

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NAMING TO LEARN: CLASS INCREMENTAL LEARNING FOR VISION-LANGUAGE MODEL WITH UNLABELED DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Class Incremental Learning (CIL) enables models to adapt to evolving data distributions by learning new classes over time without revisiting previous data. While recent methods utilizing pre-trained models have shown promising results, they often assume access to fully labeled data for each incremental task, which is often impractical. In this paper, we instead tackle a more realistic scenario in which only unlabeled data and the [class-name set](#) are available for each new class. Although one could generate pseudo labels with a vision-language model and apply existing CIL methods, the inevitable noise in these pseudo labels tends to aggravate catastrophic forgetting. To overcome this challenge, we propose a method named N2L employing a regression objective with mean squared error loss, which [can be solved in a recursive manner](#). To refine the pseudo labels, N2L applies feature dimensionality reduction to the extracted image features and iteratively updates the labels using a classifier trained on these reduced features. Furthermore, a bi-level weight adjustment strategy is proposed to downweight low-confidence pseudo labels via intra-class adjustment and compensate for pseudo-label class imbalance through inter-class adjustment. This incremental learning with adjustment can be solved recursively, yielding identical performance to joint training [with unlabeled data](#) and thereby mitigating forgetting. Our theoretical analysis supports the effectiveness of the pseudo label refinement process, and experiments on various datasets demonstrate that our proposed method outperforms SOTA methods. Code is provided in the appendix.

1 INTRODUCTION

Class Incremental learning (CIL) (Zhou et al., 2024c;a; Wang et al., 2024), has attracted sustained attention in recent years due to its ability to adapt models to continuously evolving data scenarios, enabling lifelong learning capabilities. In the CIL setting, new classes are introduced sequentially, and the model must learn them without direct access to previously seen data, while maintaining a unified model capable of recognizing all encountered classes. The core challenge lies in mitigating catastrophic forgetting (French, 1999), a phenomenon where newly acquired knowledge overwrites and degrades previously learned information.

Recent advances in CIL utilizing pre-trained model-based method (Zhou et al., 2024a), such as Vision Transformers (ViT (Dosovitskiy et al., 2021)) and Contrastive Language-Image Pretraining (CLIP (Radford et al., 2021)), have shown promising performance in CIL. Leveraging their rich prior knowledge, these methods achieve competitive performance by fine-tuning only classification heads and a subset of parameters. However, they typically assume fully labeled data for all incremental tasks which is often impractical in real-world applications where annotations are scarce or costly. To address this, as shown in Fig. 1, we propose a more realistic class incremental learning paradigm: at each incremental task, the model receives [only class names and unlabeled data](#) for each category.

A straightforward solution is to exploit a pre-trained vision-language model: convert each class name into its textual embedding, compute similarities between image and text embeddings, and use the highest-scoring class as a pseudo label for each image. However, these pseudo labels are inherently noisy, which degrades performance and exacerbates forgetting.

To address these challenges, we propose N2L, a method for CIL with frozen vision-language models and unlabeled data. Inspired by analytic CIL (Zhuang et al., 2022), N2L adopts a mean squared error regression objective instead of the standard cross-entropy loss, which has been shown to be more robust to noisy labels (Ghosh et al., 2017). Prior work (Zhuang et al., 2022) has demonstrated that combining such a regression loss with a recursive update scheme in an incremental setting, effectively mitigating forgetting. Building on this foundation, we first develop a novel pseudo label refinement mechanism. Unlike previous method (Xu et al., 2024) that increases feature dimensionality, our method applies feature dimensionality reduction and trains a label refinement classifier on the reduced features to iteratively update the pseudo labels. We further provide theoretical guarantees for the effectiveness of this procedure. Additionally, N2L incorporates a bi-level weight adjustment strategy: inter-class adjustment to address class imbalance introduced by noisy pseudo labels, and intra-class adjustment to downweight low-confidence samples that are more likely to be mislabeled. Finally, we derive a recursive formulation of regression with weight adjustment, ensuring performance identical to joint training [with unlabeled data](#) and alleviating forgetting.

In summary: (1) We propose a practical class incremental learning setting in which only unlabeled data and class names are available at each task. (2) We propose a feature dimensionality reduction-based pseudo label refinement method, supported by theoretical analysis. (3) We design inter-class and intra-class adjustment schemes to compensate for pseudo-label class imbalance and incorporate confidence information from noisy pseudo labels. (4) Experiments on various benchmarks demonstrate that N2L outperforms state-of-the-art approaches by a large margin.

2 RELATED WORK

2.1 CLASS INCREMENTAL LEARNING

Class incremental learning methods can be broadly categorized into three directions: parameter regularization, exemplar replay, and architectural expansion. Regularization-based methods introduce additional constraints to limit changes in model parameters (Aljundi et al., 2018; Kirkpatrick et al., 2017) or intermediate representations (Li & Hoiem, 2017; Zhang et al., 2020; Kang et al., 2022; Li et al., 2024a), aiming to preserve performance without accessing previous data. Replay-based approaches typically store representative samples or features from previous learned classes. Some works focus on selecting more effective samples (Sun et al., 2023; Liu et al., 2020; Lopez-Paz & Ranzato, 2017), while others investigate how to and utilize the feature representation of each classes (Zhu et al., 2021; Toldo & Ozay, 2022; Li et al., 2024b). Architecture-based methods (Douillard et al., 2022; Wang et al., 2022a; Hu et al., 2023) dynamically expand model capacity by introducing new parameter modules for new classes while keeping existing parameters fixed.

2.2 PRE-TRAINED MODEL BASED CIL

Recent CIL research leverages pre-trained models due to their rich prior knowledge. These methods typically adopt parameter-efficient fine-tuning (PEFT) to adapt to new tasks while keeping the backbone frozen. A large portion of these methods build on ViT. Some works (Wang et al., 2022c;b; Smith et al., 2023; Wang et al., 2023; Li & Zhou, 2025) introducing learnable prompt parameters along with corresponding prompt selection or weighting strategies. While others employ LoRA (Liang & Li, 2024; Wu et al., 2025) or Adapter (Tan et al., 2024; Zhou et al., 2024b) to achieve efficient adaptation. More recently, there has been growing interest in using CLIP as the backbone, motivated by its strong multimodal capabilities and generalization performance. Several studies (Zheng et al., 2023; 2024; Gao et al., 2024; Yu et al., 2024) aim to preserve CLIP’s generalization while adapting to new tasks via parameter regularization or task identification mechanisms. Other approaches (Huang et al.,

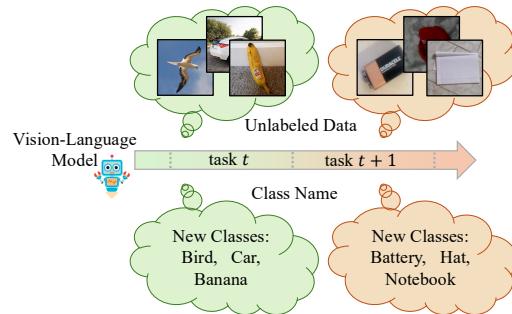


Figure 1: Class incremental learning for vision-language model with unlabeled data.

2024; Zhou et al., 2025a) leverage CLIP’s image-text alignment capability to maintain knowledge of old classes and enhance discrimination of new classes through textual guidance or task adaptation techniques. Additionally, some replay-based methods (Zhou et al., 2025b; Jha et al., 2024) improve inter-class feature consistency under limited exemplar budgets using probabilistic modeling or task-specific module expansion. However, all these methods assume that accurate label is available for each training sample, which can be labor-intensive.

2.3 LEARNING FROM UNLABELED DATA

In many real world scenarios, category labels are scarce, and the majority of available data is unlabeled, creating a demand for effective learning from unlabeled data. Pseudo labeling methods (Lee et al., 2013; Rasmus et al., 2015; Sohn et al., 2020) have been widely used to address this challenge. In the context of vision-language models, UPL (Huang et al., 2022) proposes generating more reliable pseudo labels by selecting multiple examples with the highest confidence for each class. LaFTer (Mirza et al., 2023) generates pseudo labels by training a pure text classifier on a corpus of text data generated by a large language model. CPL (Zhang et al., 2024) introduces a candidate pseudo label generation strategy that select reliable pseudo labels by intra-instance and inter-instance confidence score. However, these methods assume a static learning scenario where all data is provided at once. In this paper, we propose a new setting, class incremental learning with unlabeled data, in which the model must continuously acquire new knowledge from unlabeled data while mitigating forgetting of previously learned information.

3 METHOD

3.1 PRELIMINARIES

Problem definition. CIL with vision-language models considers the scenario where a pre-trained model, such as CLIP, composing an image encoder and a text encoder $\mathcal{V} = (f_{\text{img}}, f_{\text{text}})$, learns from a sequence of tasks $\{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_T\}$. Each task \mathcal{T}_t introduces a disjoint set of classes \mathcal{Y}_t , satisfying $\mathcal{Y}_i \cap \mathcal{Y}_j = \emptyset$ for $i \neq j$. At each task t , the model is trained with new data \mathcal{D}_t but has no access to previously seen datasets $\mathcal{D}_1, \dots, \mathcal{D}_{t-1}$. The goal is to update the model to recognize all classes seen so far while mitigating catastrophic forgetting. In this work, we address a more realistic and challenging setting in which n_t unlabeled samples, $\mathcal{U}_t = \{x_j\}_{j=1}^{n_t}$, and a corresponding class name set $\mathcal{C}_t = \{c_y | y \in \mathcal{Y}_t\}$ are available. Hence, the dataset at task t is defined as $\mathcal{D}_t = \{\mathcal{U}_t, \mathcal{C}_t\}$.

3.2 OVERVIEW

As shown in Fig. 2, the overall pipeline of N2L during task t has four steps: (1) Pseudo Label Generation. Using the zero-shot capability of the pre-trained vision-language model, pseudo labels, $\tilde{\mathbf{Y}}_t$, are assigned to unlabeled images based on the similarity between visual and textual features. (2) Progressive Label Refinement. We apply feature dimensionality reduction to the extracted image features \mathbf{X}_t of task t , obtaining a reduced representation $\mathbf{X}_{t,k}$. The pseudo label is iteratively updated by a label refinement classifier, $\hat{\mathbf{W}}'_t$, which is learned using the reduced representation and pseudo label with the objective of regression. (3) Bi-level Weight Adjustment. To compensate for pseudo-label class imbalance and utilize the confidence information of samples, we propose a bi-level weight adjustment strategy. A recursive solution is derived for learning with weight adjustment. (4) Finally, an incremental classifier, $\hat{\mathbf{W}}_t$ is learned using full features \mathbf{X} , updated label $\tilde{\mathbf{Y}}'_t$.

3.3 ANALYTIC CIL WITH UNLABELED DATA

Pseudo Label Generation. The absence of labels necessitates reliable pseudo-labeling to associate each image with a class. Leveraging the zero-shot capabilities of a pre-trained vision-language model (e.g., CLIP), we generate a pseudo label \tilde{y}_i for each unlabeled image $x_i \in \mathcal{U}_t$ based on the similarity between visual and textual features:

$$\tilde{y}_i = \arg \max_{c \in \mathcal{C}_t} \langle f_{\text{img}}(x_i), f_{\text{text}}(p_c) \rangle, \quad (1)$$

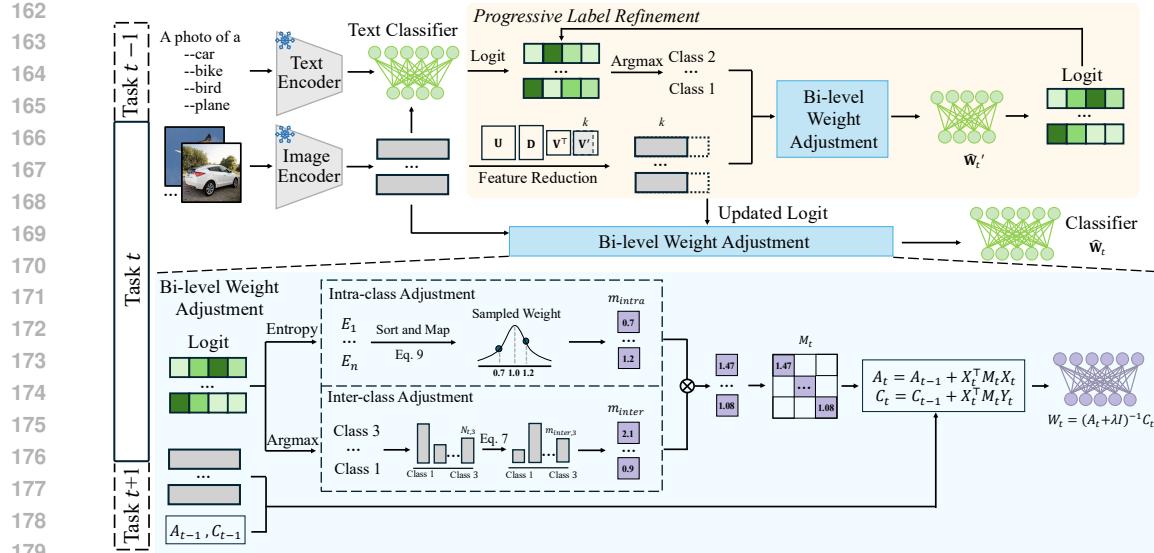


Figure 2: Overview of N2L during task t . First, each unlabeled image is assigned a pseudo label using CLIP. To refine these noisy labels, feature dimensionality reduction is applied to the extracted features, and the pseudo labels are iteratively updated using a label refinement classifier $\hat{\mathbf{W}}'_t$ learned by a regression objective. Meanwhile, intra-class and inter-class adjustment strategies are introduced to leverage sample confidence and address class imbalance. Finally, the incremental classifier $\hat{\mathbf{W}}_t$ is learned using the updated pseudo labels and the weight adjustment strategy.

p_c is the prompt for class c (e.g., “[a photo of a \[CLASS\]](#)”).

