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ABSTRACT

We consider seeking the global Nash equilibrium (NE) in a class of nonconvex
N -player games. The structured nonconvex payoffs are composited with canonical
functions and quadratic operators, which are broadly investigated in various tasks
such as robust network training and sensor network communication. However, the
full-fledged development of nonconvex min-max games may not provide available
help due to the interference of multiple players’ coupled stationary conditions,
and the existing results on convex games may also perform unsatisfactorily since
they may be stuck in local NE or Nash stationary points, rather than the global
NE. Here, we first make efforts to take a canonical conjugate transformation
of the nonconvex N -player game, and cast the complementary problem into a
variational inequality (VI) problem for the derivation of the global NE. Then we
design a conjugate-based ordinary differential equation (ODE) for the solvable
VI problem, and present the equilibrium equivalence and guaranteed convergence
within the ODE. Furthermore, we provide a discretized algorithm based on the
ODE, and discuss step-size settings and convergence rates in two typical nonconvex
N -player games. At last, we conduct experiments in practical tasks to illustrate the
effectiveness of our approach.

1 INTRODUCTION

Game theory plays an essential role in the leading edge nowadays such as adversarial training
(Heusel et al., 2017; Song et al., 2018; Madry et al., 2018; Vlatakis-Gkaragkounis et al., 2021) and
reinforcement learning (Busoniu et al., 2008; Lanctot et al., 2017; Dai et al., 2018). Therein, the
Nash equilibrium (NE) (Nash, 1951) becomes popular in various fields like applied mathematics,
computer sciences, and engineering, in addition to economy. However, seeking NE for a given game
is not easy especially when there is underlying nonconvexity, because nonconvex problems cannot be
solved by a common methodology. Up to now, some inspiring breakthroughs have been made for
solving nonconvex two-player min-max games in different situations, including Polyak-Łojasiewicz
cases (Nouiehed et al., 2019; Fiez et al., 2021), strongly-concave cases (Lin et al., 2020; Rafique
et al., 2021), and general nonconvex nonconcave cases (Heusel et al., 2017; Daskalakis & Panageas,
2018; Adolphs et al., 2019; Jin et al., 2020).

Nevertheless, seeking NE in nonconvex N -player games needs to be deeply explored, which is not
enough to merely concentrate on the nonconvexity in two-player games. Actually, various fields
involve the interaction and interference of multiple players, such as smart grids (Saad et al., 2012),
intelligent transportation (Saharan et al., 2020), and cloud computing (Pang et al., 2008). N -player
models established over large-scale networks help analyze more expressive systems and reflect
more realistic phenomenons. Meanwhile, advanced learning approaches in artificial intelligence are
developed toward multi-agent, distributed, and federated frameworks (Yu et al., 2019; Li et al., 2019;
Fan et al., 2021). Their common core is to utilize the enhanced ability of individual computational
units, and sufficiently exploit their autonomy and evolvability in large-scale tasks. As one of the
most popular schemes, adversarial learning is gradually generalized to multiple agents (Song et al.,
2018; Zhao et al., 2020; Ferdowsi & Saad, 2020), no longer constrained in classic models with one
generator or one discriminator.

Up to now, many theoretical results in N -player games have been built on fundamental convexity
assumptions (Yi & Pavel, 2019; Facchinei & Kanzow, 2010; Chen et al., 2021). On this basis, NE
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seeking in many typical game models has been extensively studied, including aggregative games
(Koshal et al., 2016) and potential games (Lei & Shanbhag, 2020). Despite many efficient tools
within convex conditions leading to fruitful achievements, they may be far from enough when
encountering nonconvexity in practical circumstances. Indeed, there have been pioneers paying
attention to the importance of seeking NE in nonconvex N -player games. For instance, (Pang &
Scutari, 2011) proposed a best-response scheme for Nash stationary points of a class of nonconvex
games in signal processing, and then (Hao & Pang, 2020) extended this method in N -player bilevel
games with nonconvex constraints. Moreover, (Raghunathan et al., 2019) introduced a gradient-based
Nikaido-Isoda function to find Nash stationary points in a reformulated nonconvex game, while (Liu
et al., 2020) designed a gradient-proximal algorithm for approximate NE in a class of nonconvex
aggregative games. Actually, most of them revolve around seeking Nash stationary points or local
NE, rather than global NE. It is the status quo that finding global NE in nonconvex N -player games
is still a difficult and challenging task, which deserves further investigation.

In this view, we focus on global NE seeking in a typical class of nonconvex N -player games. The
structured nonconvex payoffs are composited with canonical functions and quadratic operators,
which are widely investigated in engineering tasks such as adversarial training and sensor network
communication. For example, such payoffs are reified as Euclidian norms in sensor localization
(Ke et al., 2017; Yang et al., 2018), while they are endowed with log-sum-exp forms in robust
neural network training (Nouiehed et al., 2019; Deng & Mahdavi, 2021). Our goal is to propose a
theoretically guaranteed algorithm for seeking the global NE in such an important class of nonconvex
N -player games. The consequent results will help demystify the complicated interactions among
players and provide trustworthy insights for large-scale problems afterward. Due to the nonconvexity
therein, the classic gradient-based methods for convex games may be stuck in some NE stationary
points when tracking along the pseudo-gradients, rather than reaching a global NE. On the other
hand, with the interference of all players’ decisions, the global stationary conditions are mutually
coupled and can not be handled individually by each player. In this way, although similar nonconvex
structures in the payoffs have been considered in previous optimization research (Chiang et al., 2007;
Latorre & Gao, 2016; Liang & Cheng, 2019), their techniques may not be directly adopted in such
nonconvex games. Thus, we need novel processes to overcome the bottleneck mentioned above.

Thereby, the contributions of this paper are summarized in the following. To deal with the non-
convexity in payoff functions, we first utilize the canonical duality theory (Gao et al., 2017) and
obtain a canonical conjugate transformation. By compactly formulating the stationary conditions
of the transformed problem as a continuous mapping, we then cast it into a variational inequality
(VI) problem (Facchinei & Pang, 2003) to verify the global NE via the fixed points of this VI. At
this point, we propose a conjugate-based ordinary differential equation (ODE) for solutions to the
VI. The designed ODE evolves in the dual space, and the mapping from the dual space back to the
primal space is enforced via conjugate gradients. Also, we show the derivation of global NE in the
original nonconvex N -player game by the equilibrium of this conjugate-based ODE accompanied
with the canonical duality relation, as well as the convergence analysis and the convergence rate of
the ODE. Afterward, to make our approach implementable, we derive the discrete algorithm induced
from the conjugate-based ODE, and further provide the step-size settings and the convergence rates
in two typical nonconvex game models. Specifically, the convergence rate achieves O(1/k) in a class
of N -player generalized monotone games (Facchinei & Kanzow, 2010; Koshal et al., 2016), while
achieves O(1/

√
k) in a class of N -player potential games (Ke et al., 2017; Yang et al., 2018). At last,

experiments for practical tasks are illustrated to show the effectiveness of our approach.

2 NONCONVEX N -PLAYER GAMES

We begin our study of the nonconvex games with N players indexed by I = {1, · · · , N}. For i ∈ I,
the ith player has an action variable xi in an action set Ωi ⊆ Rn, where Ωi is compact and convex,
and Ω =

∏N
i=1 Ωi. Let x = col{x1, ..., xN} ∈ RnN be the profile of all players’ actions, while x−i

be the profile of all players’ actions except for the ith player’s. Moreover, the ith player has a payoff
function Ji(xi,x−i) : Ω → R, which is dependent on both xi and x−i, and twice continuously
differentiable in xi. Given x−i, the ith player intends to solve the following problem

min
xi

Ji (xi,x−i) , s.t. xi ∈ Ωi. (1)
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In this paper, we focus on a typical class of nonconvex N -player games, in which the ith player’s
payoff function is endowed with the following structure

Ji(xi,x−i) = Ψi(Λi(xi,x−i)). (2)

Here Λi : RNn → Θi ⊆ Rqi is a vector-valued nonlinear operator with Λi = (Λi,1, · · · ,Λi,qi)T . For
k ∈ {1, · · · , qi}, each Λi,k : RNn → R is quadratic in xi, whose second-order partial derivative in
xi is both xi-free and x−i-free, e.g., Λi,k = xTi Ai,kxi +

∑
i6=j x

T
i Bi,kxj . Moreover, Ψi : Θi → R

is a convex differential canonical function (Gao et al., 2017), whose gradient ∇Ψi : Θi → Θ∗i is a
one-to-one mapping. Such nonconvex structures composited by canonical functions and quadratic
operators emerge in broad applications, including robust network training (Nouiehed et al., 2019),
senor network communication (Yang et al., 2018), and generative adversarial networks (Gidel et al.,
2018). We provide specific examples in the following for intuition about the above nonconvex model.

Euclidian distance function
Ψi(Λi(xi,x−i)) =

∑
j∈Ni

(‖xi − xj‖2 − di,j)2, (3)

where Ψi =
∑Ni
j=1 ΛTi,jΛi,j and Λi,j = ‖xi − xj‖2− di,j . (3) usually serves as the payoffs in sensor

localization tasks (Jia et al., 2013; Ke et al., 2017; Yang et al., 2018), in which xi ∈ Ωi is an anchor
node, Ni is neighbors of node i, and di,j is the distance parameter.

Log-sum-exp function

Ψi(Λi(xi,x−i)) = β1 log[1 + exp(xTi xi +
∑N

j=1
xTi xj − βT2 xi)], (4)

where Ψi = β1 log[1 + exp Λi] and Λi = xTi xi +
∑N
j=1 x

T
i xj − βT2 xi. (4) usually appears in the

tasks like robust neural network training (Nouiehed et al., 2019; Deng & Mahdavi, 2021), where xi is
the neural network parameter, xj is the perturbation, and β1, β2 are training data.

Log-posynomial function
Ψi(Λi(xi,x−i)) = log(xTi Cixi + xTi Dix−i)

−1 (5)

where Ψi = log(Λi)
−1 and Λi = xTi Cixi + xTi Dix−i. (5) usually occurs in resource allocation

(Yang & Xie, 2019; Ruby et al., 2015; Chiang et al., 2007), where xi stands for transmit resources,
and matrices Ci and Di represent the correlation coefficients.

For solving the nonconvex N -player game (1), we introduce the following important concept.

