

CLUSTER-MASKED SCANNING AND PRETRAINING FOR ENHANCED xLSTM VISION PERFORMANCE

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 While modern recurrent architectures like xLSTM show promise for vision tasks,
012 their potential has been hindered by the challenge of effectively applying autore-
013 gressive pretraining—a cornerstone of NLP success—to 2D image data. This pa-
014 per introduces MAL, a framework that unlocks autoregressive learning for vision-
015 oriented xLSTMs. Our core innovation is a **cluster-masked pretraining strat-**
016 **egy**, which reorganizes an image into a sequence of semantically meaningful lo-
017 cal clusters. This approach creates a more structured input sequence uniquely
018 suited to xLSTM’s memory mechanisms. By combining this with our **novel clus-**
019 **ter scanning strategy** which defines an optimal processing order, MAL effec-
020 tively learns powerful visual representations by predicting entire image regions
021 autoregressively. Our experiments show that this novel pretraining scheme allows
022 MAL to significantly outperform traditional supervised models, fully leveraging
023 the scaling potential of xLSTM and setting a new performance benchmark.
024

1 INTRODUCTION

025 In recent years, efficient visual representation learning has become a key focus in computer vision
026 research. The introduction of Transformer models and State Space Models (SSM), like Mamba,
027 has significantly impacted visual task processing, showing impressive performance across various
028 applications Liu et al. (2024b); Ma et al. (2024). However, these models often face challenges
029 when scaling to larger sizes, which limits their efficiency and applicability Hatamizadeh & Kautz
030 (2024). For instance, Vision Mamba (Vim) Zhu et al. (2024) can experience performance stagnation
031 or training crashes at larger scales Ren et al. (2024).
032

033 In this paper, we focus on autoregressive pretraining in self-supervised visual representation learning,
034 which predicts the next token sequentially from start to finish. This approach is motivated by
035 two key factors. Firstly, autoregressive pretraining is a standard method for training large language
036 models and has been influential across various architectures, including Transformers and Mamba Gu
037 & Dao (2023); Liu & Yi (2025). It has shown promise in computer vision, as evidenced by Vision
038 Transformer (ViT) El-Nouby et al. (2024); Ren et al. (2023a). Secondly, the Mamba architecture’s
039 linear attention properties naturally support autoregressive modeling by allowing each token to at-
040 tend only to its predecessors, enhancing training efficiency.
041

042 The development of the extended Long Short-Term Memory (xLSTM) family marks a significant
043 advancement in natural language processing (NLP). xLSTM enhances traditional LSTM architec-
044 ture, achieving performance comparable to leading Transformer models while overcoming some
045 LSTM limitations. The vision-LSTM approach has successfully adapted xLSTM for visual tasks,
046 demonstrating its versatility. Inspired by these advancements, we propose a novel approach that
047 utilizes xLSTM instead of Mamba or Transformer components to construct a visual autoregressive
048 pretraining framework.
049

050 To address these challenges and unlock the full potential of xLSTM in vision, we propose MAL
051 (Cluster-Masked Scanning and Pretraining for Enhanced xLSTM Vision Performance). Instead of
052 treating an image as a simple flat sequence of patches, which can disrupt local spatial coherence,
053 MAL introduces a novel **cluster-masked autoregressive pretraining** methodology. Our key insight
054 is that by grouping spatially adjacent patches into larger, semantically richer clusters, we can create
055 a more structured sequence for the model to process. This approach not only enhances local feature
056 capture but also presents a more manageable and meaningful prediction task for the autoregressive
057

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
objective. Furthermore, MAL integrates this strategy within a parallel encoder-decoder architecture, demonstrating for the first time an effective way to apply autoregressive pretraining to the xLSTM family for visual representation learning.

Experimental results show that MAL significantly outperforms traditional supervised training models, effectively leveraging xLSTM’s scaling potential to handle large and complex visual datasets. By addressing LSTM limitations with xLSTM’s advanced capabilities and novel pretraining strategies, MAL sets a new standard for visual task performance, highlighting the transformative potential of autoregressive in computer vision. The major contributions of this paper are three-fold:

- **Innovative Cluster-Masked Masking Strategy:** The paper introduces a novel cluster-masked masking approach that enhances xLSTM’s ability to capture local image features and optimizes image scanning efficiency. This method groups spatially adjacent patches into larger clusters, improving both feature extraction and computational efficiency.
- **Cluster-Masked Scanning Method:** Our framework introduces a new scanning strategy that processes these clustered representations, allowing for more effective autoregressive modeling. This method enhances the model’s understanding of spatial relationships within the visual data.
- **Improved Model Adaptability and Performance:** Our approach reduces discrepancies by maintaining architectural consistency between pretraining and fine-tuning. To our knowledge, this is the first use of xLSTM for autoregressive tasks in visual representation learning. Experiments show it significantly outperforms traditional supervised models across various visual tasks, effectively leveraging xLSTM’s scalability.

2 RELATED WORK

2.1 LSTM IN VISION

Recurrent Neural Networks (RNNs) were initially developed to address problems in Natural Language Processing (NLP), such as time-series prediction and speech recognition, by effectively capturing temporal dependencies in sequential data. Recently, to overcome the quadratic computational complexity of transformers, time-parallel data-dependent RNNs (referred to as linear RNNs in this paper) have made significant advancements Qin et al. (2023); Orvieto et al. (2023); Sun et al. (2023); De et al. (2024); Yang et al. (2023); Gu & Dao (2023); Sun et al. (2024); Beck et al. (2024). ViG’s Liao et al. (2024) innovative use of gated linear attention to achieve linear complexity by dynamically adjusting receptive fields. These models provide efficient parallel training capabilities while maintaining linear complexity, achieving performance levels that meet or even exceed those of transformers. Due to their scalability and efficiency, linear RNNs are expected to play an increasingly important role across various fields, with some studies Duan et al. (2024a); Alkin et al. (2024a); Liang et al. (2024) already applying linear RNNs to the 2D vision domain. Vision-LSTM (ViL), which adapts the xLSTM building blocks for computer vision, has been shown to outperform the ViT training pipeline—a result of years of hyperparameter tuning and transformer improvements. This paper aims to extend linear RNNs to 2D self-supervised visual representation tasks, thanks to their ability to model long-range dependencies.

2.2 SELF-SUPERVISED VISUAL REPRESENTATION LEARNING

Self-supervised visual representation learning seeks to develop robust, transferable representations without labelled data, using methods like contrastive learning Chen et al. (2020c); He et al. (2020); Chen et al. (2021; 2020b), position prediction Zhai et al. (2022), and masked image modeling He et al. (2022); Bao et al. (2022); Ren et al. (2023b). This paper focuses on autoregressive pretraining, a successful NLP technique that has been explored less in computer vision. iGPT Chen et al. (2020a) first introduced generative pretraining transformers to vision, showcasing the potential of autoregressive pretraining in self-supervised learning. Enhancements by SAIM Qi et al. (2023) and RandSAC Hua et al. (2022) used the ViT architecture and random sequence permutation, achieving results comparable to MAE He et al. (2022). D-iGPT Ren et al. (2023a) adjusted the learning objective to predict both the next and visible tokens. AIM El-Nouby et al. (2024) demonstrated that ViT could scale effectively with increased model capacity and data volume. Unlike these studies focused

Figure 1: Overall architecture.

Figure 2: Pretrain and fine-tuning.

on transformers, our work is the first to explore autoregressive visual representation learning by leveraging xLSTM with a cluster-masked scanning strategy and an encoder-decoder pretraining approach. The framework transitions from pixel-based to patch-based prediction units and explores different cluster prediction orders.

3 METHODS

We introduce the MAL framework, which enhances autoregressive visual representation learning by leveraging xLSTM with a cluster-masked scanning strategy and an encoder-decoder pretraining approach. The framework transitions from pixel-based to patch-based prediction units and explores different cluster prediction orders.