While this approach enables CIL without annotations, the generated pseudo labels are often noisy. Although applying cross-entropy loss is the common approach for classification tasks, existing method (Ghosh et al., 2017) has shown that mean squared error (MSE) loss is more robust to noise. Recent studies in CIL (Zhuang et al., 2022; Xu et al., 2024; Zhuang et al., 2024; Fang et al., 2024) further demonstrate that using MSE loss along with a recursive update of the classifier achieves performance comparable to joint training, effectively mitigating forgetting.

Analytic CIL. Given extracted features of unlabeled data of task 1 to T , $\mathbf{X}_{1:T}$, (each row consists of a image feature, $f_{\text{img}}(x)$, for the unlabeled data x) and one-hot label tensor $\mathbf{Y}_{1:T}$, the training objective of joint training on all tasks is formed as ridge regression (Zhuang et al., 2022):

$$\mathcal{L}(\mathbf{W}_T) = \|\mathbf{X}_{1:T}\mathbf{W}_T - \mathbf{Y}_{1:T}\|_F^2 + \lambda\|\mathbf{W}_T\|_F^2. \quad (2)$$

The closed-form solution of \mathbf{W}_T is:

$$\hat{\mathbf{W}}_T = \arg \min_{\mathbf{W}_T} \mathcal{L}(\mathbf{W}_T) = (\mathbf{A}_T + \lambda \mathbf{I})^{-1} \mathbf{C}_T, \quad (3)$$

where matrix \mathbf{A}_T and \mathbf{C}_T can be calculated in an recursive form, with \mathbf{A}_0 and \mathbf{C}_0 are initialized as zero matrices:

$$\mathbf{A}_t = \mathbf{A}_{t-1} + \mathbf{X}_t^\top \mathbf{X}_t, \quad \mathbf{C}_t = \mathbf{C}_{t-1} + \mathbf{X}_t^\top \mathbf{Y}_t. \quad (4)$$

Then, by obtaining and updating the matrix \mathbf{A}_t and \mathbf{C}_t during the training of each task t , the final classifier $\hat{\mathbf{W}}_T$ converges to the *same solution as that obtained through joint training*. The derivation is provided in Appendix. F.

3.4 PROGRESSIVE LABEL REFINEMENT

In the task of CIL with unlabeled data, the pseudo label generated by zero-shot CLIP can be noisy, and to tackle this problem, we propose a label refinement method based on the dimensionality-reduced features. For the task t , we first apply singular value decomposition (SVD) to the extracted

216 feature matrix with feature dimension d , $\mathbf{X}_t = \mathbf{UDV}^\top$, where $\mathbf{X}_t \in \mathbb{R}^{n_t \times d}$, $\mathbf{U} \in \mathbb{R}^{n_t \times n_t}$,
 217 $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_d] \in \mathbb{R}^{d \times d}$. The i -th diagonal elements of \mathbf{D} is d_i . We select the top- k singular
 218 vectors $\mathbf{V}_k = [\mathbf{v}_1, \dots, \mathbf{v}_k]$ whose singular values are above the threshold θ , and project the features
 219 as: $\mathbf{X}_{t,k} = \mathbf{X}_t \mathbf{V}_k \in \mathbb{R}^{n_t \times k}$. We then perform regression using the reduced features $\mathbf{X}_{k,t}$ and pseudo
 220 label $\tilde{\mathbf{Y}}_t$ to obtain a refining classifier $\hat{\mathbf{W}}'_t$. The refined pseudo labels are computed as:
 221

$$\tilde{\mathbf{Y}}'_t = \arg \max \mathbf{X}_{t,k} \hat{\mathbf{W}}'_t. \quad (5)$$

224 This process is iterated several times to progressively refine the pseudo labels.

225 We provide a theoretical guarantee for the effectiveness of our pseudo label refinement method:

226 **Theorem 1.** Consider the regression model with noisy labels: $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \boldsymbol{\varepsilon}$, where features are
 227 $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{w}^* \in \mathbb{R}^d$ is the true regression coefficient vector, and $\boldsymbol{\varepsilon}$ is the noise with zero mean and
 228 variance σ^2 . Let the SVD of $\mathbf{X} = \mathbf{UDV}^\top$, $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_d]$. α_i is the i -th coordinate of vector
 229 $\alpha^* = \mathbf{V}^\top \mathbf{w}^*$.

230 If $\sigma^2 \geq (2\lambda + d_j^2)(\alpha_j^*)^2$, projecting \mathbf{X} onto the eigenvectors without j -th components (denoted
 231 $\mathbf{X}' = \mathbf{UDV}^\top \mathbf{V}'$) yields a smaller expected mean squared error:

$$\mathbb{E} [\|\mathbf{X}'\hat{\mathbf{w}}' - \mathbf{X}\mathbf{w}^*\|_F^2] \leq \mathbb{E} [\|\mathbf{X}\hat{\mathbf{w}} - \mathbf{X}\mathbf{w}^*\|_F^2], \quad (6)$$

232 where $\hat{\mathbf{w}}$ and $\hat{\mathbf{w}}'$ are the regression solutions using \mathbf{X} and \mathbf{X}' , $\mathbf{V}' = [\mathbf{v}_1, \dots, \mathbf{v}_{j-1}, \mathbf{v}_{j+1}, \dots, \mathbf{v}_d]$, λ
 233 is the regularization hyperparameter in ridge regression, typically set to 0.1.

234 *Proof.* Provided in Appendix. E.1.

235 In this theorem, α_j^* represents how much of the \mathbf{w}^* lies in the j -th singular direction of \mathbf{X} , and d_j is
 236 the singular value corresponding to that direction. This theorem implies that when α_j^* is small (little
 237 true signal) or d_j is small (poor information of \mathbf{X} contained in the j -th direction), the model is more
 238 likely to overfit noise in that direction. Then, including this direction harms rather than helps.

239 In practice (Appendix. E.2), we empirically observe that $\sigma^2 \leq 2\lambda(\alpha_i^*)^2$ for most α_i^* . This leads to a
 240 threshold of $\theta = \sqrt{\frac{\sigma^2}{(\alpha_i^*)^2} - 2\lambda}$. In our experiments, we use $\theta = 10$, and k in Eq.5 corresponds to the
 241 largest index such that the singular value $d_k \geq \theta$. Analysis for different values of θ is provided in
 242 Fig.5.

243 3.5 BI-LEVEL WEIGHT ADJUSTMENT

244 Although the pseudo labels generated by the pre-trained vision-language model are refined using
 245 the proposed method, the learning process still faces two challenges: (1) The number of samples
 246 per class predicted by pseudo label varies, which hinders the learning of the minor classes. (2) The
 247 pseudo labels are hard 0-1 labels obtained via the argmax operation, which discards useful confidence
 248 information embedded in the soft predictions. To address these issues, we propose a weight adjustment
 249 strategy, which consists of two components: **inter-class adjustment** and **intra-class adjustment**,
 250 allowing dynamic weight assignment to individual samples.

251 **Inter-class Adjustment.** For task t , given n_t samples with features \mathbf{X}_t and their corresponding
 252 pseudo labels $\tilde{\mathbf{Y}}'_t$, let $N_{t,i}$ denotes the number of samples belong to class c_i . To balance the samples
 253 from different classes, we define an adjustment factor $m_{inter} \in \mathbb{R}^{n_t}$ as:

$$m_{inter,i} = \frac{n_t}{N_{t,i} * |\mathcal{C}_t|}. \quad (7)$$

254 This ensures that the total weight assigned to each class is normalized to $\frac{n_t}{|\mathcal{C}_t|}$, effectively balancing
 255 different classes during training.

256 **Intra-class Adjustment.** To incorporate prediction confidence, we propose an intra-class adjustment
 257 strategy based on entropy of the logit. For task t , given the logits $\mathbf{X}_{t,k} \hat{\mathbf{W}}'_t$ (as described in Eq. 5), we
 258 compute the entropy for each sample, yielding $\mathbf{E} = (E_1, \dots, E_{n_t})$. A lower entropy indicates higher
 259 confidence, suggesting that such samples should be weighted more heavily. While a naive choice
 260 might be $\frac{1}{E}$, this risks numerical instability when entropy values are close to zero. Additionally,

270
 271 Table 1: Comparison of different methods. Best scores are in **bold**. The second-best scores are in
 272 underline.

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296	273 Aircraft				273 Cars				273 CIFAR100					
	274 Method		274 B0Inc10		274 B50Inc10		274 B0Inc10		274 B50Inc10		274 B0Inc10		274 B50Inc10	
	275 \bar{A}	275 \mathcal{A}_B	276 \bar{A}	276 \mathcal{A}_B	277 \bar{A}	277 \mathcal{A}_B	278 \bar{A}	278 \mathcal{A}_B	279 \bar{A}	279 \mathcal{A}_B	280 \bar{A}	280 \mathcal{A}_B	281 \bar{A}	281 \mathcal{A}_B
ZS-CLIP	26.61	17.16	21.66	17.16	82.90	76.73	78.74	76.73	81.81	71.38	76.49	71.38		
Label	66.38	56.31	59.18	56.31	93.57	89.15	90.92	89.14	88.52	81.92	85.23	81.92		
CODA-Prompt	26.56	17.79	18.11	12.28	79.69	69.03	67.81	56.59	79.36	67.74	66.94	54.64		
MoE-Adapter	26.73	17.92	22.19	17.52	83.16	77.02	79.21	77.72	81.86	71.53	76.57	71.49		
RAPF	29.07	19.52	20.83	18.46	83.77	73.26	75.73	71.56	84.47	76.08	77.30	74.33		
RAIL	<u>36.23</u>	<u>33.59</u>	23.75	<u>25.99</u>	<u>88.64</u>	<u>84.68</u>	<u>82.72</u>	<u>82.13</u>	<u>87.34</u>	<u>80.37</u>	<u>81.44</u>	<u>78.89</u>		
ENGINE	34.77	25.41	<u>26.94</u>	23.56	86.90	78.76	82.67	79.93	85.15	77.11	79.89	76.15		
N2L	43.73	40.21	29.69	32.42	92.38	87.50	86.42	85.45	87.80	81.13	82.92	80.30		
CUB													UCF	
285 286 287 288 289 290 291 292 293 294 295 296	285 Method		285 B0Inc20		285 B100Inc20		285 B0Inc20		285 B100Inc20		285 B0Inc10		285 B50Inc10	
	\bar{A}	\mathcal{A}_B												
	ZS-CLIP	75.47	63.72	69.06	63.72	38.43	26.43	31.12	26.43	75.88	67.79	71.68	67.79	
Label	86.43	79.05	82.29	79.06	53.18	45.27	49.71	45.26	98.74	97.75	98.37	97.75		
CODA-Prompt	67.40	51.91	53.24	37.64	38.25	26.23	26.22	19.22	81.61	75.18	67.06	58.87		
MoE-Adapter	73.69	63.07	68.29	63.09	40.14	28.70	32.45	28.53	75.35	67.36	72.28	69.07		
RAPF	72.08	58.14	62.27	56.02	39.16	25.88	28.93	24.70	85.99	81.10	75.70	74.31		
RAIL	<u>81.64</u>	<u>73.93</u>	<u>73.08</u>	<u>70.91</u>	39.80	<u>35.13</u>	31.21	<u>30.19</u>	<u>90.18</u>	<u>89.90</u>	81.05	<u>84.27</u>		
ENGINE	77.06	65.07	70.85	64.92	<u>44.57</u>	31.24	<u>34.62</u>	29.96	87.85	84.46	<u>82.30</u>	81.04		
N2L	83.41	76.48	75.16	73.40	49.31	41.59	41.42	38.65	95.00	93.29	86.41	87.87		

297 variations in entropy across different datasets make it challenging for a single function to generalize
 298 effectively. Instead, we sample weights from a gaussian distribution $\mathcal{N}(1, \sigma^2)$ and sort them in
 299 ascending order.

$$300 m'_1, m'_2, \dots, m'_{n_t} \sim \mathcal{N}(1, \sigma^2), \quad (8)$$

301 where $m'_1 \leq m'_2 \leq \dots \leq m'_{n_t}$. Then we rearrange the weight according to the order of the entropy:

$$302 m_{intra,i} = m'_{(\text{rank}(E_i))}, \quad (9)$$

303 where, $\text{rank}(E_i)$ denotes the position of E_i among \mathbf{E} when the values are sorted in descending order.
 304 Further analysis is provided in Table.3 in experiment section.

