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ABSTRACT

Understanding the various properties of glycans with machine learning has shown
some preliminary promise. However, previous methods mainly focused on mod-
eling the backbone structure of glycans as graphs of monosaccharides (i.e., sugar
units), while they neglected the atomic structures underlying each monosaccha-
ride, which are actually important indicators of glycan properties. In this work,
we fill this blank by introducing the GlycanAA model for All-Atom-wise Glycan
modeling. GlycanAA models a glycan as a heterogeneous graph with monosac-
charide nodes representing its global backbone structure and atom nodes rep-
resenting its local atomic-level structures. Based on such a graph, GlycanAA
performs hierarchical message passing to capture from local atomic-level in-
teractions to global monosaccharide-level interactions hierarchically. To further
enhance the model capability, we pre-train GlycanAA on a high-quality unla-
beled glycan dataset in a self-supervised way, deriving the PreGlycanAA model.
Specifically, we design a multi-scale mask prediction algorithm to endow the
model with knowledge about different levels of dependencies in a glycan. Ex-
tensive benchmark results show the superiority of GlycanAA over existing glycan
encoders and verify the further improvements achieved by PreGlycanAA.

1 INTRODUCTION

Glycans, complex macromolecules composed of sugar molecules, play pivotal roles in life sci-
ence. They serve as essential structural components in cells, forming the backbone of extracel-
lular matrices and cell membranes (Yanagishita, 1993). Based on such structures, they modulate
intercellular communication (Liu & Wang, 2023) and impact biological processes such as immune
response (Zhang, 2006) and cell differentiation (Lau et al., 2007). With the accumulation of glycan
data in public repositories (Tiemeyer et al., 2017; Yamada et al., 2020), it is a promising way to
understand various glycan properties and functions with data-driven methods like machine learning.

In this research direction, most existing works (Burkholz et al., 2021; Lundstrøm et al., 2022; Car-
penter et al., 2022; Alkuhlani et al., 2023) model a glycan as a graph with monosaccharides (i.e.,
sugar units) as its nodes, and use graph neural networks (GNNs) to predict various glycan properties,
e.g., glycosylation, immunogenicity, binding affinity with a protein, etc. Though performing well
on some tasks, these methods fail to capture the atomic-level structures underlying each monosac-
charide, which are actually important determinants of many glycan properties and functions. For
example, atomic-level interactions between a glycan and a protein determine their binding affinity.

There have been some preliminary attempts at modeling all-atom-wise glycan structures with state-
of-the-art small molecule encoders Xu et al. (2024). However, because of the gap between a small
molecule with tens of atoms and a glycan with hundreds of atoms (i.e., essentially a macromolecule),
these small molecule encoders are shown to be ineffective, which perform even worse than the
models utilizing only monosaccharide-level information. Therefore, it is still to be answered how to
realize the potential of all-atom glycan modeling on boosting glycan understanding.

To answer this question, in this work, we propose the GlycanAA model for All-Atom-wise Glycan
modeling. Note that, a glycan naturally possesses a hierarchical structure with (1) atoms making up
the local structure of each monosaccharide and (2) different monosaccharides making up the global
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backbone structure of the glycan. Inspired by this fact, we design GlycanAA based on a hierarchical
modeling approach. Specifically, GlycanAA first represents a glycan as a heterogeneous graph
consisting of (1) a set of atom nodes for its local structures and (2) a set of monosaccharide nodes
for its global structure. Based on such a graph, GlycanAA then performs hierarchical message
passing to model from local atomic-level interactions to global monosaccharide-level interactions.
In this way, GlycanAA can completely capture the covalent bonds forming each monosaccharide
and the glycosidic bonds forming the whole glycan.

To further enhance the representation power of GlycanAA, we seek to endow it with the knowledge
stored in abundant unlabeled glycan data. We resort to self-supervised pre-training to achieve this
goal, where the PreGlycanAA model is developed as a pre-trained version of GlycanAA. Specifi-
cally, we first curate an unlabeled glycan dataset by selecting 40,781 high-quality glycan data from
the GlyTouCan database (Tiemeyer et al., 2017). GlycanAA is then pre-trained on this dataset with
a multi-scale mask prediction algorithm. In this algorithm, partial atom and monosaccharide nodes
are masked at the input, and the model is asked to recover these masked nodes. Through this ap-
proach, the derived PreGlycanAA model acquires the dependencies between different atoms and
monosaccharides in a glycan, leading to informative glycan representations.

We evaluate the proposed models on the GlycanML benchmark (Xu et al., 2024). Experimental re-
sults show that PreGlycanAA and GlycanAA respectively rank first and second on the benchmark,
and they substantially outperform SOTA atomic-level small molecule encoders and glycan-specific
monosaccharide-level encoders. We further demonstrate the effectiveness of the proposed hierarchi-
cal message passing and multi-scale mask prediction methods through extensive ablation studies.

2 RELATED WORK

Glycan modeling with machine learning. With the growing size of experimental glycomics
datasets, machine learning techniques are becoming increasingly important in glycoinformatics (Bo-
jar & Lisacek, 2022; Li et al., 2022). Traditional machine learning approaches, such as support
vector machines (SVMs), have been employed to learn patterns from mass spectrometry data (Ku-
mozaki et al., 2015; Liang et al., 2014), predict glycosylation sites (Caragea et al., 2007; Li et al.,
2015; Taherzadeh et al., 2019; Pitti et al., 2019), and classify glycans (Yamanishi et al., 2007).
Alongside the advancements in deep learning, recent models have showcased the potential of deep
learning in addressing glycomics challenges. Some approaches utilize sequence-based models, such
as DeepNGlyPred (Pakhrin et al., 2021) that employs the N-GlyDE dataset (Pitti et al., 2019) to iden-
tify N-glycosylated sequons. Other sequence-based models like SweetOrigins (Bojar et al., 2020b),
SweetTalk (Bojar et al., 2020a), and glyBERT (Dai et al., 2021) have utilized databases such as
SugarBase (Bojar et al., 2020b) to predict various glycan properties. On another line of research,
SweetNet (Burkholz et al., 2021), LectinOracle (Lundstrøm et al., 2022), GlyNet (Carpenter et al.,
2022) and GNNGLY (Alkuhlani et al., 2023) represent glycans as graphs with monosaccharides as
their nodes and use graph neural networks (GNNs) for glycan property prediction. Among all, Gly-
canML (Xu et al., 2024) established a comprehensive benchmark evaluating sequence-based models
and GNNs on a diverse set of 11 tasks.