3.1 VISION LSTM ENCODER

As depicted in Figure 1, the MAL encoder is built with alternating mLSTM blocks that are fully parallelizable, featuring a matrix memory with a covariance update rule. Each mLSTM block incorporates an input gate, a forget gate, and multi-head layer normalization, all parameterized with linear layers. This design enables the Vision LSTM Encoder to effectively capture dependencies across the image, enhancing its ability to model complex visual patterns. Notably, the mLSTM serves as a component of the xLSTM Beck et al. (2024) framework introduced in this work. **With further xLSTM details provided in the appendix Section xLSTM Block.**

3.2 AUTOREGRESSIVE PRETRAINING

First, we briefly revisit autoregressive pretraining in NLP. Then, we focus on autoregressive pre-training with xLSTM in vision, including the prediction unit and prediction order design.

3.2.1 EVOLUTION OF PREDICTION UNITS

Pixel-based Prediction Unit. Transitioning from 1D sentences to 2D images requires defining an appropriate autoregressive prediction unit. Initially, as in iGPT Chen et al. (2020a), each pixel serves as the prediction unit (see Fig. 3(b)). For an image $X = \{p_1, \dots, p_n\}$, our objective is to minimize the loss function:

$$\mathcal{L} = \sum_{i=1}^{n-1} l(f([p_1, \dots, p_i]), p_{i+1}), \quad l(\hat{y}, y) = |\hat{y} - y|^2. \quad (1)$$

Here $f(\cdot)$ denotes the xLSTM model, and p_i represents the image's i_{th} pixel.

Patch-based Prediction Unit. We can use a patch-based method to address the computational challenges of pixel-based approaches in high-resolution images, as highlighted in the iGPT pa-

Figure 3: Different prediction units in the autoregressive modeling.

Figure 4: Different cluster prediction orderings of a visual sentence.

per Chen et al. (2020a). We effectively reduce the sequence length by dividing images into non-overlapping patches, similar to the method in Dosovitskiy et al. (2020). For instance, an image of size 224×224 can be transformed from a sequence of 50,176 pixels (as in iGPT) to just 196 patches using a 16×16 patch size, where $P_i \in \mathcal{R}^{16 \times 16}$ is the i_{th} patch. This shift from predicting pixels Chen et al. (2020a) to predicting patches Dosovitskiy et al. (2020); Zhu et al. (2024); El-Nouby et al. (2024), as illustrated in Figure 3(d), reformulates the autoregressive input to $X = \{P_1, \dots, P_n\}$:

$$\mathcal{L} = \sum_{i=1}^{n-1} l(f([P_1, \dots, P_i]), P_{i+1}), \quad l(\hat{y}, y) = |\hat{y} - y|^2. \quad (2)$$

3.2.2 CLUSTER-MASKED ENHANCED VISION PRETRAINING

Cluster-based Prediction Unit. We propose a novel approach by grouping spatially adjacent patches into larger clusters to serve as the prediction units (see Figure 3(e)). Furthermore, our method introduces an innovative cluster-masked strategy (see Figure 3(f)), which significantly enhances the model’s capability to capture local features effectively. (Please refer to Appendix B.1 for a detailed clarification of the "Cluster" terminology.)

Cluster Formation: See Fig 3(e); in forming clusters, we consider each patch in the image as a basic unit and group them based on their spatial proximity to ensure continuity and coherence within clusters. The size of the clusters can be adjusted according to the requirements of specific tasks or datasets, thereby reducing sequence length and computational costs. For example, in a 224×224 pixel image, using a patch size of 16×16 converts it into 196 patches; these patches can then be further combined into fewer larger clusters. This mechanism not only enhances the model’s effectiveness in learning local structures but also optimizes image scanning efficiency. The clustered input $X = \{c_1, \dots, c_n\}$ aims to be optimized by:

$$\mathcal{L}_{MAL} = \sum_{i=1}^{n-1} l(f([c_1, \dots, c_i]), c_{i+1}), \quad l(\hat{y}, y) = |\hat{y} - y|^2. \quad (3)$$

Here, c_i represents a cluster unit formed by combining multiple adjacent image patches. For example, if the image is 12×12 patches and each cluster consists of 4×4 patches, this will generate 9 clusters. Our ablation studies (Table 6) show that using clusters as prediction targets significantly enhances performance compared to using individual pixels or patches. Next, we explore the strategies for sequencing these clusters into a coherent visual sentence.

Cluster-Masked Generation After serializing images into clusters, we employ a cluster-masked masking strategy (see Fig.3(f)). This approach leverages the clustered image sequences, enabling the mask to adaptively focus on both preceding and succeeding clusters. By doing so, each cluster can attend to its relevant contextual clusters. This strategy enhances the model’s ability to learn from rich contextual information provided by the clustered representations.

216 **The importance of Cluster-Masked Masking for Local Feature Capture is seen in Appendix**
 217 **Section B.3.**

219 **3.2.3 CLUSTER-BASED FLOW SCANNING**

221 This section introduces a novel Cluster-Based Flow Scanning algorithm that systematically defines
 222 the sequence order for autoregressive modeling in 2D images, ensuring optimal processing of clus-
 223 tered representations. This algorithm enhances the efficiency of the scanning process while preserv-
 224 ing the spatial relationships within the visual data.

225 Unlike the clear sequence order for autoregressive modeling in 1D sentences in NLP, 2D images
 226 require defining the sequence order when converting them into 1D visual sentences. As shown
 227 in Figure 4, we explore four primary prediction orders for arranging clusters into a sequence: 1)
 228 *Cluster-row and Horizontal Forward* (see Figure 4(a)): Process clusters by row, from the first cluster
 229 to the last cluster in each row, and scan within each cluster in a row-wise manner. 2) *Cluster-column*
 230 and *Horizontal Forward Scanning* (see Figure 4(b)): Scan within each cluster in a column-wise
 231 manner while processing clusters by row, from the first cluster to the last cluster in each row. 3)
 232 *Cluster-row and Horizontal Backward Scanning* (see Figure 4(c)): Similarly process clusters by
 233 row, but scan within each cluster in reverse row order, starting from the last cluster in each row. 4)
 234 *Cluster-column and Horizontal Backward Scanning* (see Figure 4(d)): Scan within each cluster in
 235 reverse column order, while processing clusters by row, starting from the last cluster in each row.
 236 Additionally, a *Random* permutation of cluster order (Figure 4(e)) was tested to avoid predefined
 237 sequential biases.

238 **3.3 PARALLEL ENCODER AND DECODER ARCHITECTURE**

240 We design a parallel encoder-decoder architecture where the encoder and decoder do not share
 241 weights (see Fig. 1). During pretraining, the encoder learns contextual information from visible
 242 positions using a Cluster-Masked approach, while the decoder reconstructs the image from the latent
 243 representation with position embeddings.

245 **3.3.1 IMAGE SERIALIZATION WITH CLUSTERS**

247 Following the ViT approach ViT Dosovitskiy et al. (2021), we first split the 2D image $\mathbf{x} \in \mathcal{D}$
 248 into patches, and the image patches are flattened into vectors $\{\mathbf{x}_i\}_{i=1}^N$, where N is the number of
 249 patches. Then, the vectors are linearly projected to obtain patch embeddings $\mathbf{W}\mathbf{x}_i \in \mathbb{R}^D$, where
 250 \mathbf{W} is a learnable weight matrix and D is the embedding dimension. Finally, we add learnable
 251 positional embeddings $\mathbf{E}_{pos} = [e_1, e_2, \dots, e_N]$ to patch embeddings, where $\mathbf{E}_{pos} \in \mathbb{R}^{N \times D}$. These
 252 positional embeddings are learned during the training process and provide information about the
 253 position of each patch within the original image. Thus, we obtain the initialized sequence $\mathbf{s} =$
 254 $[s_1, s_2, \dots, s_N] = [\mathbf{W}\mathbf{x}_1, \mathbf{W}\mathbf{x}_2, \dots, \mathbf{W}\mathbf{x}_N] + \mathbf{E}_{pos}$, which serves as the input to the subsequent
 255 layers of the model.