305 Finally, the weight for the i -th sample is computed as:

$$306 m_i = m_{intra,i} * m_{inter,i}. \quad (10)$$

309 **Analytic CIL with Weight Adjustment.** With the computed weights, the optimization
 310 objective (Eq. 2) is reformed as:

$$312 (\mathbf{X}_{1:T} \mathbf{W}_T - \mathbf{Y}_{1:T})^\top \mathbf{M} (\mathbf{X}_{1:T} \mathbf{W}_T - \mathbf{Y}_{1:T}) + \lambda \|\mathbf{W}_T\|_F^2, \quad (11)$$

313 where $\mathbf{M} = \text{diag}(\mathbf{M}_1, \dots, \mathbf{M}_T)$. \mathbf{M}_t is the diagonal weight matrix for task t , whose
 314 diagonal elements are m_i . The closed-form solution for \mathbf{W}_T can be recursively calculated:

$$316 \hat{\mathbf{W}}_T = \arg \min_{\mathbf{W}_T} \mathcal{L}(\mathbf{W}_T) = (\mathbf{A}_T + \lambda \mathbf{I})^{-1} \mathbf{C}_T, \quad (12)$$

317 with

$$318 \mathbf{A}_t = \mathbf{A}_{t-1} + \mathbf{X}_t^\top \mathbf{M}_t \mathbf{X}_t, \quad \mathbf{C}_t = \mathbf{C}_{t-1} + \mathbf{X}_t^\top \mathbf{M}_t \mathbf{Y}_t. \quad (13)$$

321 The derivation is provided in Appendix. F.

322 Finally, at task t , the incremental image classifier, $\hat{\mathbf{W}}_t$ is learned recursively for different classes
 323 using the feature \mathbf{X}_t , updated label $\tilde{\mathbf{Y}}_t$, the stored matrix \mathbf{A}_{t-1} , \mathbf{C}_{t-1} and weigh adjustment strategy.

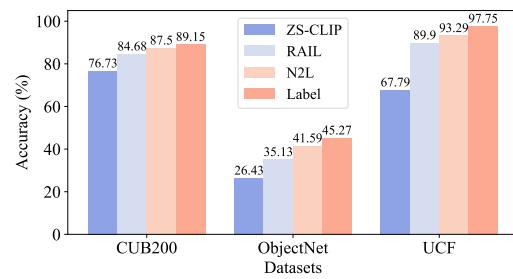


Figure 3: Comparison of ZS-CLIP, RAIL, N2L and, N2L with ground truth labels.

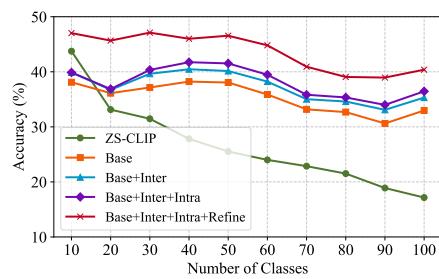


Figure 4: Ablation study of different components on Aircraft-B0Inc10.

3.6 INFERENCE STEP

During inference, following the strategy of RAIL (Xu et al., 2024), we compute the final prediction by taking a weighted sum of the zero-shot prediction logits and the learned classification head logits.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Datasets. Following prior works (Zhou et al., 2025a;b), we evaluate our method on six widely used benchmark datasets: FGVCAircraft (Maji et al., 2013), StanfordCars (Krause et al., 2013), CIFAR100 (Krizhevsky et al., 2009), CUB200 (Wah et al., 2011), ObjectNet (Barbu et al., 2019), and UCF (Soomro et al., 2012). The classes in each dataset are split according to two class incremental learning protocols: (1) No base classes: all classes are evenly and disjointly split into 10 tasks. (2) With base classes: the first task includes half of the total classes as base classes, and the remaining classes are divided into 5 incremental tasks.

Evaluation Metrics. Following prior works (Zhou et al., 2025a), we report two metrics to evaluate the performance: A_B and \bar{A} . A_B represents the accuracy at the final task. \bar{A} represents average accuracy across all tasks, computed as $\bar{A} = \frac{1}{B} \sum_{b=1}^B A_b$.

Comparison Methods. We compare our method with existing CIL methods based on vision-language models, including non-exemplar-based methods: MoE-Adapters (Yu et al., 2024), RAPF (Huang et al., 2024), ENGINE (Zhou et al., 2025a), RAIL (Xu et al., 2024) and unimodal CIL baseline CODA-Prompt (Smith et al., 2023). ENGINE proposed a re-ranking method to boost performance. For fair comparison, we report the results before applying re-ranking. The zero-shot prediction of CLIP is utilized to generate the pseudo labels for comparison methods. Additionally, we report results for zero-shot CLIP (denoted as ZS-CLIP) and N2L trained with ground truth labels for each sample, serving as the upper bound in this setting (denoted as Label). All methods use the same LAION-400M pre-trained CLIP ViT-B/16 backbone and identical task splits. Additional experiments with OpenAI pre-trained CLIP ViT-B/16 and comparison with exemplar-based methods, PROOF (Zhou et al., 2025b) and CLAP4CLIP (Jha et al., 2024), are provided in Appendix. C.

Implementation Details. For hyperparameters, the threshold θ for feature dimensionality reduction is set to 10, and pseudo-labels are updated over 3 iterations. The standard deviation σ to sample intra-class weights is set to 0.5. All results are averaged over three runs. Experiments are conducted using PyTorch on an NVIDIA RTX 4090 GPU.

4.2 MAIN RESULTS

Table. 1 summarizes the performance comparison across six datasets under various class-incremental settings. It can be observed that, the CIL methods designed for unimodel ViT achieve inferior performance, and even worse than the ZS-CLIP on some datasets such as Cars, CIFAR100 and CUB. This is because they only use the visual part of the CLIP, without utilizing the ability of aligning image and text in CLIP. The noisy pseudo label also hinders the learning of these methods and

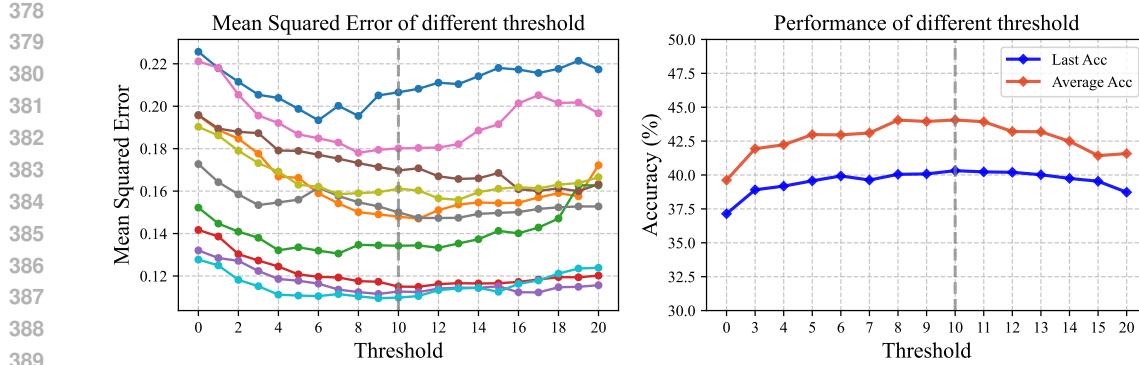


Figure 5: Left: MSE between the true labels and the predictions of classifiers learned on reduced features of different tasks across different thresholds. [Different colors denote different tasks](#). Right: the classification accuracy across different thresholds.

exacerbates forgetting. Our method consistently outperforms existing approaches in all scenarios. Notably, on datasets with large distribution shifts from CLIP’s pre-training data (e.g., Aircraft and ObjectNet), our method surpasses the second-best method by a significant margin of 2.75%-8.46%. For the remaining datasets, we also achieve consistent improvements of at least 2.82%, 0.46%, 1.77%, and 3.39% on Cars, CIFAR100, CUB, and UCF, respectively.

To further analyze the gap between learning without labels and learning with perfect labels, Fig. 3 and Table. 1 presents the results of ZS-CLIP, the second-best method RAIL, our method N2L, and an upper bound represented by N2L trained with ground truth labels. In addition to significantly outperforming both ZS-CLIP and RAIL, N2L narrows the gap to the upper bound by nearly 50% on Cars, ObjectNet and UCF, highlighting its effectiveness in incremental learning with unlabeled data.

In Table. 2, we compare our method with the unlabeled data learning approach CPL (Zhang et al., 2024). Specifically, we integrate CPL with various methods by replacing the pseudo labels with those produced by CPL. The results show that even when enhanced with CPL, existing methods still underperform compared to N2L. Furthermore, N2L itself achieves better performance when combined with CPL.

These improvements stem from our feature dimensionality reduction-based pseudo label refinement strategy, which further refines noisy labels. Additionally, the proposed inter-class and intra-class weight adjustment schemes help balance class frequency and leverage prediction confidence. Moreover, our regression-based learning objective with weight adjustment is inherently more robust to label noise than the traditional cross-entropy loss and can [be solved](#) in a recursive manner, thereby mitigating forgetting.

4.3 FURTHER ANALYSIS.

Effectiveness of Different Components. Fig. 4 presents an ablation study on different components of our approach. The baseline method is RAIL (Xu et al., 2024), which employs the ridge regression in Eq.2 to optimize the classifier. RAIL outperforms ZS-CLIP on most tasks, benefiting from its noise-robust regression objective and the recursively calculated classifier, which [can be solved in a recursive manner](#).

Results show that incorporating inter-class adjustment improves performance, which can be attributed to its effectiveness in alleviating class frequency imbalance caused by imperfect pseudo labels. Moreover, the proposed intra-class adjustment strategy further enhances performance by assigning greater weight to high-confidence samples and reducing the influence of low-confidence ones, thereby minimizing the impact of erroneous pseudo labels. Finally, the proposed pseudo label refinement further leads to a dramatic performance gain on all tasks.

Progressive Label Refinement. The core of this component lies in the feature dimensionality reduction strategy, supported by the theoretical guarantee provided in Theorem 1. To evaluate whether removing certain singular directions of the feature matrix \mathbf{X} leads to lower mean squared

432
433
434

Table 2: Comparison of different methods combined with unlabeled learning method CPL.

Method	Aircraft-B0		CUB-B0	
	$\bar{\mathcal{A}}$	\mathcal{A}_B	$\bar{\mathcal{A}}$	\mathcal{A}_B
RAIL	36.23	33.59	81.64	73.93
RAIL + CPL	43.61	35.80	81.93	74.89
ENGINE	34.77	25.41	77.06	65.07
ENGINE + CPL	37.07	25.47	78.80	68.53
N2L	<u>43.71</u>	<u>40.21</u>	<u>83.41</u>	<u>76.48</u>
N2L + CPL	47.48	42.99	83.50	77.69

443
444

445 error (MSE), we show the MSE between the true labels without noise and the predictions of classifiers
 446 learned on reduced features across different threshold values θ . Results for various tasks under the
 447 Aircraft-B0Inc10 setting are shown in the left of Fig. 5. The error curves exhibit a clear U-shape across
 448 tasks: as θ increases, more singular directions satisfying the inequality $\sigma^2 \geq (2\lambda + d_i^2)(\alpha_i^*)^2$ are
 449 removed, which leads to a drop in error. However, when θ becomes too large, even singular directions
 450 that do not meet this condition are eliminated, resulting in increased error. The corresponding
 451 accuracy curves for different θ values, shown on the right, follow a similar trend. We empirically set
 452 $\theta = 10$.

