
2
]

= MSE − (λdj)
2

(d2j + λ)2
(α∗

j )
2 −

d4j
(d2j + λ)2

σ2 + d2j (α
∗
j )

2.

(31)

With the assumption that σ2 ≥ (2λ+ d2i ) (α
∗
i )

2:

d2j (α
∗
j )

2 =
(λdj)

2

(d2j + λ)2
(α∗

j )
2 + d2j (1−

λ2

(d2j + λ)2
) (α∗

j )
2

=
(λdj)

2

(d2j + λ)2
(α∗

j )
2 + d4j

(d2j + 2λ) (α∗
j )

2

(d2j + λ)2

≤ (λdj)
2

(d2j + λ)2
(α∗

j )
2 +

d4j
(d2j + λ)2

σ2.

(32)

Then
MSE′ ≤ MSE, (33)

finish the proof.

E.2 THE SCALE OF σ AND α∗

In this section, we show the scale of σ and α∗ to show that the assumption of σ2 ≥ (2λ+d2j ) (α
∗
j )

2 in
Theorem 1 can be achieved with appropriate dj . λ is the regularization parameter of ridge regression
which is typically 0.1. During the learning of task t, for a specific class k and the sample xi, the ground
truth label is a one-hot value yi,k, the pseudo label is also a one-hot value ỹi,k. Then the standard
variance σ of class k can be estimated by yi,k − ỹi,k with different samples. For α∗ = V⊤w∗, V is
the part of the SVD decomposition of X and w∗ can be estimated by solving ridge regression with
the feature X and ground truth label Y. Then, we show the standard variance σ of different classes
and the value of different dimensions of α∗ in Fig. 8. The horizontal coordinate of the gray line
represents the estimated noisy standard variance. And the absolute value of α∗

j is presented by the bar
chart. The experiment is conducted on the first task of Aircraft-B0Inc10 setting. Results show that
98.14% of the α∗

j satisfy the condition of σ2 ≥ (α∗
j )

2 and 99.9% of the α∗
j satisfy the condition of

σ2 ≥ 2λ(α∗
j )

2 with λ = 0.1. Therefore, when dj takes an appropriate value, σ2 ≥ (2λ+ d2j )(α
∗
j )

2

can be satisfied.
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Figure 8: The estimated noisy variance (gray line) and the bar chart for the absolute value of α∗
j on

the first task of Aircraft-B0Inc10 setting.

F ANALYTIC CIL WITH WEIGHT ADJUSTMENT.

In this section, we derive how to get the closed-form solution of ridge regression with re-weight in
the incremental learning setting. The derivation of the standard ridge regression can be seen as setting
the weight matrix to the identity matrix. The optimization objective of ridge regression with weight
can be reformed as:

L(WT ) = (X1:TWT −Y1:T )
⊤M(X1:TWT −Y1:T )

+ λW⊤
T WT ,

(34)

where M = diag(m1, · · · ,mn) is the diagonal weight matrix.

The gradient w.r.t. WT is :

∇WT
L = 2X⊤

1:TMX1:TWT − 2X⊤
1:TMY1:T + 2λWT (35)

Setting gradient to zero:

ŴT =
(
X⊤

1:TMX1:T + λI
)−1

X⊤
1:TMY1:T

=

[X⊤
1 · · ·X⊤

T

] M1 · · · 0
...

. . .
...

0 · · · MT


X1

...
XT

+ λI

[X⊤
1 · · ·X⊤

T

] M1 · · · 0
...

. . .
...

0 · · · MT


Y1

...
YT


=

(
T∑

t=1

X⊤
t MtXt + λI

)−1( T∑
t=1

X⊤
t MtYt

)
(36)

where Mt is the diagonal weight matrix of Xt. Then the closed-form solution for WT can be updated
recursively as:

ŴT = (AT + λI)−1CT , (37)
with

At = At−1 +Xt
⊤MtXt, Ct = Ct−1 +Xt

⊤MtYt. (38)

G DETAILED PERFORMANCE ON EACH TASKS

To present the results in detail, we present the accuracy of different methods with e LAION-400M
pre-trained CLIP ViT-B/16 after different tasks in Fig. 9 (without base classes) and Fig. 10 (with
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base classes). Unlike the typical declining trend of accuracy across tasks, we observe an increasing
accuracy trajectory on certain datasets. This phenomenon stems from varying difficulties in generating
pseudo labels for unlabeled data at different stages, when higher quality pseudo labels are produced,
the performance improves accordingly. Notably, our method achieves the best performance on nearly
all tasks. This is attributed to our proposed pseudo label refinement strategy, which effectively refines
noisy labels, as well as the intra-class and inter-class adjustment methods that mitigate class frequency
imbalance and leverage confidence information from pseudo labels.
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Figure 9: Results of each task without base classes.