256 We enhance the traditional image serialization process by implementing a clustering mechanism,
 257 which significantly improves the model’s ability to capture local features and computational effi-
 258 ciency.

259 **3.3.2 ENCODER**

261 As illustrated in Figure 1, the encoder of our model employs an xLSTM architecture comprising
 262 M layers. Each layer performs a traversal of the input sequence using a cluster-based flow scan-
 263 ning mechanism. This scanning mechanism enhances the model’s capacity to capture dependencies
 264 across various segments of the input. Computationally, we define $h_i^{(m)}$ as the output of the m -th
 265 encoder layer, where i is the token index. The initialized sequence \mathbf{s} is used as the input of the first
 266 encoder layer, i.e., $h_i^{(0)} = s_i$. The forward process of the encoder can be described as follows:

$$h_{z_t}^{(m)} = \text{xLSTM}(h_{z_t}^{(m-1)}; \theta_e^{(m)}); \text{ where } 1 \leq m \leq M \quad (4)$$

268 Where $\theta_e^{(m)}$ represents the parameters of the m -th encoder layer.

270 3.3.3 DECODER
271

272 We adopt a lightweight decoder composed of standard attention blocks, a design choice inspired by
273 the effectiveness of asymmetric encoder-decoder architectures in masked image modeling He et al.
274 (2022). The rationale is twofold: 1) The reconstruction task is simpler than the representation learn-
275 ing of the encoder, so a less complex architecture is sufficient and more computationally efficient.
276 2) This asymmetry forces the encoder to learn a more robust latent representation, as it cannot rely
277 on shared architectural biases. As depicted in Figure 1, our decoder consists of N layers of attention
278 blocks followed by an MLP layer to project the reconstructed signal back to its original dimension.
279

280 During the decoding process, a lower triangular matrix is used to maintain the autoregressive nature
281 of the model. For a sequence of length N , we generate a lower triangular matrix M of size (N, N) ,
282 where each element M_{ij} is defined as follows:

$$283 \text{content_mask}_{ij} = \begin{cases} 0 & \text{if } i < j, \\ 284 -\infty & \text{if } i \geq j. \end{cases} \quad (5)$$

285 Here, $\text{content_mask}_{ij} = 0$ allows the i -th token to attend to the j -th token, while $\text{content_mask}_{ij} =$
286 $-\infty$ prevents it. This ensures each token attends only to itself and preceding tokens, preserving the
287 model’s autoregressive properties.

288 We define $g_i^{(n)}$ as the output of the n -th decoder layer. The position embeddings E_{pos} and the output
289 of the last encoder layer $h_{z_t}^{(M)}$ are used as the input to the first decoder layer, i.e., $g_i^{(0)} = e_i + h_{z_t}^{(M)}$.
290 The forward process of the decoder can be described as follows:

$$292 g_{z_t}^{(n)} = \begin{cases} \text{Attention}(\text{QKV} = g_{z_t}^{(n-1)}; \text{mask} = \text{content_mask}; \theta_d^{(n)}), & \text{if } 1 \leq n < N \\ 293 \text{MLP}(g_{z_t}^{(n-1)}; \theta_d^{(n)}), & \text{if } n = N \end{cases} \quad (6)$$

295 Here, $\theta_d^{(n)}$ are the parameters of the n -th decoder layer, which are distinct from the encoder parame-
296 ters $\theta_e^{(m)}$. The number of decoder layers, N , determines the depth of the decoder. The output of the
297 last decoder layer, $g_{z_t}^{(N)}$, is used to compute the loss.

300 3.4 PRETRAIN AND FINE-TUNING
301

302 Figure 2(a): Perform autoregressive pre-training on MAL using the ImageNet-1K dataset. The
303 input image serialization uses the Cluster-Masked strategy, corresponding to Figure 3(f). The MAL
304 consists of xLSTM encoders and decoders, followed by MLP layers that project the reconstructed
305 signal back to its original dimension.

306 Figure 2(b) shows the fine-tuning stage, Cls represents classification. Where the MAL model was
307 fine-tuned for classification tasks using the ImageNet-1K dataset. The input image sequence uses
308 a cluster-based strategy, corresponding to Figure 3(e), without using the Masked strategy for the
309 Cluster. The encoder uses the xLSTM blocks obtained from the pre-training stage, and the first
310 and last patches outputted by the encoder are input to the linear classification head for classification
311 tasks.

312 4 EXPERIMENTS
313314 4.1 IMPLEMENTATION DETAILS
315

317 **Pretraining.** We pretrain MAL using the ImageNet-1K dataset Deng et al. (2009b), which con-
318 tains 1.3M training images and 50K validation images where each image belongs to one of 1000
319 classes. Specifically, MAL-Base and MAL-small are pre-trained for 800 epochs, and MAL-Tiny
320 is pre-trained for 400 epochs using eight NVIDIA A100 80G GPUs. We use a batch size of
321 2048/1024/512 for MAL-T/S/B, respectively, and a learning rate of $\text{lr} = 1.5 \times 10^{-4} \times \frac{\text{batchsize}}{256}$. We adopt
322 the AdamW Loshchilov & Hutter (2019) optimizer with a weight decay of 0.05. We use random
323 resized cropping and random horizontal flipping. The pretraining input size is set to 192×192 (see
324 Fig.2(a)).

324
 325 **Table 1: Performance comparison on ImageNet-
 326 1K (all image sizes are 224²).**

Model	Token Mixer	Param. (M)	Throughputs (imgs/s)	Top-1 (%)
<i>Tiny-size models</i>				
DeiT-T	Attention	6	3540	72.2
DeiT-II-T	Attention	6	3478	73.5
DeiT-III-T	Attention	6	3491	76.2
VRWKV-T	Attention	6	3640	75.1
Vim-T	Mamba	7	3178	76.1
Mamba [®] -T	Mamba	9	3877	77.4
ViL-T	xLSTM	6	3953	78.3
MAL-T	xLSTM	6	4108	78.8
<i>Small-size models</i>				
DeiT-S	Attention	22	2253	79.8
DeiT-II-S	Attention	22	2134	80.7
DeiT-III-S	Attention	22	2175	81.4
VRWKV-S	Attention	24	2316	80.1
Vim-S	Mamba	26	2057	80.5
Mamba [®] -S	Mamba	28	2467	81.1
ViL-S	xLSTM	23	2515	81.5
MAL-S	xLSTM	23	2614	82.5
<i>Base-size models</i>				
DeiT-B	Attention	86	1073	81.8
DeiT-II-B	Attention	86	1024	82.7
DeiT-III-B	Attention	86	1057	83.7
ConvNeXt-B	Conv	87	1054	82.0
VRWKV-B	Attention	94	1103	82.0
ARM-B	Mamba	85	1159	83.2
Vim-B	Mamba	98	890	81.9
VMamba-B	Mamba	89	315	83.9
Mamba [®] -B	Mamba	99	1175	82.9
ViL-B	xLSTM	89	1198	82.4
MAL-B	xLSTM	89	1245	84.3

324
 325 **Table 2: Robustness and generalization evalua-
 326 tion on out-of-domain datasets.**

