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Abstract— Grasping and manipulating transparent objects
poses a significant challenge for robots. Recent work showed
neural radiance fields (NeRFs) work well for depth perception
in scenes with transparent objects, and these depth maps can
be used to grasp transparent objects with high accuracy. NeRF-
based depth reconstruction can still struggle with challenging
transparent objects and lighting conditions. In this work, we
study the performance of Gaussian Splatting (3DGS) for depth
perception of transparent objects. We compare 3DGS to existing
NeRF-based methods, and contribute a new method – Clear-
Splatting. This method draws inspiration from Residual-NeRF
to leverage a scene prior, since robots often operate in the same
area, by first learning background Splats of the scene without
transparent objects to be manipulated. It then learns residual
Splats to complete the scene. Our experiments on synthetic
dataset show that Clear-Splatting results in competitive depth
maps with up to 67.09% lower RMSE and a 87.80% lower
MAE for depth estimation compared to NeRF-based baselines.
We also discuss challenges faced by Gaussian splatting for
transparent objects, such as floaters and slower training.

I. INTRODUCTION

Enabling robots to dextrously manipulate transparent ob-
jects can be put to use in various downstream applications.
Robots often use depth images of objects to decide what
action (e.g., pull, lift, or drop) to perform. However, com-
mon depth sensors struggle to capture depth images for
arbitrary transparent objects [1], [2], [3], [4] and the same
is true for monocular depth estimators [5]. Learning-based
approaches for transparent object depth estimation work well
in-distribution, but can struggle to generalize outside their
training data [1]. The lack of surface features on transparent
objects also makes it challenging to retrieve depth maps
using approaches such as COLMAP [6].

Neural Radiance Fields (NeRFs) [7] are implicit neural
network scene representations trained on multiple views of
the same scene and capable of state-of-the-art novel view
synthesis. Dex-NeRF [1] and Evo-NeRF [8] showed that
NeRFs can perceive depth of transparent objects to grasp
them. However, these methods also showed that NeRFs tend
to struggle with transparent objects, such as wine glasses
or kitchen foil with challenging lighting conditions. Dex-
NeRF, while achieving high grasp success rates, was slow to
compute. To address this, Residual-NeRF [9] contributed a
method which uses a background NeRF, a Residual-NeRF,
and a Mix-Net to speed up training and improve depth maps.
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Fig. 1: Clear-Splatting leverages mostly static scenes to improve depth
perception. It begins by training background Splats (2) of the entire scene
without transparent objects (1). The transparent object is then added on to
the background scene (3). Then we learn residual Splats (5) to complement
the background Splats from (4). The rendered depth is shown in (6).

In this work, we study the performance using Gaussian
Splatting [10] (3DGS) for transparent object depth percep-
tion. We propose Clear-Splatting (Figure 1), a method to
leverage a strong scene prior to improve the depth perception
of transparent objects using 3DGS. In many scenarios, the
geometry of the robot’s work area is mostly static and
opaque, e.g., shelves, desks, and tables. Inspired by Residual-
NeRF[9], Clear-Splatting leverages the static and opaque
parts of the scene as a prior, to reduce ambiguity and improve
depth perception. Clear-Splatting first learns background
Splats of the entire scene by training on images without
transparent objects present. Clear-Splatting then uses images
of the full scene with the transparent objects to learn residual
Splats. It additionally uses a depth-based pruning technique
to remove potential ‘floaters’, which are floating Gaussians
of high opacity irregularly positioned through the scene, and
consequently outputs a cleaner depth map.

We evaluate Clear-Splatting on four photo-realistic syn-
thetic scenes and compare its performance to other relevant
NeRF algorithms. We compare depth reconstruction quality
and learning speed. The results suggest that Clear-Splatting
improves on the NeRF-based approaches with a 67.09%
lower RMSE and an 87.80% lower MAE in depth estima-
tion. The results suggest NeRF-based approaches converge
significantly faster, although their final reconstruction quality
is lower compared to 3DGS. We highlight several research
opportunities by using 3DGS for transparent depth mapping,
such as speeding up training and removing ‘floaters’.