452

Bi-level Weight Adjustment. To evaluate inter-class adjustment, we visualize the norm of the classifier for different classes across tasks in the Aircraft-B0Inc10 setting in Fig. 6. The results demonstrate that the proposed inter-class adjustment strategy significantly suppresses large norms, preventing classes with more samples from dominating the classifier and thereby improving class balance. Table. 3 presents the performance of various intra-class adjustment strategies. The first row, which omits intra-class adjustment, yields the lowest performance, highlighting the necessity of incorporating such techniques. When intra-class adjustment is applied, using the reciprocal of entropy as the weighting factor results in lower performance compared to not applying weight adjustment. This is because it assigns excessively large weights to low entropy (high confidence) samples, which may dominate the learning and bias the model. Weight generation strategies that sample from predefined distributions, such as uniform and Gaussian, demonstrate improved performance. Among them, the Gaussian distribution $\mathcal{N}(1, \frac{1}{4})$ achieves better overall results on both $\bar{\mathcal{A}}$ and \mathcal{A}_B . Therefore, we adopt $\mathcal{N}(1, \frac{1}{4})$ for intra-class adjustment in our approach.

473

474
475

5 CONCLUSION

476
477
478
479
480
481
482
483
484
485

In this work, we introduce a more realistic paradigm for class incremental learning with vision-language model in which, at each task, only class names and unlabeled data for new categories are provided. To tackle this problem, we proposed N2L, a method that combines the regression learning objective with two key mechanisms. First, a pseudo label refinement method is proposed to iteratively refine initial pseudo labels by learning a label refinement classifier on features after dimensionality reduction, with theoretical guarantees on its denoising effectiveness. Second, we adopt a learning strategy comprising inter-class adjustment to address class imbalance introduced by pseudo labels, and intra-class adjustment to downweight low-confidence samples, thereby reducing the impact of noisy supervision. This regression with weight adjustment can be solved in a recursive form, achieving identical performance to joint training [with unlabeled data](#) and mitigating forgetting. Our work paves the way for more annotation-efficient incremental learning.

Table 3: Ablation of different intra-class adjustment methods on Aircraft-B0Inc10 setting.

Method	Aircraft-B0	
	$\bar{\mathcal{A}}$	\mathcal{A}_B
w/o. Intra-class Adjustment	43.39	39.69
w/. Intra-class $\frac{1}{E}$	43.25	38.45
w/. Intra-class $U(0.5, 1.5)$	<u>43.71</u>	40.08
w/. Intra-class $U(0.25, 1.75)$	43.55	40.12
w/. Intra-class $\mathcal{N}(1, \frac{1}{16})$	43.61	40.23
w/. Intra-class $\mathcal{N}(1, \frac{1}{4})$	43.73	<u>40.21</u>

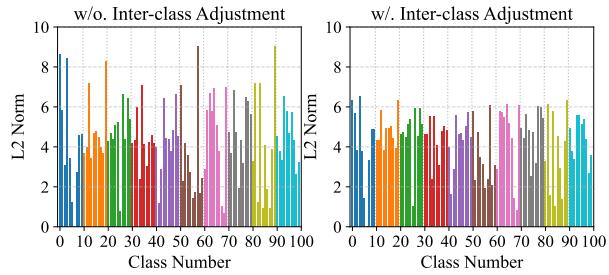


Figure 6: Norm of the classifier for different classes.

486 REFERENCES
487

- 488 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
489 Memory aware synapses: Learning what (not) to forget. In *Proceedings of the European conference*
490 *on computer vision (ECCV)*, pp. 139–154, 2018.
- 491 Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
492 Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits
493 of object recognition models. *Advances in neural information processing systems*, 32, 2019.
- 494 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
495 nents with random forests. In *Computer vision–ECCV 2014: 13th European conference, zurich,*
496 *Switzerland, September 6–12, 2014, proceedings, part VI 13*, pp. 446–461. Springer, 2014.
- 497 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
498 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
499 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
500 *ICLR*, 2021.
- 501 Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers
502 for continual learning with dynamic token expansion. In *Proceedings of the IEEE/CVF conference*
503 *on computer vision and pattern recognition*, pp. 9285–9295, 2022.
- 504 Di Fang, Yinan Zhu, Runze Fang, Cen Chen, Ziqian Zeng, and Huiping Zhuang. Air: Analytic
505 imbalance rectifier for continual learning. *arXiv preprint arXiv:2408.10349*, 2024.
- 506 Robert M French. Catastrophic forgetting in connectionist networks. *Trends in cognitive sciences*, 3
507 (4):128–135, 1999.
- 508 Zijian Gao, Xingxing Zhang, Kele Xu, Xinjun Mao, and Huaimin Wang. Stabilizing zero-shot
509 prediction: A novel antidote to forgetting in continual vision-language tasks. *Advances in Neural*
510 *Information Processing Systems*, 37:128462–128488, 2024.
- 511 Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss functions under label noise for
512 deep neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31,
513 2017.
- 514 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
515 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
516 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international*
517 *conference on computer vision*, pp. 8340–8349, 2021.
- 518 Zhiyuan Hu, Yunsheng Li, Jiancheng Lyu, Dashan Gao, and Nuno Vasconcelos. Dense network
519 expansion for class incremental learning. In *Proceedings of the IEEE/CVF Conference on Computer*
520 *Vision and Pattern Recognition*, pp. 11858–11867, 2023.
- 521 Linlan Huang, Xusheng Cao, Haori Lu, and Xialei Liu. Class-incremental learning with clip:
522 Adaptive representation adjustment and parameter fusion. In *European Conference on Computer*
523 *Vision*, pp. 214–231. Springer, 2024.
- 524 Tony Huang, Jack Chu, and Fangyun Wei. Unsupervised prompt learning for vision-language models.
525 *arXiv preprint arXiv:2204.03649*, 2022.
- 526 Saurav Jha, Dong Gong, and Lina Yao. Clap4clip: Continual learning with probabilistic finetuning
527 for vision-language models. *arXiv preprint arXiv:2403.19137*, 2024.
- 528 Minsoo Kang, Jaeyoo Park, and Bohyung Han. Class-incremental learning by knowledge distillation
529 with adaptive feature consolidation. In *Proceedings of the IEEE/CVF conference on computer*
530 *vision and pattern recognition*, pp. 16071–16080, 2022.
- 531 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
532 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
533 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114
534 (13):3521–3526, 2017.

- 540 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 541 categorization. In *Proceedings of the IEEE international conference on computer vision workshops*,
 542 pp. 554–561, 2013.
- 543
- 544 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- 545 Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
 546 deep neural networks. In *Workshop on challenges in representation learning, ICML*, volume 3, pp.
 547 896. Atlanta, 2013.
- 548
- 549 Qiwei Li and Jiahuan Zhou. Caprompt: Cyclic prompt aggregation for pre-trained model based class
 550 incremental learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 551 pp. 18421–18429, 2025.
- 552 Qiwei Li, Yuxin Peng, and Jiahuan Zhou. Fcs: Feature calibration and separation for non-exemplar
 553 class incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and*
 554 *pattern recognition*, pp. 28495–28504, 2024a.
- 555 Qiwei Li, Yuxin Peng, and Jiahuan Zhou. Progressive prototype evolving for dual-forgetting mitigation
 556 in non-exemplar online continual learning. In *Proceedings of the 32nd ACM International*
 557 *Conference on Multimedia*, pp. 2477–2486, 2024b.
- 558
- 559 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis*
 560 *and machine intelligence*, 40(12):2935–2947, 2017.
- 561 Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
 562 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 563 23638–23647, 2024.
- 564
- 565 Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training: Multi-class
 566 incremental learning without forgetting. In *Proceedings of the IEEE/CVF conference on Computer*
 567 *Vision and Pattern Recognition*, pp. 12245–12254, 2020.
- 568 David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
 569 *Advances in neural information processing systems*, 30, 2017.
- 570
- 571 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 572 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.
- 573
- 574 Muhammad Jehanzeb Mirza, Leonid Karlinsky, Wei Lin, Horst Posseger, Mateusz Kozinski, Rogerio
 575 Feris, and Horst Bischof. Lafter: Label-free tuning of zero-shot classifier using language and
 576 unlabeled image collections. *Advances in Neural Information Processing Systems*, 36:5765–5777,
 2023.
- 577
- 578 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 579 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 580 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PMLR, 2021.
- 581
- 582 Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised
 583 learning with ladder networks. *Advances in neural information processing systems*, 28, 2015.
- 584
- 585 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
 586 Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
 587 attention-based prompting for rehearsal-free continual learning. In *Proceedings of the IEEE/CVF*
conference on computer vision and pattern recognition, pp. 11909–11919, 2023.
- 588
- 589 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
 590 gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning
 591 with consistency and confidence. *Advances in neural information processing systems*, 33:596–608,
 2020.
- 592
- 593 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

- 594 Zhicheng Sun, Yadong Mu, and Gang Hua. Regularizing second-order influences for continual
 595 learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 596 pp. 20166–20175, 2023.
- 597
- 598 Yuwen Tan, Qinhao Zhou, Xiang Xiang, Ke Wang, Yuchuan Wu, and Yongbin Li. Semantically-
 599 shifted incremental adapter-tuning is a continual vitrtransformer. In *Proceedings of the IEEE/CVF*
 600 *Conference on Computer Vision and Pattern Recognition*, pp. 23252–23262, 2024.
- 601 Marco Toldo and Mete Ozay. Bring evanescent representations to life in lifelong class incremental
 602 learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 603 pp. 16732–16741, 2022.
- 604
- 605 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 606 birds-200-2011 dataset. 2011.
- 607
- 608 Fu-Yun Wang, Da-Wei Zhou, Liu Liu, Han-Jia Ye, Yatao Bian, De-Chuan Zhan, and Peilin Zhao.
 609 Beef: Bi-compatible class-incremental learning via energy-based expansion and fusion. In *The*
 610 *eleventh international conference on learning representations*, 2022a.
- 611
- 612 Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical
 613 decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. *Advances*
 614 *in Neural Information Processing Systems*, 36:69054–69076, 2023.
- 615
- 616 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
 617 Theory, method and application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 618 2024.
- 619
- 620 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 621 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
 622 rehearsal-free continual learning. In *European conference on computer vision*, pp. 631–648.
 623 Springer, 2022b.
- 624
- 625 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
 626 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings*
 627 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149, 2022c.
- 628
- 629 Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
 630 Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class
 631 incremental learning. In *The Thirteenth International Conference on Learning Representations*,
 632 2025.
- 633
- 634 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 635 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*
 636 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.
- 637
- 638 Yicheng Xu, Yuxin Chen, Jiahao Nie, Yusong Wang, Huiping Zhuang, and Manabu Okumura.
 639 Advancing cross-domain discriminability in continual learning of vision-language models. *arXiv*
 640 *preprint arXiv:2406.18868*, 2024.
- 641
- 642 Jiazu Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
 643 continual learning of vision-language models via mixture-of-experts adapters. In *Proceedings of*
 644 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23219–23230, 2024.
- 645
- 646 Jiahao Zhang, Qi Wei, Feng Liu, and Lei Feng. Candidate pseudolabel learning: Enhancing vision-
 647 language models by prompt tuning with unlabeled data. *arXiv preprint arXiv:2406.10502*, 2024.
- 648
- 649 Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafettin Tasci, Larry Heck, Heming Zhang,
 650 and C-C Jay Kuo. Class-incremental learning via deep model consolidation. In *Proceedings of the*
 651 *IEEE/CVF winter conference on applications of computer vision*, pp. 1131–1140, 2020.
- 652
- 653 Mengyu Zheng, Yehui Tang, Zhiwei Hao, Kai Han, Yunhe Wang, and Chang Xu. Adapt without
 654 forgetting: Distill proximity from dual teachers in vision-language models. In *European Conference*
 655 *on Computer Vision*, pp. 109–125. Springer, 2024.