Method	IN-1K ↑	IN-Real ↑	IN-Adv.↑	IN-Ren.↑	IN-Ske.↑
Vim-T	76.1	85.4	9.6	38.8	26.9
Vim-S	80.5	86.0	19.7	45.8	32.5
Vim-B	81.9	86.2	27.5	46.0	33.9
ViL-T	78.3	85.8	15.2	42.2	30.0
ViL-S	81.5	86.5	23.8	47.6	35.2
ViL-B	82.4	87.1	30.9	48.2	39.0
MAL-T	78.8	86.4	16.1	43.4	31.2
MAL-S	82.5	87.6	25.3	48.3	36.3
MAL-B	84.3	88.4	32.2	49.2	40.3

324
 325 **Table 3: Results of detection and instance seg-
 326 mentation.**

Method	FLOPs	#Param.	AP ^b	AP ^m
DeiT-T	93.5G	8M	41.4	37.9
VRWKV-T	67.5G	8M	41.7	38.0
Vim-T	64.4G	9M	42.7	38.7
ViL-T	63.2G	8M	42.8	39.0
MAL-T	60.2G	8M	43.5	39.7
DeiT-S	198.4G	27M	44.2	39.6
VRWKV-S	187.6G	29M	44.8	40.2
Vim-S	172.1G	31M	44.7	40.4
ViL-S	166.5G	28M	44.9	40.7
MAL-S	162.3G	28M	46.0	41.5

324
 325 **Finetuning.** Following pretraining, we finetune the MAL models on the ImageNet classification
 326 task (see Fig.2(b)). Specifically, we finetune all models for 200 epochs with a batch size of 1024,
 327 with the input size set at 224 × 224. We use the same data augmentation as MAE He et al. (2022).
 328 We adopt AdamW as the optimizer, using a cosine decay schedule and a warm-up period of 5
 329 epochs. Additionally, we employ the exponential moving average (EMA) Izmailov et al. (2018)
 330 for stronger performance. **More details on experiments can be found in the appendix Section**
 331 **Implementation Details.**

332 4.2 MAIN RESULTS

333 In Table 1, we compare our MAL with Attention-based DeiT, various Mamba architectures, and
 334 xLSTM-based Vision-LSTM. Our base-size MAL model achieves an accuracy of 84.3%, the highest
 335 among all models. Additionally, MAL surpasses Vim-B by 2.4% and ViL-B by 1.9%.

336 The table presented in the text compares different image classification models on the ImageNet-1K
 337 dataset, focusing on their performance in terms of parameter count, throughput, and top-1 accuracy
 338 across various model sizes: tiny, small, and base. The models utilize different token mixers, in-
 339 cluding attention-based architectures (like DeiT-III Touvron et al. (2022) and VRWKV Duan et al.
 340 (2024b)), Mamba architectures (such as Vim and Mamba[®]), and xLSTM-based architectures (like
 341 ViL).
 342

343 In the tiny-size category, MAL-T, an xLSTM-based model, achieves the highest top-1 accuracy of
 344 78.8%, outperforming other models like Vim-T Wang et al. (2024) and Mamba[®]-T Wang et al.
 345 (2024), both of which are based on Mamba architecture. Notably, MAL-T also maintains a high
 346 throughput of 4108 images per second, demonstrating its efficiency. In the small-size category,
 347 MAL-S continues to lead with an accuracy of 82.5%, surpassing attention-based models such as
 348 DeiT-III-S and VRWKV-S. Despite having a similar parameter count to its counterparts, MAL-S
 349 offers better performance and efficiency. MAL-B achieves a top-1 accuracy of 84.3% for base-size
 350 models, a significant improvement over other models like ViL-B Alkin et al. (2024b) and VRWKV-
 351 B. Additionally, MAL-B offers higher throughput, with a processing rate of 1245 images per second.

352 Overall, the table highlights the competitive performance of xLSTM-based models, particularly
 353 the MAL variants, across different model sizes. These models achieve high accuracy and maintain
 354 efficient throughput, making them a strong choice for image classification tasks on the ImageNet-1K
 355 dataset.

Table 4: Top-1 Accuracy Comparison of ViT, Vim, and ViL with Cluster-Masked Strategy and MAE Pretraining

Method	Accuracy(Base)	+ (Cluster-Masked)	+ (MAE)
ViT-B	77.9	80.6 (+2.7)	79.1
Vim-B	81.9	83.5 (+1.6)	82.7
ViL-B	82.4	84.3 (+1.9)	83.1

Table 5: Pretraining Accuracy Comparison Across Masking Strategies and Masking Ratios

Masking Strategy	Masking Ratio				
	1%	10%	20%	30%	50%
Pixel-Masked	81.2	81.2	81.7	81.5	81.1
Patch-Masked	81.8	82.3	82.6	82.5	82.1
Cluster-Masked	82.6	83.3	84.3	83.7	83.0

4.3 ROBUSTNESS AND GENERALIZATION

Further, we evaluate model robustness on various out-of-domain ImageNet variants (see in Table 2). Including natural adversarial examples (ImageNet-A Hendrycks et al. (2021b)), ImageNet-Ren Hendrycks et al. (2021a), image sketches (ImageNet-S Wang et al. (2019)), and ImageNet-Real Beyer et al. (2020).

In our analysis of model robustness on out-of-domain ImageNet variants, the xLSTM architectures exhibited significant performance enhancements. The MAL models, in particular, consistently outperformed their supervised counterparts, ViL, across various benchmarks such as ImageNet-Real, ImageNet-A, ImageNet-R, and ImageNet-S. For example, MAL-T surpassed ViL-T with improvements between 0.5% and 1.2% on these datasets. Additionally, MAL-S demonstrated even larger gains, with performance increases ranging from 0.7% to 1.5% compared to ViL-S. Our largest model, MAL-B, maintained this upward trend by achieving an average performance advantage of 2.33% over ViL-B, highlighting the robustness benefits of scaling up model size. These findings are comprehensively presented in Table 2, which compares different models' robustness and generalization abilities on out-of-domain datasets.

4.4 DETECTION AND INSTANCE SEGMENTATION

We utilize a Masked R-CNN backbone from the MMDetection Chen et al. (2019) and MMSegmentation Contributors (2020) libraries to conduct additional experiments for detection and instance segmentation. As shown in Tab. 3. AP^b and AP^m denote box AP and mask AP. FLOPs are calculated with an input size of 1280×800 . MAL demonstrates superior performance in both box and mask precision (AP^b and AP^m) across different training schedules. MAL-T/S achieves object detection AP^b of 43.5% / 46.0%, outperforming ViL-T/S by 0.7% / 1.1% AP^b and Vim-T/S by 0.8% / 1.3% AP^b , respectively. MAL-T/S achieves instance segmentation AP^m that exceed ViL-T/S by 0.7% / 0.8% AP^m and Vim-T/S by 1.0% / 1.1% AP^m , respectively. MAL achieves state-of-the-art performance in both object detection AP^b and instance segmentation AP^m , with its Tiny and Small models significantly outperforming counterparts like ViL-T/S and Vim-T/S while maintaining lower computational costs (FLOPs).

4.5 CLUSTER-MASKED STRATEGY ON TRANSFORMER AND MAMBA

In Table 4. To validate that our proposed cluster-masked strategy enhances not only xLSTM-based models but also other visual models, we conducted experiments on two classic architectures: Vision Transformer (ViT) and Vision Mamba (Vim). All models were pretrained on the ImageNet-1K dataset and evaluated on the same validation set. We selected ViT-B and Vim-B as baseline models and implemented the cluster-masked strategy, which included image serialization into patches, cluster creation, and the application of masking methods. All models used the AdamW optimizer with a learning rate adjusted for batch size, and the input size was set to 192×192 pixels. After pretraining, the models were fine-tuned and tested on the ImageNet validation set using standard data augmentation and a cosine annealing learning rate schedule. Our results show that: In the ViT-B model, the cluster-masked strategy improved top-1 accuracy from 77.9% to 80.6%, indicating significant performance enhancement. The Vim-B model also benefited, with top-1 accuracy increasing from 81.9% to 83.5%, surpassing its previous best. In summary, this experiment confirms the effectiveness of the cluster-masked strategy across different visual model architectures.