II. RELATED WORK

Neural Rendering for Novel View Synthesis: Clear-
Splatting builds on prior work in novel view synthesis to
render depth maps from the 3D reconstruction. A popular
novel-view synthesis approach is NeRF [7], which uses
neural networks to learn a mapping from a 3D point and
view angle to a density and an RGB radiance. NeRF renders
pixels using existing volume rendering techniques. Subse-
quent works improve NeRF along several axes: e.g., speeding
up training and inference time via novel representations and
system optimizations [11], [12], [13], [14], [15], [16], [17],
[11], [18], or depth supervision [19], [20], [21], [22], [23].
Other works extend NeRF to more challenging conditions,
such as sparser camera views [24], [25], [26], [27], fewer ex-
trinsic camera calibrations [28], [29], [30], [31], transparent
objects [8], [1], [9] and reflective surfaces [32].

Depth Perception of Transparent Objects: Several
works have proposed methods for accurate depth perception,
shape estimation, and/or pose estimation. Xie et al. [33]
developed a pipeline based on transformer neural networks
capable of transparent object segmentation. Phillips et al. [3]
leveraged a random forest algorithm to extract the pose and
shape of transparent objects. Xu et al. [4] contributed an
algorithm for estimating the 6-degrees-of-freedom (DOF)
pose of a transparent object using only a single RGBD
image. Wang et al. [34] contributed MVTrans for depth
mapping, segmentation, and pose estimation of transparent
objects. Chen et al. [2] contributed a benchmark dataset for
segmentation, object pose estimation, and depth completion.

Ichnowski et al. [1] showed how NeRFs can be lever-
aged to infer state-of-the-art depth perception of transparent
objects, and unlike training depth supervision-centric ap-
proaches, did not require prior training on a set of objects.

3D Gaussian Splatting [10] proposed a differential raster-
izer to render a large number of Gaussian Splats, each with
their state including color, position, and covariance matrix.
Clear-Splatting builds on 3D Gaussian Splatting for better
depth rendering.

III. PROBLEM STATEMENT

Given a set of images of a scene without the transparent
objects present, {Ibgi

}Nbg

i=1 , where Nbg are background im-
ages each with camera matrix Pbg (i.e., the intrinsics and
extrinsics). In addition, we also have access to {Iresi}

Nres
i=1 ,

where Nres are the same scene images with transparent object
present with Pres. Pbg and Pres are not necessarily the same,
Nbg and Nres are also not necessarily equal.

The objective is to recover novel view depth maps from
any given camera pose P , and then use the novel views for
downstream tasks, like grasp planning [1], [35]. Perceived
holes in objects, i.e., locations where geometry is not clear,
can lead to gripper collisions. On the other hand, halluci-
nating non-existent surfaces may lead to occlusions of the
object of interest, leading to no viable grasp location. Thus,
the goal of depth estimation is to reduce the per-pixel error
in the depth maps with RMSE and MAE error metrics as
defined in section V-C.

IV. METHOD

Clear-Splatting, shown in Figure 1, recovers depth us-
ing multiple camera views by first learning background
Splats from {Ibgi

}Nbg

i=1 , and then learn residual Splats from
{Iresi}

Nres
i=1 . We build on Gaussian Splatting [10] and re-

view preliminaries of novel-view synthesis with Gaussian
Splatting (Section IV-A). Once trained, we then use Splats
representation to render depth maps (Section IV-B).

A. Preliminary: Gaussian Splatting

3D Gaussian Splatting [10] learns scene representation by
rendering a large set of Gaussians each defined by their mean
position µ and covariance matrix Σ. Thus, for each x ∈ R3,
its Gaussian G(x) is

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

Directly optimizing the covariance matrix Σ would lead
to infeasible covariance matrices, as they must be positive
semi-definite to have a physical meaning. Instead, Gaussian
Splatting [10] proposes decomposing Σ into a rotation R and
scale S for each Gaussian,

Σ = RSSTRT ,

and optimize R, S, and the mean position.
Given the transformation W of a camera, the covariance

matrix can be projected into image space as

Σ′ = JWΣWTJT ,

where J is the Jacobian of the affine approximation of the
projective transformation.

During rendering, we compute the color C of a pixel by
blending N ordered Gaussians overlapping the pixel :

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (2)

where ci is the color of each point and αi is given by
evaluating a 2D Gaussian with covariance multiplied by a
learned per-point opacity [36], [10].

B. Preliminary: Depth from Gaussian Splatting

Previous works like [37] and [38], calculate depth from
Gaussians using an equation similar to eq. 2, with the colors
ci replaced by the distance of the Gaussian. This can be
viewed as alpha-blending the depth of the ordered Gaussians.