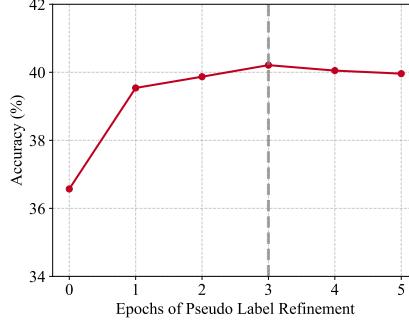
- 648 Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
 649 zero-shot transfer degradation in continual learning of vision-language models. In *Proceedings of*
 650 *the IEEE/CVF international conference on computer vision*, pp. 19125–19136, 2023.
- 651
- 652 Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning with
 653 pre-trained models: a survey. In *Proceedings of the Thirty-Third International Joint Conference on*
 654 *Artificial Intelligence*, pp. 8363–8371, 2024a.
- 655 Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
 656 pre-trained model-based class-incremental learning. In *Proceedings of the IEEE/CVF Conference*
 657 *on Computer Vision and Pattern Recognition*, pp. 23554–23564, 2024b.
- 658
- 659 Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-
 660 incremental learning: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 661 2024c.
- 662 Da-Wei Zhou, Kai-Wen Li, Jingyi Ning, Han-Jia Ye, Lijun Zhang, and De-Chuan Zhan. External
 663 knowledge injection for clip-based class-incremental learning. *arXiv preprint arXiv:2503.08510*,
 664 2025a.
- 665 Da-Wei Zhou, Yuanhan Zhang, Yan Wang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu.
 666 Learning without forgetting for vision-language models. *IEEE Transactions on Pattern Analysis*
 667 *and Machine Intelligence*, 2025b.
- 668
- 669 Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and
 670 self-supervision for incremental learning. In *Proceedings of the IEEE/CVF conference on computer*
 671 *vision and pattern recognition*, pp. 5871–5880, 2021.
- 672 Huiping Zhuang, Zhenyu Weng, Hongxin Wei, RENCHUNZI Xie, Kar-Ann Toh, and Zhiping Lin. Acil:
 673 Analytic class-incremental learning with absolute memorization and privacy protection. *Advances*
 674 *in Neural Information Processing Systems*, 35:11602–11614, 2022.
- 675
- 676 Huiping Zhuang, Yizhu Chen, Di Fang, Run He, Kai Tong, Hongxin Wei, Ziqian Zeng, and Cen Chen.
 677 Gacl: Exemplar-free generalized analytic continual learning. *Advances in Neural Information*
 678 *Processing Systems*, 37:83024–83047, 2024.
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 **A LIMITATION**
703

704
705 In this paper, we propose a setting where only unlabeled data and class names are provided for each
706 incremental task. We assume that the unlabeled data strictly corresponds to the given class names.
707 However, in real-world scenarios, this assumption may not hold, the collected data could include
708 samples from previously seen classes as well as from unseen future classes not included in either the
709 current or past tasks. As part of future work, we plan to explore a more challenging setting where the
710 unlabeled data may contain a mix of past, present, and future classes.
711

712 **B CODE**
713

714
715 We provide the core implementation of the training process in `code.py`. The
716 `incremental_train()` function serves as the main entry point for performing incremental
717 training, while the `train()` function carries out the training for each incremental task.
718

719 **C MORE RESULTS**
720721 **C.1 DIFFERENT EPOCHS OF PROGRESSIVE LABEL REFINEMENT**
722

736 Figure 7: Results on Aircraft B0Inc10 with different epochs of progressive label refinement.
737

738
739 In Fig. 7, we present an ablation study on the number of epochs used for label refinement. Setting the
740 number of epochs to 0, meaning the pseudo label refinement strategy is not applied, results in the
741 lowest performance. When the refinement strategy is incorporated, there is a significant improvement
742 in performance. Moreover, the results remain stable when the number of epochs is set between 2 and
743 5. Based on these observations, we choose 3 epochs as the default setting in our experiments.
744

745 **C.2 COMPARISON WITH EXEMPLAR-BASED METHODS**
746

747
748 In Table 4, we compare our method with existing exemplar-based approaches, PROOF (Zhou et al.,
749 2025b) and CLAP4CLIP (Jha et al., 2024). Following their setting, the exemplar buffer uses a fixed
750 memory strategy that stores 20 samples per class. In contrast, our method does not use any exemplars,
751 i.e., the exemplar buffer size is zero. Results show that even without storing exemplars, N2L
752 outperforms existing methods on all datasets, except for the setting with base classes on CIFAR100,
753 CUB, and ObjectNet, where the performance gap is only 0.27%, 0.58%, and 0.43% respectively.
754 These results highlight N2L’s strong ability to mitigate forgetting, primarily due to the recursively
755 computed closed-form solution for the classification head, along with intra-class and inter-class
adjustment strategies. Additionally, the proposed pseudo-label refinement method contributes to
more accurate label refinement.

756
 757 Table 4: Comparison with exemplar-based methods. Best scores are in **bold**. The second-best scores
 758 are in underline.

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777	Aircraft				Cars				CIFAR100			
	B0Inc10		B50Inc10		B0Inc10		B50Inc10		B0Inc10		B50Inc10	
	\bar{A}	\mathcal{A}_B										
ZS-CLIP	26.61	17.16	21.66	17.16	82.90	76.73	78.74	76.73	81.81	71.38	76.49	71.38
CLAP4CLIP	<u>41.15</u>	<u>35.81</u>	26.88	<u>28.43</u>	<u>90.02</u>	<u>86.46</u>	79.68	75.88	<u>86.34</u>	<u>79.11</u>	<u>82.90</u>	80.57
PROOF	38.10	33.62	<u>28.10</u>	28.15	89.23	85.09	<u>83.83</u>	<u>83.03</u>	84.85	77.47	79.17	76.36
N2L	43.73	40.21	29.69	32.42	92.38	87.50	86.42	85.45	87.80	81.13	82.92	<u>80.30</u>
CUB												
Method	ObjectNet				UCF							
	\bar{A}	\mathcal{A}_B										
ZS-CLIP	75.47	63.72	69.06	63.72	38.43	26.43	31.12	26.43	75.88	67.79	71.68	67.79
CLAP4CLIP	<u>82.45</u>	<u>74.85</u>	75.74	<u>72.71</u>	<u>49.00</u>	<u>38.55</u>	41.85	<u>37.77</u>	87.10	83.82	<u>81.38</u>	<u>83.50</u>
PROOF	80.50	73.98	73.74	71.83	45.46	34.93	35.36	32.16	<u>89.41</u>	<u>86.00</u>	81.23	81.76
N2L	83.41	76.48	<u>75.16</u>	73.40	49.31	41.59	<u>41.42</u>	38.65	95.00	93.29	86.41	87.87

774
 775 Table 5: Comparison of different methods with OpenAI pre-trained weight. Best scores are in **bold**.
 776 The second-best scores are in underline.

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	Aircraft				Cars				CIFAR100			
	B0Inc10		B50Inc10		B0Inc10		B50Inc10		B0Inc10		B50Inc10	
	\bar{A}	\mathcal{A}_B										
ZS-CLIP	32.96	21.96	27.40	21.96	71.99	56.36	64.51	56.36	78.66	68.22	72.97	68.22
Label	64.11	53.42	<u>57.04</u>	53.45	<u>87.79</u>	79.22	83.60	79.23	87.23	79.94	82.40	79.98
CODA-Prompt	32.59	22.89	22.30	15.75	68.91	53.34	54.89	43.56	77.94	64.98	64.21	52.00
MoE-Adapter	33.37	22.87	27.75	22.55	70.64	56.39	63.43	55.88	80.17	69.69	74.44	69.86
RAPF	36.10	25.68	26.57	23.63	73.36	57.02	61.55	55.10	83.43	74.84	76.08	73.26
RAIL	<u>42.44</u>	<u>37.72</u>	27.86	<u>28.77</u>	<u>80.33</u>	<u>69.55</u>	66.96	<u>63.88</u>	<u>85.59</u>	<u>77.78</u>	<u>77.81</u>	<u>75.82</u>
ENGINE	38.40	27.97	<u>30.30</u>	25.45	76.72	62.14	<u>69.38</u>	62.42	82.94	73.29	77.03	72.85
N2L	46.75	42.11	30.46	32.88	83.65	75.47	74.32	71.94	86.35	79.00	79.38	78.03
CUB												
Method	ObjectNet				UCF							
	\bar{A}	\mathcal{A}_B										
ZS-CLIP	68.48	54.04	59.95	54.04	45.61	33.01	38.16	33.01	79.92	70.75	76.22	70.75
Label	84.55	76.45	79.92	76.46	57.81	47.93	52.99	47.90	98.73	97.32	98.26	97.32
CODA-Prompt	64.40	46.89	47.75	35.09	42.45	30.11	31.24	23.43	82.23	74.84	68.27	58.96
MoE-Adapter	67.93	54.44	59.37	54.52	44.83	33.46	38.24	33.79	80.09	71.66	74.96	70.62
RAPF	69.33	51.58	56.96	48.94	48.91	34.92	38.83	33.63	89.10	83.11	79.37	76.51
RAIL	<u>78.57</u>	<u>70.01</u>	<u>66.58</u>	<u>65.01</u>	48.37	<u>41.22</u>	39.08	<u>36.59</u>	<u>91.86</u>	<u>90.70</u>	82.93	<u>84.96</u>
ENGINE	72.80	58.29	64.34	58.32	<u>50.00</u>	35.58	40.49	34.53	90.02	85.73	<u>84.76</u>	82.85
N2L	81.18	72.58	69.99	68.01	54.99	45.21	45.26	42.09	95.58	93.57	89.16	89.91

C.3 DIFFERENT PRE-TRAINED WEIGHTS

In the main paper, we compare various methods using the CLIP model pre-trained on LAION400M¹. In Table 5, we present the results using the CLIP model pre-trained by OpenAI². The results demonstrate that N2L consistently outperforms other methods across both settings.

¹https://github.com/mlfoundations/open_clip

²<https://github.com/openai/CLIP>

810

811

Table 6: Comparison of different methods on Food, ImageNet-R, and SUN datasets.

812

813

Method	Food				ImageNet-R				SUN			
	B0Inc10		B50Inc10		B0Inc20		B100Inc20		B0Inc30		B150Inc30	
	$\bar{\mathcal{A}}$	\mathcal{A}_B										
ZS-CLIP	87.86	81.99	84.78	81.99	83.12	76.62	79.23	76.62	79.45	72.14	74.99	72.14
ENGINE	88.30	81.78	84.72	81.55	84.14	76.93	79.26	76.56	83.04	76.17	78.06	75.10
ENGINE + Label	88.52	81.85	85.08	81.59	84.61	77.12	79.96	76.78	83.51	76.21	78.83	75.20
N2L	90.58	85.50	87.18	85.01	86.00	81.06	81.89	80.29	84.38	78.85	79.15	77.40
N2L + Label	90.95	85.84	88.38	85.84	86.61	81.52	83.88	81.51	87.42	81.50	84.31	81.50

820

821

822

C.4 MORE DATASETS

823

Following the setting of ENGINE (Zhou et al., 2025a), in Table 6, we also report the results of three datasets: Food (Bossard et al., 2014), ImageNet-R (Hendrycks et al., 2021), and SUN (Xiao et al., 2010). ENGINE + Label and N2L + Label represent providing the methods with annotated data instead of unlabeled data in ENGINE and N2L. In these datasets, results show that the gap between learning with unlabeled data and annotated data is small. This is because these datasets have a high zero-shot performance, making the generated pseudo labels more reliable, which aids the learning with unlabeled data. On these datasets, N2L with unlabeled data even achieves comparable performance to the ENGINE + Label.

831

832

D INTRODUCTION ABOUT COMPARISON METHODS

833

834

ZS-CLIP. This method enables direct inference without requiring training on specific downstream tasks. It leverages the pretrained image-text alignment ability of CLIP to recognize images.

835

836

CODA-Prompt (Smith et al., 2023). This method introduces an attention-based end-to-end key-query framework. It learns a set of prompt components and combines them using input-conditioned attention weights to generate input-aware prompts, thereby enhancing the model’s adaptability to new tasks. This method relies solely on the visual branch of CLIP.

838

839

840

MoE-Adapters (Yu et al., 2024). This method adapts to continuously arriving tasks by dynamically inserting Mixture-of-Experts adapters into a pre-trained CLIP model. It enables progressive model expansion without altering the original backbone, effectively mitigating forgetting in long-term continual learning.

841

842

843

RAPF (Huang et al., 2024). This method is built upon a frozen pre-trained CLIP. During the training of new tasks, it measures the influence of new classes on old ones using textual features and adaptively adjusts the representations of old classes. In the adapter fine-tuning phase, a decomposed parameter fusion strategy is introduced to further mitigate forgetting.

844

845

RAIL (Xu et al., 2024). This method employs a recursive ridge regression-based adapter to learn tasks across multiple domains and decouples inter-domain correlations by projecting features into a higher-dimensional space. It also uses a training-free fusion module to preserve zero-shot capability without the need for reference data.

846

847

ENGINE (Zhou et al., 2025a). This method employs a dual-branch tuning framework: the visual branch enriches image features through data augmentation, the textual branch leverages GPT-4 to generate more discriminative class descriptions, and during inference, a re-ranking strategy is applied to further improve prediction results.

848

849

The following are two exemplar-based methods. For a fair comparison, we adopt a storage strategy of 20 samples per class for both methods.

850

851

852

CLAP4CLIP (Jha et al., 2024). This method performs probabilistic modeling over the visual-guided textual features for each task, enabling a more reliable continual learning fine-tuning strategy. Unlike traditional forgetting-mitigation methods that rely on large amounts of data, it leverages the rich prior knowledge of CLIP for parameter initialization and distribution regularization.