H PSEUDO CODE

We provide the pseudo code in Algorithm 1. For task t, we first obtain the image features Xt and the
pseudo labels Ỹt. As described in the first paragraph of Sec. 3.4, the projected features Xt,k together
with Ỹt are used to perform a regression step that yields a refined classifier Ŵ ′

t . The refined pseudo
labels Ỹ ′

t are then computed according to Eq. 4. We replace the original pseudo labels Ỹt with Ỹ ′
t

to enable progressive label refinement. After the refinement, the classification head for continual
learning is trained using Xt, the latest refined labels Ỹ ′

t , and the bi-level weight adjustment strategy.

I MORE RESULTS

I.1 STATISTICAL RESULTS

Besides the reported mean results reported in Table 1, we also report standard deviation across
three independent runs in Table 7. These statistical results show that our method maintains stable
performance across different runs, demonstrating its robustness.
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Figure 10: Results of each task with base classes.

Table 7: The mean and standard deviation results of N2L.

Method
Aircraft Cars CIFAR100

B0Inc10 B50Inc10 B0Inc10 B50Inc10 B0Inc10 B50Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

N2L 43.73 40.21 29.69 32.42 92.38 87.50 86.42 85.45 87.80 81.13 82.92 80.30
±0.24 ±0.20 ±0.24 ±0.26 ±0.14 ±0.15 ±0.02 ±0.09 ±0.10 ±0.03 ±0.03 ±0.04

Method
CUB ObjectNet UCF

B0Inc20 B100Inc20 B0Inc20 B100Inc20 B0Inc10 B50Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

N2L 83.41 76.48 75.16 73.40 49.31 41.59 41.42 38.65 95.00 93.29 86.41 87.87
±0.07 ±0.05 ±0.08 ±0.10 ±0.35 ±0.20 ±0.24 ±0.26 ±0.10 ±0.21 ±0.08 ±0.03

I.2 MORE ABLATION RESULTS

In the main paper, we present a subset of the results in Fig. 4 to maintain readability. Additional
results for each individual component are provided in Table. 8. When incorporating only a single
component, the pseudo-label refinement module achieves the most significant improvement. The
inter-class and intra-class adjustment modules further enhance performance by balancing the weights
of different samples. Finally, combining all components yields the best overall results.

I.3 NOISY TASK BOUNDARY

In this section, we evaluate our approach under a noisy task boundary scenario, where 20% or 50%
of the training samples are drawn from C1:t−1. The results in Table. 9 show that our N2L still
outperforms existing methods under such noisy conditions, demonstrating its effectiveness.
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Algorithm 1 N2L Training Procedure
Input: Pre-trained VLM V = (fimg, ftext); data stream D = {Dt}Tt=1 where Dt = {Ut, Ct};

regularization λ.
Output: Incremental classifier ŴT .

1: Initialize A0 = 0, C0 = 0.
2: for t = 1 to T do
3: Step 1: Pseudo Label Generation
4: for each xi ∈ Ut do (Eq. 1)
5: Compute ỹi = argmaxc∈Ct⟨fimg(xi), ftext(pc)⟩
6: end for
7: Form pseudo-label matrix Ỹt.
8:
9: Step 2: Progressive Label Refinement

10: Extract visual features Xt.
11: Compute SVD: Xt = UDV⊤.
12: Select top-k singular vectors above threshold θ: Vk.
13: Project features: Xt,k = XtVk.
14: for iter = 1 to refinement steps do
15: Learn refinement classifier Ŵ′

t using (Xt,k, Ỹt) and weight adjustment.
16: Update labels Ỹt = argmax(Xt,kŴ

′
t). (Eq. 5)

17: end for
18:
19: Step 3: Bi-level Weight Adjustment
20: Compute class-frequency weights minter. (Eq. 7)
21: Compute entropy E from logits Xt,kŴ

′
t. (Eq. 9)

22: Sample intra-class weights from N (1, σ2), sort and reorder by entropy.
23: Compute weights mi = minter,i ·mintra,i. (Eq. 10)
24: Form diagonal weight matrix Mt.
25:
26: Step 4: Recursive Analytic CIL Update
27: Update sufficient statistics: (Eq. 13)

At = At−1 +X⊤
t MtXt, Ct = Ct−1 +X⊤

t MtỸt.