Definition 1 (global Nash equilibrium) A strategy profile x♦ ∈ Ω is said to be a global Nash
equilibrium (NE) of (1), if for all i ∈ I,

Ji(x
♦
i ,x

♦
−i) ≤ Ji(xi,x

♦
−i), ∀xi ∈ Ωi. (6)

The global NE above characterizes a strategy profile that each player adopts its globally optimal
strategy. That is, given others’ actions, no player can benefit from changing her/his action unilaterally.
Actually, the conception of global NE here is indeed the concept of NE (Nash, 1951), and we
emphasize global in the nonconvex formulation to tell the difference from local NE (Pang & Scutari,
2011; Nouiehed et al., 2019; Heusel et al., 2017). Also, we consider another mild but well-known
concept to help characterize the solutions to (1).

Definition 2 (Nash stationary point) A strategy profile x♦ is said to be a Nash stationary point of
(1) if for all i ∈ I,

0n ∈ ∇xiJi(x♦i ,x
♦
−i) +NΩi(x

♦
i ). (7)

It is not difficult to reveal that, if x♦ is a global NE, then it must be a NE stationary point, but not vice
versa. Actually, as for convex games, most existing research computes global NE via investigating
Nash stationary points (Facchinei & Kanzow, 2010; Koshal et al., 2016; Chen et al., 2021). However,
considering the bumpy geometric structure of the nonconvex payoff function, one cannot expect to
find a global NE of (1) merely via the Nash stationary conditions in (7). For instance, the classic
gradient-based methods for convex games may be stuck in these stationary points rather than a global
NE, see Fig. 1 for an illustration. To this end, we aim at obtaining a global NE of (1) and begin the
exploration in the sequel.
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Figure 1: A nonconvex two-player game with log-sum-exp payoff functions described in (4). (a)
The global NE distinguishes from Nash stationary points, shown on the surface plot of one player’s
nonconvex payoff; (b) The gradient-based method for convex games fails to converge to the global
NE.

3 DERIVATION OF GLOBAL NE

Following the definition of canonical functions, for i ∈ I, take ξi = Λi(xi,x−i) ∈ Θi in the payoff
function of (2), which is called canonical measure. Since Ψi(ξi) is a convex canonical function, the
one-to-one duality relation σi = ∇Ψi (ξi) : Θi → Θ∗i implies the existence of the conjugate function
Ψ∗i : Θ∗i → R, which can be uniquely described by the Legendre transformation (Rockafellar, 1974;
Gao et al., 2017), that is,

Ψ∗i (σi) = ξTi σi −Ψi (ξi) ,

where σi ∈ Θ∗i is a canonical dual variable. Thus, denote σ = col{σ1, · · · , σN} and Θ∗ =∏N
i=1 Θ∗i ⊆ Rq with q =

∑N
i=1 qi. Then the complementary function Γi : Ω×Θ∗i → R referring to

the canonical duality theory can be defined as

Γi(xi, σi,x−i) = ξTi σi −Ψ∗i (σi) = σTi Λi (xi,x−i)−Ψ∗i (σi) . (8)

The following lemma reveals the equivalency relationship of stationary points between (8) and (1).

Lemma 1 A profile x♦ is a Nash stationary point of (1) if there exists σ♦ ∈ Θ∗, such that for all
i ∈ I, (x♦i , σ

♦
i ) is a stationary point of complementarity function Γi(xi, σi,x

♦
−i).

Lemma 1 shows that with the canonical transformation above, we can close the duality gap between
the nonconvex original game and its canonical dual problem. Further, for i ∈ I, the second-order
partial derivative of Γi(xi, σi,x−i) in xi is defined as follows.

Pi(σi) = ∇2
xiΓi =

∑qi

k=1
[σi]k∇2

xiΛi,k(xi,x−i).

Recalling that Λi : Ω→ Θi is a quadratic operator and∇2
xiΛi is both xi-free and x−i-free (see the

cases in (3)-(5)), we can easily check that Pi(σi) is indeed a linear combination of [σi]k. On this
basis, we introduce the following set of σi for i ∈ I.

E +
i = Θ∗i ∩ {σi : Pi(σi) � κxIn}, E + = E +

1 × · · · × E +
N , (9)

where the constant κx > 0.

The computation of E +
i is actually not so hard in most practical cases. For example, take the payoff

function in (3) with i = 1, 2 and n = qi = 1. The complementary function is Γi(xi, σi, x3−i) =
σi((xi − x3−i)

2 − di,3−i)− σ2
i /4, where xi ∈ Ωi = [a, b] and σi ∈ Θ∗i = [−2di,3−i, 2(b− a)2 −

2di,3−i]. Thus, the subset E +
i = {σi : 2σi ≥ κx} ∩Θ∗i = [κx/2, 2(b− a)2 − 2di,3−i].

When σi ∈ E +
i , the positive definiteness of Pi(σi) implies that Γi(xi, σi,x−i) is convex with

respect to xi. Besides, the convexity of Ψi(ξi) derives that its Legendre conjugate Ψ∗i (σi) is also
convex. Hence, the complementary function Γi(xi, σi,x−i) is concave in σi. This convex-concave
property of Γi enables us to further investigate the optimality of the stationary points of (8), that
is, the optimality of the Nash stationary point of (1). Moreover, with the interference of x−i, the
transformed problem reflects a cluster of Γi with a mutual coupling of stationary conditions, rather
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than a deterministic one. Therefore, different from classic optimization works, the stationary points
for player i cannot be calculated independently. We should consider the computation of all players’
stationary point profile and discuss its optimality in an entire perspective.

To this end, variational inequalities (VI) help us to carry forward. By generalizing the coupled
stationary conditions to continuous vector fields, these stationary conditions can be compactly
formulated as a continuous mapping in a VI problem (Facchinei & Pang, 2003). Then, seeking all
players’ stationary point profile (or Nash stationary point) can be accomplished by verifying a fixed
point of this continuous mapping. The seed of employing the VI idea in game problems dates back
to (Harker & Pang, 1990), and has since found wide applications in various game models, for a
survey, see (Giannessi et al., 2006) and the references therein. Specifically, denote z = col{x,σ}
and Ξ = Ω× E +. Take the following continuous mapping as the pseudo-gradient of (8).

F (z) = col
{

col{
∑qi

k=1
[σi]k∇xiΛi,k(xi,x−i)}Ni=1, col{−Λi(xi,x−i) +∇Ψ∗i (σi)}Ni=1

}
.

Then (8) can be cast as a VI problem VI(Ξ, F ) to solve, i.e., finding z♦ ∈ Ξ such that

(z − z♦)TF (z♦) ≥ 0, ∀z ∈ Ξ. (10)

Note that the interaction on all players’ variables is displayed in mapping F , which is a joint function
of the partial derivatives of all players’ complementary functions (8). Together with Lemma 1, we
have the following result for identifying the global NE of (1).

Theorem 1 If (x♦,σ♦) is a solution to VI(Ξ, F ) with σ♦
i = ∇Ψi (ξi) |ξi=Λi(x♦

i ,x
♦
−i)

for i ∈ I,

then x♦ is the global NE of the nonconvex game (1).

Proved in § D, this result underlines that once the solution of VI(Ξ, F ) is obtained, we can check
whether the duality relation σ♦

i = ∇Ψi (ξi) |ξi=Λi(x♦
i ,x

♦
−i)

holds, so as to identify whether the
solution of VI(Ξ, F ) is a global NE. This inspires us to explore approaches to solve VI(Ξ, F ) via its
first-order conditions and employ this relation as a criterion for identifying the global NE.

We would like to remark that the foundation to realize the above idea is the nonempty set E +
i . It

is possible to obtain an empty E +
i in reality, provided by Pi(σi) � κxIn has no intersection with

Θ∗i , and these situations make the above duality theory approach unavailable. Thus, E +
i should be

effectively checked once the problem is formulated. Such a process has also been similarly employed
in some classic optimization works to solve nonconvex problems (Zhu & Martı́nez, 2012; Liang &
Cheng, 2019; Ren et al., 2021; Zheng et al., 2012; Latorre & Gao, 2016). In addition, this is why
we cannot directly employ the standard Lagrange multiplier method and the associated KKT theory,
because we need to confirm the domain of multiplier σi by utilizing canonical duality information
(referring to Θ∗i ).

4 CONJUGATE-BASED ODE

Recalling the aforementioned process for nonconvexity, we have made a canonical transformation
for game (1) by introducing the Legendre conjugate of Ψi and the canonical dual variable σi.
With these assisted complementary information, we propose a scheme to seek the solutions to
(10). In fact, ordinary differential equations (ODE) provide evolved dynamics, which help reveal
how the primal variables and the canonical dual ones influence each other via conjugate gradient
information. Meanwhile, the analysis techniques in modern calculus and nonlinear systems for
theoretical guarantees of ODEs may lead to comprehensive results with mild assumptions. In this
light, we intend to design a conjugate-based ODE to solve (10) in the following.

Surprisingly, we find that this conjugate-based idea not only helps solve the inherent nonconvexity
in such a class of N -player games, but also brings us convenience to deal with local set constraints
with specific structures. Particularly, the local set constraints of variables in the transformation, like
Ωi and E +

i of (10), are usually equipped with specific structures such as the Euclidean sphere of
parameter perturbation in (Deng & Mahdavi, 2021) and the unit simplex of soft-max output layers in
(Daskalakis et al., 2018). Hence, it is worth dealing with these constraint structures in an efficient
way. Enlightened by conjugate properties of the generating functions within Bregman divergence, we
intend to employ conjugate mappings with different generating functions in the ODE design.
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Table 1: Conjugate gradients with different generating functions.

Feasible set Generating function Conjugate gradient

General convex set Ω 1
2
‖x‖22 argminx∈Ω

1
2
‖x−y‖2

Non-negative orthant Rn+
∑n
l=1x

l log(xl)−xl exp(yl)

Unit square [a, b]n {xl∈R:a≤xl≤b}
∑n
l=1(x

l−a)log(xl−a)
+(b−xl)log(b−xl) col{a+b exp(yl)

exp(yl)+1
}nl=1

Simplex ∆n {x∈Rn+ :
∑n
l=1x

l = 1}
∑n
l=1x

l log(xl) col{ exp(yl)∑n
j=1 exp(yj)

}nl=1

Euclidean sphere Bnρ (w) {x∈Rn :‖x−w‖22≤p} −
√

p2−‖x−w‖22 py[
√

1+‖y‖22]−1−w

To this end, take φi(xi) and ϕi(σi) as two generating functions, where φi(xi) is µx-strongly convex
and Lx-smooth on Ωi, and ϕi(σi) is µσ-strongly convex and Lσ-smooth on E +

i . It follows from
the Fenchel inequality (Diakonikolas & Orecchia, 2019) that the Legendre conjugate φ∗i and ϕ∗i
are convex and differentiable, where for yi ∈ Rn, φ∗i (yi) , minxi∈Ωi{−xTi yi + φi(xi)}, and for
νi ∈ Rqi , ϕ∗i (νi) , minσi∈E +

i
{−σTi νi + ϕi(σi)}. On this basis, the conjugate gradients satisfy

∇φ∗i (yi) = argminxi∈Ωi

{
−xTi yi + φi(xi)

}
, (11)

∇ϕ∗i (νi) = argminσi∈E +
i
{−σTi νi + ϕi(σi)}. (12)

Indeed, these conjugate gradients can efficiently bring explicit map relations between dual spaces and
primal spaces. Recalling Example 1, we can take φi(xi) = (xi−a) log(xi−a)+(b−xi) log(b−xi)
since the feasible set Ωi has a unit-square form. See Table 1 without subscript i for more details.