864 **PROOF (Zhou et al., 2025b).** This method trains task-specific projection modules for each task,
 865 expands new projections while keeping the old ones fixed, and introduces a fusion module to jointly
 866 adjust visual and textual features.
 867

868 E DETAILS OF THEOREM 1

870 E.1 PROOF OF THEOREM 1

872 **Theorem 1.** Consider the regression model with noisy labels: $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \boldsymbol{\varepsilon}$, where features are
 873 $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{w}^* \in \mathbb{R}^d$ is the true regression coefficient vector, and $\boldsymbol{\varepsilon}$ is the noise with zero mean and
 874 variance σ^2 . Let the SVD of $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^\top$, $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_d]$. α_i is the i -th coordinate of vector
 875 $\boldsymbol{\alpha}^* = \mathbf{V}^\top \mathbf{w}^*$.

876 If $\sigma^2 \geq (2\lambda + d_j^2)(\alpha_j^*)^2$, projecting \mathbf{X} onto the eigenvectors without j -th components (denoted
 877 $\mathbf{X}' = \mathbf{U}\mathbf{D}\mathbf{V}'^\top$) yields a smaller expected mean squared error:

$$879 \mathbb{E} [\|\mathbf{X}'\hat{\mathbf{w}}' - \mathbf{X}\mathbf{w}^*\|_F^2] \leq \mathbb{E} [\|\mathbf{X}\hat{\mathbf{w}} - \mathbf{X}\mathbf{w}^*\|_F^2], \quad (14)$$

880 where $\hat{\mathbf{w}}$ and $\hat{\mathbf{w}}'$ are the regression solutions using \mathbf{X} and \mathbf{X}' , $\mathbf{V}' = [\mathbf{v}_1, \dots, \mathbf{v}_{j-1}, \mathbf{v}_{j+1}, \dots, \mathbf{v}_d]$.

882 *Proof.*

883 The objective function of Ridge Regression is given by:

$$885 \min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_F^2 + \lambda \|\mathbf{w}\|_F^2, \quad (15)$$

887 whose analytical solution is:

$$888 \hat{\mathbf{w}} = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y}. \quad (16)$$

890 Substituting the SVD into the ridge solution, we get:

$$891 \hat{\mathbf{w}} = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y} \\ 892 = (\mathbf{V}\mathbf{D}^2 \mathbf{V}^\top + \lambda \mathbf{I})^{-1} \mathbf{V}\mathbf{D}\mathbf{U}^\top \mathbf{y}. \\ 893 = \mathbf{V}(\mathbf{D}^2 + \lambda \mathbf{I})^{-1} \mathbf{D}\mathbf{U}^\top \mathbf{y}. \quad (17)$$

896 According to the definition $\boldsymbol{\alpha}^* = \mathbf{V}^\top \mathbf{w}^* = (\alpha_1^*, \alpha_2^*, \dots)^\top$, we have $\mathbf{X}\mathbf{w}^* = \mathbf{U}\mathbf{D}\boldsymbol{\alpha}^*$.

897 Let $\hat{\boldsymbol{\alpha}} = (\mathbf{D}^2 + \lambda \mathbf{I})^{-1} \mathbf{D}\mathbf{U}^\top \mathbf{y}$, then according to Eq. 17, $\mathbf{X}\hat{\mathbf{w}} = \mathbf{U}\mathbf{D}\hat{\boldsymbol{\alpha}}$.

898 The mean squared error of the prediction is:

$$901 \text{MSE} = \mathbb{E} [\|\mathbf{X}\hat{\mathbf{w}} - \mathbf{X}\mathbf{w}^*\|_F^2] \\ 902 = \mathbb{E} [\|\mathbf{U}\mathbf{D}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)\|_F^2] \\ 903 = \mathbb{E} [\|\mathbf{D}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)\|_F^2] \\ 904 = \sum_{i=1}^d d_i^2 \mathbb{E} [(\hat{\alpha}_i - \alpha_i^*)^2] \\ 905 = \sum_{i=1}^d d_i^2 \underbrace{(\mathbb{E}[\hat{\alpha}_i] - \alpha_i^*)^2}_{\text{Bias}_i^2} + \sum_{i=1}^d \underbrace{d_i^2 \text{Var}(\hat{\alpha}_i)}_{\text{Var}_i}. \quad (18)$$

912 The $\hat{\boldsymbol{\alpha}}$ can also be represented as:

$$914 \hat{\boldsymbol{\alpha}} = (\mathbf{D}^2 + \lambda \mathbf{I})^{-1} \mathbf{D}\mathbf{U}^\top \mathbf{y} \\ 915 = (\mathbf{D}^2 + \lambda \mathbf{I})^{-1} \mathbf{D}\mathbf{U}^\top (\mathbf{X}\mathbf{w}^* + \boldsymbol{\varepsilon}) \\ 916 = (\mathbf{D}^2 + \lambda \mathbf{I})^{-1} \mathbf{D}\mathbf{U}^\top (\mathbf{U}\mathbf{D}\boldsymbol{\alpha}^* + \boldsymbol{\varepsilon}) \\ 917 = (\mathbf{D}^2 + \lambda \mathbf{I})^{-1} \mathbf{D}(\mathbf{D}\boldsymbol{\alpha}^* + \mathbf{U}^\top \boldsymbol{\varepsilon}), \quad (19)$$

918 which can be decomposed into signal and noise components:
919

$$920 \quad \hat{\alpha}_i = \frac{d_i^2}{d_i^2 + \lambda} \alpha_i^* + \frac{d_i}{d_i^2 + \lambda} (\mathbf{u}_i^\top \boldsymbol{\varepsilon}), \quad i = 1, \dots, d. \quad (20)$$

923 **Bias:** The expectation of the $\hat{\alpha}_i$:

$$924 \quad \text{Bias}_i = \mathbb{E}[\hat{\alpha}_i] - \alpha_i^* \\ 925 \quad = \frac{d_i^2}{d_i^2 + \lambda} \alpha_i^* + \frac{d_i}{d_i^2 + \lambda} \mathbb{E}[\mathbf{u}_i^\top \boldsymbol{\varepsilon}] - \alpha_i^* \\ 926 \quad = \left(\frac{d_i^2}{d_i^2 + \lambda} - 1 \right) \alpha_i^* \\ 927 \quad = -\frac{\lambda}{d_i^2 + \lambda} \alpha_i^*. \quad (21)$$

933 And the squared bias is:

$$934 \quad \text{Bias}_i^2 = \left(\frac{\lambda}{d_i^2 + \lambda} \right)^2 (\alpha_i^*)^2. \quad (22)$$

937 **Variance:** The variance of $\hat{\alpha}_i$:

$$938 \quad \text{Var}(\hat{\alpha}_i) = \text{Var} \left(\frac{d_i^2}{d_i^2 + \lambda} \alpha_i^* + \frac{d_i}{d_i^2 + \lambda} \mathbf{u}_i^\top \boldsymbol{\varepsilon} \right) \\ 939 \quad = \text{Var} \left(\frac{d_i}{d_i^2 + \lambda} \mathbf{u}_i^\top \boldsymbol{\varepsilon} \right) \\ 940 \quad = \frac{d_i^2}{(d_i^2 + \lambda)^2} \sigma^2. \quad (23)$$

947 Then the mean squared error is:

$$948 \quad \text{MSE} = \sum_{i=1}^d d_i^2 \left[(\mathbb{E}[\hat{\alpha}_i] - \alpha_i^*)^2 + \text{Var}(\hat{\alpha}_i) \right] \\ 949 \quad = \sum_{i=1}^d d_i^2 \left[\left(\frac{\lambda}{d_i^2 + \lambda} \right)^2 (\alpha_i^*)^2 + \frac{d_i^2}{(d_i^2 + \lambda)^2} \sigma^2 \right] \\ 950 \quad = \sum_{i=1}^d \frac{(\lambda d_i)^2}{(d_i^2 + \lambda)^2} (\alpha_i^*)^2 + \sum_{i=1}^d \frac{d_i^4}{(d_i^2 + \lambda)^2} \sigma^2. \quad (24)$$

957 Consider removing the j -th singular direction:

$$958 \quad \mathbf{X}' = \mathbf{X} \mathbf{V}' \\ 959 \quad = \mathbf{U} \mathbf{D} \mathbf{V}'^\top \\ 960 \quad = [d_1 \mathbf{u}_1, \dots, d_{i-1} \mathbf{u}_{i-1}, d_{i+1} \mathbf{u}_{i+1}, \dots, d_n \mathbf{u}_n] \\ 961 \quad = \mathbf{U}' \mathbf{D}' \quad (25)$$

965 where \mathbf{U}' is removing j -th column of \mathbf{U} , and \mathbf{D}' is removing j -th column and row of \mathbf{D} .

966 The objective function of Ridge Regression is:

$$967 \quad \min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}' \mathbf{w}\|_F^2 + \lambda \|\mathbf{w}\|_F^2, \quad (26)$$

969 whose analytical solution is:

$$970 \quad \hat{\mathbf{w}}' = (\mathbf{X}'^\top \mathbf{X}' + \lambda \mathbf{I})^{-1} \mathbf{X}'^\top \mathbf{y}. \\ 971 \quad = (\mathbf{D}'^2 + \lambda \mathbf{I})^{-1} \mathbf{D}' \mathbf{U}'^\top \mathbf{y}. \quad (27)$$

972 Similar to the definition of $\hat{\alpha}$, we also define $\hat{\alpha}'_j = (\mathbf{D}'^2 + \lambda \mathbf{I})^{-1} \mathbf{D}' \mathbf{U}'^\top \mathbf{y}$ then we have:
 973

$$\begin{aligned} 974 \hat{\alpha}' &= \hat{\mathbf{w}}' = (\mathbf{D}'^2 + \lambda \mathbf{I})^{-1} \mathbf{D}' \mathbf{U}'^\top \mathbf{y} \\ 975 &= (\mathbf{D}'^2 + \lambda \mathbf{I})^{-1} \mathbf{D}' (\mathbf{D}' \boldsymbol{\alpha}^* + \mathbf{U}'^\top \boldsymbol{\varepsilon}), \end{aligned} \quad (28)$$

976 where
 977

$$\hat{\alpha}'_i = \begin{cases} \frac{d_i^2}{d_i^2 + \lambda} \alpha_i^* + \frac{d_i}{d_i^2 + \lambda} (\mathbf{u}_i^\top \boldsymbol{\varepsilon}) = \hat{\alpha}_i, & i = 1, \dots, j-1 \\ \frac{d_{i+1}^2}{d_{i+1}^2 + \lambda} \alpha_{i+1}^* + \frac{d_{i+1}}{d_{i+1}^2 + \lambda} (\mathbf{u}_{i+1}^\top \boldsymbol{\varepsilon}) = \hat{\alpha}_{i+1}, & i = j, \dots, d-1 \end{cases} \quad (29)$$

$$\quad (30)$$

982 Then the prediction error of using X_k is:
 983

$$\begin{aligned} 984 \text{MSE}' &= \mathbb{E} [\|\mathbf{X}' \hat{\mathbf{w}}' - \mathbf{X} \mathbf{w}^*\|_F^2] \\ 985 &= \mathbb{E} [\|\mathbf{U}' \mathbf{D}' \hat{\alpha}' - \mathbf{U} \mathbf{D} \boldsymbol{\alpha}^*\|_F^2] \\ 986 &= \sum_{i=1}^{j-1} d_i^2 \mathbb{E} [(\hat{\alpha}'_i - \alpha_i^*)^2] + \sum_{i=j}^{d-1} d_i^2 \mathbb{E} [(\hat{\alpha}'_i - \alpha_{i+1}^*)^2] + d_j^2 \mathbb{E} [(\alpha_j^*)^2] \\ 987 &= \sum_{i=1}^{j-1} d_i^2 \mathbb{E} [(\hat{\alpha}_i - \alpha_i^*)^2] + \sum_{i=j+1}^d d_i^2 \mathbb{E} [(\hat{\alpha}_i - \alpha_i^*)^2] + d_j^2 \mathbb{E} [(\alpha_j^*)^2] \\ 988 &= \text{MSE} - \mathbb{E} [(\hat{\alpha}_j - \alpha_j^*)^2] + d_j^2 \mathbb{E} [(\alpha_j^*)^2] \\ 989 &= \text{MSE} - d_j^2 \left[(\mathbb{E}[\hat{\alpha}_j] - \alpha_j^*)^2 + \text{Var}(\hat{\alpha}_j) \right] + d_j^2 \mathbb{E} [(\alpha_j^*)^2] \\ 990 &= \text{MSE} - \frac{(\lambda d_j)^2}{(d_j^2 + \lambda)^2} (\alpha_j^*)^2 - \frac{d_j^4}{(d_j^2 + \lambda)^2} \sigma^2 + d_j^2 (\alpha_j^*)^2. \\ 991 & \\ 992 & \\ 993 & \\ 994 & \\ 995 & \\ 996 & \\ 997 & \\ 998 & \end{aligned} \quad (31)$$