Extended Evaluations. Comprehensive evaluations on semantic segmentation, High-Resolution images, and comparative studies with MAE are detailed in Appendix Section Additional Experiments, further validating MAL’s generalizability across domains.

432

433

Table 6: Ablation on the number of prediction units.

434

435

Num of Prediction unit	Cluster size	Top-1 (%)
0 (Supervised)	N/A	81.7
144	1×1	82.7
4	6×6	83.4
9	4×4	84.3
16	3×3	83.5
36	2×2	83.2

436

437

438

439

440

441

4.6 ABLATION STUDY

442

443

This section provides different ablations on MAL. Unless otherwise specified, all ablation studies are performed on MAL-B under 800 epochs pretraining.

444

445

Number of Prediction Units. Table 6 presents an ablation study on the number of prediction units used in our model. We begin with a cluster size equivalent to the patch size, resulting in a total of 144 prediction units. The results indicate that autoregressive pretraining successfully enhances the performance of the xLSTM model from 81.7% (achieved through supervised training) to 82.7%. As we progressively group multiple patches into a single cluster, thereby reducing the total number of prediction units, we observe an initial increase in performance followed by a decline. The optimal performance is achieved when the number of prediction units is set to 9, corresponding to a cluster size of 4×4. Specifically, this configuration yields a 2.6% improvement over the supervised counterpart and a 1.6% enhancement compared to the autoregressive pretraining with a 1×1 cluster size (144 prediction units).

446

447

Analysis of Cluster Flow Scanning Orders. Table 7 details the impact of different scanning orders on model performance. Notably, compared to a random scanning order which serves as a baseline (81.4% accuracy), even a unidirectional Cluster Flow Scan significantly improves accuracy by over 2 absolute points to 83.6%. Our proposed "Alternating & All Directions" strategy, which leverages multiple scanning patterns, further boosts performance to a peak of **84.3%**. These results strongly demonstrate that the proposed Cluster Flow Scanning Orders methodology effectively enhances model performance.

448

449

450

451

452

453

454

Comparison of Masking Strategies in Pretraining. We use the Cluster-Masked Strategy and MAE Strategy on the ViT, Vim, and ViL models respectively to demonstrate the effectiveness of our Cluster-Masked Strategy. The results in Table 4 demonstrate that the Cluster-Masked Strategy significantly outperforms the MAE Strategy. We compared three masking strategies: pixel-masked, patch-based masked, and our proposed cluster-masked method. For each strategy, we experimented with different masking ratios. The pretraining sequence length was set to 144 tokens, and we masked 1 token (1%), 14 tokens (10%), 28 tokens (20%), 43 tokens (30%), and 72 tokens (50%). We recorded the results of fine-tuning on the ImageNet-1K classification task to evaluate the effectiveness of each strategy. Table 5 summarises the results, highlighting the importance of selecting an appropriate masking ratio and strategy for effective autoregressive pretraining.

455

456

5 CONCLUSION

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

In this paper, we introduced the MAL framework, which enhances xLSTM’s capabilities in visual representation learning through innovative methodologies. Our key contributions include a novel cluster-masked masking strategy that optimizes local feature capture and a new cluster-masked scanning method that improves image scanning efficiency. For the first time, we also demonstrated the application of xLSTM to autoregressive tasks in visual representation learning, showcasing its potential for handling complex visual data. Experimental results show that our methods outperform traditional supervised models while effectively leveraging the scalability of xLSTM. By addressing the limitations of previous approaches and incorporating advanced pretraining strategies, we establish a new benchmark for visual task performance. Our findings underscore the transformative potential of combining autoregressive techniques with innovative masking strategy, paving the way for future research in this area.

Table 7: Impact of prediction and scanning orders on model performance.

Scanning Direction	Accuracy (%)
Random	81.4
Cluster-row and Horizontal Forward	83.6
Cluster-row and Horizontal Backward	83.4
Cluster-column and Horizontal Forward	83.6
Cluster-column and Horizontal Backward	83.5
Alternating & All Directions	84.3

ETHICS STATEMENT

This research aims to advance the field of visual representation learning. We primarily utilize publicly available and widely used academic datasets (ImageNet-1K, ADE20K, Synapse), for which ethical approvals were obtained by their original creators. We did not collect new data or involve human subjects. We acknowledge that models trained on large-scale datasets may inherit and potentially amplify societal biases present in the data. While our work does not directly address bias mitigation, we recognize it as an important direction for future research. Furthermore, like any powerful generative or representation learning model, this technology could be applied to unforeseen applications; our goal is to provide it to the research community for positive advancements.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive details throughout the paper and its supplementary materials.

- **Hyperparameters:** All hyperparameters for pre-training and fine-tuning are detailed in Section D (Table 11). We also provide an ablation study on the decoder design in Table 12.
- **Datasets:** We use publicly available datasets: ImageNet-1K Deng et al. (2009b), ADE20K Zhou et al. (2019), and the Synapse multi-organ segmentation dataset. We follow standard data processing procedures as described in the respective original works.
- **Code:** We will release our complete source code, including pre-trained model weights, upon publication. An anonymized version of the code has been submitted as part of the supplementary materials to allow for verification during the review process.
- **Infrastructure:** As detailed in Section D.2, all experiments were conducted on NVIDIA A100 GPUs.

We believe these resources are sufficient for the research community to reproduce our findings.

REFERENCES

Benedikt Alkin, Maximilian Beck, Korbinian Pöppel, Sepp Hochreiter, and Johannes Brandstetter. Vision-lstm: xlstm as generic vision backbone. *arXiv:2406.04303*, 2024a.

Benedikt Alkin, Maximilian Beck, Korbinian Pöppel, Sepp Hochreiter, and Johannes Brandstetter. Vision-lstm: xlstm as generic vision backbone, 2024b. URL <https://arxiv.org/abs/2406.04303>.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-training of image transformers. In *International Conference on Learning Representations*, 2022.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended long short-term memory. *arXiv:2405.04517*, 2024.

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are we done with imagenet? *arXiv preprint arXiv:2006.07159*, 2020.

Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning Wang. Swin-unet: Unet-like pure transformer for medical image segmentation, 2021. URL <https://arxiv.org/abs/2105.05537>.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark. *arXiv preprint arXiv:1906.07155*, 2019.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever. Generative pretraining from pixels. In *ICML*, 2020a.

540 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 541 contrastive learning of visual representations. 2020b.

542

543 Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
 544 contrastive learning. *preprint arXiv:2003.04297*, 2020c.

545 Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
 546 transformers. *ArXiv*, abs/2104.02057, 2021.

547

548 MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox
 549 and benchmark. <https://github.com/open-mmlab/mmsegmentation>, 2020.

550 Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
 551 bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Des-
 552 jardins, Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and
 553 Caglar Gulcehre. Griffin: Mixing gated linear recurrences with local attention for efficient lan-
 554 guage models. *arXiv:2402.19427*, 2024.

555 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 556 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 557 pp. 248–255. Ieee, 2009a.

558

559 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 560 hierarchical image database. In *CVPR*, 2009b.

561 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 562 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 563 image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2020.

564

565 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 566 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
 567 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 568 scale, 2021. URL <https://arxiv.org/abs/2010.11929>.

569 Yuchen Duan, Weiyun Wang, Zhe Chen, Xizhou Zhu, Lewei Lu, Tong Lu, Yu Qiao, Hongsheng
 570 Li, Jifeng Dai, and Wenhui Wang. Vision-rwkv: Efficient and scalable visual perception with
 571 rwkv-like architectures. *arXiv:2403.02308*, 2024a.