While GNNs have demonstrated their strong performance on specific tasks (Xu et al., 2024),
their potential remains constrained by the underutilization of atomic-level information. Moreover,
atomic-level encoders originally designed for small molecules have been shown to be ineffective
in glycan modeling (Xu et al., 2024). In this study, we tackle these limitations by proposing the
GlycanAA model, a hierarchical encoder for heterogeneous all-atom glycan graphs.

Self-Supervised Pre-training (SSP) in the biological domain. SSP has emerged as a powerful
approach in deep learning, greatly improving the ability to learn informative and transferable repre-
sentations from large-scale unlabeled data (Devlin, 2018; He et al., 2020). SSP enables models to
generalize better across various tasks while reducing the need for extensive labeled data.

In recent years, SSP has also gained remarkable success in the biological domain, where the
availability of large-scale biological datasets makes pre-training techniques well-suited. For small
molecules, SSP has improved molecular representations, facilitating tasks like molecular property
prediction and drug discovery (Hu et al., 2019; Xia et al., 2022). Protein modeling is similarly
benefited, with methods like protein language modeling (Madani et al., 2020; Elnaggar et al., 2021;
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Figure 1: Illustration of GlycanAA. (a) GlycanAA represents a glycan as an all-atom heteroge-
neous graph with atom nodes, monosaccharide nodes and different types of edges between these
nodes. (b) Based on such a graph, GlycanAA models atom-atom, atom-monosaccharide and
monosaccharide-monosaccharide interactions through hierarchical message passing. Abbr., Glc:
Glucose, GlcNAc: N-Acetylglucosamine, mono.: monosaccharide.

Rives et al., 2021; Lin et al., 2022; Hayes et al., 2024), geometric structure pre-training (Zhang et al.,
2023b; 2024) and multimodal approaches (Xu et al., 2023; Duy Nguyen & Son Hy, 2024). In DNA
research, models like DNABERT (Ji et al., 2021) and DNAGPT (Zhang et al., 2023a) have success-
fully applied Transformer models to DNA sequences, improving downstream analysis. RNA studies
have also seen progresses, with models such as GenerRNA (Zhao et al., 2024) and UNI-RNA (Wang
et al., 2023) employing pre-training to improve RNA sequence understanding.

Despite these advances, the potential of SSP in glycan modeling remains largely unexplored, pre-
senting a new area of opportunity. In this work, we fill this gap by introducing the PreGlycanAA
model which performs multi-scale pre-training on a high-quality unlabeled glycan dataset, leading
to performance gains on various downstream glycan understanding tasks.

3 GLYCANAA: ALL-ATOM GLYCAN MODELING WITH HIERARCHICAL
MESSAGE PASSING

We propose the GlycanAA model for all-atom-wise glycan modeling. In the following parts, we
introduce its data representation method in Section 3.1 and its encoding approach in Section 3.2.

3.1 HETEROGENEOUS GRAPH REPRESENTATION OF ALL-ATOM GLYCAN STRUCTURE

For a glycan g, we represent its atomic-level structure as a heterogeneous graph g = (Va,Vm, E)
composed of an atom node set Va, a monosaccharide node set Vm and an edge set E , as graphically
illustrated in Figure 1(a). We state the details of each graph component as below:

• Atom node set Va: This node set contains all heavy atoms (i.e., non-hydrogen atoms) in a
glycan, i.e., Va = {ai}Ni=1 (ai stands for an atom; N denotes the number of atoms in glycan g).

• Monosaccharide node set Vm: To clearly represent the backbone structure of a glycan, we
further introduce a set of nodes representing all monosaccharides that make up the glycan, i.e.,
Vm = {mj}Mj=1 (mj stands for a monosaccharide; M denotes the number of monosaccharides
in glycan g).

• Edge set E : We consider three kinds of edges to comprehensively represent atom-atom, atom-
monosaccharide and monosaccharide-monosaccharide interactions, i.e., E = Eaa∪Eam∪Emm,
as detailed below:
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– Atom-atom edge set Eaa: This set of edges represent the atomic-level structure of each
monosaccharide. Specifically, the covalent bonds in each monosaccharide are collected,
and each bond along with its bond type (single, double, triple or aromatic bond) makes up
an edge, i.e., Eaa = {(a, a′, r)|r ∈ {single,double, triple, aromatic}}, where (a, a′, r)
denotes an edge connecting atom a to atom a′ with bond type r. We include both directions
of a bond in this edge set.

– Atom-monosaccharide edge set Eam: We connect each atom with its corresponding
monosaccharide, such that a monosaccharide is aware of its atomic-level information,
and each atom recognizes the glycan backbone structure. This edge set is represented
as Eam = {(a,m, ram)} ∪ {(m, a, ram)}, where each corresponding pair of atom a and
monosaccharide m are connected by a bidirectional edge with the edge type ram indicating
atom-monosaccharide interaction.

– Monosaccharide-monosaccharide edge set Emm: We collect all glycosidic bonds in a gly-
can to represent its backbone structure. In specific, this edge set can be represented as
Emm = {(m,m′, r)|r ∈ Rg}, where (m,m′, r) denotes an edge connecting monosac-
charide m to monosaccharide m′ with bond type r, and Rg denotes all possible types of
glycosidic bonds, e.g., alpha-1,6-glycosidic bond, beta-1,4-glycosidic bond, etc. We follow
Thomès et al. (2021) to construct Rg and include both directions of a bond in this edge set.