999 With the assumption that $\sigma^2 \geq (2\lambda + d_j^2) (\alpha_j^*)^2$:
 1000

$$\begin{aligned} 1001 d_j^2 (\alpha_j^*)^2 &= \frac{(\lambda d_j)^2}{(d_j^2 + \lambda)^2} (\alpha_j^*)^2 + d_j^2 \left(1 - \frac{\lambda^2}{(d_j^2 + \lambda)^2}\right) (\alpha_j^*)^2 \\ 1002 &= \frac{(\lambda d_j)^2}{(d_j^2 + \lambda)^2} (\alpha_j^*)^2 + d_j^4 \frac{(d_j^2 + 2\lambda) (\alpha_j^*)^2}{(d_j^2 + \lambda)^2} \\ 1003 &= \frac{(\lambda d_j)^2}{(d_j^2 + \lambda)^2} (\alpha_j^*)^2 + \frac{d_j^4}{(d_j^2 + \lambda)^2} \sigma^2 \\ 1004 &\leq \frac{(\lambda d_j)^2}{(d_j^2 + \lambda)^2} (\alpha_j^*)^2 + \frac{d_j^4}{(d_j^2 + \lambda)^2} \sigma^2. \\ 1005 & \\ 1006 & \\ 1007 & \\ 1008 & \\ 1009 & \\ 1010 & \\ 1011 & \\ 1012 & \\ 1013 & \\ 1014 & \\ 1015 & \\ 1016 & \\ 1017 & \\ 1018 & \\ 1019 & \\ 1020 & \\ 1021 & \\ 1022 & \\ 1023 & \\ 1024 & \\ 1025 & \end{aligned} \quad (32)$$

Then

$$\text{MSE}' \leq \text{MSE}, \quad (33)$$

1010 finish the proof.
 1011

1012 E.2 THE SCALE OF σ AND $\boldsymbol{\alpha}^*$

1013 In this section, we show the scale of σ and $\boldsymbol{\alpha}^*$ to show that the assumption of $\sigma^2 \geq (2\lambda + d_j^2) (\alpha_j^*)^2$ in
 1014 Theorem 1 can be achieved with appropriate d_j . λ is the regularization parameter of ridge regression
 1015 which is typically 0.1. During the learning of task t , for a specific class k and the sample x_i , the ground
 1016 truth label is a one-hot value $y_{i,k}$, the pseudo label is also a one-hot value $\tilde{y}_{i,k}$. Then the standard
 1017 variance σ of class k can be estimated by $y_{i,k} - \tilde{y}_{i,k}$ with different samples. For $\boldsymbol{\alpha}^* = \mathbf{V}^\top \mathbf{w}^*$, \mathbf{V} is
 1018 the part of the SVD decomposition of \mathbf{X} and \mathbf{w}^* can be estimated by solving ridge regression with
 1019 the feature \mathbf{X} and ground truth label \mathbf{Y} . Then, we show the standard variance σ of different classes
 1020 and the value of different dimensions of $\boldsymbol{\alpha}^*$ in Fig. 8. The horizontal coordinate of the gray line
 1021 represents the estimated noisy standard variance. And the absolute value of α_j^* is presented by the bar
 1022 chart. The experiment is conducted on the first task of Aircraft-B0Inc10 setting. Results show that
 1023 98.14% of the α_j^* satisfy the condition of $\sigma^2 \geq (\alpha_j^*)^2$ and 99.9% of the α_j^* satisfy the condition of
 1024 $\sigma^2 \geq 2\lambda(\alpha_j^*)^2$ with $\lambda = 0.1$. Therefore, when d_j takes an appropriate value, $\sigma^2 \geq (2\lambda + d_j^2)(\alpha_j^*)^2$
 1025 can be satisfied.

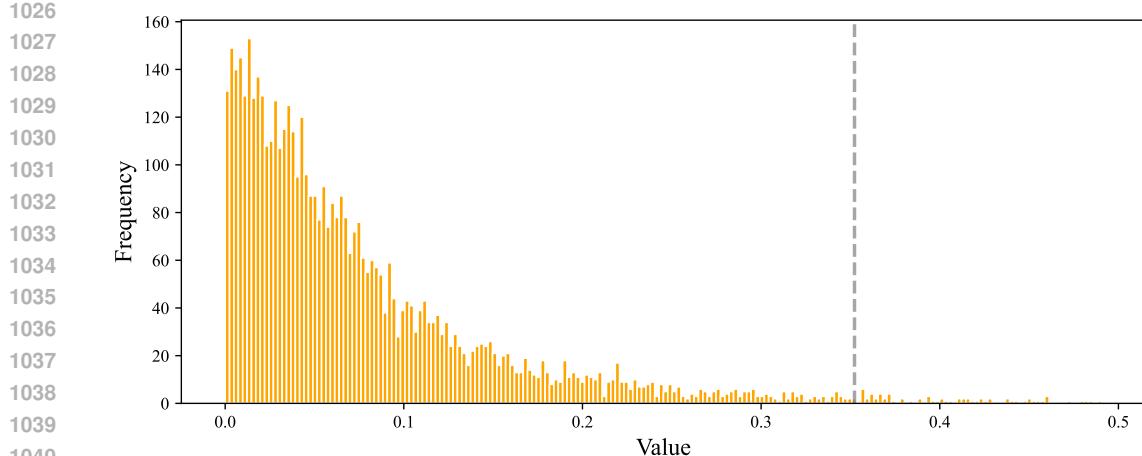


Figure 8: The estimated noisy variance (gray line) and the bar chart for the absolute value of α_j^* on the first task of Aircraft-B0Inc10 setting.

F ANALYTIC CIL WITH WEIGHT ADJUSTMENT.

In this section, we derive how to get the closed-form solution of ridge regression with re-weight in the incremental learning setting. The derivation of the standard ridge regression can be seen as setting the weight matrix to the identity matrix. The optimization objective of ridge regression with weight can be reformed as:

$$\begin{aligned} \mathcal{L}(\mathbf{W}_T) &= (\mathbf{X}_{1:T}\mathbf{W}_T - \mathbf{Y}_{1:T})^\top \mathbf{M} (\mathbf{X}_{1:T}\mathbf{W}_T - \mathbf{Y}_{1:T}) \\ &\quad + \lambda \mathbf{W}_T^\top \mathbf{W}_T, \end{aligned} \quad (34)$$

where $\mathbf{M} = \text{diag}(m_1, \dots, m_n)$ is the diagonal weight matrix.

The gradient w.r.t. \mathbf{W}_T is :

$$\nabla_{\mathbf{W}_T} \mathcal{L} = 2\mathbf{X}_{1:T}^\top \mathbf{M} \mathbf{X}_{1:T} \mathbf{W}_T - 2\mathbf{X}_{1:T}^\top \mathbf{M} \mathbf{Y}_{1:T} + 2\lambda \mathbf{W}_T \quad (35)$$

Setting gradient to zero:

$$\begin{aligned} \hat{\mathbf{W}}_T &= (\mathbf{X}_{1:T}^\top \mathbf{M} \mathbf{X}_{1:T} + \lambda \mathbf{I})^{-1} \mathbf{X}_{1:T}^\top \mathbf{M} \mathbf{Y}_{1:T} \\ &= \left([\mathbf{X}_1^\top \dots \mathbf{X}_T^\top] \begin{bmatrix} \mathbf{M}_1 & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \mathbf{M}_T \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_T \end{bmatrix} + \lambda \mathbf{I} \right) [\mathbf{X}_1^\top \dots \mathbf{X}_T^\top] \begin{bmatrix} \mathbf{M}_1 & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \mathbf{M}_T \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_T \end{bmatrix} \\ &= \left(\sum_{t=1}^T \mathbf{X}_t^\top \mathbf{M}_t \mathbf{X}_t + \lambda \mathbf{I} \right)^{-1} \left(\sum_{t=1}^T \mathbf{X}_t^\top \mathbf{M}_t \mathbf{Y}_t \right) \end{aligned} \quad (36)$$

where \mathbf{M}_t is the diagonal weight matrix of \mathbf{X}_t . Then the closed-form solution for \mathbf{W}_T can be updated recursively as:

$$\hat{\mathbf{W}}_T = (\mathbf{A}_T + \lambda \mathbf{I})^{-1} \mathbf{C}_T, \quad (37)$$

with

$$\mathbf{A}_t = \mathbf{A}_{t-1} + \mathbf{X}_t^\top \mathbf{M}_t \mathbf{X}_t, \quad \mathbf{C}_t = \mathbf{C}_{t-1} + \mathbf{X}_t^\top \mathbf{M}_t \mathbf{Y}_t. \quad (38)$$

G DETAILED PERFORMANCE ON EACH TASKS

To present the results in detail, we present the accuracy of different methods with e LAION-400M pre-trained CLIP ViT-B/16 after different tasks in Fig. 9 (without base classes) and Fig. 10 (with

base classes). Unlike the typical declining trend of accuracy across tasks, we observe an increasing accuracy trajectory on certain datasets. This phenomenon stems from varying difficulties in generating pseudo labels for unlabeled data at different stages, when higher quality pseudo labels are produced, the performance improves accordingly. Notably, our method achieves the best performance on nearly all tasks. This is attributed to our proposed pseudo label refinement strategy, which effectively refines noisy labels, as well as the intra-class and inter-class adjustment methods that mitigate class frequency imbalance and leverage confidence information from pseudo labels.

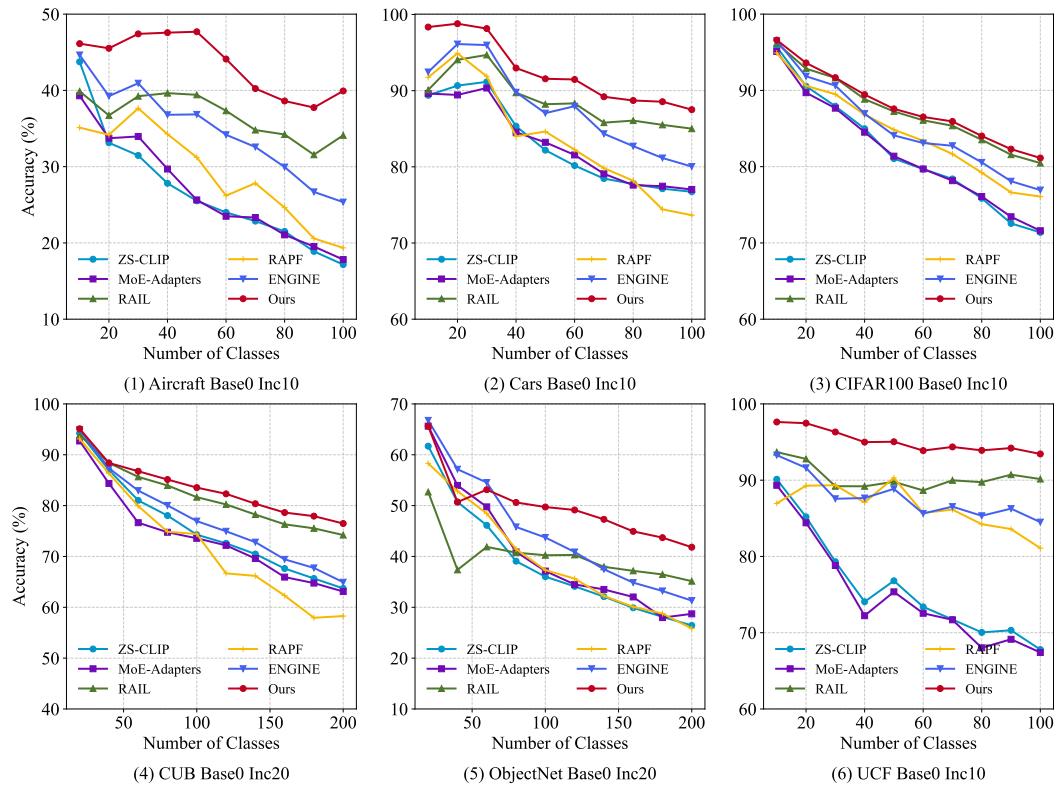


Figure 9: Results of each task without base classes.

H PSEUDO CODE

We provide the pseudo code in Algorithm 1. For task t , we first obtain the image features X_t and the pseudo labels \tilde{Y}_t . As described in the first paragraph of Sec. 3.4, the projected features $X_{t,k}$ together with \tilde{Y}_t are used to perform a regression step that yields a refined classifier \hat{W}'_t . The refined pseudo labels \tilde{Y}'_t are then computed according to Eq. 4. We replace the original pseudo labels \tilde{Y}_t with \tilde{Y}'_t to enable progressive label refinement. After the refinement, the classification head for continual learning is trained using X_t , the latest refined labels \tilde{Y}'_t , and the bi-level weight adjustment strategy.