572

573 Yuchen Duan, Weiyun Wang, Zhe Chen, Xizhou Zhu, Lewei Lu, Tong Lu, Yu Qiao, Hongsheng
 574 Li, Jifeng Dai, and Wenhui Wang. Vision-rwkv: Efficient and scalable visual perception with
 575 rwkv-like architectures. *CoRR*, abs/2403.02308, 2024b.

576 Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev,
 577 Vaishaal Shankar, Joshua M Susskind, and Armand Joulin. Scalable pre-training of large au-
 578 toregressive image models. *arXiv preprint arXiv:2401.08541*, 2024.

579

580 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

581

582 Ali Hatamizadeh and Jan Kautz. Mambavision: A hybrid mamba-transformer vision backbone.
 583 *arXiv preprint arXiv:2407.08083*, 2024.

584

585 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 586 unsupervised visual representation learning. 2020.

587

588 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 589 autoencoders are scalable vision learners. 2022.

590

591 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 592 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
 593 The many faces of robustness: A critical analysis of out-of-distribution generalization. *ICCV*,
 594 2021a.

595

596 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 597 examples. *CVPR*, 2021b.

594 Tianyu Hua, Yonglong Tian, Sucheng Ren, Michalis Raptis, Hang Zhao, and Leonid Sigal. Self-
 595 supervision through random segments with autoregressive coding (randsac). In *ICLR*, 2022.
 596

597 Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
 598 son. Averaging weights leads to wider optima and better generalization. *arXiv preprint*
 599 *arXiv:1803.05407*, 2018.

600 Juntao Jiang, Jiangning Zhang, Weixuan Liu, Muxuan Gao, Xiaobin Hu, Xiaoxiao Yan, Feiyue
 601 Huang, and Yong Liu. Rkv-unet: Improving unet with long-range cooperation for effective
 602 medical image segmentation, 2025. URL <https://arxiv.org/abs/2501.08458>.
 603

604 Dingkang Liang, Xin Zhou, Xinyu Wang, Xingkui Zhu, Wei Xu, Zhikang Zou, Xiaoqing Ye, and
 605 Xiang Bai. Pointmamba: A simple state space model for point cloud analysis. *arXiv:2402.10739*,
 606 2024.

607 Bencheng Liao, Xinggang Wang, Lianghui Zhu, Qian Zhang, and Chang Huang. Vig: Linear-
 608 complexity visual sequence learning with gated linear attention, 2024. URL <https://arxiv.org/abs/2405.18425>.
 609

610 Jiarun Liu, Hao Yang, Hong-Yu Zhou, Yan Xi, Lequan Yu, Yizhou Yu, Yong Liang, Guangming
 611 Shi, Shaoting Zhang, Hairong Zheng, and Shanshan Wang. Swin-umamba: Mamba-based unet
 612 with imagenet-based pretraining, 2024a. URL <https://arxiv.org/abs/2402.03302>.
 613

614 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
 615 Yunfan Liu. Vmamba: Visual state space model. *ArXiv*, abs/2401.10166, 2024b.
 616

617 Yunze Liu and Li Yi. Map: Unleashing hybrid mamba-transformer vision backbone's potential with
 618 masked autoregressive pretraining, 2025. URL <https://arxiv.org/abs/2410.00871>.
 619

620 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *ICLR*, 2019.

621 Jun Ma, Feifei Li, and Bo Wang. U-mamba: Enhancing long-range dependency for biomedical
 622 image segmentation. *arXiv preprint arXiv:2401.04722*, 2024.

623 Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
 624 canu, and Soham De. Resurrecting recurrent neural networks for long sequences. 2023.
 625

626 Yu Qi, Fan Yang, Yousong Zhu, Yufei Liu, Liwei Wu, Rui Zhao, and Wei Li. Exploring stochastic
 627 autoregressive image modeling for visual representation. In *AAAI*, 2023.

628 Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for se-
 629 quence modeling. 2023.

630 Sucheng Ren, Zeyu Wang, Hongru Zhu, Junfei Xiao, Alan Yuille, and Cihang Xie. Rejuvenating
 631 image-gpt as strong visual representation learners. *arXiv preprint arXiv:2312.02147*, 2023a.
 632

633 Sucheng Ren, Fangyun Wei, Zheng Zhang, and Han Hu. Tinymim: An empirical study of distilling
 634 mim pre-trained models. In *CVPR*, 2023b.

635 Sucheng Ren, Xianhang Li, Haoqin Tu, Feng Wang, Fangxun Shu, Lei Zhang, Jieru Mei, Linjie
 636 Yang, Peng Wang, Heng Wang, Alan Yuille, and Cihang Xie. Autoregressive pretraining with
 637 mamba in vision, 2024. URL <https://arxiv.org/abs/2406.07537>.
 638

639 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 640 ical image segmentation, 2015. URL <https://arxiv.org/abs/1505.04597>.
 641

642 Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
 643 Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
 644 hidden states. *arXiv:2407.04620*, 2024.
 645

646 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang,
 647 and Furu Wei. Retentive network: A successor to transformer for large language models.
 648 *arXiv:2307.08621*, 2023.

648 Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit III: revenge of the vit. In *ECCV (24)*, volume
 649 13684 of *Lecture Notes in Computer Science*, pp. 516–533. Springer, 2022.
 650

651 Feng Wang, Jiahao Wang, Sucheng Ren, Guoyizhe Wei, Jieru Mei, Wei Shao, Yuyin Zhou,
 652 Alan Yuille, and Cihang Xie. Mamba-r: Vision mamba also needs registers. *arXiv preprint*
 653 *arXiv:2405.14858*, 2024.

654 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
 655 tions by penalizing local predictive power. In *NeurIPS*, 2019.
 656

657 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
 658 scene understanding. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss
 659 (eds.), *Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September*
 660 *8-14, 2018, Proceedings, Part V*, volume 11209 of *Lecture Notes in Computer Science*, pp. 432–
 661 448. Springer, 2018.

662 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
 663 transformers with hardware-efficient training. *arXiv:2312.06635*, 2023.

664 Shuangfei Zhai, Navdeep Jaitly, Jason Ramapuram, Dan Busbridge, Tatiana Likhomanenko,
 665 Joseph Yitan Cheng, Walter Talbott, Chen Huang, Hanlin Goh, and Joshua Susskind. Position
 666 prediction as an effective pretraining strategy. *arXiv preprint arXiv:2207.07611*, 2022.
 667

668 Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
 669 Semantic understanding of scenes through the ADE20K dataset. *Int. J. Comput. Vis.*, 127(3):302–
 670 321, 2019.

671 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
 672 sion mamba: Efficient visual representation learning with bidirectional state space model. *arXiv*
 673 *preprint arXiv:2401.09417*, 2024.
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

Figure 5: xLSTM architecture.

A xLSTM BLOCK

A.1 sLSTM BLOCK

The sLSTM Block extends the traditional LSTM architecture by introducing exponential gating and normalization states to enhance the control over information storage and flow (see Fig.5).

Memory Cell and State Update The memory cell is updated as follows:

$$C_t = f_t C_{t-1} + i_t z_t, \quad (7)$$

$$Z_t = \tanh(W_z x_t + R_z h_{t-1})',$$

where c_t is the memory cell at time step t , f_t and i_t are the forget and input gates, respectively, z_t is the candidate memory, controlled by W_z , and R_z . Normalization state update:

$$n_t = f_t n_{t-1} + i_t, \quad (8)$$

Where n_t is the normalization state that balances the contribution of the forget and input gates. The hidden state is computed as:

$$h_t = \frac{o_t c_t}{n_t}, \quad (9)$$

$$o_t = \sigma(W_o x_t + R_o h_{t-1})',$$

Where o_t is the output gate, controlling the final output h_t . Normalizing c_t by n_t ensures numerical stability.

