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ABSTRACT

While it is not generally reflected in the ‘nice’ datasets used for benchmarking
machine learning algorithms, the real-world is full of processes that would be best
described as many-to-many. That is, a single input can potentially yield many dif-
ferent outputs (whether due to noise, imperfect measurement, or intrinsic stochas-
ticity in the process) and many different inputs can yield the same output (that is,
the map is not injective). For example, imagine a sentiment analysis task where,
due to linguistic ambiguity, a single statement can have a range of different senti-
ment interpretations while at the same time many distinct statements can represent
the same sentiment. When modeling such a multivalued function f : X → Y , it
is frequently useful to be able to model the distribution on f(x) for specific input
x as well as the distribution on fiber f−1(y) for specific output y. Such an anal-
ysis helps the user (i) better understand the variance intrinsic to the process they
are studying and (ii) understand the range of specific input x that can be used to
achieve output y. Following existing work which used a fiber bundle framework
to better model many-to-one processes, we describe how morphisms of fiber bun-
dles provide a template for building models which naturally capture the structure
of many-to-many processes.

1 INTRODUCTION

Variation is ubiquitous in the real-world. This is especially true for physical processes where a single
input to the system can produce many different possible outputs. For example, in nearly all scientific
fields it is common for an experiment to yield (slightly) different results each time it is repeated, even
when all controllable parameters are held fixed. On the other hand, variation in systems can also flow
in the other direction. It is common to have many inputs to the system that yield a single output. For
example, there are infinitely many images of cats that all map to the label ‘cat’. From the perspective
of machine learning (ML) we can think of processes that possess both of these properties as being
many-to-many. Each input to the system may yield many different outputs and many different inputs
can also yield a single output. A non-injective multivalued function underlies such processes.

In this paper we develop a deep learning architecture capable of modeling the distributions found on
both images and fibers of a many-to-many map. More precisely, let f : X → Y be a many-to-many
map, so that f(x) and f−1(y) are both sets for any x ∈ X and y ∈ Y . A probability distribution
on X induces probability distributions on both f(x) and f−1(y). Our goal is to build a model
that simultaneously learns all of these distributions over the course of training. Such information
may not be necessary for simple inference tasks, but modeling the distributions on both images and
fibers gives information that can be critical for decision making. For example, understanding the
distribution f−1(y) can help a user identify all possible inputs that can be applied to achieve the
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specific desired output y. On the other hand, being able to understand f(x) for varying x can point
to those x that may yield less consistent values in Y .

The present work was inspired by a problem in advanced manufacturing where one wants to un-
derstand all the different manufacturing processing parameter settings X that will lead to a single
desirable material property y ∈ Y . If f represents the manufacturing process this amounts to under-
standing f−1(y). At the same time, certain processing parameters in X can yield less inconsistent
results (more variation in f(x)), which is often useful information when each processing run is
time-, labor-, and resource-intensive.

To achieve both of these objectives within a single model architecture we build off the work of
Courts & Kvinge (2022) which proposed a fiber bundle framework to model many-to-one maps. We
find that while fiber bundles offer a useful template for many-to-one maps, bundle morphisms better
capture the structure required for an architecture meant to capture many-to-many maps. In the model
that we propose, which we call a Bundle Morphism Network (BMNet), we offload the variability
intrinsic to f by lifting it to a new ‘bundle morphism’ F : EX → EY . We incorporate local
trivializations into F so that it is easy to move from X to EX and Y to EY . Finally, the variation
that emerges when we consider either f(x) or f−1(y) is encoded in simple distributions (e.g., 1-
dimensional Gaussians) on the fibers of EX and EY respectively. The local trivializations, which
we build into our model using invertible neural networks, are trained to transform these distributions
to the distribution on f(x) and f−1(y).

We test BMNet on several synthetic datasets that represent many-to-many maps with a fiber bundle
like flavor. We benchmark BMNet against other many-to-many models as well as their relatives such
as conditional GANs (cGANs) (Mirza & Osindero, 2014) and conditional normalizing flow (cNF)
models (Winkler et al., 2019). We show that BMNet generally outperforms these models on most of
our synthetic datasets suggesting that the next step is to benchmark BMNet against a wider variety
of more complicated real-world datasets.