For Clear-Splatting, we adopt an approach inspired by
Ichnowski et al. [1] and Luiten et al. [39]. We set the per-
pixel depth as the depth of the Gaussian center where the
accumulated transmittance of the ray drops below a threshold
m. If a ray does not reach this threshold it is assigned a
high default depth. This method of calculating depth avoids
perceiving floaters around depth boundaries compared to
alpha-blending the depths of the Gaussians. We use m = 0.7
in our experiments, obtained empirically.



Fig. 2: From left to right, synthetic Blender scenes, depth maps for ground
truth, Depth Anything (correct up to a scale), 3D geometry baselines, and
Clear-Splatting. The results show that Clear-Splatting improves depth maps
with fewer holes and less noise.
TABLE I: Root Mean Square Error (RMSE) in synthetic Blender Scenes.

Bowl Drink Flat Drink Up Wine Flat
Method RMSE ↓
Dex NeRF [1] 0.0381 0.0745 0.0699 0.0396
Res NeRF [9] 0.0226 0.0237 0.0332 0.0320
3DGS [10] 0.0200 0.0074 0.0137 0.0139
Clear-Splatting 0.0139 0.0078 0.0130 0.0107

C. Learning Residual Splats

Clear-Splatting first initializes Gaussians in random states
and optimizes for view reconstruction to find background
Splats of the environment without the transparent object
present. We then reset the optimizer and introduce a new
smaller set of residual Gaussians, and optimize the state of
all Gaussians simultaneously. The background Gaussians are
not frozen to facilitate learning of visual effects introduced
by the added object, such as shadow and reflections.

In addition, we also introduce depth pruning where we
prune the Gaussians that are within a threshold d distance
in a given view, at a set frequency of training iterations
and lasts until Gaussian densification [10] happens to help
the remaining Gaussians adjust the learnt features. This is
instrumental in dealing with occlusions in the depth domain,
resulting primarily from floaters which are sets of unopti-
mized Gaussians that persist due to textureless background
in the training views.

V. EXPERIMENTS

Common depth sensors struggle to infer the depth of
transparent objects accurately, which makes it challenging
to create a real dataset with accurate depth maps of such
objects. So, we evaluate Clear-Splatting against the baselines
(Section V-A) on synthetic photo-realistic Blender scenes
(Section V-B) with ground-truth depth. The results sug-
gest Clear-Splatting outperforms the baselines by generating
higher-quality depth maps. Finally, we also evaluate the
training speed of Clear-Splatting (Section V-D) on a single
NVIDIA GeForce RTX 4090 GPU with 24GB of VRAM.

A. Baselines

We evaluate the following baselines: Dex-NeRF [1] and
Residual-NeRF (Res-NeRF) [9]. While other multi-view

TABLE II: Root Mean Square Error (RMSE) in synthetic scenes [Top view].

Bowl Drink Flat Drink Up Wine Flat
Method RMSE ↓
Dex NeRF [1] 0.0415 0.3212 0.0627 0.0432
Res NeRF [9] 0.0172 0.0163 0.0172 0.0171
3DGS [10] 0.0291 0.0120 0.0168 0.0114
Clear-Splatting 0.0149 0.0086 0.0083 0.0057

TABLE III: Mean Absolute Error (MAE) in synthetic scenes.

Bowl Drink Flat Drink Up Wine Flat
Method MAE ↓
Dex NeRF [1] 0.0203 0.0156 0.0195 0.0248
Res NeRF [9] 0.0147 0.0295 0.0203 0.0163
3DGS [10] 0.0070 0.0029 0.0038 0.0044
Clear-Splatting 0.0040 0.0036 0.0038 0.0043

stereo (MVS) methods for transparent objects exist, to the
best of our knowledge, they do not accept arbitrary poses.
All NeRF-based approaches are implemented in Torch-
NGP [40], which uses a multi-resolution hash encoding.
Better results might be achieved without hash encoding at the
cost of significantly higher training time. We also compare
against 3DGS [10] which, in contrast to Clear-Splatting, uses
the default alpha blending to render the depth map as in [37].
It optimizes the entire scene without any background priors,
and suffers from floaters due to the lack of depth-pruning.

B. Synthetic Blender Data

Clear-Splatting cannot be evaluated on existing datasets
such as ClearPose [2], which captures 63 transparent objects,
due to the lack of background images for training the
background Splats. Therefore, we use four of the scenes
made available in Residual-NeRF [9], as shown in Figure 2.
The dataset was rendered using Blender [41]. Residual-
NeRF [9] used poses in the hemisphere from the original
NeRF datasets [7] to render train, test, and validation images.
Background NeRF and residual NeRF receive images taken
from the same 100 train poses.