I MORE RESULTS

I.1 STATISTICAL RESULTS

Besides the reported mean results reported in Table 1, we also report standard deviation across three independent runs in Table 7. These statistical results show that our method maintains stable performance across different runs, demonstrating its robustness.

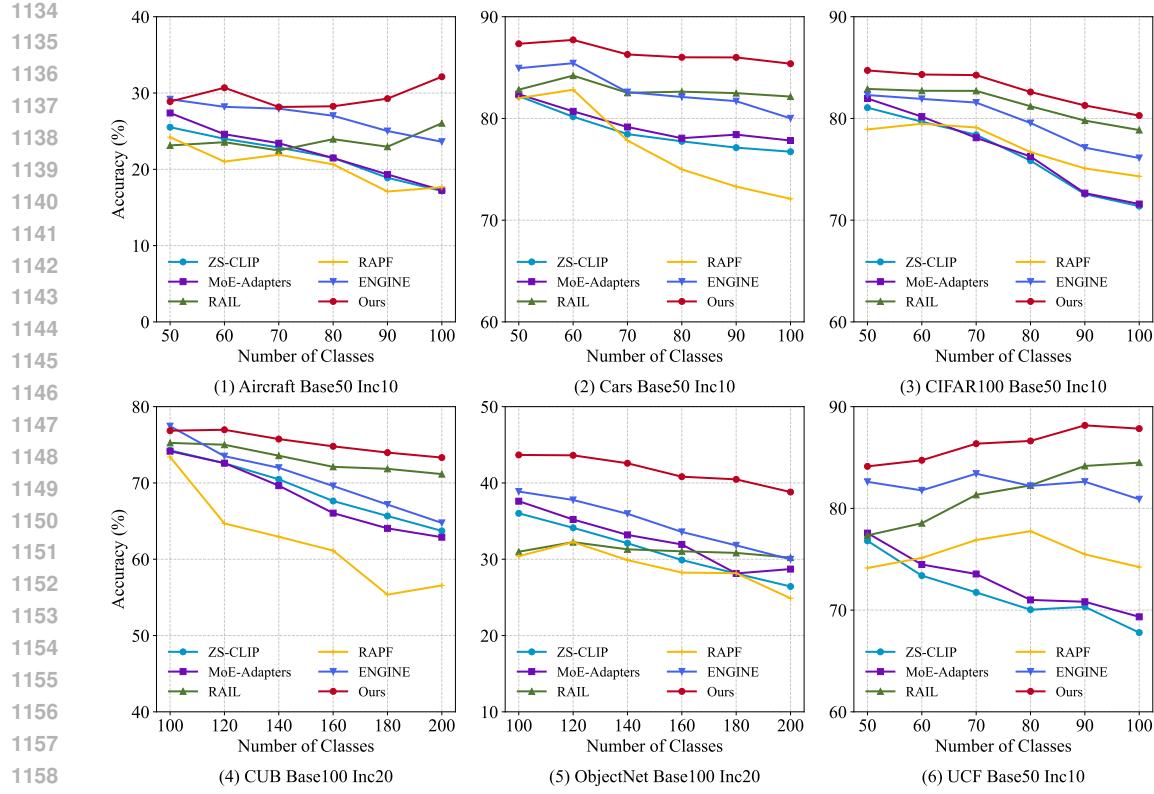


Figure 10: Results of each task with base classes.

Table 7: The mean and standard deviation results of N2L.

Method	Aircraft				Cars				CIFAR100			
	$\bar{\mathcal{A}}$	\mathcal{A}_B										
N2L	43.73	40.21	29.69	32.42	92.38	87.50	86.42	85.45	87.80	81.13	82.92	80.30
	± 0.24	± 0.20	± 0.24	± 0.26	± 0.14	± 0.15	± 0.02	± 0.09	± 0.10	± 0.03	± 0.03	± 0.04
CUB												
Method	CUB				ObjectNet				UCF			
	$\bar{\mathcal{A}}$	\mathcal{A}_B										
N2L	83.41	76.48	75.16	73.40	49.31	41.59	41.42	38.65	95.00	93.29	86.41	87.87
	± 0.07	± 0.05	± 0.08	± 0.10	± 0.35	± 0.20	± 0.24	± 0.26	± 0.10	± 0.21	± 0.08	± 0.03

I.2 MORE ABLATION RESULTS

In the main paper, we present a subset of the results in Fig. 4 to maintain readability. Additional results for each individual component are provided in Table. 8. When incorporating only a single component, the pseudo-label refinement module achieves the most significant improvement. The inter-class and intra-class adjustment modules further enhance performance by balancing the weights of different samples. Finally, combining all components yields the best overall results.

I.3 NOISY TASK BOUNDARY

In this section, we evaluate our approach under a noisy task boundary scenario, where 20% or 50% of the training samples are drawn from $C_{1:t-1}$. The results in Table. 9 show that our N2L still outperforms existing methods under such noisy conditions, demonstrating its effectiveness.

1188 **Algorithm 1** N2L Training Procedure

1189 **Input:** Pre-trained VLM $\mathcal{V} = (f_{\text{img}}, f_{\text{text}})$; data stream $\mathcal{D} = \{\mathcal{D}_t\}_{t=1}^T$ where $\mathcal{D}_t = \{\mathcal{U}_t, \mathcal{C}_t\}$;

1190 regularization λ .

1191 **Output:** Incremental classifier $\hat{\mathbf{W}}_T$.

1192 1: Initialize $\mathbf{A}_0 = \mathbf{0}$, $\mathbf{C}_0 = \mathbf{0}$.

1193 2: **for** $t = 1$ to T **do**

1194 3: **Step 1: Pseudo Label Generation**

1195 4: **for** each $x_i \in \mathcal{U}_t$ **do**

1196 5: Compute $\tilde{y}_i = \arg \max_{c \in \mathcal{C}_t} \langle f_{\text{img}}(x_i), f_{\text{text}}(p_c) \rangle$ (Eq. 1)

1197 6: **end for**

1198 7: Form pseudo-label matrix $\tilde{\mathbf{Y}}_t$.

1199 8:

1200 9: **Step 2: Progressive Label Refinement**

1201 10: Extract visual features \mathbf{X}_t .

1202 11: Compute SVD: $\mathbf{X}_t = \mathbf{U}\mathbf{D}\mathbf{V}^\top$.

1203 12: Select top- k singular vectors above threshold θ : \mathbf{V}_k .

1204 13: Project features: $\mathbf{X}_{t,k} = \mathbf{X}_t \mathbf{V}_k$.

1205 14: **for** iter = 1 to refinement steps **do**

1206 15: Learn refinement classifier $\hat{\mathbf{W}}'_t$ using $(\mathbf{X}_{t,k}, \tilde{\mathbf{Y}}_t)$ and weight adjustment.

1207 16: Update labels $\tilde{\mathbf{Y}}_t = \arg \max(\mathbf{X}_{t,k} \hat{\mathbf{W}}'_t)$. (Eq. 5)

1208 17: **end for**

1209 18:

1210 19: **Step 3: Bi-level Weight Adjustment**

1211 20: Compute class-frequency weights m_{inter} . (Eq. 7)

1212 21: Compute entropy \mathbf{E} from logits $\mathbf{X}_{t,k} \hat{\mathbf{W}}'_t$. (Eq. 9)

1213 22: Sample intra-class weights from $\mathcal{N}(1, \sigma^2)$, sort and reorder by entropy.

1214 23: Compute weights $m_i = m_{\text{inter},i} \cdot m_{\text{intra},i}$. (Eq. 10)

1215 24: Form diagonal weight matrix \mathbf{M}_t .

1216 25:

1217 26: **Step 4: Recursive Analytic CIL Update**

1218 27: Update sufficient statistics: (Eq. 13)

1219
$$\mathbf{A}_t = \mathbf{A}_{t-1} + \mathbf{X}_t^\top \mathbf{M}_t \mathbf{X}_t, \quad \mathbf{C}_t = \mathbf{C}_{t-1} + \mathbf{X}_t^\top \mathbf{M}_t \tilde{\mathbf{Y}}_t.$$

1220 28: Compute incremental classifier: (Eq. 12)

1221
$$\hat{\mathbf{W}}_t = (\mathbf{A}_t + \lambda \mathbf{I})^{-1} \mathbf{C}_t.$$

1222 29: **end for**

Table 8: More ablation results of N2L.

Aircraft-B0Inc10	$\bar{\mathcal{A}}$	\mathcal{A}_B
Base	36.23	33.59
Base+Intra	37.29	34.35
Base+Inter	37.31	35.31
Base+Refine	39.50	35.64
Base+Inter+Intra	38.14	36.45
Base+Intra+Refine	41.17	36.17
Base+Inter+Refine	42.34	39.66
Base+Inter+Intra+Refine	43.73	40.21

J INFERENCE STEP

During inference, we follow the prediction fusion strategy of RAIL (Xu et al., 2024), which computes the final output by taking a weighted sum of the zero-shot CLIP logits and the logits produced by the

1242

1243 Table 9: Results of different methods under a noisy task boundary scenario, where 0%, 20% or 50%
1244 of the training samples at task t are drawn from previous tasks.

1245

Method	Aircraft				Cars				CIFAR100				
	B0Inc10	\bar{A}	B50Inc10	\bar{A}	B0Inc10	\bar{A}	B50Inc10	\bar{A}	B0Inc10	\bar{A}	B50Inc10	\bar{A}	\mathcal{A}_B
RAIL(0%)	36.23	33.59	23.75	25.99	88.64	84.68	82.72	82.13	87.34	80.37	81.44	78.89	
ENGINE(0%)	34.77	25.41	26.94	23.56	86.90	78.76	82.67	79.93	85.15	77.11	79.89	76.15	
N2L(0%)	43.73	40.21	29.69	32.42	92.38	87.50	86.42	85.45	87.80	81.13	82.92	80.30	
RAIL(20%)	35.19	31.71	23.06	24.60	87.95	82.81	82.37	81.02	87.01	79.95	81.10	78.38	
ENGINE(20%)	33.95	24.72	26.51	22.56	86.45	78.32	82.16	79.18	84.72	76.61	79.52	75.86	
N2L(20%)	43.11	38.70	29.13	30.51	91.06	85.26	86.00	84.23	87.68	80.81	82.78	80.07	
RAIL(50%)	33.46	28.83	21.97	21.81	85.56	78.74	81.52	78.99	86.55	79.20	80.67	77.69	
ENGINE(50%)	33.36	23.25	25.63	21.39	85.44	76.56	80.83	75.90	83.72	75.68	78.64	74.50	
N2L(50%)	40.49	36.00	27.45	27.75	89.32	81.61	85.10	81.58	87.02	80.27	82.39	79.23	
CUB													UCF
Method	B0Inc20				B0Inc20				B0Inc10				B50Inc10
	\bar{A}	\mathcal{A}_B											
RAIL(0%)	81.64	73.93	73.08	70.91	39.80	35.13	31.21	30.19	90.18	89.90	81.05	84.27	
ENGINE(0%)	77.06	65.07	70.85	64.92	44.57	31.24	34.62	29.96	87.85	84.46	82.30	81.04	
N2L(0%)	83.41	76.48	75.16	73.40	49.31	41.59	41.42	38.65	95.00	93.29	86.41	87.87	
RAIL(20%)	80.25	71.61	72.72	70.02	38.61	33.66	30.29	28.74	88.54	88.33	80.45	83.21	
ENGINE(20%)	75.68	63.60	70.20	64.19	44.01	30.34	34.28	29.39	86.94	84.54	82.04	80.64	
N2L(20%)	82.10	74.28	74.46	71.76	48.10	40.84	40.96	37.73	93.15	91.21	85.85	86.43	
RAIL(50%)	78.38	68.45	71.20	66.33	34.48	29.53	28.09	24.98	86.31	85.75	78.44	79.58	
ENGINE(50%)	74.39	61.79	69.22	62.82	42.72	29.75	33.53	28.41	84.28	82.83	80.75	78.63	
N2L(25%)	79.86	70.52	72.80	68.54	46.48	37.09	39.05	34.94	90.80	88.86	84.75	84.99	

1270

1271 learned classification head. Specifically, the final logit for sample i , denoted as $Y_{i,\text{final}}$, is computed
1272 as:

1273

1274

$$Y_{i,\text{final}} = (1 - \beta) \tilde{Y}_i + \beta Y_i \quad (39)$$

1275 where \tilde{Y}_i is the logit predicted by N2L, Y_i is the zero-shot CLIP logit, β is a weighting parameter set
1276 to 0.2 following RAIL.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295