Now, we design the conjugate-based ODE by processing two essential issues. One is to design the
dynamics for yi(t) and νi(t) in dual spaces via the stationary conditions in (10), while the other is
to update xi(t) and σi(t) in primal spaces via the mapping from conjugate gradients of generating
functions. Here, t represents continuous time, and in the following, we drop t in dynamics xi(t) and
so on for concise expressions. Therefore, for i ∈ I, the conjugate-based ODE for seeking a global
NE of the nonconvex N -player game (1) is presented by

ẏi = −σTi ∇xiΛi (xi,x−i) +∇φi(xi)− yi, yi(0) = yi0 ∈ Rn,
ν̇i = Λi (xi,x−i)−∇Ψ∗i (σi) +∇ϕi(σi)− νi, νi(0) = νi0 ∈ Rqi ,
xi = ∇φ∗i (yi) , xi(0) = ∇φ∗i (yi0),

σi = ∇ϕ∗i (νi) , σi(0) = ∇ϕ∗i (νi0).

(13)

In (13), the terms about−σTi ∇xiΛi(xi,x−i) and Λi(xi,x−i)−∇Ψ∗i (σi) represent the directions of
gradient descent and ascent according to Γi. Besides,∇φi(xi) and∇ϕi(σi) are regarded as damping
terms in ODE to avoid yi and νi going to infinity (Nemirovskij & Yudin, 1983; Krichene et al.,
2015). With the help of conjugate gradients ∇φ∗i and ∇ϕ∗i , the mapping from dual spaces back to
primal spaces is implemented to obtain the output feedback in system updating. Particularly, these
conjugate mappings are established based on valid generating functions rather than a conventional
Euclidean norm, which makes the conjugate-based ODE (13) flexibly employed under diverse
constraint conditions.

Next, we investigate the variables’ trajectories of (13). Similarly to x and σ, compactly denote
y∈RnN and ν∈Rq. The following lemma shows a relationship between the equilibrium of (13) and
the global NE of (1).

Lemma 2 Suppose that (y♦,ν♦,x♦,σ♦) is an equilibrium point of ODE (13). If σ♦
i =

∇Ψi (ξi) |ξi=Λi(x♦
i ,x

♦
−i)

for i ∈ I, then x♦ is the global NE of (1).

Then the subsequent theorem presents the main convergence result of (13).

Theorem 2 If E +
i is nonempty for i ∈ I, then ODE (13) is bounded and convergent. Moreover, if

the convergent point (y♦,ν♦,x♦,σ♦) satisfies σ♦
i = ∇Ψi (ξi) |ξi=Λi(x♦

i ,x
♦
−i)

for i ∈ I , then x♦ is
the global NE of (1).
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Proved in § E, Theorem 2 implies that global NE of game (1) can be found along the trajectory of
conjugate-based ODE (13). Moreover, we give the convergence rate of (13) with its proof in § E.

Theorem 3 If E +
i is nonempty and Ψi (·) is 1

κσ
-smooth for i ∈ I, then (13) converges at an

exponential rate, i.e.,

‖z(t)− z♦‖ ≤
√
τ

µ
‖z(0)‖ exp(− κ

2τ
t),

where µ = min{µx/2, µσ/2}, κ = min{κσ, κx}, τ = max{Lx/2µx, Lσ/2µσ}.

5 DISCRETIZATION

As the establishment of the ODE above, we utilize the conjugate gradient information from dual
spaces and obtain global NE according to the guidelines in the VI perspective. Following these
instructive ideas, we consider deriving the discretization from the conjugate-based ODE. Notice that
each step in discrete algorithms can directly compute the minimum of a sub-problem, rather than
walks along some trajectories of conjugate functions with explicit expressions in the ODE. Tapping
into this advantage, the corresponding discrete algorithm is not obligated to resort to conjugate
information like yi and νi, which results in simplifying the algorithm iteration. Specifically, without
computing the conjugate information of Ψ∗i , we redefine an operator generated by Ψi on Θi as

ΠΨi
Θi

(σi) = argminξi∈Θi{−σ
T
i ξi + Ψi(ξi)}.

Similarly, redefine operators Πφi
Ωi

(·) = ∇φ∗i (·) in (11) and Πϕi
E +
i

(·) = ∇ϕ∗i (·) in (12). With a step
size αk at discrete time k, we discretize the conjugate-based ODE (13) in the following Algorithm 1.
Algorithm 1
Input: Step size {αk}, proper generating functions φi on Ωi and ϕi on E +

i .
Initialize: x0

i ∈ Ωi, σ
0
i ∈ E +

i , i ∈ {1, . . . , N}.
1: for k = 1, 2, · · · do
2: for i ∈ {1, . . . , N} do
3: compute the conjugate of Ψi:

ξki = ΠΨi
Θi

(σki )
4: update the decision variable and the canonical dual variable:

xk+1
i = Πφi

Ωi
(∇φi(xki )− αkσkTi ∇xiΛi(xki ,xk−i))

σk+1
i = Πϕi

E +
i

(∇ϕi(σki ) + αk(Λi
(
xki ,x

k
−i
)
− ξki ))

5: end for
6: end for

In addition, we learn that the update of xk+1
i in Algorithm 1 can be equivalently expressed as

xk+1
i = argminx∈Ωi{〈x, σ

kT
i ∇xiΛi(xki ,xk−i)〉+

1

αk
Dφi(x, x

k
i )},

where Dφi(x, x
k
i ) is the Bregman divergence with generating function φi. A similar equivalent

scheme can be found in σk+1
i . These equivalent iteration schemes reveal that, parts of the idea in

Algorithm 1 derived from the conjugate-based ODE (13) actually coincide with the mirror descent
method (Nemirovskij & Yudin, 1983). Therefore, after computing the conjugate of Ψi and plugging
it into the update of σi referring to properties of canonical functions and VIs, readers may regard
Algorithm 1 from mirror descent perspectives based on personal preference and convenience.

Hereinafter, we provide the step-size settings and the corresponding convergence rates of Algorithm
1 in two typical nonconvex N -player games.

N -player generalized monotone games

Monotone games stand for a broad category in game models, where the pseudo-gradients of all
players’ payoffs satisfy the properties of monotonicity (Facchinei & Kanzow, 2010; Koshal et al.,

7
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2016; Chen et al., 2021). The monotone property yields the equivalence between the weak and the
strong solutions to VI problems (Minty, 1962), which makes most convex games solvable by the
first conditions in VI. Analogously, we consider Algorithm 1 under a class of generalized monotone
conditions (Giannessi et al., 2006), referring to the canonical complementary function (8), and are
rewarded by the following results.

Theorem 4 If E +
i is nonempty and ΠΨi

Θi
(·) is κσ-strongly monotone, then Algorithm 1 converges at

a rate of O(1/k) with step size αk = 2κ−1/(k + 1), i.e.,

‖xk − x♦‖2 + ‖σk − σ♦‖2 ≤ 1

k + 1

M1

µ2κ2
,

where µ = min{µx/2, µσ/2}, κ = min{κσ, κx}, and M1 is a positive constant.

N -player potential games

Potential games also have a wide spectrum of applications such as power allocation (Yang et al.,
2018), congestion control (Lei & Shanbhag, 2020), and multi-target tracking (Soto et al., 2009). In a
potential game, there exists a unified potential function for all players such that the change in each
players payoff is equivalent to the change in the potential function. Hence, the deviation in the payoff
of each player in (2) can be concretely mapped to a uniformed canonical potential function, that is,

Ji (x′i,x−i)− Ji(x) = Ψ(Λ(x′i,x−i))−Ψ(Λ(x)). (14)

The complementary function is thereby obtained with a common canonical dual variable σ as

Γi(xi, σ,x−i) = Γ(x, σ) = σTΛ (x)−Ψ∗ (σ) . (15)

Also, the set E + of σ is in a unified form similar to (9). Considering the weighted averages x̂k and
σ̂k in course of k iterations, we give the convergence rate of Algorithm 1 in the result below.

Theorem 5 If E + is nonempty and players’ payoffs are subjected to the potential function in (14),
then Algorithm 1 converges at a O(1/

√
k) rate with step size αk = 2M2

−1
√
µd / k, i.e.,

Γ(x̂k, σ♦)− Γ(x♦, σ̂k) ≤ 1√
k

√
d

µ
M2,

where µ = min{µx/2, µσ/2}, and d, M2 are two positive constants.

6 EXPERIMENTS

We examine the effectiveness of our approach for seeking global NE in the following tasks.

Robust neural network training

Consider a two-player game in adversarial training (Deng & Mahdavi, 2021; Nouiehed et al., 2019),
where the payoffs for both players are given in (4) with regularizers λ1

2 ‖x1‖2 and −λ2

2 ‖x2‖2.

Figure 2: Performance of different
methods for seeking global NE.

To show the convergence performance of our approach, we com-
pare Algorithm 1 with several familiar methods based on sta-
tionary information, such as the classic gradient descent (GD),
the optimistic mirror descent (OMD) (Daskalakis et al., 2018),
and the extra-gradient method (EG) (Korpelevich, 1976)). To
gain insight into the effectiveness of these methods together
with ours, in Fig. 2, we take decision variables x1, x2 ∈ R
and plot their trajectories in this task by starting from the same
initial point. It follows from Fig. 2 that only Algorithm 1 ad-
vocated in this paper converges to the global NE, while other
methods diverge to a Nash stationary point instead.

