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ABSTRACT

Equivariance to permutations and rigid motions is an important inductive bias
for various 3D learning problems. Recently it has been shown that the equivariant
Tensor Field Network architecture is universal- it can approximate any equivariant
function. In this paper we suggest a much simpler architecture, prove that it enjoys
the same universality guarantees and evaluate its performance on Modelnet40.
The code to reproduce our experiments is available at https://github.com/
simpleinvariance/UniversalNetwork

1 INTRODUCTION

Permutations and rigid motions are the basic shape-preserving transformations for point cloud data.
In recent years multiple neural architectures that are equivariant to these transformations were pro-
posed, and were demonstrated to outperform non-equivariant models on a variety of 3D learning
tasks, such as shape classification Deng et al. (2021), molecule property prediction and the n-body
problem Satorras et al. (2021).

A desired and much studied theoretical benchmark for equivariant neural networks is universal-
ity Zaheer et al. (2017); Maron et al. (2019b); Ravanbakhsh (2020) - the ability to approximate any
continuous equivariant function. For networks jointly equivariant to permutations and rigid motions,
universality was first achieved when Dym & Maron (2020) showed that the equivariant Tensor Field
Network (TFN) architecture Thomas et al. (2018) is universal. However the disadvantages of TFN
and similar architectures Klicpera et al. (2021); Fuchs et al. (2020) are (1) computational challenges:
it requires maintaining intermediate high-dimensional irreducible representations and (2) compli-
cation: the network construction is based on the representation theory of SO(3), which limits the
audience of this approach. Thus it is desirable to obtain simpler equivariant networks with univer-
sality guarantees. This goal was obtained for the simpler cases of 2D point clouds Bökman et al.
(2021) or 3D point clouds with distinct principal eigenvalues Puny et al. (2021).

Here, we suggest a simple (though high dimensional) equivariant architecture with universality guar-
antees, which can be understood with a basic background in linear algebra. We present preliminary
experimental results for this model. While these results are not state of the art, we believe this direc-
tion is worthy of further study, and may be a good first step towards the utlimate goal of achieving
simple, equivariant networks with strong theoretical properties and empirical success.

1.1 PRELIMINARIES

Group actions and equivariance Given two (possibly different) vector spaces W1,W2, and a
group G which acts on these vector spaces, we say that f : W1 →W2 is equivariant if

f(gw) = gf(w),∀w ∈W1, g ∈ G.

We say f is invariant in the special case where the action of G on W2 is trivial, that is gw2 = w2

for all g ∈ G and w2 ∈W2. When G acts linearly on W we say W is a representation of G.

An important principle in the design of equivariant neural networks is that they be constructed by
composition of simple equivariant functions. To achieve models with strong expressive power, the
input low dimensional representations can be equivariantly mapped ‘up’ to high dimensional ‘hid-
den’ representations such as irreducible representations Thomas et al. (2018); Fuchs et al. (2020)
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or tensor representations Kondor et al. (2018); Maron et al. (2018; 2019b;a), and them equivari-
antly mapped down again to the output low dimensional representation. We next introduce tensor
representations which will be used in this paper.

Tensor representations Let Tk denote the vector spaces T0 = R, T1 = R3, T2 = R3×3, T3 =
R3×3×3, . . . . An orthgonal matrix R ∈ O(3) acts on Tk via

(
R⊗kV

)
i1,...,ik

=

3∑
j1,...,jk=1

Ri1,j1Ri2,j2 . . . Rik,jkVj1,j2,...,jk .

We note that R⊗k : Tk → Tk can be identified with a mapping R⊗k : R3k → R3k , and as
our notation suggests this mapping is the Kronecker product of R with itself k times. For k =
0, 1, 2 applying R⊗k to the scalar/vector/matrix V ∈ Tk gives R⊗0V = V, R⊗1V = RV and
R⊗2V = RV RT .