2 FIBER BUNDLES AND BUNDLE MORPHISMS

Early in the history of geometry it was recognized that one way to analyze a space is to decompose
it into simpler constituent parts. The most familiar of such decompositions is the product, wherein
spaceX is identified as the Cartesian product of two simpler spaces Y and Z,X ∼= Y ×Z. The torus
T is a simple example of a space that is (topologically) the product of two spheres, T ∼= S1 × S1.
Some spaces, however, may appear to be a product space locally and yet fail to be a product space
globally due to a ‘twist’ in the product structure. One of the simplest examples of this is the Möbius
band. The notion of a fiber bundle, first introduced in Seifert (1933) and Whitney (1935), is meant
to capture the essence of this phenomenon. We include a review of the definition of a fiber bundle
in Section A.8 of the Appendix.

E1 E2

B1 B2

F

f
π1 π2

Figure 1: Bundle morphism diagram.

As with many structures within topology and
geometry, it is useful to identify the maps be-
tween fiber bundles that preserve their struc-
ture. Let E1 = (E1, B1, Z1, π1) and E2 =
(E2, B2, Z2, π2) be two fiber bundles. A bun-
dle morphism F between total spaces E1 and
E2 is a continuous map F : E1 → E2 and con-
tinuous map on base spaces f : B1 → B2 such
the following diagram commutes.

While it is not intended to follow this definition “on the nose”, the concept of a bundle morphism
informs the structure of the Bundle Morphism Network introduced in Section 3.

3 BUNDLE MORPHISM NETWORK

Building off of BundleNet, Bundle Morphism Network (BMNet) is a neural network Φ : X × Z1 ×
RX ×RY → Y ×Z2 where X is the input space for the task, Y is the output space, Z1 and Z2 are
called the fibers, andRX = {rX1 , . . . , rXn1

} andRY = {rY1 , . . . , rYn2
} are a collection of condition-

ing vectors representing neighborhoods of X and Y respectively. For fixed rXi ∈ RX , r
Y
j ∈ RY
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Figure 2: A diagram outlining the architecture of Bundle Morphism Network.

we write Φi,j := Φ(−,−, rXi , rYj ). Φi,j is invertible (we use the FrEIA package (Ardizzone et al.,
2021) to build Φ in our experiments). For clarity we refer to the process of running the model in
the direction X × Z1 → Y × Z2 as the forward direction and running the model in the direction
Y × Z2 → X × Z1 as the reverse direction. Z1 and Z2 are assumed to follow user chosen distribu-
tions D1 and D2. In the experiments in this paper we choose to use the uniform distribution on the
circle when sampling from Z1 and Z2 (justification for this was given in (Courts & Kvinge, 2022)).

Elements of RX and RY consist of representatives of neighborhoods in the support of the training
data input distribution (in X) and the training data output distribution (in Y ) respectively. Given a
training set D ⊂ X × Y , we cluster both the input from X and the labels from Y and let RX and
RY be the cluster centroids. Described in the forward direction, the model consists of a conditional
affine transformation conditioned on elements of RY , several RVNP blocks and coordinate permu-
tation layers (Dinh et al., 2016), and an additional conditional affine transformation conditioned on
elements of RX . These invertible conditional layers correspond to the local trivializations for each
“bundle”.

During training, a batch consists of training examples {(xi, yi)} such that all x in the batch belong
to the same cluster with center rXi ∈ RX and all y in the batch belong to the same cluster with
center rYj ∈ RY . For each x, we sample a z1 from distribution D1 on Z1. To run the model in the
forward direction, we condition on rYj and rXi and obtain (ŷ, ẑ2) = Φ(x, z1, r

X
i , r

Y
j ). To run the

model in the reverse direction, we sample z2 and obtain (x̂, ẑ1) = Φ−1(y, z2, r
X
i , r

Y
i ). Once we

have a collection of such ŷ, which we denote by Ŝ, and y, which we denote by S, the loss in the
forward direction is

Lforward(Ŝ, S) =
1

|Ŝ|

∑
ŝ∈Ŝ

min
s∈S
||ŝ− s||2 +

1

|S|
∑
s∈S

min
ŝ∈Ŝ
||ŝ− s||2.

Lreverse is defined analogously. This is a symmetric version of the mean-squared minimum distance,
used to ensure that the learned distribution covers the entirety of the training distribution. Notice
that this is different from the loss function in Courts & Kvinge (2022). We found that applying an
analogous version of the loss found in that paper was unstable when applied to our problem. The
detailed training algorithm is outlined in Algorithm 1.