Sensor localization

Then we verify a class of nonconvex games in sensor localization with N = 10 anchor nodes (Jia
et al., 2013; Yang et al., 2018). For i ∈ I, the position strategy set Ωi is equipped with a unit

8
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Figure 3: Convergence of all play-
ers decisions in Algorithm 1.

square form, and the payoff function defined in (3) for localiza-
tion measurement is accompanied with a deviation of personal
estimation ‖Dixi − ei‖2. We reformulate this problem with a
potential game model, which is similar to the previous works,
and make a canonical transformation along the procedure in
this paper to handle nonconvexity. As mentioned in (15), E +

is a polyhedron here due to a common σ after canonical trans-
formation. In Fig. 3, we show the trajectories of all players
strategies in Algorithm 1 with respect to one certain dimension.
This reveals that all players find their appropriate localization
on account of the convergence, which actually serves as the
desired global NE.

For further illustration in this task, we compare Algorithm 1 with several existing methods for solving
such N -player games, including projected gradient descent (PGD) (Chen et al., 2021), penalty-based
methods (Facchinei & Kanzow, 2010), stochastic gradient descent (SGD) (Mertikopoulos & Zhou,
2019), and gradient-proximal methods (Liu et al., 2020). We check the convergence results of these
diverse approaches in the view of a fixed player’s decision in Fig. 3. Under such nonconvex settings,
an effective algorithm for seeking global NE should be insusceptible wherever the initial point lies.
Hence, it follows from Fig. 4 that only our algorithm achieves the target, while others fail with varied
initial points.

0 50 100 150 200

iteration k

4

4.8

5.6

6.4

7.2

8

global NE

Alg. 1

proximal

PGD

penalty

SGD
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iteration k

-5
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1

4

7

10

(b) x11(0) = −3 (c) x11(0) = −0.1

Figure 4: Comparison of convergence results with different initial points.

7 DISCUSSION

We have considered a typical class of nonconvex N -player games, and discussed how to seek their
global NE. By virtue of canonical duality theory and VIs, we have proposed a conjugate-based ODE
for obtaining the solution of a transformed VI problem, which actually induces the global NE of
the original nonconvex game if the duality relation can be checked. After providing theoretical
convergence guarantees of the ODE, we have derived the discretization, as well as the step-size
settings and the corresponding convergence rates under two typical nonconvex conditions.

Our exploration does not cease to advance, because there will be abundant follow-up work for
enhancement and elaboration on the basis of this work. In terms of the convergence rate, proper
accelerate approaches may be combined for promising results; In terms of the N -player background,
players’ interaction may rely on a communication network in consideration of privacy and security,
which may suggest the necessity for distributed or decentralized protocol.
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Supplementary Materials

A CANONICAL DUALITY THEORY

We begin the supplementary of this paper with the following fundamental concepts
of canonical duality theory. A differentiable function Ψ : Θ → R is said to be a
canonical function if its derivative ∇Ψ : Θ→ Θ∗ is a one-to-one mapping. Besides,
if Ψ is a convex canonical function, its conjugate function Ψ∗ : Θ∗ → R can be
uniquely defined by the Legendre transformation, that is,

Ψ∗ (σ) =
{
ξTσ −Ψ(ξ) | σ = ∇Ψ(ξ)

}
,

where σ ∈ Θ∗ is a canonical dual variable. On this basis, there are corresponding
canonical duality relations holding on Θ×Θ∗:

σ = ∇Ψ(ξ),

⇔ ξ = ∇Ψ∗ (σ) ,

⇔ ξTσ = Ψ(ξ) + Ψ∗ (σ) .

Here, (ξ, σ) is called the Legendre canonical duality pair on Θ×Θ∗.

B PROOF OF LEMMA 1

Lemma 1 investigates the relationship of stationary points between (8) and (1). Here
we reclaim Lemma 1 for convenience.

Lemma A profile x♦ is a Nash stationary point of (1) if there exists σ♦ ∈ Θ∗,
such that for all i ∈ I, (x♦i , σ

♦
i ) is a stationary point of complementarity function

Γi(xi, σi,x
♦
−i).

Proof For a given strategy profile x♦, if there exists σ♦ ∈ Θ∗ such that for all i ∈ I ,
(x♦i , σ

♦
i ) is a stationary point of complementarity function Γi(xi, σi,x

♦
−i), then it

satisfies the following first order conditions:

0n ∈ σ♦Ti ∇xiΛi(x
♦
i ,x

♦
−i) +NΩi(x

♦
i ), (16a)

0qi ∈ −Λi(x
♦
i ,x

♦
−i) +∇Ψ∗i (σ

♦
i ) +NΘ∗i

(σ♦i ), (16b)

where NΩi(x
♦
i ) is the normal cone at point x♦i on set Ωi, with a similar definition for

the normal coneNΘ∗i
(σ♦i ). Following the definition of the convex canonical function

Ψi, we can learn that its derivative ∇Ψi : Θi → Θ∗i is a one-to-one mapping from
Θi to its range Θ∗i . Thus, for given ξ♦i ∈ Θi with ξ♦i = Λi(x

♦
i ,x

♦
−i), there exists a

unique σ♦i ∈ Θ∗i such that

σ♦i = ∇Ψi(ξ
♦
i ).

Meanwhile, given this Legendre canonical duality pair (ξ♦i , σ
♦
i ) on Θi × Θ∗i , the

duality relation holds that

σ♦i = ∇Ψi(ξ
♦
i ) ⇐⇒ ξ♦i = ∇Ψ∗i (σ

♦
i ).

With all this in mind, (16b) can be transformed into

Λi(x
♦
i ,x

♦
−i) = ∇Ψ∗i (σ

♦
i ). (17)

14
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Using the the duality relation again, (17) is equivalent to

σ♦i = ∇Ψi(Λi(x
♦
i ,x

♦
−i)). (18)

By substituting (18) into (16a), we have

0n ∈ ∇Ψi(Λi(x
♦
i ,x

♦
−i))

T∇xiΛi(x
♦
i ,x

♦
−i) +NΩi(x

♦
i ). (19)

According to the chain rule,

∇Ψi(Λi(x
♦
i ,x

♦
−i))

T∇xiΛi(x
♦
i ,x

♦
−i) = ∇xiJi(x

♦
i ,x

♦
−i).

Therefore, (19) is equivalent to

0n ∈ ∇xiJi(x
♦
i ,x

♦
−i) +NΩi(x

♦
i ). (20)

Since (20) is true for any player i ∈ I, the profile x♦ satisfies the Nash stationary
condition, which completes the proof. �

C VARIATIONAL INEQUALITY

Recall the following notations according to problem (8)

z = col{x,σ}, Ξ = Ω× E + ⊂ RnN+q.

For the conjugate gradient of canonical function Ψi for i ∈ I, denote

∇Ψ∗ (σ) = col{∇Ψ∗i (σi)}Ni=1.

Also, denote the profile of all Λi by

Λ (x) = col {Λi (xi,x−i)}Ni=1 ,

and the augmented partial derivative profile as

G(x,σ) = col
{
σTi ∇xiΛi (xi,x−i)

}N
i=1

.

In this way, the pseudo-gradient of (8) can be rewritten as

F (z) ,

[
G(x,σ)

−Λ (x) +∇Ψ∗ (σ)

]
=

[
col{

∑qi
k=1[σi]k∇xiΛi,k(xi,x−i)}Ni=1

col {−Λi (xi,x−i) +∇Ψ∗i (σi)}Ni=1

]
.

(21)
To proceed, the accordingly introduced variational inequality (VI) problem VI(Ξ, F )
is defined as

to find z ∈ Ξ such that (z′ − z)TF (z) ≥ 0, ∀z′ ∈ Ξ. (22)

The solution of this VI problem is denoted by SOL(Ξ, F ). Moreover, since F (z) is
a continuous mapping and Ξ is a closed set, we have the following result referring
to (Facchinei & Pang, 2003, Page 2-3).

Lemma C1 The solution set SOL(Ξ, F ) of VI(Ξ, F ) in (22) is closed. Moreover,
any profile z ∈ SOL(Ξ, F ) if and only if

0nN+q ∈ F (z) +NΞ(z).
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D PROOF OF THEOREM 1

With the help of the preparation aforementioned about the canonical duality theory
and the property in VI problems, we can give the proof of Theorem 1. Here, Theorem
1 reveals that solutions to VI(Ξ, F ) yields the global NE of (1). Also, we reproduce
Theorem 1 here for convenience.

Theorem If (x♦,σ♦) is a solution to VI(Ξ, F ) with σ♦i = ∇Ψi (ξi) |ξi=Λi(x♦i ,x
♦
−i)

for i ∈ I, then x♦ is the global NE of the nonconvex game (1).

Proof If there existsσ♦ ∈ E + such that z♦ = col{x♦,σ♦} is a solution to VI(Ξ, F ),
then it follows from Lemma C1 that

0nN+q ∈ F (z♦) +NΞ(z♦), (23)

which implies that for i ∈ I,

0n ∈ σ♦Ti ∇xiΛi(x
♦
i ,x

♦
−i) +NΩi(x

♦
i ),

0qi ∈ −Λi(x
♦
i ,x

♦
−i) +∇Ψ∗i (σ

♦
i ) +NE +

i
(σ♦i ),

or equivalently described as

(σ♦Ti ∇xiΛi(x
♦
i ,x

♦
−i))

T (xi − x♦i ) ≥ 0, ∀xi ∈ Ωi,

(−Λi(x
♦
i ,x

♦
−i) +∇Ψ∗i (σ

♦
i ))T (σi − σ♦i ) ≥ 0, ∀σi ∈ E +

i .
(24)

Moreover, if σ♦i = ∇Ψi (ξi) |ξi=Λi(x♦i ,x
♦
−i)

for i ∈ I, then the the canonical duality

relation hold on Θi × E +
i for i ∈ I . This indicates that the solution to VI(Ξ, F ) is a

stationary point profile of (8) on Θi ×Θ∗i .

Thus, similar to the chain rules employed in Lemma 1, we can further derive that

(∇xiJi(x
♦
i ,x

♦
−i))

T (xi − x♦i ) ≥ 0, ∀xi ∈ Ωi.

Moreover, when σi ∈ E +
i , the Hessian matrix satisfies

∇2
xi

Γi(xi, σi,x−i) =
∑qi

k=1
[σi]k∇2

xi
Λi,k(xi,x−i) � κxIn,

which indicates the convexity of Γi(xi, σi,x−i) with respect to xi. Besides, due to
the convexity of Ψi, its Legendre conjugate Ψ∗i is also convex (Yang Gao, 2000).
Therefore, the total complementary function Γi(xi, σi,x−i) is concave in canonical
dual variable σi.

In this light, we can obtain the globally optimality of (x♦,σ♦) on Ω× E +, i.e., for
i ∈ I,

Γi(x
♦
i , σi,x

♦
−i) ≤ Γi(x

♦
i , σ

♦
i ,x

♦
−i) ≤ Γi(xi, σ

♦
i ,x

♦
−i), ∀xi ∈ Ωi, σi ∈ E +

i .