3.2 HIERARCHICAL MESSAGE PASSING ON ALL-ATOM GLYCAN GRAPH

Based on the all-atom glycan graph introduced above, GlycanAA extracts glycan representations
using the carefully-designed modules below. A graphical illustration is shown in Figure 1(b).

Node embedding: We employ two codebooks to store the embeddings of all possible types of atoms
and monosaccharides, respectively. For each node, we look up the corresponding codebook to assign
it an initial feature embedding.

Hierarchical message passing: A glycan possesses a hierarchical structure, where its local structure
in each monosaccharide is formed by atoms and covalent bonds in between, and different monosac-
charides are further connected by glycosidic bonds, deriving its global backbone structure. We
propose to encode such a structure from local to global hierarchically, which is proven to be effec-
tive in modeling other biomolecules like small molecules (Yu & Gao, 2022; Han et al., 2023) and
proteins (Hermosilla et al., 2020; Wang et al., 2022). Specifically, in each message passing block,
we sequentially perform atom-atom, atom-monosaccharide and monosaccharide-monosaccharide
message passing to capture from local interactions to global interactions.

Note that, these interactions are essentially multi-relational, where atoms and monosaccharides in-
teract with different types of covalent and glycosidic bonds. To fully model such interactions, we
adopt relational graph convolution (RGConv) (Schlichtkrull et al., 2018) as the basic message pass-
ing module. Given a graph g0 = (V0, E0,R0) with node set V0, edge set E0 and relation (i.e., edge
type) set R0, RGConv updates node representations Z0 = {zi}|V0|

i=1 by aggregating neighborhood
information with per-relation convolutional operations:

Z ′
0 = {z′i}

|V0|
i=1 = RGConv(Z0;V0, E0,R0),

with z′i = Wself zi + σ

(
BN

( ∑
r∈R0

∑
vj∈Nr(vi)

1

|Nr(vi)|
Wrzj

))
,

(1)

where Z ′
0 denotes the updated node representations, Nr(vi) = {vj |(vj , vi, r) ∈ E0} are the neigh-

bors of node vi with relation r, Wr denotes the convolutional kernel matrix for relation r, and Wself

is the weight matrix for self-update. Here BN denotes a batch normalization layer, and we use a
ReLU function as the activation σ(·).
Based on RGConv, we perform hierarchical message passing in three steps as below:

Atom-atom message passing: Z ′
a = RGConv(Za;Va, Eaa,Raa), (2)

Atom-mono. message passing: (Z ′′
a , Z

′
m) = RGConv

(
(Z ′

a, Zm);Va ∪ Vm, Eam,Ram

)
, (3)

Mono.-mono. message passing: Z ′′
m = RGConv(Z ′

m;Vm, Emm,Rmm), (4)
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where Raa contains all types of covalent bonds, Ram stores the relation of atom-monosaccharide in-
teraction, Rmm contains all types of glycosidic bonds, and “mono.” is the abbreviation of monosac-
charide. In this hierarchical process, atom representations Za are first updated to Z ′

a by atom-atom
message passing; atom and monosaccharide representations are then updated to Z ′′

a and Z ′
m via

atom-monosaccharide message passing; finally, monosaccharide representations are updated to Z ′′
m

by monosaccharide-monosaccharide message passing.

Monosaccharide-wise readout: After L blocks of hierarchical message passing, we get the final
atom representations ZL

a and monosaccharide representations ZL
m. We perform readout over all

monosaccharide nodes to get a glycan-level representation: zg = [mean(ZL
m),max(ZL

m)], where
mean(·) and max(·) denote mean and max pooling, respectively, and [·, ·] stands for concatenation.
We exclude atom nodes in the readout, considering that (1) many monosaccharides share similar
or even the same atomic structure, leading to duplicating information in representation readout,
and (2) useful atomic information has already been passed to monosaccharide nodes during atom-
monosaccharide message passing. The ablation study in Section 5.3 also supports the superiority of
monosaccharide-wise readout over all-node readout.

4 PREGLYCANAA: PRE-TRAIN ALL-ATOM GLYCAN REPRESENTATIONS
WITH MULTI-SCALE MASK PREDICTION

To further improve the representation power of GlycanAA, we endow it with the knowledge stored
in abundant unlabeled glycan data through self-supervised pre-training, deriving the PreGlycanAA
model. In the following parts, we introduce the setup of the pre-training dataset in Section 4.1 and
the multi-scale pre-training algorithm in Section 4.2.

4.1 CURATION OF HIGH-QUALITY UNLABELED GLYCAN DATASET

To ensure the quality of pre-trained model, we aim to collect as much informative and clean glycan
data as possible. We choose the GlyTouCan database (Tiemeyer et al., 2017) as the data source for
its high recognition in the glycoscience domain and instant update of the latest glycan structures. We
first collect all the glycans deposited in GlyTouCan, summing up to 219,857 glycans. Data cleaning
is then performed based on the following criteria:

• Data quality: We discard all the glycans whose structures are not fully solved. In specific,
if there is any monosaccharide or glycosidic bond with an undetermined type in a glycan, we
regard it as a low-quality sample and remove it from pre-training.

• Data integrity: We preserve the glycan structures with a single connected component. Those
samples with multiple components are discarded, so as to focus on learning the interactions
within a single glycan structure.

• Without data leakage: We remove the glycans that occur in the dataset of any downstream task
used in our experiments, so as to prevent data leakage during pre-training.

After such a filtering process, we preserve a set of 40,781 high-quality, integral and data-leakage-
proof glycan samples for pre-training.