At inference time, we will only have access to one of x or y. If we wish to run the model in the
forward direction and generate the distribution of f(x), we need a conditioning vector rYj ∈ RY ,
which we cannot assume we have since we do not have a y value paired with x. To get around
this problem, we find the k nearest neighbors of x from the training set and randomly sample one
(x′, y′). We use the corresponding y′ from (x′, y′) to determine rYj . The detailed inference algorithm
is outlined in Algorithm 2. Running inference in the reverse direction is analogous.

4 EXPERIMENTS

We evaluate on three synthetic datasets. The first dataset, Torus-to-circle I, is illustrated in Figure 4
and consists of a map from the torus to a circle. In the forward direction, (Figure 4, center), each
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Algorithm 1 Training Procedure
Input: Training dataset D = {(xi, yi)}, prior distributions D1 and D2

Output: Trained model Φ with cluster centersRX andRY and updated priors D1 and D2

1: Cluster the training data (in X) to obtain n1 cluster centersRX

2: Cluster the training data (in Y ) to obtain n2 cluster centersRY

3: for each epoch do
4: for rXi ∈ RX and rYj ∈ RY do
5: Construct Dij = {(x, y)|rXi = arg minr∈RX

|r − x|, rYj = arg minr∈RY
|r − y|}

6: X = projx(Dij) (set projection to 1st coordinate)
7: Y = projy(Dij) (set projection to 2nd coordinate)
8: Sample Z1 ∼ Di

1 and Z2 ∼ Dj
2

9: (Ŷ , Ẑ2) = Φ(X,Z1, r
X
i , r

Y
j )

10: (X̂, Ẑ1) = Φ−1(Y, Z2, r
X
i , r

Y
j )

11: L = Lforward(Ŷ , Y ) + Lreverse(X̂,X)
12: Update the weights of Φ

13: Update the parameters of the prior distributions Di
1 and Dj

2
14: end for
15: end for

Algorithm 2 Inference Procedure: Forward Direction
Input: Input x, training dataset D = {(xi, yi)}, trained model Φ, with neighborhood centers RX

andRY and priors D1 and D2

Output: A set S of n samples from the distribution f(x)

1: S = {}
2: rXi = arg minr∈RX

|r − x|
3: Construct a dataset Dx = {(xi, yi)|(xi, yi) ∈ D and xi ∈ Neigh(x)}
4: while |S| < n do
5: Sample y′ ∼ projy(Dx)

6: rYj = arg minr∈RY
|r − y′|

7: Sample z ∼ Di
1

8: (ŷ, ẑ2) = Φ(x, z, rX , rY )
9: S = S ∪ {ŷ}

10: end while

slice of the torus maps to a random point sampled uniformly from an interval of the circle centered
on the projection of that slice. The second dataset, Torus-to-circle II ( Figure 5), similarly maps
the torus to the circle. In the forward direction a slice of the torus with axis of revolution angle θ
is projected to one of two points on the circle with angles θ/2 or θ/2 + π, with equal probability.
The third dataset, Möbius-to-circle, is very similar to Torus-to-circle I, with the torus replaced by a
Möbius band. More details on each dataset can be found in Section A.4 of the Appendix.

We compare BMNet to two other many-to-many models, Augmented CycleGAN (AugCGAN)
(Almahairi et al.) and Latent Normalizing Flows for Many-to-Many Cross-Domain Mappings
(LNFMM) (Mahajan et al., 2020). Additionally, we include a pair of cGAN models (Mirza &
Osindero, 2014) and a pair of cNF models (Winkler et al., 2019). Note that in order to adapt cGANs
and cNFs for many-to-many problems, we train one cGAN and cNF for the forward direction and
one for the backward direction. We follow the evaluation procedure proposed in Courts & Kvinge
(2022). In the forward direction, to evaluate the global distribution, we generate 5000 points and
compare to 5000 points from the true distribution. To evaluate local distributions, we sample 15
points U from X and for each x ∈ U , use the model to generate 200 points in Y and compare
this to the true distribution defined by the dataset. Evaluation of the backward direction is analo-
gous. To compare true and reconstructed distributions we use a range of different metrics, including
the 1-Wasserstein metric, mean squared minimum distance (MSMD), maximum mean discrepancy
(MMD), and KL divergence. To obtain confidence intervals, we train each model 5 times and report
the mean with 95% confidence intervals.
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4.1 RESULTS

Figure 3: Global and local distributions generated
by our model (top row) and an AugCGAN (bot-
tom row) for Torus-to-circle I in the reverse direc-
tion.