The inequality relation above tells that

Ji(x
♦
i ,x

♦
−i) ≤ Ji(xi,x

♦
−i), ∀xi ∈ Ωi, ∀i ∈ I.

This confirms that x♦ is the global NE of (1), which completes the proof. �
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E CONVERGENCE ANALYSIS OF THE CONJUGATE-BASED ODE

We first provide some preliminaries that are necessary in the convergence analysis
of ODE (13). Here are some widely-accepted concepts in convex analysis. Take
h(z) : Ξ→ R as a differentiable ω-strongly convex function on a closed convex set
Ξ, which satisfies

h (θz + (1− ω)z′) ≤ θh(z)+(1−θ)h (z′)−ω
2
θ(1−θ) ‖z′ − z‖2

, ∀z, z′ ∈ Ξ, θ ∈ [0, 1].

Additionally, h is said to be L-smooth if there exists a constant L > 0 such that ∇h
is L-Lipschitz, i.e.,

‖∇h(z′)−∇h(z)‖ ≤ L‖z − z′‖, ∀z, z′ ∈ Ξ,

which is equivalent to

h (z′)− h(z) ≤ (z′ − z)
T∇h(z) +

L

2
‖z − z′‖2

, ∀z, z′ ∈ Ξ.

On the other hand, following the duality theory (Nemirovskij & Yudin, 1983), the
conjugate function of h defined on the dual space Ξ∗ is

h∗(s) = supz∈Ξ

{
zT s− h(z)

}
,

where s ∈ Ξ∗ serves as a dual variable. Moreover, consider h as a differentiable and
strongly convex function on a closed convex set Ξ. Then according to (Diakonikolas
& Orecchia, 2019), h∗ is also convex and differentiable on Ξ∗, and satisfies

h∗(s) = minz∈Ξ

{
−zT s+ h(z)

}
.

Moreover, the conjugate gradient∇h∗(s) who maps Ξ∗ to Ξ satisfies

∇h∗ (s) = argminz∈Ξ

{
−zT s+ h(z)

}
.

With these preliminaries at hand, we investigate the convergence of ODE (13). For
simplicity, let us denote the following compact forms associated with the gradients
therein

∇φ(x) , col {∇φi (xi)}Ni=1 , ∇ϕ(σ) = col{∇ϕi(σi)}Ni=1;

∇φ∗(y) = col{∇φ∗i (yi)}Ni=1, ∇ϕ∗(ν) = col{∇ϕ∗i (νi)}Ni=1 .

Hence, together with the compact forms G(x,σ), Λ (x), and ∇Ψ∗ (σ) defined in
(21), ODE (13) can be compactly presented by

ẏ = −G(x,σ) +∇φ(x)− y,
ν̇ = Λ (x)−∇Ψ∗ (σ) +∇ϕ(σ)− ν,
x = ∇φ∗(y),

σ = ∇ϕ∗ (ν) .

(25)

On this basis, we first show a relationship between the equilibrium in ODE (25) (or
ODE (13)) and the global NE of game (1). Rewrite Lemma 2 here for conveniency.

Lemma If (y♦,ν♦,x♦,σ♦) is an equilibrium point of ODE (25) (or (13)) and
σ♦i = ∇Ψi (ξi) |ξi=Λi(x♦i ,x

♦
−i)

for i ∈ I, then x♦ is the global NE of (1).
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Proof If (y♦,x♦,ν♦,σ♦) is an equilibrium point of ODE (25), we have

0nN = −G(x♦,σ♦) +∇φ(x♦)− y♦, (26a)

0q = Λ
(
x♦
)
−∇Ψ∗

(
σ♦
)

+∇ϕ(σ♦)− ν♦, (26b)

x♦ = ∇φ∗(y♦), (26c)

σ♦ = ∇ϕ∗(ν♦). (26d)

It follows from y♦ = −G(x♦,σ♦) +∇φ(x♦) that (26c) becomes

x♦ = ∇φ∗(−G(x♦,σ♦) +∇φ(x♦)). (27)

For i ∈ I, (27) is equivalent to

xi = ∇φ∗i (−σTi ∇xiΛi (xi,x−i) +∇φi(xi)).

Moreover, by recalling

∇φ∗i (yi) = argminxi∈Ωi

{
−xTi yi + φi(xi)

}
,

and taking yi as −σTi ∇xiΛi (xi,x−i) +∇φi(xi), we obtain the associated first order
condition, expressed as the following compact form

0nN ∈ G(x♦,σ♦) +NΩ(x♦). (28)

Similarly, it follows from (26b) and (26d) that

σ♦ = ∇ϕ∗(Λ
(
x♦
)
−∇Ψ∗

(
σ♦
)

+∇ϕ(σ♦)),

which yields
0q ∈ −Λ

(
x♦
)

+∇Ψ∗
(
σ♦
)

+NE +(σ♦). (29)

Thus, combining (28) and (29), it follows from Lemma C1 that z♦ = col{x♦,σ♦}
is a solution to VI(Ξ, F ). Moreover, due to Theorem 1, the solution of VI(Ξ, F )
derives a global NE of game (1) if σ♦i = ∇Ψi (ξi) |ξi=Λi(x♦i ,x

♦
−i)

for i ∈ I, which
completes the proof. �

Now, we are in a position to prove the convergence of conjugate-based ODE (13).
Reclaim Theorem 2 here for convenience.

Theorem If E +
i is nonempty for i ∈ I, then ODE (13) is bounded and con-

vergent. Moreover, if the convergent point (y♦,ν♦,x♦,σ♦) satisfies σ♦i =
∇Ψi (ξi) |ξi=Λi(x♦i ,x

♦
−i)

for i ∈ I, then x♦ is the global NE of (1).

Proof (i) We first prove that the trajectory (y(t), x(t), ν(t), σ(t)) of (13) is bounded
along ODE (13). Construct a Lyapunov candidate function as

V1 =
N∑
i=1

Dφ∗i
(yi, y

♦
i ) +Dϕ∗i

(νi, ν
♦
i ), (30)

where Bregman divergences therein are expressed detailedly as

Dφ∗i
(yi, y

♦
i ) = φ∗i (yi)− φ∗i (y♦i )−∇φ∗i (y♦i )T (yi − y♦i ),

Dϕ∗i
(νi, ν

♦
i ) = ϕ∗i (νi)− ϕ∗i (ν♦i )−∇ϕ∗i (ν♦i )T (νi − ν♦i ).

18
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Consider the term Dφ∗i
(yi, y

♦
i ) for i ∈ I. Since xi = ∇φ∗i (yi) and x♦i = ∇φ∗i

(
y♦i
)
,

it follows from the expression of∇φ∗i in (11) that

φ∗i (yi) = xTi yi − φi(xi), φ∗i (y
♦
i ) = x♦Ti y♦i − φi(x♦i ). (31)

Thus, by (31), we get

Dφ∗i
(yi, y

♦
i ) = φ∗i (yi)− φ∗i (y♦i )−∇φ∗i (y♦i )T (yi − y♦i )

= φi(x
♦
i )− φi(xi)− (x♦i − xi)Tyi

= φi(x
♦
i )− φi(xi)− (x♦i − xi)T∇φ(xi) + (x♦i − xi)T∇φ(xi)− (x♦i − xi)Tyi.

Since φi is µx-strongly convex on Ωi, we can further derive

Dφ∗i
(yi, y

♦
i ) ≥ µx

2

∥∥xi − x♦i ∥∥2
+ (x♦i − xi)T (∇φ(xi)− yi),

which yields
N∑
i=1

Dφ∗i
(yi, y

♦
i ) ≥ µx

2

∥∥x− x♦∥∥2
+

N∑
i=1

(x♦i − xi)T (∇φi (xi)− yi) . (32)

In fact, recall ∇φ∗i (yi) = argminx∈Ωi

{
−xTyi + φi(x)

}
. Due to the optimality of

∇φ∗i (yi) and the convexity of φi, we have

(∇φ∗i (yi))T (∇φi (∇φ∗i (yi))− yi) ≤ (∇φ∗i (y♦i ))T (∇φi (∇φ∗i (yi))− yi) . (33)

Furthermore, in consideration of xi = ∇φ∗i (yi) and x♦i = ∇φ∗i
(
y♦i
)

again, (33)
indicates

0 ≤ ∇φ∗i
(
y♦i
)T

(∇φi (∇φ∗i (yi))− yi)−∇φ∗i (yi)
T (∇φi (∇φ∗i (yi))− yi)

= (x♦i − xi)T (∇φi (xi)− yi) .
(34)

Thus, (32) becomes
N∑
i=1

Dφ∗i
(yi, y

♦
i ) ≥ µx

2

∥∥x− x♦∥∥2
.

The analogous analysis of the term Dϕ∗i
(νi, ν

♦
i ) in (30) can be carried on, which also

indicates that
N∑
i=1

Dϕ∗i
(νi, ν

♦
i ) ≥ µσ

2

∥∥σ − σ♦∥∥2
+

N∑
i=1

(σ♦i − σi)T (∇ϕi (σi)− νi) .

Besides, recall∇ϕ∗i (νi) = argminσi∈E +
i
{−σTi νi + ϕi(σi)}. Based on the convexity

of ϕi and the optimality of∇ϕ∗i (νi), we obtain

0 ≤ (σ♦i − σi)T (∇ϕi (σi)− νi) , (35)

which similarly leads to
N∑
i=1

Dϕ∗i
(νi, ν

♦
i ) ≥ µσ

2

∥∥σ − σ♦∥∥2
.

As a result, we obtain the lower bound of (30) that

V1 ≥ µ(‖x− x♦‖2 + ‖σ − σ♦‖2) ≥ 0,
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where µ = min{µx/2, µσ/2}. This means that V1 is positive semi-definite, and
V1 = 0 if and only if x = x♦ and σ = σ♦. Moreover, V1 is radially unbounded in
x(t) and σ(t).

Next, we investigate the derivative of V1 along ODE (13), that is,

d

dt
V1(t) =

d

dt

N∑
i=1

Dφ∗i
(yi, y

♦
i ) +Dϕ∗i

(νi, ν
♦
i )

=
d

dt

N∑
i=1

(φ∗i (yi)− φ∗i (y♦i )− (yi − y♦i )T∇φ∗i (y∗i ))

+
d

dt

N∑
i=1

(ϕ∗i (νi)− ϕ∗i (ν♦i )− (νi − ν♦i )T∇ϕ∗i (ν∗i ))

=
N∑
i=1

(∇φ∗i (yi)−∇φ∗i (y♦i ))T ẏi(t) +
N∑
i=1

(∇ϕ∗i (νi)−∇ϕ∗i (ν♦i ))T ν̇i(t)

=
N∑
i=1

(xi − x♦i )T ẏi(t) +
N∑
i=1

(σi − σ♦i ))T ν̇i(t).