4.2 SELF-SUPERVISED PRE-TRAINING VIA MULTI-SCALE MASK PREDICTION

To acquire the rich information underlying the curated unlabeled glycan dataset, we propose the
PreGlycanAA model that pre-trains GlycanAA with a multi-scale mask prediction task, as illustrated
in Figure 2. This algorithm endows the model with knowledge about the dependencies between
different atoms and monosaccharides in a glycan, realized by the following schemes.

Multi-scale masking: During pre-training, it is desired to simultaneously acquire atom-atom, atom-
monosaccharide and monosaccharide-monosaccharide dependencies. To achieve this goal, in an all-
atom glycan graph (Section 3.1), we mask partial atom nodes and partial monosaccharide nodes,
and the model is asked to recover these masked nodes by leveraging their neighboring atoms and
monosaccharides. The two-scale masking is performed as below:
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Figure 2: Illustration of PreGlycanAA. Upon an all-atom glycan graph, multi-scale masking derives
a masked glycan graph with partially masked atoms and monosaccharides; PreGlycanAA learns
multi-scale recovery to recover the complete glycan graph. Abbr., mono.: monosaccharide.

• Atom-scale masking: For all heavy atoms in a glycan, we randomly select a part of them with
the ratio ρa, and they are represented by a type of Unknown-Atom.

• Monosaccharide-scale masking: We select partial monosaccharides in a glycan with the ratio
ρm. On one hand, their corresponding monosaccharide nodes in the graph are masked with
a type of Unknown-Monosaccharide. On other hand, to avoid the trivial prediction of a
masked monosaccharide based on some of its characteristic atoms, we further mask all atom
nodes corresponding to the selected monosaccharides with the Unknown-Atom type.

Multi-scale recovery: The PreGlycanAA model learns to recover all these masked nodes. Specif-
ically, for a masked glycan graph g̃, the model first extracts its atom and monosaccharide repre-
sentations Z̃a = {z̃a|a ∈ Va} and Z̃m = {z̃m|m ∈ Vm} through hierarchical message passing.
Based on such representations with rich neighborhood information, two MLP predictors Fa and Fm

are respectively employed to recover masked atoms and monosaccharides, deriving the following
pre-training loss:

Lpretrain =
1

|Vmask
a |+ |Vmask

m |

( ∑
a∈Vmask

a

LCE

(
Fa(z̃a), ya

)
+

∑
m∈Vmask

m

LCE

(
Fm(z̃m), ym

))
, (5)

where Vmask
a and Vmask

m denote the set of masked atom nodes and masked monosaccharide nodes, ya
and ym represent the ground-truth type of a masked atom node a and a masked monosaccharide node
m, and LCE stands for the cross-entropy loss. In summary, this pre-training method encourages the
model to capture different levels of dependencies in a glycan by solving a glycan recovery problem.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Benchmark tasks: We evaluate the effectiveness of the proposed models on the GlycanML bench-
mark (Xu et al., 2024). This benchmark contains a comprehensive set of 11 glycan property and
function prediction tasks, including glycan taxonomy prediction, glycan immunogenicity predic-
tion, glycosylation type prediction and protein-glycan interaction prediction. Readers are referred
to the original paper for detailed task descriptions and dataset statistics.

Model setups: For the sake of fair comparison with other baseline models in the GlycanML bench-
mark, both GlycanAA and PreGlycanAA are equipped with 3 hierarchical message passing blocks.
During the pre-training phase of PreGlycanAA, both the masked atom predictor and the masked
monosaccharide predictor are implemented as an MLP with 2 linear layers and a ReLU nonlinearity
in between. For each benchmark task, we follow Xu et al. (2024) to perform task prediction with a 2-
layer MLP with ReLU activation. In protein-glycan interaction prediction, the ESM-1b pre-trained
protein language model (Rives et al., 2021) with fixed model parameters is used to extract protein
representations. All implementations are based on the PyTorch deep learning library (Paszke et al.,
2019) and TorchDrug drug discovery platform (Zhu et al., 2022).
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Table 1: Benchmark results on GlycanML. We report mean (std) for each experiment. The best,
second-best, and third-best performances are denoted by bold, underline, and italic, respectively.
Abbr., Immuno.: Immunogenicity; Glycos.: Glycosylation; GlycanAA-SP: GlycanAA with a single
message passing in each block; GlycanAA-AN: GlycanAA with all-node readout.

Model
Taxonomy prediction

Immuno.
(AUPRC)

Glycos.
(Macro-F1)

Interaction
(Spearman’s ρ)

Weighted
Mean
Rank

Domain
(Macro-F1)

Kingdom
(Macro-F1)

Phylum
(Macro-F1)

Class
(Macro-F1)

Order
(Macro-F1)

Family
(Macro-F1)

Genus
(Macro-F1)

Species
(Macro-F1)

Monosaccharide-level Glycan Sequence Encoders
Transformer 0.612(0.009) 0.546(0.079) 0.316(0.014) 0.235(0.022) 0.147(0.007) 0.114(0.039) 0.065(0.001) 0.047(0.008) 0.856(0.012) 0.729(0.069) 0.244(0.009) 15.34
Shallow CNN 0.629(0.005) 0.559(0.024) 0.388(0.024) 0.342(0.020) 0.238(0.016) 0.200(0.014) 0.149(0.009) 0.115(0.008) 0.776(0.027) 0.898(0.009) 0.261(0.008) 11.88
LSTM 0.621(0.012) 0.566(0.076) 0.413(0.036) 0.272(0.029) 0.174(0.023) 0.145(0.012) 0.098(0.016) 0.078(0.008) 0.912(0.068) 0.862(0.016) 0.280(0.001) 10.5
ResNet 0.635(0.009) 0.505(0.025) 0.331(0.061) 0.301(0.010) 0.183(0.082) 0.165(0.019) 0.112(0.018) 0.073(0.007) 0.754(0.124) 0.919(0.004) 0.273(0.004) 11.38