As can be seen in Table 1, at the global level
our model is the best performing model in terms
of the Wasserstein-1 distance on most of the
datasets. While AugCGAN performs well at
the global level, as seen in Table 2, this many-
to-many model does not learn the local distribu-
tions. The cNF model also generally performs
well, particularly at the local level, though re-
quires training a separate model in each direc-
tion and does not learn the discrete nature of
the Torus-to-circle II dataset in the forward di-
rection. This is depicted in Appendix A.6.

To give a flavor of the difference in reconstruc-
tions for models explicitly designed to model
many-to-many processes, the reader should
consult Figure 3 which depicts the global and
local distributions of this dataset reconstructed
by BMNet (top row) and an AugCGAN (bot-
tom row). Locally, while the AugCGAN struggles to learn the full range of possible inputs to
achieve a given y, our model is able to recreate a reasonable approximation of cylindrical sections
of the torus. In general, we see this pattern repeated across datasets in both the forward and back-
ward direction. This suggests to us that the structure of BMNet makes it more capable of handling
the problem set forth in this short paper. Full results for each dataset, all models, all metrics, and
further visualizations are available in SectionsA.6 and A.7 of the Appendix.

Table 1: The Wasserstein-1 (×10−2) global metric on all datasets and models.

BMNet AugCGAN LNFMM cGAN cNF
Torus-to-circle I: Fwd 1.91± 0.34 9.80± 0.88 15.01± 5.55 4.38± 1.61 1.28± 0.16
Torus-to-circle I: Rev 4.38± 0.57 19.13± 3.51 25.95± 3.16 28.96± 3.72 7.10± 0.58

Torus-to-circle II: Fwd 0.38± 0.10 0.45± 0.05 23.36± 5.94 6.29± 0.84 27.54± 5.49
Torus-to-circle II: Rev 3.51± 0.17 9.48± 1.0 20.54± 0.35 48.84± 12.01 8.13± 0.70

Möbius-to-circle: Fwd 1.85± 0.39 0.68± 0.11 6.50± 2.62 8.49± 1.54 2.58± 0.59
Möbius-to-circle: Rev 2.33± 0.19 2.37± 0.16 23.89± 11.95 103.7± 4.1 3.36± 0.05

Table 2: The Wasserstein-1 (×10−2) local metric on all datasets and models.

BMNet AugCGAN LNFMM cGAN cNF
Torus-to-circle I: Fwd 9.30± 1.26 119.9± 10.4 20.31± 2.22 20.33± 2.01 5.68± 0.72
Torus-to-circle I: Rev 12.01± 0.95 123.6± 9.9 46.23± 0.71 37.48± 1.80 12.43± 0.28

Torus-to-circle II: Fwd 16.05± 4.38 127.1± 2.8 31.71± 2.29 9.37± 1.01 32.86± 2.26
Torus-to-circle II: Rev 4.49± 0.54 116.1± 13.7 23.58± 0.15 56.39± 5.73 10.36± 0.43

Möbius-to-circle: Fwd 9.48± 0.98 87.3± 13.41 16.67± 2.08 42.63± 3.71 6.08± 0.93
Möbius-to-circle: Rev 8.77± 0.79 94.32± 14.2 42.78± 2.03 117.17± 1.84 8.60± 0.38

5 CONCLUSION

Many-to-many processes are common in nature. While there are a range of deep learning-based
frameworks that can be used to solve simple tasks related to these processes, network architectures
for more comprehensive modeling have until now remained limited. Guided by the concept of
a bundle morphism, in this paper we introduce the first model architecture explicitly designed to
capture the more nuanced aspects of many-to-many processes, providing the capability to model not
only the distribution as a whole, but also the distributions of both the image of points and their fibers.
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A APPENDIX

A.1 RELATED WORK

As discussed above, this work builds on Courts & Kvinge (2022) where a fiber bundle-inspired deep
learning framework was used to address the problem of modeling the fibers in many-to-one machine
learning tasks. Our work differs from that one in that (i) the problem (modeling both fibers and
images in many-to-many maps) is distinct from the problem that is considered in Courts & Kvinge
(2022), (ii) the inspiration for BMNet’s architecture is the concept of a bundle morphism, while
the inspiration for BundleNet was an individual fiber bundle, and (iii) BMNet’s training routine and
architecture are distinct from BundleNet.