Here we employ the compact form defined in (25) for a more concise statements
below and derive

d

dt
V1(t) = (x− x♦)T (−G(x,σ) +∇φ(x)− y)

+
(
σ − σ♦

)T
(Λ (x)−∇Ψ∗ (σ) +∇ϕ(σ)− ν).

(36)

Meanwhile, by rearranging the terms in (36), we have

V̇1 = −(x− x♦)TG(x,σ)−
(
σ − σ♦

)T
(−Λ (x) +∇Ψ∗ (σ))

+ (x− x♦)T (∇φ(x)− y) +
(
σ − σ♦

)T
(∇ϕ(σ)− ν)

= −(z − z♦)TF (z) + (x− x♦)T (∇φ(x)− y) + (σ − σ♦)T (∇ϕ(σ)− ν) ,
(37)

where z = col{x,σ} and F (z) = col{G(x,σ), −Λ (x) +∇Ψ∗ (σ)} are defined
in (21). Notice that (34) and (35) actually reveals that

(x− x♦)T (∇φ(x)− y) ≤ 0, (σ − σ♦)T (∇ϕ(σ)− ν) ≤ 0. (38)

Because z♦ is a solution to VI(Ξ, F ),(
z − z♦

)T
F (z♦) ≥ 0. (39)

Thus, (37) yields the further scaling that

V̇1 = −(z − z♦)TF (z) + (x− x♦)T (∇φ(x)− y) + (σ − σ♦)T (∇ϕ(σ)− ν)

≤ −(z − z♦)TF (z)

= −(z − z♦)T (F (z)− F (z♦))− (z − z♦)TF (z♦)

≤ −(z − z♦)T (F (z)− F (z♦)),
(40)
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where the first inequality is due to (38) and the second inequality is due to (39). Now,
we consider the term (z − z♦)T (F (z)− F (z♦)) with details.

(z − z♦)T (F (z)− F (z♦))

= (x− x♦)T (G(x,σ)−G(x♦,σ♦))

+
(
σ − σ♦

)T
(−Λ (x) +∇Ψ∗ (σ)− (−Λ(x♦) +∇Ψ∗(σ♦)))

= (x− x♦)T (G(x,σ)−G(x♦,σ♦))−
(
σ − σ♦

)T
(Λ(x)− Λ(x♦))

+ (σ − σ♦)T (∇Ψ∗(σ)−∇Ψ∗(σ♦)).

Due to the convexity of Ψi for i ∈ I, the Legendre conjugate Ψ∗i is also convex
(Yang Gao, 2000), which indicates

(σ − σ♦)T (∇Ψ∗(σ)−∇Ψ∗(σ♦)) ≥ 0.

Hence,

(z − z♦)T (F (z)− F (z♦))

≥ (x− x♦)T (G(x,σ)−G(x♦,σ♦))−
(
σ − σ♦

)T
(Λ(x)− Λ(x♦)).

(41)

Expanding the expression in (41),

(x− x♦)T (G(x,σ)−G(x♦,σ♦))−
(
σ − σ♦

)T
(Λ(x)− Λ(x♦))

=
∑N

i=1
(xi − x♦i )T

(∑qi

k=1
[σi]k∇xiΛi,k(xi,x−i)−

∑qi

k=1
[σ♦i ]k∇xiΛi,k(x

♦
i ,x

♦
−i)
)

−
∑N

i=1

∑qi

k=1
([σi]k − [σ♦i ]k)

(
Λi,k (xi,x−i)− Λi,k(x

♦
i ,x

♦
−i)
)
.

(42)
Rearranging (42), we have∑N

i=1

∑qi

k=1

(
[σi]k(xi − x♦i )T∇xiΛi,k(xi,x−i)− [σ♦i ]k(xi − x♦i )T∇xiΛi,k(x

♦
i ,x

♦
−i)
)

−
∑N

i=1

∑qi

k=1
([σi]k − [σ♦i ]k)

(
Λi,k (xi,x−i)− Λi,k(x

♦
i ,x

♦
−i)
)
.

(43)
By merging like terms in (42), we have∑N

i=1

∑qi

k=1

(
(xi − x♦i )T ([σi]k∇xiΛi,k(xi,x−i))+[σi]kΛi,k(x

♦
i ,x

♦
−i)−[σi]kΛi,k(xi,x−i)

)
+
∑N

i=1

∑qi

k=1

(
(x♦i −xi)T([σ♦i ]k∇xiΛi,k(x

♦
i ,x

♦
−i))+[σ♦i ]kΛi,k(xi,x−i)−[σ♦i ]kΛi,k(x

♦
i ,x

♦
−i)
)
.

(44)
Recalling the definition in (9) that for i ∈ I,

σi, σ
♦
i ∈ E +

i = {σi ∈ Θ∗i :
∑qi

k=1
[σi]k∇2

xi
Λi,k(xi,x−i) � κxIn}.

Hence, (44) satisfies∑N

i=1

∑qi

k=1

(
(xi − x♦i )T ([σi]k∇xiΛi,k(xi,x−i))+[σi]kΛi,k(x

♦
i ,x

♦
−i)−[σi]kΛi,k(xi,x−i)

)
+
∑N

i=1

∑qi

k=1

(
(x♦i −xi)T([σ♦i ]k∇xiΛi,k(x

♦
i ,x

♦
−i))+[σ♦i ]kΛi,k(xi,x−i)−[σ♦i ]kΛi,k(x

♦
i ,x

♦
−i)
)

≥ κx‖x− x♦‖2.
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which further yields

(z − z♦)T (F (z)− F (z♦)) ≥ κx‖x− x♦‖2.

In this view, we can accordingly get

V̇1 ≤ −κx‖x− x♦‖2 ≤ 0. (45)

Since V1 is radially unbounded in x(t) and σ(t), this implies that the trajectories of
x(t) and σ(t) are bounded along the conjugate-based ODE (13).

Secondly, we show that y(t) and ν(t) are bounded. Take another Lyapunov candidate
function as

V2 =
1

2
‖y‖2,

which is radially unbounded in y. Along the trajectories of (25), the derivative of V2

satisfies
V̇2 ≤ yT (−G(x,σ) +∇Φ(x))− ‖y‖2.

It is clear that

V̇2 ≤ −‖y‖2 + p1‖y‖
= −2V2 + p1

√
2V2,

with a positive constant p1, which is because x, σ have been proved to be bounded.
Analogously, take a third Lyapunov candidate function as

V3 =
1

2
‖ν‖2,

which is radially unbounded in σ. Along the trajectories of (25), the derivative of V3

satisfies

V̇3 ≤ νT (Λ (x)−∇Ψ∗ (σ) +∇ϕ(σ)− ν)− ‖ν‖2

≤ −‖ν‖2 + p2‖ν‖
= −2V3 + p2

√
2V3,

with a positive constant p2. Hence, it can be easily verified that V2 and V3 are
bounded, so are y(t) and ν(t).

(ii) Now let us investigate the set

Q ,

{
(x,y,σ,ν) :

d

dt
V1 = 0

}
,

and take set Iv as its largest invariant subset. It follows from the invariance principle
(Haddad & Chellaboina, 2011, Theorem 2.41) that (x,y,σ,ν) → Iv as t → ∞,
and Iv is a positive invariant set. Then it follows from the derivation in (45) that

Iv ⊆
{

(x,y,σ,ν) : x = x♦
}
.

This indicates that any trajectory along ODE (13) results in the convergence of
variable x, that is, x(t)→ x♦ as t→∞. Moreover, if σ♦i = ∇Ψi (ξi) |ξi=Λi(x♦i ,x

♦
−i)

for i ∈ I, then the convergent point x♦ is indeed a global NE. So far, we have
accomplished the proof. �
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Based on the proof of Theorem 2, we further show the convergence rate of ODE
(13). Here, we also reproduce Theorem 3 below for convenience:

Theorem If E +
i is nonempty and Ψi (·) is 1

κσ
-smooth for i ∈ I , then (13) converges

at an exponential rate, i.e.,

‖z(t)− z♦‖ ≤
√
τ

µ
‖z(0)‖ exp(− κ

2τ
t),

where µ = min{µx/2, µσ/2}, κ = min{κσ, κx}, τ = max{Lx/2µx, Lσ/2µσ}.
Proof Take the same Lyapunov function as in Theorem 2:

V1 =
N∑
i=1

Dφ∗i
(yi, y

♦
i ) +Dϕ∗i

(νi, ν
♦
i ).

Recalling the analysis in Theorem 2, we have

V1 ≥ µ
(∥∥x− x♦∥∥2

+
∥∥σ − σ♦∥∥2

)
= µ

∥∥z − z♦∥∥2
, (46)

where µ = min{µx/2, µσ/2}.Based on the standard duality relations, the µx-strong
convexity of generating function φi on Ωi implies that its conjugate gradient∇φ∗i is
continuously differentiable on Rn with 1/µx-Lipschitz continuous gradient (Ben-Tal
et al., 2001). Thus,

N∑
i=1

Dφ∗i
(yi, y

♦
i ) =

N∑
i=1

φ∗i (yi)− φ∗i (y♦i )−∇φ∗i (y♦i )T (yi − y♦i )

≤ 1

2µx

N∑
i=1

‖yi − y♦i ‖2.

(47)

Moreover, with the duality relation∇φi(xi) = yi and ∇φi(x♦i ) = y♦i , (47) yields

N∑
i=1

Dφ∗i
(yi, y

♦
i ) ≤ 1

2µx

N∑
i=1

‖yi − y♦i ‖2

=
1

2µx

N∑
i=1

‖∇φi(xi)−∇φi(x♦i )‖2

≤ Lx
2µx
‖x− x♦‖2,

(48)

where the last inequality is due to the Lx-smooth of generating function φi. Analo-
gously,∇ϕ∗i is 1/µσ-Lipschitz because of the µσ-strongly convexity of generating
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function ϕi on E +
i . With∇ϕi(σi) = νi and ∇ϕi(σ♦i ) = ν♦i , we also have

N∑
i=1

Dϕ∗i
(νi, ν

♦
i ) =

N∑
i=1

ϕ∗i (νi)− ϕ∗i (ν♦i )−∇ϕ∗i (ν♦i )T (νi − ν♦i )

≤ 1

2µσ

N∑
i=1

‖νi − ν♦i ‖2

=
1

2µσ

N∑
i=1

‖∇ϕi(σi)−∇ϕi(σ♦i )‖2

≤ Lσ
2µσ
‖σ − σ♦‖2,

where the last inequality is due to the Lσ-smooth of generating function ϕi. There-
fore,

V1 ≤
N∑
i=1

Dφ∗i
(yi, y

♦
i ) +Dϕ∗i

(νi, ν
♦
i ) ≤ τ‖z − z♦‖2,

where τ = max{Lx/2µx, Lσ/2µσ}. Moreover, following the proof of Theorem 2,
the derivate of V1 satisfies

V̇1 ≤ −(z − z♦)T (F (z)− F (z♦)).