Monosaccharide-level Glycan Graph Encoders
MPNN 0.632(0.007) 0.638(0.050) 0.372(0.019) 0.326(0.015) 0.235(0.046) 0.161(0.004) 0.136(0.008) 0.104(0.009) 0.674(0.119) 0.910(0.006) 0.217(0.002) 17.41
GCN 0.635(0.001) 0.527(0.006) 0.325(0.024) 0.237(0.009) 0.147(0.005) 0.112(0.010) 0.095(0.009) 0.080(0.006) 0.688(0.023) 0.914(0.011) 0.233(0.009) 17.41
GAT 0.636(0.003) 0.523(0.007) 0.301(0.014) 0.265(0.012) 0.190(0.009) 0.130(0.005) 0.125(0.010) 0.103(0.009) 0.685(0.053) 0.934(0.038) 0.229(0.002) 16.22
GIN 0.632(0.004) 0.525(0.007) 0.322(0.046) 0.300(0.027) 0.179(0.002) 0.152(0.005) 0.116(0.022) 0.105(0.011) 0.716(0.051) 0.924(0.013) 0.249(0.004) 14.09
CompGCN 0.629(0.004) 0.568(0.047) 0.410(0.013) 0.381(0.024) 0.226(0.011) 0.193(0.012) 0.166(0.009) 0.138(0.014) 0.692(0.006) 0.945(0.002) 0.257(0.004) 11.59
RGCN 0.633(0.001) 0.647(0.054) 0.462(0.033) 0.373(0.036) 0.251(0.012) 0.203(0.008) 0.164(0.003) 0.146(0.004) 0.780(0.006) 0.948(0.004) 0.262(0.005) 6.47
PreRGCN 0.636(0.005) 0.664(0.032) 0.451(0.023) 0.389(0.016) 0.265(0.015) 0.205(0.006) 0.172(0.010) 0.139(0.008) 0.781(0.019) 0.949(0.015) 0.263(0.018) 4.84
GearNet 0.471(0.005) 0.577(0.036) 0.395(0.025) 0.389(0.010) 0.256(0.007) 0.189(0.004) 0.165(0.003) 0.136(0.003) 0.740(0.015) 0.892(0.027) 0.248(0.004) 14.78
GearNet-Edge 0.628(0.009) 0.573(0.030) 0.396(0.010) 0.384(0.010) 0.262(0.006) 0.200(0.010) 0.177(0.008) 0.140(0.005) 0.768(0.023) 0.909(0.010) 0.250(0.003) 11.44

All-Atom Glycan Encoders
All-Atom RGCN 0.637(0.001) 0.624(0.007) 0.293(0.014) 0.156(0.028) 0.112(0.023) 0.096(0.006) 0.063(0.007) 0.035(0.005) 0.520(0.017) 0.928(0.017) 0.215(0.003) 18.94
Graphormer 0.640(0.006) 0.468(0.054) 0.249(0.041) 0.201(0.013) 0.142(0.019) 0.112(0.009) 0.077(0.006) 0.054(0.044) 0.637 (0.062) 0.856(0.009) 0.211(0.027) 21.91
GraphGPS 0.477(0.002) 0.511(0.040) 0.314(0.022) 0.261(0.051) 0.153(0.018) 0.134(0.008) 0.105(0.006) 0.065(0.017) 0.637 (0.075) 0.883(0.032) 0.247(0.016) 19.38
Uni-Mol+ 0.639(0.004) 0.446(0.034) 0.227(0.023) 0.174(0.019) 0.128(0.020) 0.109(0.017) 0.077(0.012) 0.056(0.003) 0.789(0.099) 0.885(0.045) 0.241(0.007) 15.34

GlycanAA-SP 0.589(0.073) 0.635(0.078) 0.444(0.019) 0.395(0.009) 0.270(0.006) 0.205(0.005) 0.176(0.015) 0.154(0.009) 0.755(0.010) 0.946(0.017) 0.241(0.003) 10.41
GlycanAA-AN 0.609(0.028) 0.688(0.002) 0.453(0.037) 0.427(0.027) 0.270(0.009) 0.199(0.012) 0.179(0.007) 0.161(0.008) 0.765(0.024) 0.947(0.025) 0.241(0.004) 9.44
GlycanAA 0.642(0.021) 0.681(0.006) 0.455(0.022) 0.404(0.017) 0.278(0.014) 0.201(0.016) 0.186(0.020) 0.154(0.007) 0.780(0.011) 0.936(0.022) 0.281(0.001) 4.66

Pre-trained All-Atom Glycan Encoders
VabsNet 0.607(0.004) 0.622(0.022) 0.363(0.006) 0.261(0.023) 0.175(0.015) 0.125(0.003) 0.104(0.005) 0.068(0.006) 0.742(0.040) 0.903(0.015) 0.160(0.008) 18.06
GlycanAA-Attribute 0.628(0.007) 0.687(0.001) 0.457(0.028) 0.392(0.033) 0.263(0.011) 0.208(0.004) 0.188(0.001) 0.143(0.003) 0.722(0.009) 0.925(0.011) 0.263(0.009) 9.88
GlycanAA-Context 0.637(0.002) 0.643(0.048) 0.453(0.026) 0.386(0.038) 0.259(0.033) 0.205(0.005) 0.177(0.004) 0.144(0.007) 0.768(0.013) 0.946(0.018) 0.270(0.010) 6.56
PreGlycanAA 0.640(0.002) 0.672(0.011) 0.469(0.009) 0.406(0.003) 0.267(0.005) 0.220(0.006) 0.190(0.007) 0.159(0.009) 0.782(0.019) 0.953(0.008) 0.292(0.002) 2.06

Pre-training setups: The PreGlycanAA model is pre-trained with an Adam optimizer (learning
rate: 5× 10−4, weight decay: 1× 10−3, batch size: 256) for 50 epochs on the curated pre-training
dataset (Section 4.1). We set both the atom mask ratio ρa and the monosaccharide mask ratio ρm
as 0.3, and the sensitivities of these two parameters are analyzed in Section 5.3. We provide the
accuracy and perplexity curves of pre-training in Appendix A.1. All pre-training experiments are
conducted on a local server with 200 CPU cores and 10 NVIDIA GeForce RTX 4090 GPUs (24GB).