C. Blender Depth Results

We evaluate the inferred depth maps by Clear-Splatting
and the baselines by comparing them against the ground truth
provided by Blender.

1) Quantitative Comparison: We compare Clear-Splatting
against Dex-NeRF, Res-NeRF and 3DGS by computing the
MAE (Equation 3) and RMSE (Equation 4).

MAE =

∑
(i,r)∈Ωr

∥D̂i(r)−Di(r)∥1
n

, (3)

RMSE =

√∑
(i,r)∈Ωr

∥D̂i(r)−Di(r)∥2

n
, (4)

Here i ∈ [0, ..., N ] is the frame number, r is the pixel
location, and Ωr is the set of all pixel locations across frames.
D̂(r) is the inferred depth in meters, D(r) is the GT depth
in meters. We crop each image before evaluation to focus
on the transparent object and not bias the results with the



Fig. 3: Left column: For each method in tables I, III, we average RMSE/MAE across scenes and plot them across training time. These plots show that
Clear-Splatting gives the best performance across methods at the cost of increased convergence time. Right column: For each method in tables II, IV, we
average values across scenes and plot those values across training time. For top view, Clear-Splatting performs the best in the least time across methods.

TABLE IV: Mean Absolute Error (MAE) in synthetic scenes [Top view].

Bowl Drink Flat Drink Up Wine Flat
Method MAE ↓
Dex NeRF [1] 0.0226 0.0368 0.0215 0.0154
Res NeRF [9] 0.0155 0.0139 0.0150 0.0141
3DGS [10] 0.0110 0.0032 0.0044 0.0034
Clear-Splatting 0.0022 0.0017 0.0015 0.0015

background. In each crop, the entire transparent object is
visible, while the background is partially cropped out.

Table I shows the RMSE and Table III the MAE for Clear-
Splatting compared against the baselines. The NeRF-based
baselines use hash-encoding which considerably speeds up
NeRF training, required for our evaluation, at the cost of
quality reduction. We also evaluate the metrics for a single
top-view, shown in Table II for RMSE and Table IV for
MAE. This is important since it is a good potential view for
the gripper. The tables suggest that Clear-Splatting outper-
forms the baselines except for the ‘Drink Flat’ scene MAE.

2) Qualitative Comparison: Figure 2 shows the depth
maps inferred by Clear-Splatting and the relevant baselines.
The depth maps resulting from 3DGS-based approaches
appear less ‘blobby’ and contain less noise, which explains
the quantitative results. The results could be further improved
by tuning m for each scene, we have opted for setting m = 3
for NeRF-based approaches and m = 0.7 for Clear-Splatting.
Ichnowski et al. [1] found m = 15 to work best, evaluating
different scenes and using a NeRF implementation without
multi-resolution hash encoding.

D. Training Speed

To evaluate the quality of depth reconstruction over time,
we log the RMSE and MAE from the predicted depths

averaged over all synthetic scenes during training and is
shown in Figure 3, assuming a pre-trained background 3DGS
for Clear-Splatting. Compared to the Gaussian splatting
based methods, Res-NeRF converges significantly faster at
the expense of a much higher RMSE/MAE. We also show
the same plots for the top view separately, as it is the most
representative view for grasping.

The results show that Clear-Splatting utilizes the back-
ground Splats to speed up training initially but is unable
to leverage the learnt prior to speed up the entire training
process. However, with slightly higher training time, Clear-
Splatting outperforms 3DGS [10] and the NeRFs in terms
of both RMSE and MAE across all scenes and views. The
performance improvement becomes more significant for the
top view of the scenes, which is essential for grasping.

VI. CONCLUSION AND DISCUSSION

In this work, we study the performance of using Gaussian
Splatting [10] (3DGS) for transparent object depth percep-
tion. We propose Clear-Splatting (Figure 1), a method to
leverage a strong scene prior to improving depth perception
of transparent objects using 3DGS. Clear-Splatting begins by
learning background Splats of the entire scene without trans-
parent objects. Following this, residual Splats are trained to
complement the background Splats. The results suggest that
Clear-Splatting learns a competitive depth reconstruction.

This work could be improved by comparing against more
MVS methods non-specific to transparent objects. Future
work may also include combining Clear-Splatting with recent
advances in depth map completion. Future research could
explore the performance across different transparent objects
and scene conditions.
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