Beyond BundleNet, fiber bundles (and more specifically vector bundles) have recently begun to
see more use as a tool in data science. Scoccola & Perea (2021) for example, seek to develop the
theory required to use vector bundles in a rigorous way in data science. Recent applications of
vector bundles include: cryo-electron microscopy (Ye & Lim, 2017; Gao et al., 2021) and computer
graphics (Knöppel & Pinkall, 2016). The present work differs from those listed above in that we
only use the concept of a bundle morphism to guide the problem framework and model architecture
for learning many-to-many maps.

More broadly, deep learning-based generative models have recently made great strides forward,
both in terms of the complexity of distributions that can be modeled and the fidelity of reconstruc-
tions. While the majority of these approaches seek to model a single distribution, there have also
been a significant number of efforts to develop conditional generative approaches which are capa-
ble of modeling multiple distributions conditioned on additional input. These include conditional
variational autoencoders (Sohn et al., 2015) and conditional generative adversarial networks (Mirza
& Osindero, 2014). One of the results of this paper was to show that like the many-to-one fiber
modeling problem introduced in (Courts & Kvinge, 2022), the many-to-many fiber and image mod-
eling problem cannot be satisfactorily addressed with existing architectures. Recent topological
approaches to evaluating generative model performance includes (Zhou et al., 2020).

A.2 LIMITATIONS

Because it fit well within the training routine we wanted to use, we chose to use an architecture
that is invertible after conditioning (as in Courts & Kvinge (2022)). Of course, in practice bundle
morphisms need not be invertible (though the local trivializations that are built into our model are)
and it is likely that this constraint will hurt performance on certain types of datasets. In the future
it would be worth revisiting the training procedure to understand how to include non-invertible
components into the architecture.

Beyond this, the major limitation of this work is that the experiments that we describe are limited
to synthetic datasets. We felt that this was a reasonable choice based on space limitations and the
novelty of the problem, but future work should identify and test against real-world many-to-many
datasets. One challenge related to the former is that most existing benchmark ML datasets are chosen
to be ‘nice’ and thus there is a bias against one-to-many type phenomena.

A.3 THE ANALOGY BETWEEN A BUNDLE MORPHISM NETWORK AND A TRUE BUNDLE
MORPHISM

We caution that while BMNet is inspired by the idea of a bundle morphism, we did not strictly
constrain the model to this definition. In this section we briefly lay out the analogy between
components of the model architecture and a bundle morphism. To fix notation assume that
E1 = (E1, B1, Z1, π1) and E2 = (E2, B2, Z2, π2) are two fiber bundles where Ei is the total
space, Bi is the base space, Zi is the fiber, and πi is the projection operator for i ∈ {1, 2}. Also
let F : E1 → E2 be a bundle morphism that descends to a continuous map f : B1 → B2 making
the required diagram commute. On the other hand, let Φ : X × Z1 ×RX ×RY → Y × Z2 be an
instance of BMNet.

• B1 and B2 correspond to X and Y respectively.
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• Z1 and Z2 in the fiber bundle set-up correspond to Z1 and Z2 in the description of BM-
Net. Note the distributions associated with Z1 and Z2 in BMNet are critical to the model,
whereas probability distributions on the fibers of fiber bundles are not commonly consid-
ered in topology or geometry. This may be an interesting area for further investigation.

• The representatives RX = {rX1 , . . . , rXn1
} and RY = {rY1 , . . . , rYn2

} correspond to the
local trivialization neighborhoods in B1 and B2.

• Φi,j corresponds to φj ◦ F ◦ φ−1i , where φi : π−11 (Ui) → Ui × F1 and φj : π−12 (Uj) →
Uj×F2 are local trivializations between neighborhoods π−11 (Ui) ⊆ E1 and π−12 (Uj) ⊆ E2

respectively.

A.4 DATASETS

Torus-to-circle I: Here we describe the synthetic datasets used in more detail. For the Torus-to-
circle I dataset, given radius r and radius R, the torus representation is:

T = {((R+ r cos θ) cos φ, (R+ r cos θ) sin φ, r sin θ) : 0 ≤ θ, φ ≤ 2π}

We sample from T with R = 1 and r = 0.25 by randomly sampling θ and φ. We pair this with a
point from the circle by randomly sampling a perturbation α to add to φ. :

C = {(cos(φ+ α), sin(φ+ α), : 0 ≤ φ ≤ 2π,
−π
4
≤ α ≤ π

4
}

This dataset is visualized in Figure 4.

Figure 4: The Torus-to-circle I many-to-many dataset (left). Each torus slice maps to a uniformly
sampled random point on an interval of the circle (center).