Downstream training setups: Following the standard of GlycanML benchmark, we conduct all ex-
periments on seeds 0, 1 and 2 and report the mean and standard deviation of results. For GlycanAA,
we train it with an Adam optimizer (learning rate: 5× 10−4, weight decay: 1× 10−3) for 50 epochs
with batch size 256 on taxonomy, immunogenicity and glycosylation type prediction and for 10
epochs with batch size 32 on interaction prediction. For fine-tuning PreGlycanAA on downstream
tasks, we keep other settings the same as GlycanAA except that the learning rate of the encoder
part is set as one tenth of that of the following task-specific MLP predictor (i.e., encoder learning
rate: 5 × 10−5, predictor learning rate: 5 × 10−4). For model selection, we perform validation
after each training epoch, and the checkpoint with the best validation performance is chosen for test.
All downstream experiments are conducted on a local server with 100 CPU cores and 4 NVIDIA
GeForce RTX 4090 GPUs (24GB).

5.2 BENCHMARK RESULTS ON GLYCANML

Evaluation metrics: As in the original benchmark, we use Macro-F1 score as the metric for tax-
onomy and glycosylation type prediction, AUPRC as the metric for immunogenicity prediction,
Spearman’s ρ as the metric for interaction prediction, and weighted mean rank as the metric for
a model’s comprehensive performance. Weighted mean rank computes the weighted average of a
model’s ranks over all tasks, where each taxonomy prediction task weighs 1/8 and each of the other
three tasks weighs 1, such that the task number imbalance between different task types is eliminated.

Baselines: We compare our models with the baselines studied in the GlycanML benchmark (Xu
et al., 2024), including four monosaccharide-level glycan sequence encoders (i.e., LSTM (Hochre-
iter & Schmidhuber, 1997), ResNet (He et al., 2016), Transformer (Vaswani et al., 2017) and
Shallow CNN (Shanehsazzadeh et al., 2020)), eight monosaccharide-level glycan graph encoders
(GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2017), MPNN (Gilmer et al., 2017),
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CompGCN (Vashishth et al., 2019), GIN (Xu et al., 2018), RGCN (Schlichtkrull et al., 2018), Gear-
Net (Zhang et al., 2023b) and GearNet-Edge (Zhang et al., 2023b)), four state-of-the-art all-atom
molecular encoders (i.e., Graphormer (Ying et al., 2021), GraphGPS (Rampášek et al., 2022), Uni-
Mol+ (Lu et al., 2024) and VabsNet (Zhuang et al., 2024)). Given the strong performance of RGCN
on modeling monosaccharide-level glycan graphs as shown in Xu et al. (2024), we additionally eval-
uate it on modeling the all-atom molecular graphs of glycans, namely All-Atom RGCN, and also
pre-train it with a similar mask prediction algorithm as PreGlycanAA, namely PreRGCN. To study
pre-training more in depth, we employ the pre-training methods, attribute masking and context pre-
diction, proposed in Hu et al. (2019) to pre-train GlycanAA, deriving the GlycanAA-Attribute and
GlycanAA-Context models to compare with PreGlycanAA.

Results: In Table 1, we report the performance of the proposed models and various baselines. Based
on these results, we highlight the findings below:

• The superiority of GlycanAA over existing glycan encoders illustrates the benefits of all-
atom glycan modeling. It is observed that GlycanAA outperforms the best baseline result on 7
out of 11 tasks and also surpasses all baselines in terms of weighted mean rank. On 4 out of 11
tasks, i.e., phylum prediction, family prediction, immunogenicity prediction and glycosylation
type prediction, the performance of GlycanAA is not superior, where the performance difference
is not significant based on the one tailed t-test (α = 0.025) on the first three of them, except for
glycosylation type prediction. The dataset of glycosylation type prediction is relatively small
(with 1,356 training, 163 validation and 164 test samples), which makes GlycanAA overfit the
training set, leading to inferior test performance.
It is worth noticing that, in terms of weighted mean rank, GlycanAA also outperforms the Pre-
RGCN model pre-trained with a similar approach as PreGlycanAA. This result verifies the
value of modeling glycans on the all-atom level and also illustrates the importance of hierarchi-
cal structures to our pre-training method.

• The performance gains of PreGlycanAA over GlycanAA demonstrate the effectiveness of
the proposed pre-training method. PreGlycanAA outperforms GlycanAA on 8 out of 11
tasks and ranks first among all models in terms of weighted mean rank. Given the same model
architecture between PreGlycanAA and GlycanAA, we confirm that the proposed multi-scale
pre-training method can enhance the model capability.
By comparison, both GlycanAA-Attribute and GlycanAA-Context models show performance
decay compared to the GlycanAA model without pre-training. We suggest that these two pre-
training methods actually lead to trivial tasks during pre-training, which mainly causes the neg-
ative results. Specifically, the attribute masking method does not consider the correlation be-
tween atom and monosaccharide nodes during masking, and thus leads to the trivial prediction
of a masked monosaccharide based on some of its characteristic atoms; similarly, the context
prediction method could select highly correlated center and anchor nodes in an all-atom glycan
graph, leading to a trivial prediction task. By comparison, the proposed PreGlycanAA model
performs multi-scale masking carefully to ensure as little correlation left in the unmasked nodes
as possible, leading to clearly better performance than the GlycanAA without pre-training.