28: Compute incremental classifier: (Eq. 12)

Ŵt = (At + λI)−1Ct.

29: end for

Table 8: More ablation results of N2L.
Aircraft-B0Inc10 Ā AB

Base 36.23 33.59
Base+Intra 37.29 34.35
Base+Inter 37.31 35.31
Base+Refine 39.50 35.64
Base+Inter+Intra 38.14 36.45
Base+Intra+Refine 41.17 36.17
Base+Inter+Refine 42.34 39.66
Base+Inter+Intra+Refine 43.73 40.21

J INFERENCE STEP

During inference, we follow the prediction fusion strategy of RAIL (Xu et al., 2024), which computes
the final output by taking a weighted sum of the zero-shot CLIP logits and the logits produced by the
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Table 9: Results of different methods under a noisy task boundary scenario, where 0%, 20% or 50%
of the training samples at task t are drawn from previous tasks.

Method
Aircraft Cars CIFAR100

B0Inc10 B50Inc10 B0Inc10 B50Inc10 B0Inc10 B50Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

RAIL(0%) 36.23 33.59 23.75 25.99 88.64 84.68 82.72 82.13 87.34 80.37 81.44 78.89
ENGINE(0%) 34.77 25.41 26.94 23.56 86.90 78.76 82.67 79.93 85.15 77.11 79.89 76.15
N2L(0%) 43.73 40.21 29.69 32.42 92.38 87.50 86.42 85.45 87.80 81.13 82.92 80.30
RAIL(20%) 35.19 31.71 23.06 24.60 87.95 82.81 82.37 81.02 87.01 79.95 81.10 78.38
ENGINE(20%) 33.95 24.72 26.51 22.56 86.45 78.32 82.16 79.18 84.72 76.61 79.52 75.86
N2L(20%) 43.11 38.70 29.13 30.51 91.06 85.26 86.00 84.23 87.68 80.81 82.78 80.07
RAIL(50%) 33.46 28.83 21.97 21.81 85.56 78.74 81.52 78.99 86.55 79.20 80.67 77.69
ENGINE(50%) 33.36 23.25 25.63 21.39 85.44 76.56 80.83 75.90 83.72 75.68 78.64 74.50
N2L(50%) 40.49 36.00 27.45 27.75 89.32 81.61 85.10 81.58 87.02 80.27 82.39 79.23

Method
CUB ObjectNet UCF

B0Inc20 B100Inc20 B0Inc20 B100Inc20 B0Inc10 B50Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

RAIL(0%) 81.64 73.93 73.08 70.91 39.80 35.13 31.21 30.19 90.18 89.90 81.05 84.27
ENGINE(0%) 77.06 65.07 70.85 64.92 44.57 31.24 34.62 29.96 87.85 84.46 82.30 81.04
N2L(0%) 83.41 76.48 75.16 73.40 49.31 41.59 41.42 38.65 95.00 93.29 86.41 87.87
RAIL(20%) 80.25 71.61 72.72 70.02 38.61 33.66 30.29 28.74 88.54 88.33 80.45 83.21
ENGINE(20%) 75.68 63.60 70.20 64.19 44.01 30.34 34.28 29.39 86.94 84.54 82.04 80.64
N2L(20%) 82.10 74.28 74.46 71.76 48.10 40.84 40.96 37.73 93.15 91.21 85.85 86.43
RAIL(50%) 78.38 68.45 71.20 66.33 34.48 29.53 28.09 24.98 86.31 85.75 78.44 79.58
ENGINE(50%) 74.39 61.79 69.22 62.82 42.72 29.75 33.53 28.41 84.28 82.83 80.75 78.63
N2L(25%) 79.86 70.52 72.80 68.54 46.48 37.09 39.05 34.94 90.80 88.86 84.75 84.99

learned classification head. Specifically, the final logit for sample i, denoted as Yi,final, is computed
as:

Yi,final = (1− β) Ỹi + β Yi (39)

where Ỹi is the logit predicted by N2L, Yi is the zero-shot CLIP logit, β is a weighting parameter set
to 0.2 following RAIL.
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