Torus-to-circle II: Generation of a point from the Torus-to-circle II dataset begins by sam-
pling a point from T as above and then pairing that with one of two points from C, either
(cos(θ/2), sin(θ/2)) or (cos(θ/2 + π), sin(θ/2 + π)) with equal probability. This dataset is de-
picted in Figure 5.

Figure 5: The Torus-to-circle II dataset. A point at angle θ of the torus maps to one of two points on
the circle, θ/2 and θ/2 + π (right) with equal probability.

Möbius-to-circle: The Möbius-to-circle dataset is given by:

M = {(R cos θ − s cos
θ

2
cos θ,R sin θ − s cos

θ

2
sin θ, s sin

θ

2
) : 0 ≤ θ ≤ 2π,−r ≤ s ≤ r}

8
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We sample from M with R = 1 and r = 0.25 by randomly sampling θ and s. We pair this with a
point from the circle as in Torus-to-Circle I.

A.5 TRAINING DETAILS

Each model was trained on 5,000 training examples on a single GPU for 2,000 epochs. An initial
learning rate of 10−4 was used, and was reduced by a factor of 10 at 1000 and 1500 epochs.

Experimentally, we have found that the most effective prior to impose on Z1 and Z2 was a uniform
circular prior. During training, we update the parameters of the prior distributions based on the
learned z1 and z2. Additionally, we enforce a regularization term on z1 and z2 for model stability
during training.

A.6 VISUALIZING RECONSTRUCTIONS

In this section we provide visualizations of the reconstructions of BMNet and the other models in
Figures 6 through 9.

Figure 6: Global distributions generated by the different models in the forward direction on Torus-
to-circle I.

A.7 FULL RESULTS

We provide full results with all metrics for both models on all three datasets in Tables 3 to 14.

Table 3: All metrics Torus-to-circle I: forward direction (global)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 3.08± 2.56 189.8± 24.9 661.2± 428.6 44.80± 20.97 17.24± 7.06

MMD (×10−3) 0.54± 0.29 0.82± 0.13 6.27± 3.0 2.35± 1.22 0.49± 0.13
KL-fwd 0.93± 0.10 4.42± 0.16 4.21± 0.36 3.93± 0.49 1.27± 0.07
KL-bwd 3.52± 0.21 6.97± 0.12 6.79± 0.44 6.71± 0.54 3.82± 0.10

W1 (×10−2) 1.91± 0.34 9.80± 0.88 15.01± 5.55 4.38± 1.61 1.28± 0.16
W2 (×10−2) 0.11± 0.06 0.97± 0.13 2.62± 1.42 0.56± 0.27 0.12± 0.09
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Figure 7: Local distributions generated by the different models in the forward direction on Torus-to-
circle I.

Figure 8: Local distributions generated by the different models in the forward direction on Torus-to-
circle II.

Table 4: All metrics Torus-to-circle I: forward direction (local)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 13.98± 4.09 7127± 1230 400.1± 142.1 49.27± 13.87 75.82± 32.74

MMD (×10−3) 14.48± 3.31 612.4± 57.6 37.33± 5.50 64.29± 8.69 11.09± 2.45
KL-fwd 1.57± 0.29 9.87± 0.46 3.66± 0.37 3.50± 0.33 0.71± 0.10
KL-bwd 3.64± 0.42 12.05± 0.32 5.90± 0.30 5.92± 0.35 2.38± 0.16

W1 (×10−2) 9.30± 1.26 119.9± 10.4 20.31± 2.22 20.33± 2.01 5.68± 0.72
W2 (×10−2) 1.37± 0.32 90.27± 11.1 4.78± 0.95 4.33± 0.62 0.94± 0.94
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Figure 9: Local distributions generated by the different models in the reverse direction on Möbius-
to-circle.

Table 5: All metrics Torus-to-circle I: reverse direction (global)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 7.39± 0.58 272.4± 186.2 193.2± 24.9 257.4± 88.5 87.86± 15.23

MMD (×10−3) 1.59± 0.78 8.93± 4.91 16.51± 9.64 29.46± 10.50 0.38± 0.13
KL-fwd 0.18± 0.07 4.41± 0.72 13.85± 3.16 6.28± 0.88 1.04± 0.19
KL-bwd 0.64± 0.16 5.71± 0.67 7.65± 0.12 6.62± 0.55 2.05± 0.13

W1 (×10−2) 4.38± 0.57 19.13± 3.51 25.95± 3.16 28.96± 3.72 7.10± 0.58
W2 (×10−2) 0.32± 0.09 2.46± 1.01 4.67± 1.33 6.78± 1.73 12.43± 0.28