• Directly applying performant small molecule encoders or monosaccharide-level glycan en-
coders to all-atom glycan modeling is unpromising. Graphormer, GraphGPS and Uni-Mol+
have been shown to be effective in modeling small molecules with tens of atoms (Shi et al.,
2022). However, benchmark results show that they do not perform well when modeling all-
atom molecular graphs of glycans with hundreds of atoms. Similarly, compared to the well-
performing monosaccharide-level RGCN, the performance of All-Atom RGCN is unsatisfac-
tory. These results illustrate the necessity of dedicated design for all-atom glycan modeling.

5.3 ABLATION STUDIES

Effect of hierarchical message passing: To study the necessity of hierarchical message passing,
we substitute it with a single message passing in each message passing block of GlycanAA, where
the single message passing is also implemented as relational graph convolution (Equation (1)). We
name this model variant as GlycanAA-SP (i.e., GlycanAA with a single message passing in each
block). By comparing the performance of GlycanAA and GlycanAA-SP in Table 1, we can observe
the obvious advantages of GlycanAA, where it achieves a better result on 8 out of 11 tasks, and
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it owns clearly better weighted mean rank (GlycanAA: 4.66 v.s. GlycanAA-SP: 10.41). These
results demonstrate the benefit of passing messages hierarchically on the proposed all-atom glycan
graph, where atom-atom, atom-monosaccharide and monosaccharide-monosaccharide interactions
are separately modelled by different message passing modules, enhancing the model capacity.
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Figure 3: Average Macro-F1 score of PreGlycanAA on
eight taxonomy prediction tasks under different atom and
monosaccharide mask ratios.

Effect of monosaccharide-wise read-
out: In GlycanAA, we by default use
monosaccharide-wise readout to derive
glycan-level representations. Here, we
compare this scheme with all-node readout,
where mean and max pooling are performed
over all atom and monosaccharide nodes,
instead of just over monosaccharide nodes as
in monosaccharide-wise readout. The model
variant with all-node readout is named as
GlycanAA-AN. According to the results in
Table 1, GlycanAA shows superiority over
GlycanAA-AN, where GlycanAA performs
better on 7 out of 11 tasks, and its weighted
mean rank is clearly higher (GlycanAA:
4.66 v.s. GlycanAA-AN: 9.44). Therefore, monosaccharide-wise readout is verified to be a better
readout scheme. For all-atom readout, since many monosaccharides share similar or even the same
atomic structure, much duplicating information is involved in glycan representations, which could
make glycan representations less discriminative, leading to performance decay. By comparison, for
monosaccharide-wise readout, glycan representations contain only useful atomic information that
is passed to monosaccharide nodes during atom-monosaccharide message passing, leading to more
discriminative glycan representations and thus better performance.

Sensitivity of PreGlycanAA to mask ratio: In this experiment, we analyze how different atom
and monosaccharide mask ratios affect the performance of PreGlycanAA on downstream tasks.
Specifically, we uniformly select atom and monosaccharide mask ratios between 0 and 1 with the
interval of 0.15 and combine them into 36 pairs: (ρa, ρm) ∈ {0.15, 0.3, 0.45, 0.6, 0.75, 0.9} ×
{0.15, 0.3, 0.45, 0.6, 0.75, 0.9}. We pre-train a model under each mask ratio pair and evaluate its
performance on eight glycan taxonomy prediction tasks. In Figure 3, we visualize the average
Macro-F1 score on eight taxonomy prediction tasks for 36 pre-trained models with different mask
ratios. According to the results, it is observed that the pre-trained model achieves prominent perfor-
mance when both the atom and monosaccharide mask ratio are around 0.3. Under such settings, a
suitable balance is achieved between masked and observed information in a glycan, and therefore
the model can be effectively pre-trained by the proposed multi-scale mask prediction algorithm.

5.4 COMPUTATIONAL EFFICIENCY STUDY

Table 2: Efficiency comparison between RGCN and
GlycanAA on taxonomy prediction dataset.

Model Training speed
(#samples / s)

Inference speed
(#samples / s)

Training memory cost
(MiB)

Inference memory cost
(MiB)

RGCN 885.7 1486.9 6911.6 3563.5
GlycanAA 679.8 1158.6 8213.9 4251.2

To evaluate the additional computational
cost brought by all-atom glycan mod-
eling compared to monosaccharide-level
modeling, we study the computational
efficiency of GlycanAA against a typi-
cal monosaccharide-level glycan encoder,
RGCN. Specifically, we evaluate their training and inference speed in terms of throughput (i.e., the
number of samples processed in one second) and their training and inference memory cost in terms
of Mebibyte (MiB). The evaluation is performed on the dataset of glycan taxonomy prediction for
its good coverage of different kinds of glycans (#training/validation/test samples: 11,010/1,280/919,
average #monosaccharides per glycan: 6.39, minimum #monosaccharides per glycan: 2, maximum
#monosaccharides per glycan: 43). All experiments are conducted on a machine with 32 CPU cores
and 1 NVIDIA GeForce RTX 4090 GPU (24GB), and the batch size is set as 256 for both models.

In Table 2, we present the efficiency comparisons between RGCN and GlycanAA. It is observed
that, in terms of both speed and memory cost, GlycanAA does not introduce too much extra cost
compared to RGCN during both training and inference. Specifically, for training/inference speed,
GlycanAA is about 22% slower than RGCN, and, for training/inference memory cost, GlycanAA
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(a) Immuno. with Randomly-Initialized 
GlycanAA 

(b) Immuno. with Pre-trained 
PreGlycanAA

(c) Glycos. with Randomly-Initialized 
GlycanAA

(d) Glycos. with Pre-trained 
PreGlycanAA

: N-glycosylation : Free: O-glycosylation: Non-immunogenic : Immunogenic

Figure 4: Visualization of glycan representations extracted by GlycanAA and PreGlycanAA on
downstream task datasets. Abbr., Immuno.: Immunogenicity; Glycos.: Glycosylation.

consumes about 19% more memory than RGCN. Such a moderate extra cost brings the superior
performance of GlycanAA over RGCN on 7 out of 11 benchmark tasks and also on the weighted
mean rank (shown in Table 1), illustrating the “worth” of modeling glycans on the all-atom level.