Projection and Residual Connection The hidden state is further processed through up projection, non-linear transformation, and down-projection:

$$\begin{aligned}
756 \quad & y_{left} = W_{up-left} h_t, \\
757 \quad & y_{right} = W_{up-right} h_t, \\
758 \quad & y_{gated} = GELU(y_{right}), \\
759 \quad & y_{out} = W_{down}(y_{left} \cdot y_{gated}),
760 \quad & \\
761 \quad & \\
762 \quad &
\end{aligned} \tag{10}$$

763 The final output includes a residual connection:

$$764 \quad 765 \quad F = y_{out} + x, \tag{11}$$

766 Where F represents the final output.

767 A.2 mLSTM BLOCK

768 The mLSTM Block enhances memory capacity by transforming the memory cell from a scalar to a
769 matrix, which allows for more intricate storage and representation.

770 **Matrix Memory and Key-Value Storage** The memory cell is updated in matrix form:

$$\begin{aligned}
771 \quad & C_t = f_t C_{t-1} + i_t v_t k_t^T, \\
772 \quad & k_t = \frac{1}{\sqrt{d}} W_k x_t + b_k, \\
773 \quad & v_t = W_v x_t + b_v,
774 \quad &
\end{aligned} \tag{12}$$

775 where C_t is represents the memory matrix, while v_t and k_t denote the value and key vectors, respectively. The weights for generating the key and value vectors are represented by W_k and W_v , while the corresponding biases are denoted as b_k and b_v .

776 **Memory Retrieval and Normalization** To extract information from the memory matrix, the mLSTM Block utilizes a query vector q_t :

$$\begin{aligned}
777 \quad & h_t = o_t \odot \frac{C_t q_t}{\max(|n_t^T q_t, 1|)}, \\
778 \quad & q_t = W_q x_t + b_q, \\
779 \quad & n_t = f_t n_{t-1} + i_t k_t,
780 \quad &
\end{aligned} \tag{13}$$

781 where q_t is the query vector and n_t is the normalization state.

782 The matrix-based memory update and the retrieval mechanism significantly enhance the model's
783 ability to capture complex temporal relationships. By effectively managing and retaining information
784 across time steps, it preserves long-term dependencies. This dynamic memory adjustment improves
785 the model's capacity to model intricate temporal patterns, which is crucial for tasks involving
786 sequential data, where understanding complex dependencies is essential for accurate modeling.

801 B THEORETICAL ANALYSIS AND CLARIFICATIONS

802 B.1 TERMINOLOGY CLARIFICATION: "CLUSTER" VS. "GROUPED PATCHES"

803 We acknowledge that the term "Cluster" might typically imply the result of an unsupervised clustering
804 algorithm (e.g., K-Means). To avoid ambiguity, we clarify our terminology as follows:

- 805 • **Definition:** In the context of MAL, a "Cluster" refers to a deterministic grouping of spatially
806 adjacent patches (e.g., a 2×2 grid of patches forms one cluster). This can be conceptually
807 understood as "Macro-patches" or "Two-level Patch Modeling".

810
 811
 812
 813
 814

- **Motivation:** We use this terminology to emphasize the semantic grouping capability. Unlike individual patches which often contain only texture or edges, a "Cluster" covers a larger receptive field, encapsulating semantically meaningful parts of an object (e.g., an entire dog's ear vs. just fur texture).

815 **B.2 INTUITIVE ANALYSIS: WHY MAL OUTPERFORMS STANDARD MIM?**

816
 817 While standard Masked Image Modeling (MIM) and MAL both involve masking and reconstruction,
 818 MAL achieves superior performance due to two key factors designed for the xLSTM architecture:

819
 820 **1. Task Difficulty: From Texture Completion to Structure Reconstruction.** Predicting a single
 821 16×16 patch (as in standard approaches) is often a low-level texture completion task. The model
 822 can rely on immediate pixel continuity. In contrast, MAL predicts an entire "Cluster" (e.g., 4×4
 823 patches) at once. This significantly increases the task difficulty, forcing the model to understand
 824 high-level geometric structures and semantic parts rather than just local textures.

825
 826 **2. Sequence Abstraction for xLSTM Memory.** xLSTM is a recurrent model with memory states.
 827 A standard patch sequence (e.g., 144 steps) is long and contains redundant information, which can
 828 saturate the memory with low-level details. By grouping patches into clusters, MAL reduces the
 829 sequence length (e.g., to 9 steps) and increases the "semantic jump" between steps. This abstract
 830 sequence structure aligns perfectly with xLSTM's memory mechanism, allowing it to capture long-
 831 range dependencies more effectively without being overwhelmed by local redundancies.

832 **B.3 IMPORTANCE OF CLUSTER-MASKED MASKING FOR LOCAL FEATURE CAPTURE**

833
 834 The importance of cluster-masked masking lies in its facilitation of information exchange within
 835 local regions, enabling the model to better understand the relationships and boundaries within
 836 objects. Compared to traditional fully connected masking or random masking, cluster-masked masking
 837 allows the model to focus more on local details, which is particularly crucial for visual tasks that
 838 require precise boundaries, such as semantic segmentation. Moreover, since clusters contain multi-
 839 ple adjacent patches, this design helps smooth out noise and enhances robustness, especially when
 840 dealing with complex backgrounds or low-resolution images.

841 **C ADDITIONAL EXPERIMENTS**

842 **C.1 SEMANTIC SEGMENTATION**

843
 844 **Settings.** We conduct experiments for semantic segmentation on the ADE20K Zhou et al. (2019)
 845 and use UperNet Xiao et al. (2018) as the segmentation framework.

846
 847 **Results.** As shown in Tab. 8, MAL consistently outperforms ViL across different scales: 0.7 mIoU
 848 higher for MAL-T over ViL-T, and 1.2 mIoU higher for MAL-S over ViL-S. Compared to the
 849 ResNet-101 backbone, our MAL-S achieves better segmentation performance with nearly $2\times$ fewer
 850 parameters.

851 **C.2 COMPARISON WITH MAE METHOD**

852
 853 Moreover, we extended our evaluation by applying the MAE method to detection and instance seg-
 854 mentation tasks. According to the table 9, the Cluster-Masked method outperforms MAE across all
 855 models in both object detection AP^b and instance segmentation AP^m tasks, achieving performance
 856 improvements of over 1% in every case. This demonstrates that the clustering-based masking strat-
 857 egy can more effectively capture semantic information in images, thereby enhancing generalization
 858 in downstream tasks.

859 **C.3 HIGH-RESOLUTION IMAGE EXPERIMENT**

860
 861 We validated the generalization capability of MAL in the medical imaging domain by conducting
 862 transfer learning experiments on the Synapse multi-organ segmentation dataset.

Method	Backbone	image size	#param.	val mIoU
UperNet	ResNet-101	512 ²	86M	44.9
UperNet	DeiT-Ti	512 ²	11M	39.2
UperNet	DeiT-S	512 ²	43M	44.0
UperNet	Vim-Ti	512 ²	13M	41.0
UperNet	Vim-S	512 ²	46M	44.9
UperNet	ViL-T	512 ²	11M	41.2
UperNet	ViL-S	512 ²	42M	46.3
UperNet	MAL-T	512 ²	11M	41.9
UperNet	MAL-S	512 ²	42M	47.5

Table 8: Results of semantic segmentation on the ADE20K *val* set.

Method	Model	AP ^b	AP ^m
MAE	VIM-S	43.1	39.2
	VIL-S	43.8	39.5
	MAL-S	44.5	40.1
Cluster-Masked	VIM-S	44.7 (+1.6)	40.4 (+1.2)
	VIL-S	44.9 (+1.1)	40.7 (+1.2)
	MAL-S	46.0 (+1.5)	41.5 (+1.4)

Table 9: Performance Comparison Between MAE and Cluster-Masked Methods Across Model Scales

Annotation Targets: 9 abdominal organs.