Table 6: All metrics Torus-to-circle I: reverse direction (local)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 46.28± 2.60 6422± 1005 243.1± 28.2 258.0± 44.4 153.0± 9.4

MMD (×10−3) 13.00± 2.70 554.6± 55.9 127.5± 9.0 113.6± 12.2 4.67± 0.65
KL-fwd 0.90± 0.21 10.82± 0.71 26.4± 1.59 5.51± 0.29 0.46± 0.04
KL-bwd 0.89± 0.20 9.13± 0.41 6.72± 0.04 4.74± 0.14 1.40± 0.05

W1 (×10−2) 12.01± 0.95 123.6± 9.9 46.23± 0.71 37.48± 1.80 12.43± 0.28
W2 (×10−2) 1.40± 0.22 95.18± 10.78 13.64± 0.38 9.72± 0.90 1.06± 0.06

Table 7: All metrics Torus-to-circle II: forward direction (global)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 0.09± 0.06 0.94± 0.13 1397± 377 251.0± 27.7 1571± 522

MMD (×10−3) 0.17± 0.07 0.26± 0.08 26.02± 8.57 1.83± 0.41 33.90± 11.76
KL-fwd 0.32± 0.16 1.45± 0.17 4.39± 0.7 3.53± 0.43 5.04± 0.53
KL-bwd 2.27± 0.38 3.9± 0.14 6.12± 0.87 6.11± 0.53 7.01± 0.35

W1 (×10−2) 0.38± 0.10 0.45± 0.05 23.36± 5.94 6.29± 0.84 27.54± 5.49
W2 (×10−2) 0.04± 0.01 0.06± 0.02 6.28± 1.28 1.39± 0.14 6.08± 1.47
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Table 8: All metrics Torus-to-circle II: forward direction (local)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 3.70± 0.91 8401± 1411 1831± 139 328.2± 72.6 1942± 195

MMD (×10−3) 38.49± 11.42 567.8± 38.8 60.31± 7.57 9.37± 2.70 65.62± 9.80
KL-fwd 5.53± 0.18 11.97± 0.47 5.00± 0.11 5.28± 0.14 6.26± 0.16
KL-bwd NA NA NA NA NA

W1 (×10−2) 16.05± 4.38 127.09± 2.76 31.71± 2.29 9.37± 1.01 32.86± 2.26
W2 (×10−2) 12.75± 3.97 98.67± 0.19 12.62± 1.41 2.18± 0.38 11.25± 1.02

Table 9: All metrics Torus-to-circle II: reverse direction (global)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 6.21± 0.26 160.2± 40.5 419.4± 26.9 1154± 756 113.6± 19.6

MMD (×10−3) 0.98± 0.39 0.91± 0.25 3.04± 0.13 49.84± 17.35 0.45± 0.05
KL-fwd 0.12± 0.05 1.53± 0.15 16.6± 0.32 7.16± 0.98 1.55± 0.22
KL-bwd 0.28± 0.08 2.49± 0.09 7.51± 0.07 7.04± 0.66 2.40± 0.17

W1 (×10−2) 3.51± 0.17 9.48± 1.0 20.54± 0.35 48.84± 12.01 8.13± 0.70
W2 (×10−2) 0.21± 0.04 0.24± 0.0 2.61± 0.11 19.89± 7.42 0.08± 0.28

Table 10: All metrics Torus-to-circle II: reverse direction (local)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 35.43± 17.46 1457± 2375 403.7± 26.6 2671± 511 192.6± 18.3

MMD (×10−3) 6.70± 1.30 568.0± 59.2 21.68± 1.85 329.6± 49.8 3.94± 0.61
KL-fwd 2.52± 0.24 9.83± 0.57 33.94± 0.95 8.10± 0.35 2.66± 0.08
KL-bwd 5.64± 0.20 17.36± 0.65 14.17± 0.08 14.84± 0.40 8.23± 0.13

W1 (×10−2) 4.49± 0.54 116.1± 13.7 23.58± 0.15 56.39± 5.73 10.36± 0.43
W2 (×10−2) 0.39± 0.08 91.66± 15.36 3.37± 0.06 22.25± 3.75 0.97± 0.09

Table 11: All metrics Möbius-to-circle: forward direction (global)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 2.93± 1.82 2.78± 0.36 160.3± 97.2 136.8± 30.4 49.13± 23.95