Since Ψi (·) is 1
κσ

-smooth, we can derive the κσ-strongly convexity of Ψ∗i by using
duality relation (Beck, 2017). Then we have

(z − z♦)T (F (z)− F (z♦))

= (x− x♦)T (G(x,σ)−G(x♦,σ♦))

+
(
σ − σ♦

)T
(−Λ (x) +∇Ψ∗ (σ)− (−Λ

(
x♦
)

+∇Ψ∗
(
σ♦
)
))

= (x− x♦)T (G(x,σ)−G(x♦,σ♦))−
(
σ − σ♦

)T
(Λ (x)− Λ(x♦))

+ (σ − σ♦)T (∇Ψ∗(σ)−∇Ψ∗(σ♦))

≥ κx‖x− x♦‖2 + κσ‖σ − σ♦‖2

≥ κ‖z − z♦‖2,

where κ = min{κσ, κx}. Therefore,

V̇1 ≤ −κ‖z − z♦‖2. (49)

It follows from (46) and (49) that

V̇1 ≤ −κ‖z − z♦‖2 ≤ −κ
τ
V1,

which actually yields the exponential convergence rate. In other words,

µ‖z(t)− z♦‖2 ≤ V1(z(t))

≤ V1(z(0)) exp(−κ
τ
t)

≤ τ‖z(0)‖2 exp(−κ
τ
t).

24



Under review as a conference paper at ICLR 2023

Thus, we can also obtain

‖z(t)− z♦‖ ≤
√
τ

µ
‖z(0)‖ exp(− κ

2τ
t),

which implies this conclusion. �

F BREGMAN DIVERGENCE

After the analysis of ODE (13), we turn to investigate the discrete algorithm 1
induced from ODE (13). Also, we provide some auxiliary results that are needed in
the following contents.

First of all, the Bregman divergence associated to a generating function h : Ξ→ R
is defined as

Dh(z
′, z) = h(z′)− h(z)− (z′ − z)

T ∇h(z), ∀z, z′ ∈ Ξ.

In what follows, we give basic bounds on the Bregman divergence. Firstly, the basic
ingredient for these bounds is a generalization of the (Euclidean) law of cosines,
which is known in the literature as the “three-point identity” (Chen & Teboulle,
1993):

Lemma F1 Let the continuously differentiable generating function h be ω-strongly
convex on set Ξ. For z, z′, z+ in Ξ, there holds

Dh(z
′, z+) +Dh(z

+, z) = Dh(z
′, z) + 〈z′ − z+,∇h(z)−∇h(z+)〉. (50)

Proof It follows that the definition of the Bregman divergence,

Dh(z
′, z+) = h(z′)− h

(
z+
)
−
(
z′ − z+

)T ∇h(z+),

Dh(z
+, z) = h(z+)− h(z)−

(
z+ − z

)T ∇h(z),

Dh(z
′, z) = h(z′)− h (z)− (z′ − z)

T ∇h(z).

This lemma then follows by adding the first two equalities and subtracting the last
one. �

Secondly, with the identity above, we have the following upper bound:

Lemma F2 Let the continuously differentiable generating function h be ω-strongly
convex on set Ξ. For z, z′ in Ξ, and z+ = Πh

Ξ(g) = argminz∈Ξ

{
−zTg + h(z)

}
,

there holds

Dh(z
′, z+) ≤ Dh(z

′, z)−Dh(z
+, z) + (g −∇h(z))T (z+ − z′). (51)

Proof Based on the three-point identity (50), we obtain

Dh(z
′, z+) +Dh(z

+, z) = Dh(z
′, z) + (z+ − z′)T (∇h(z+)−∇h(z)).

Rearranging these terms gives

Dh(z
′, z+) = Dh(z

′, z)−Dh(z
+, z) + (z+ − z′)T (∇h(z+)−∇h(z)). (52)
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Moreover, with the fact that z+ = Πh
Ξ(g) = argminz∈Ξ

{
−zTg + h(z)

}
, we learn

from the optimality of z+ and the convexity of h that

(−g +∇h(z+))T z+ ≤ (−g +∇h(z+))T z′,

which implies
(z+ − z′)T∇h(z+) ≤ (z+ − z′)Tg. (53)

Thus, (51) holds by plugging (53) into (52). �

G PROOF OF THEOREM 4

Before the proof, we introduce two classic inequalities in the following.

Lemma F3 (Fenchel’s inequality) Take f as a continuous function on set C. Then
the Fenchel conjugate f ∗ in dual space C∗ is f ∗(b) = supa∈C

{
aT b− f(a)

}
, which

results in the following inequality

aT b ≤ f(a) + f ∗(b).

Lemma F4 (Jensen’s inequality) Take f as a convex function on a convex set U ,
then

f(
k∑
l=1

γlxl) ≤
k∑
l=1

γlf(xl),

where x1, · · · , xk ∈ U and γ1, · · · , γk > 0 with γ1 + · · ·+ γk = 1.

With help of the basis mentioned above, we show the convergence analysis of
Algorithm 1 on a class ofN -player generalized monotone games. Here, we reproduce
Theorem 4 below for convenience:

Theorem If E +
i is nonempty and ΠΨi

Θi
(·) is κσ-strongly monotone, then Algorithm

1 converges at a rate of O(1/k) with step size αk = 2κ−1/(k + 1), i.e.,

‖xk − x♦‖2 + ‖σk − σ♦‖2 ≤ 1

k + 1

M1

µ2κ2
,

where µ = min{µx/2, µσ/2}, κ = min{κσ, κx}, and M1 is a positive constant.

Proof Take the collection of the Bregman divergence as

∆(z♦, zk+1) ,
N∑
i=1

Dφi(x
♦
i , x

k+1
i ) +Dϕi(σ

♦
i , σ

k+1
i ), (54)

where

Dφi(x
♦
i , x

k+1
i ) = φi(x

♦
i )− φi(xk+1

i )−∇φi(xk+1
i )T (x♦i − xk+1

i ),

Dϕi(σ
♦
i , σ

k+1
i ) = ϕi(σ

♦
i )− ϕi(σk+1

i )−∇ϕi(σk+1
i )T (σ♦i − σk+1

i ).

Because φi is µx-strongly convex and ϕi is µσ-strongly convex for i ∈ I, we obtain
that

∆(z♦, zk+1) ≥ µx
2

N∑
i=1

∥∥xk+1
i − x♦i

∥∥2
+
µσ
2

N∑
i=1

∥∥σk+1
i − σ♦i

∥∥2

≥ µ‖zk+1 − z♦‖2,

(55)
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where µ = min{µx/2, µσ/2}. Then, consider the term Dφi(x
♦
i , x

k+1
i ) in (54). By

employing three-point identity in Lemma F1, we obtain that

Dφi(x
♦
i , x

k+1
i ) = Dφi(x

♦
i , x

k
i )−Dφi(x

k+1
i , xki )+(∇φi(xk+1

i )−∇φi(xki ))T (xk+1
i −x♦i ).

(56)
Denote

gi = ∇φi(xki )− αkσkTi ∇xiΛi(x
k
i ,x

k
−i).

According to Algorithm 1,

xk+1
i = Πφi

Ωi
(gi) = argminx∈Ωi

{
−xTgi + φi(x)

}
,

which implies that

0 ≤
(
∇φi

(
xk+1
i

)
− gi

)T
x♦i −

((
∇φi

(
xk+1
i

))
− gi

)T
xk+1
i

=
(
∇φi

(
xk+1
i

)
− gi

)T
(x♦i − xk+1

i ).

In addition,

(∇φi(xk+1
i )T (xk+1

i − x♦i ) ≤ (∇φi(xki )− αkσkTi ∇xiΛi(x
k
i ,x

k
−i))

T (xk+1
i − x♦i ).

Then (56) becomes

Dφi(x
♦
i , x

k+1
i ) ≤ Dφi(x

♦
i , x

k
i )−Dφi(x

k+1
i , xki )−αk(σkTi ∇xiΛi(x

k
i ,x

k
−i))

T (xk+1
i −x♦i ).

(57)
Similarly, as for the term Dϕi(σ

♦
i , σ

k+1
i ) in (54), we get

Dϕi(σ
♦
i , σ

k+1
i ) ≤ Dϕi(σ

♦
i , σ

k
i )−Dϕi(σ

k+1
i , σki )−αk(−Λi

(
xki ,x

k
−i
)
+ξki )T (σk+1

i −σ♦i ),
(58)

where ξki = ΠΨi
Θi

(σki ). To proceed, combining (57) and (58) gives

∆(z♦, zk+1) =
N∑
i=1

Dφi(x
♦
i , x

k+1
i ) +Dϕi(σ

♦
i , σ

k+1
i )

≤
N∑
i=1

Dφi(x
♦
i , x

k
i )−Dφi(x

k+1
i , xki )− αk(σkTi ∇xiΛi(x

k
i ,x

k
−i))

T (xk+1
i − x♦i )

+
N∑
i=1

Dϕi(σ
♦
i , σ

k
i )−Dϕi(σ

k+1
i , σki )− αk(−Λi

(
xki ,x

k
−i
)

+ ξki )T (σk+1
i − σ♦i ),

= ∆(z♦, zk)− αkF (zk)T (zk+1 − z♦)−∆(zk+1, zk).

Hence,

∆(z♦, zk+1)

≤ ∆(z♦, zk)− αkF (zk)T (zk+1 − z♦)−∆(zk+1, zk)

= ∆(z♦, zk)−αkF (zk)T (zk − z♦) + αkF (zk)T (zk − zk+1)−∆(zk+1, zk)

≤ ∆(z♦, zk)−αkF (zk)T (zk − z♦) + αkF (zk)T (zk − zk+1)− µ‖zk − zk+1‖2,

where the last inequality is due to the similar property in (55). On this basis, by
additionally employing Fenchel’s inequality and subsituting f in Lemma F3 with
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1
2
‖ · ‖, we derive that

αkF (zk)T (zk − zk+1) ≤ (2µ)

2
‖zk − zk+1‖2 +

(2µ)−1

2
α2
k‖F (zk)T‖2

∗

= µ‖zk − zk+1‖2 +
1

4µ
α2
k‖F (zk)T‖2

∗

= µ‖zk − zk+1‖2 +
1

4µ
α2
k‖F (zk)T‖2,

where the last equality follows from the fact that the conjugate norm of `2 norm is
also `2 norm itself.