Data Specifications: Uniform image size of 512×512.

Pretraining: Used MAL-Base weights pre-trained on ImageNet-1K.

Fine-tuning Architecture: Integrated a U-Net style decoder (with skip connections and upsampling modules) after the MAL encoder.

As shown in Tab. 10, experimental results demonstrate that MAL achieved a mean DSC of 84.64% on Synapse, outperforming models like U-Net Ronneberger et al. (2015), SwinUNet Cao et al. (2021), Swin-UMamba Liu et al. (2024a) and RWKV-UNet Jiang et al. (2025), highlighting its potential for medical segmentation tasks.

D IMPLEMENTATION DETAILS

This section provides a comprehensive overview of our experimental setup, including the training strategy, computational costs, and specific hyperparameters used.

D.1 PRE-TRAINING AND FINE-TUNING STRATEGY

Our methodology is a two-stage process designed to learn robust visual representations and then adapt them to specific tasks.

Methods	DSC(%)↑	HD95 (mm)↓	Aorta	Gallbladder	Kidney(L)	Kidney(R)	Liver	Pancreas	Spleen	Stomach
UNet	76.85	39.70	85.66	53.24	81.13	71.60	92.69	56.81	87.46	69.93
Swin-UNet	79.13	21.55	85.47	66.53	83.28	79.61	94.29	56.58	90.66	76.60
VM-UNet	82.38	16.22	87.00	69.37	85.52	82.25	94.10	65.77	91.54	83.51
HC-Mamba	79.58	26.34	<u>89.93</u>	67.65	84.57	78.27	95.38	52.08	89.49	79.84
Swin-UMamba	82.26	19.51	86.32	70.77	83.66	81.60	95.23	69.36	89.95	81.14
RWKV-UNet	<u>84.02</u>	15.70	89.53	68.94	<u>87.63</u>	<u>84.07</u>	<u>95.57</u>	<u>69.38</u>	90.95	86.09
MixFormer	82.64	12.67	87.36	<u>71.53</u>	86.22	83.19	95.23	66.82	89.98	80.77
MAL	84.64	10.37	90.47	74.98	90.57	85.18	95.84	71.75	92.85	86.77

Table 10: MAL Performance on High-Resolution Medical Image Segmentation. Here, Bold Black Data indicates the Best Result, and Underlined Black Data Denotes the Second-Best Result.

Parameter	Value
Pretrain Epochs	400 (Tiny), 800 (Small/Base)
Batch size	2048 (Tiny), 1024 (Small) 512 (Base)
Model	
Patch size	16x16
Latent dimension	192 (Tiny), 384 (Small) 768 (Base)
Depth	12
Optimizer	AdamW
Base Learning rate	5e-4
Weight decay	0.05
Momentum	$\beta_1 = 0.9, \beta_2 = 0.999$
Precision	bfloat16
Learning rate schedule	cosine decay
Warmup epochs	5
Train Data Augmentation	
RandomResizedCrop	192
RandomHorizontalFlip	$p = 0.5$
Normalize	ImageNet-1K statistics

Table 11: Hyperparameters for training MAL on ImageNet-1K. The pretraining is conducted at a resolution of 192, followed by fine-tuning at 224 resolution.

Stage 1: Image Autoregression Pre-training In the first stage (see Fig. 2(a)), we pre-train the MAL framework using an autoregressive objective on the ImageNet-1K dataset Deng et al. (2009a). By predicting the next image patch in a sequence, the model learns complex visual patterns and captures intricate spatial relationships.

Stage 2: Fine-Tuning In the fine-tuning stage, the content mask and the decoder are removed. The pre-trained encoder is then fine-tuned for classification tasks using a linear classification head attached to the output of the first and last patches (see Fig. 2(b)).

550 D.2 COMPUTATIONAL COST AND INFRASTRUCTURE

560 Training Time All experiments were conducted on a server with eight NVIDIA A100 80G GPUs. For our main model, MAL-Base, the complete autoregressive pre-training phase for 800 epochs took approximately 56 hours. The subsequent fine-tuning stage for 200 epochs was considerably faster, finishing in approximately 14 hours.

570 Memory Usage During the pre-training of MAL-Base with a total batch size of 512 (i.e., 64 per GPU), the peak GPU memory consumption was measured at approximately 35 GB per GPU. For inference efficiency, as shown in Table 1, MAL-B maintains a high throughput competitive with other state-of-the-art models.

580 D.3 HYPERPARAMETERS AND ABLATION STUDIES

590 The specific hyperparameters for our training process are outlined in Table 11.

600 Decoder Design. Our exploration into decoder design is summarized in Table 12. We first focused on the design of *decoder depth*, finding that performance saturated at a depth of 8. With an 8-layer decoder, we then studied the optimal width by comparing three options: 384, 512, 1024. We empirically observed that a decoder width of 512 yielded the best accuracy.

610 Ablation Study on Decoder Architecture: xLSTM vs. Transformer vs. Mamba. To rigorously validate our design choice of using a lightweight Transformer-based decoder, we conducted an extended ablation study. We compared our default MAL model (xLSTM Encoder + Transformer

Dec. Depth	Dec. Width	Top-1 (%)
4	512	82.9
6	512	83.5
8	512	84.3
10	512	84.3
8	384	83.6
8	512	84.3
8	1024	84.0

Table 12: Ablation on decoder designs.

Decoder) against two variants where the decoder utilizes recurrence-based blocks: 1) **xLSTM Decoder**: Creating a symmetric architecture identical to the encoder. 2) **Mamba Decoder**: Using the Mamba SSM block to test another linear-complexity alternative.

The comparison on the ImageNet-1K dataset is presented in Table 13.

Decoder Architecture	Token Mixer	Top-1 Accuracy (%)
Transformer (Default)	Attention	84.3
Symmetric Variant	xLSTM	84.1
SSM Variant	Mamba	84.0

Table 13: Ablation study on decoder architectures. Comparing the default lightweight Transformer decoder against recurrence-based decoders (xLSTM and Mamba).

Analysis. As shown in Table 13, employing recurrence-based blocks in the decoder resulted in a performance degradation compared to the default Transformer decoder (xLSTM: -0.2%, Mamba: -0.3%). This empirical evidence strongly supports our architectural design principles detailed in Section 3.3.3:

- **Benefit of Asymmetric Architecture:** The performance drop with the xLSTM/Mamba decoders suggests that a symmetric or overly powerful decoder may relax the learning signal for the encoder. By using a structurally distinct and lightweight Transformer decoder, we enforce a stronger asymmetry. This discrepancy prevents the model from relying on shared architectural biases (such as recurrent states) and forces the encoder to learn more robust and generalized latent representations to enable reconstruction.
- **Efficiency Mismatch:** Both xLSTM and Mamba are designed for modeling complex long-range dependencies. Applying these heavy-duty sequence modelers to the relatively simpler reconstruction task introduces architectural redundancy without performance gains.

Conclusion. These results confirm that the "heavy Encoder (xLSTM) + light Decoder (Transformer)" design is not only computationally efficient but also essential for maximizing the representation learning capability of the MAL framework.

E LIMITATIONS

One limitation of this work is the computational resource constraints, which prevented us from pretraining larger-scale xLSTM models (e.g., MAL-Huge). While our results show a consistent and positive scaling trend from the Tiny to the Base model, further research is required to fully validate the scaling properties of our approach on even larger models. We believe this is a promising direction for future exploration.

F LLM USAGE STATEMENT

During the preparation of this work, the authors used a large language model (LLM) solely for the purpose of grammar checking and improving the readability of the text. The LLM was not used for generating core ideas, experimental results, or conclusions.