MMD (×10−3) 0.37± 0.16 0.34± 0.23 2.07± 1.13 4.55± 1.65 1.42± 0.74
KL-fwd 1.29± 0.51 1.65± 0.11 3.75± 0.17 4.56± 0.42 1.29± 0.03
KL-bwd 3.83± 0.57 4.20± 0.09 6.35± 0.21 7.58± 0.62 3.78± 0.08

W1 (×10−2) 1.85± 0.39 0.68± 0.11 6.50± 2.62 8.49± 1.54 2.58± 0.59
W2 (×10−2) 0.14± 0.03 0.10± 0.06 0.69± 0.46 1.308± 0.372 0.14± 0.14

Table 12: All metrics Möbius-to-circle: forward direction (local)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 5.68± 1.70 6074± 2153 204.2± 64.8 203.7± 60.6 56.49± 22.10

MMD (×10−3) 14.69± 3.23 394.3± 67.8 35.71± 5.55 184.1± 24.4 13.37± 3.50
KL-fwd 1.83± 0.24 6.95± 1.02 3.98± 0.31 4.58± 0.42 0.66± 0.14
KL-bwd 4.22± 0.31 10.64± 0.44 6.21± 0.39 8.25± 0.35 2.30± 0.21

W1 (×10−2) 9.48± 0.98 87.3± 13.41 16.67± 2.08 42.63± 3.71 6.08± 0.93
W2 (×10−2) 1.26± 0.27 62.3± 14.5 3.29± 0.65 15.06± 2.26 1.07± 0.28

A.8 REVIEW: FIBER BUNDLES

A fiber bundle is a 4-tuple (E,B,Z, π) of topological spaces and a (surjective) continuous map
π : E → B. E is assumed to be covered by a collection of open sets {Ui}i∈I and each Ui has a
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Table 13: All metrics Möbius-to-circle: reverse direction (global)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 4.39± 1.61 13.39± 2.12 562.6± 543.5 6581± 561 39.31± 1.91

MMD (×10−3) 0.57± 0.11 0.36± 0.13 19.64± 16.99 126.3± 8.5 0.88± 0.23
KL-fwd 0.09± 0.05 0.36± 0.03 14.09± 1.47 12.95± 0.81 0.28± 0.06
KL-bwd 0.94± 0.29 1.29± 0.05 7.87± 0.96 11.06± 0.23 1.04± 0.11

W1 (×10−2) 2.33± 0.19 2.37± 0.16 23.89± 11.95 103.7± 4.1 3.36± 0.05
W2 (×10−2) 0.15± 0.03 0.01± 0.01 0.23± 1.16 61.24± 5.11 0.13± .10

Table 14: All metrics Möbius-to-circle: reverse direction (local)

BMNet AugCGAN LNFMM cGAN cNF
MSMD (×10−4) 18.95± 1.32 7230± 2280 91.96± 44.44 5652± 2396 92.58± 14.33

MMD (×10−3) 12.81± 2.76 386.5± 64.2 126.7± 18.6 503.1± 24.1 8.12± 1.01
KL-fwd 0.71± 0.11 8.02± 1.15 26.44± 0.53 12.08± 1.06 0.35± 0.06
KL-bwd 0.98± 0.14 8.97± 0.59 7.97± 0.13 8.67± 0.24 0.87± 0.08

W1 (×10−2) 8.77± 0.79 94.32± 14.2 42.78± 2.03 117.17± 1.84 8.60± 0.38
W2 (×10−2) 1.10± 0.24 70.97± 16.03 12.98± 1.34 74.42± 2.67 0.79± 0.09

homeomorphismϕi : π−1(Ui)→ Ui×Z, called a local trivialization, associated with it. Informally,
ϕi ensures that each neighborhood π−1(Ui) looks like a direct product of Ui and Z. Finally, each
ϕi should respect the projection π so that the following diagram commutes.

π−1(Ui) Ui × Z

Ui

ϕi

proj
π

(1)

E is known as the total space, B is known as the base space, and Z is known as the fiber. Note
that the product space X ∼= Y ×Z is trivially identified as a fiber bundle where X is the total space
E, Y (respectively Z) is the base space B, Z (resp. Y ) is the fiber, π is the usual projection map
from Y × Z to Y (resp. Z), {Ui}i∈I consists of a single neighborhood which is all of Y so that
π−1(Y ) = Y × Z, and ϕi is just the identity map. The reader can check that diagram equation 1
easily commutes in this case.
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