Hence, we can make further scaling so that

∆(z♦, zk+1)

≤ ∆(z♦, zk)−αkF (zk)T (zk − z♦) + αkF (zk)T (zk − zk+1)− µ‖zk − zk+1‖2

≤ ∆(z♦, zk)−αkF (zk)T (zk − z♦) + µ‖zk − zk+1‖2 +
α2
k

4µ
‖F (zk)T‖2 − µ‖zk − zk+1‖2

= ∆(z♦, zk)−αkF (zk)T (zk − z♦) +
α2
k

4µ
‖F (zk)‖2

= ∆(z♦, zk)−αk(F (zk)− F (z♦))T (zk − z♦)− αkF (z♦)T (zk − z♦) +
α2
k

4µ
‖F (zk)‖2

≤ ∆(z♦, zk)−αk(F (zk)− F (z♦))T (zk − z♦) +
α2
k

4µ
‖F (zk)‖2,

(59)
where the last inequality is true because z♦ is a solution to VI(Ξ, F ). Moreover,
with κσ-strongly monotonicity of operator ΠΨi

Θi
(·). Hence, there holds the inequality.

(F (zk)− F (z♦))T (zk − z♦) ≥ κ‖zk − z♦‖2,

where κ = min{2κx, κσ}. Then, it derives that

∆(z♦, zk+1) ≤ ∆(z♦, zk)−αkκ‖zk − z♦‖2 +
α2
k

4µ
‖F (zk)‖2.

Denote ηk = καk with η0 = 1. We can verify that
1− ηk+1

η2
k+1

≤ 1

η2
k

, ∀k ≥ 0.

Then, with the subsitute above,

∆(z♦, zk+1) ≤ ∆(z♦, zk)−ηk‖zk − z♦‖2 +
η2
k

4κ2µ
‖F (zk)‖2. (60)

On the one hand, recalling the property of the Bregman divergence (Nedic & Lee,
2014), we have

∆(z♦, z) ≤ 1

2
‖z − z♦‖2 ≤ ‖z − z♦‖2, ∀z, z♦ ∈ Ξ.

On the other hand, since E +
i is nonempty and the stationary points are with finite

values, the set E +
i for i ∈ I can be regarded as bounded without loss of generality.

28



Under review as a conference paper at ICLR 2023

Then together with the compactness of the feasible set Ωi for i ∈ I, there exists a
finite constant M1 > 0 such that ‖F (z)‖2 ≤M1. On this basis, we obtain

∆(z♦, zk+1) ≤ ∆(z♦, zk)−ηk∆(z♦, zk) +
η2
k

4κ2µ
‖F (zk)‖2

≤ (1− ηk)∆(z♦, zk) +
η2
k

4κ2µ
‖F (zk)‖2

≤ (1− ηk)∆(z♦, zk) +
η2
k

4κ2µ
M1.

(61)

Multiplying both sides of the relation above by 1/η2
k, and recalling the property

1−ηk+1

η2
k+1
≤ 1

η2
k
, we have

1

η2
k

∆(z♦, zk+1) ≤ 1− ηk
η2
k

∆(z♦, zk) +
M1

4κ2µ

≤ 1

η2
k−1

∆(z♦, zk) +
M1

4κ2µ
.

Hence, take the sum of these inequalities over k, · · · , 1 with η0 = 1, that is,

1

η2
k

∆(z♦, zk+1) ≤ ∆(z♦, z1) + k
M1

4κ2µ
.

Additionally, by taking k = 1 and η0 = 1 in (61), ∆(z♦, z1) ≤ η2
kM1

4κ2µ
. Therefore,

recalling the step size setting ηk = καk = 2/(k + 1), for all k ≥ 1, we get

∆(z♦, zk+1) ≤ η2
k(k + 1)

M1

4κ2µ

=
1

k + 1

M1

µκ2
.

(62)

Recall

∆(z♦, zk+1) ≥ µ‖zk+1 − z♦‖2 = µ(‖xk − x♦‖2 + ‖σk − σ♦‖2).

Therefore, we are finally rewarded by

‖xk − x♦‖2 + ‖σk − σ♦‖2 ≤ 1

k + 1

M1

µ2κ2
,

which completes the proof. �

H PROOF OF THEOREM 5

As mentioned in §5, the nonconvex N -player potential game in (14) is endowed with
a unified complementary function in (15), that is,

Γ(xi, σ,x−i) = σTΛ (xi,x−i)−Ψ∗ (σ) .

Thus, we can employ the gradient information of this unified complementary function
in algorithm iterations, so as to reduce the computational cost in Algorithm 1.
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Accordingly, we can rewrite Algorithm 1 for potential games in the following
Algorithm 2.

Algorithm 2
Input: Step size {αk}, proper generating functions φi on Ωi and ϕ on E +.
Initialize: Set σ0 ∈ E +, x0

i ∈ Ωi, i ∈ {1, . . . , N},
1: for k = 1, 2, · · · do
2: compute the unified conjugate of Ψ: ξk = ΠΨ

Θ(σk)
3: update the unified canonical dual variable:

σk+1 = Πϕ
E +(∇ϕ(σk) + αk(Λ

(
xki ,x

k
−i
)
− ξk))

4: for i = 1, · · ·N do
5: update the decision variable of player i:

xk+1
i = Πφi

Ωi
(∇φi(xki )− αkσkT∇xiΛ

(
xki ,x

k
−i
)
)

6: end for
7: end for

Similarly, define z = col {x, σ}, and the simplified pseudo-gradient of (15) as

F (z) ,

[
col
{
σT∇xiΛ (xi,x−i)

}N
i=1

−Λ (xi,x−i) +∇Ψ∗ (σ)

]
,

[
G(x, σ)

−Λ (x) +∇Ψ∗ (σ)

]
.

Consider the weighted averaged iterates in course of k iterates as

x̂k =

∑k
j=1 αjx

j∑k
j=1 α

j
, σ̂k =

∑k
j=1 αjσ

j∑k
j=1 α

j
.

Then we show the convergence rate of Algorithm 2 (or Algorithm 1 in potential
games). We rewrite Theorem 5 below for convenience:

Theorem If E + is nonempty and players’ payoffs are subjected to the potential
function in (14), then Algorithm 1 converges at a O(1/

√
k) rate with step size

αk = 2M2
−1
√
µd / k, i.e.,

Γ(x̂k, σ♦)− Γ(x♦, σ̂k) ≤ 1√
k

√
d

µ
M2,

where µ = min{µx/2, µσ/2}, and d, M2 are two positive constants.

Proof Take another collection of the Bregman divergence as

∆̃(z♦, z) , Dϕ(σ♦, σ) +
N∑
i=1

Dφi(x
♦
i , xi). (63)
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Working as in the proof of Theorem 4, we obtain the following inequality by three-
point identity and Fenchel’s inequality:

∆̃(z♦, zk+1)

≤ ∆̃(z♦, zk)− αkF (zk)T (zk+1 − z♦)− ∆̃(zk+1, zk)

≤ ∆̃(z♦, zk)−αkF (zk)T (zk − z♦) + αkF (zk)T (zk − zk+1)− ∆̃(zk+1, zk)

≤ ∆̃(z♦, zk)−αkF (zk)T (zk − z♦) + αkF (zk)T (zk − zk+1)− µ‖zk − zk+1‖2

≤ ∆̃(z♦, zk)−αkF (zk)T (zk − z♦) + αkF (zk)T (zk − zk+1)− µ‖zk − zk+1‖2

≤ ∆̃(z♦, zk)−αkF (zk)T (zk − z♦) +
α2
k

4µ
‖F (zk)‖2.

(64)
Moreover, according to σ ∈ E + in (9),

(x♦ − xk)TG(xk, σk) ≤ σkT (Λ
(
x♦
)
− Λ

(
xk
)
).

As a result,

〈
F (zk), z♦ − zk

〉
= (x♦ − xk)TG(xk, σk) + (σ♦ − σk)T (−Λ

(
xk
)

+∇Ψ∗
(
σk
)
)

≤ σkTΛ
(
x♦
)
−Ψ∗

(
σk
)
− (σ♦TΛ

(
xkT

)
−Ψ∗

(
σ♦
)
)

= Γ(x♦, σk)− Γ(xk, σ♦).
(65)

By substituting (65) into (64) and rearranging the terms therein, we have

αk(Γ(xk, σ♦)− Γ(x♦, σk)) ≤ αkF (zk)T (zk − z♦)

≤ ∆̃(z♦, zk)− ∆̃(z♦, zk+1) +
α2
k

4µ
‖F (zk)‖2.

Meanwhile, since E + is nonempty and the stationary points are with finite values,
the set E + can be regarded as bounded without loss of generality. Together with the
compactness of Ωi for i ∈ I, there exists finite constants d > 0 and M2 > 0 such
that ∆̃(z♦, z1) ≤ d and ‖F (z)‖2 ≤M2. Then it follows from the sum of the above
inequalities over 1, · · · , k that

k∑
j=1

αj
(
Γ(xj, σ♦)− Γ(x♦, σj)

)
≤ ∆̃(z♦, z1) +

∑k
j=1 α

2
jM

2
2

4µ
. (66)
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For more intuitive presentation, we denote the weight by λj =
αj∑k
l=1 αl

. Then (66)
yields

∆̃(z♦, z1) + (4µ)−1M2
2

∑k
j=1 α

2
j∑k

j=1 αj

≥
k∑
j=1

αj∑k
l=1 αl

(
Γ(xj, σ♦)− Γ(x♦, σj)

)
=

k∑
j=1

λj
(
Γ(xj, σ♦)− Γ(x♦, σj)

)
≥ Γ(

k∑
j=1

λjx
j, σ♦)− Γ(x♦,

k∑
j=1

λjσ
j)

= Γ(x̂k, σ♦)− Γ(x♦, σ̂k),

where the last inequality is true due to Jensen’s inequality. Since the step size satisfies
αk = 2

√
µd/M2

√
k, we finally derive that

Γ(x̂k, σ♦)− Γ(x♦, σ̂k) ≤ 1√
k

√
d

µ
M2,

which indicates the conclusion. �
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