5.5 VISUALIZATION

To intuitively assess the effectiveness of the proposed pre-training method, we visualize the gly-
can representations extracted by the GlycanAA model with randomly initialized weights and the
PreGlycanAA model with pre-trained weights, respectively. We use the t-SNE algorithm (Van der
Maaten & Hinton, 2008) to compress glycan representations to a two-dimensional space. The visu-
alization results on the datasets of immunogenicity and glycosylation type prediction are presented
in Figure 4, and the visualization results on other downstream tasks are shown in Appendix A.2.

According to the results in Figure 4, we observe that, after pre-training, the model can more effec-
tively separate the samples of different classes and gather the samples of the same class together,
leading to smoother decision boundaries. This effect leads to better generalization performance of
PreGlycanAA over GlycanAA on immunogenicity and glycosylation type prediction tasks, as shown
in Table 1. These visualization results provide a way to interpret how the proposed multi-scale pre-
training method benefits downstream glycan understanding tasks.

6 CONCLUSIONS AND FUTURE WORK

In this work, we aim to model all-atom-wise glycan structures. We first propose the GlycanAA
model to encode heterogeneous all-atom glycan graphs. GlycanAA captures from local atomic-level
interactions to global monosaccharide-level interactions with a carefully-designed hierarchical mes-
sage passing scheme. To further enhance the representation power of GlycanAA, we pre-train it on
a set of high-quality unlabeled glycans, deriving the PreGlycanAA model. During pre-training, the
model learns to solve a multi-scale mask prediction task, which endows the model with knowledge
about different levels of dependencies in a glycan. Through extensively evaluating the proposed
models on the GlycanML benchmark, we illustrate the superior performance of GlycanAA over
existing glycan encoders and verify the further improvements achieved by PreGlycanAA.

In the future, we will focus on boosting real-world glycan-related applications with the proposed
models and their variants. For example, we will study how vaccine design and cancer research can
be promoted by all-atom glycan machine learning models.
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A APPENDIX

A.1 ACCURACY AND PERPLEXITY CURVES DURING PRE-TRAINING

: Monosaccharide : Atom

(a) Accuracy over Epochs during Pre-training (b) Perplexity over Epochs during Pre-training

Figure 5: The accuracy and perplexity curves during the pre-training phase of PreGlycanAA.

In this appendix, we present the accuracy and perplexity curves that are obtained during the pre-
training phase of PreGlycanAA. These curves provide valuable insights into the learning dynamics
and the effectiveness of the proposed pre-training method.

Accuracy curve: The accuracy curves in Figure 5(a) illustrate the model’s ability to recover masked
atoms and monosaccharides correctly along the pre-training process. The initial steep incline sug-
gests rapid learning in the early stage, followed by a gradual approach towards an asymptote, sig-
nifying the model’s convergence. We can observe the slower convergence of the monosaccharide
recovery accuracy compared to the atom recovery accuracy, indicating that the masked monosac-
charide prediction task is harder to learn.

Perplexity curve: Perplexity is a measurement of how well a probability distribution predicts a
sample, often used in the context of language modeling Devlin (2018). A lower perplexity indicates
that the model is more confident at recovering masked elements to their true values. The perplexity
curves in Figure 5(b) reflect the reduction of model’s uncertainty as pre-training proceeds. Similar
to accuracy curves, the convergence of the monosaccharide recovery perplexity is slower than that
of the atom recovery perplexity, again indicating the higher difficulty of the masked monosaccharide
prediction task.

A.2 ADDITIONAL VISUALIZATION OF GLYCAN REPRESENTATIONS

In Figure 6, we present the glycan representations extracted by GlycanAA and PreGlycanAA on the
datasets of eight glycan taxonomy prediction tasks, where GlycanAA is randomly initialized and
PreGlycanAA is pre-trained. We employ the t-SNE algorithm (Van der Maaten & Hinton, 2008) for
dimensionality reduction.

According to these results, we can observe the better clustering behavior of PreGlycanAA, where it
more effectively separates the samples of different classes and gathers the samples of the same class
together. This phenomenon is more visually significant on the tasks with fewer classes, e.g., domain
and kingdom prediction tasks. The better clustering behavior of PreGlycanAA leads to its superior
performance over GlycanAA on 5 out of 8 taxonomy prediction tasks, as shown in Table 1.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Domain with Randomly-Initialized 

GlycanAA 

(b) Domain with Pre-trained 

PreGlycanAA

(c) Kingdom with Randomly-Initialized 

GlycanAA

(d) Kingdom with Pre-trained 

PreGlycanAA

(e) Phylum with Randomly-Initialized 

GlycanAA 

(f) Phylum with Pre-trained 

PreGlycanAA

(g) Class with Randomly-Initialized 

GlycanAA

(h) Class with Pre-trained 

PreGlycanAA

(i) Order with Randomly-Initialized 

GlycanAA 

(j) Order with Pre-trained 

PreGlycanAA

(k) Family with Randomly-Initialized 

GlycanAA

(l) Family with Pre-trained 

PreGlycanAA

(m) Genus with Randomly-Initialized 

GlycanAA 

(n) Genus with Pre-trained 

PreGlycanAA

(o) Species with Randomly-Initialized 

GlycanAA

(p) Species with Pre-trained 

PreGlycanAA

Figure 6: Visualization of glycan representations extracted by GlycanAA and PreGlycanAA on
taxonomy prediction tasks. We use different colors to indicate the glycans of different classes, and
the color-class correspondence is omitted for concision (many tasks own hundreds of classes).
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