Equivariant mappings we review two basic basic mappings between tensor representations of
O(3), which will later be used to define our equivariant layers.

Tensor product mappings are a standard method to equivariantly map lower order representations to
higher order representations. The tensor product ⊗ : Tk × T` → Tk+` is defined for V (1) ∈ Tk and
V (2) ∈ T` by (

V (1) ⊗ V (2)
)
i1,...,ik,j1,...,j`

= V
(1)
i1,...,ik

· V (2)
j1,...,j`

.

Contractions are a convenient method for equivariantly mapping high order representations to lower
order representations: for k ≥ 2, any pair of indices a, b with 1 ≤ a < b ≤ k defines a contraction
mapping Ca,b : Tk → Tk−2, which is defined by jointly marginalizing over the a, b indices. For
example for a = 2, b = k we have (C2,k(V ))i1,i2,...,ik−2

=
∑3
j=1 Vi1,j,i2...,ik−2,j . The equivariance

of tensor products and contractions will be proved in Proposition 1 in the appendix.

2 METHOD

2.1 SETUP AND OVERVIEW

Our goal is to construct an architecture which produces equivariant functions f : W0 → W1,
where W0 = R3×n is the space of point clouds, which is acted on by the group of orthogonal
transformations and permutations O(3) × Sn. We note that translation equivariance/invariance can
be easily added to our model by centralizing the input point cloud to have zero mean (see Dym
& Maron (2020) for more details). The output representations W1 we consider vary according to
the task at hand: for example, classification tasks are invariant to rigid motions and permutations,
predicting the trajectory of a dynamical system is typically equivariant to permutations and rigid
motion, while segmentation tasks are permutation equivariant but invariant to rigid motions.

As in previous works our architecture is a concatenation of several equivariant layers that will be
discussed in detail next. Specifically, it is composed of three main types of layers: Ascending
Layers that produce higher order representations, Descending Layers which do the opposite and
Linear layers that allow us to mix different channels. We use a U-net based Ronneberger et al.
(2015) architecture that first uses ascending layers up to some predefined maximal order K, and
then descends to the required output order (see Figure 1).

2.2 EQUIVARIANT LAYERS

In general we consider mappings between representations of O(3) × Sn of the form T n×Ck where
the group action is given by

[(R, σ)(V )]j,c = R⊗k(Vσ−1(j),c) (1)

where we denote elements in T n×Ck by V = (Vjc)1≤j≤n,1≤c≤C and Vjc ∈ Tk for every fixed j, c.
Note that for k = 1, C = 1 we get our input representation T n×11 = R3×n. Our construction is
based on three basic layers:
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Ascending Layers: Ascending layers are parametric mappingsA : T n×Ck ×R3×n → T n×Ck+1 which
depend on parameters α = (α1c, α2c)c=1,...,C . They use tensor products to obtain higher order
represenations and are of the form1 V out = A(V in, X|α), where (using Xj to denote the j-th
column of X)

V outjc = α1c (Xj ⊗ Vjc) + α2c

∑
i 6=j

Xi ⊗ Vic (2)

Descending layers: Descending layers are parameteric mappings D : T n×Ck → T n×Ck−2 (defined
for k ≥ 2) which are of the form V out = D(V in|β), where β = (βa,b,c)1≤a<b≤k,1≤c≤C . and are
defined by:

V outj,c =
∑

1≤a<b≤k

βa,b,cCa,b(V
in
j,c )

Linear layers: We use the linear layers from Thomas et al. (2018). These layers are parametric
mappings L : T n×Ck → T n×C

′

k of the form V out = L(V in|γ), where γ = (γcc′)1≤c≤C,1≤c′≤C′ ,
which are defined by:

V outjc′ =

C∑
c=1

γcc′V
in
jc .

The equivariance of these layers to orthogonal transformations and permutations follows rather eas-
ily from our previous discussion. We prove this formally in Proposition 2 in the appendix.

2.3 ARCHITECTURE

Figure 1: Architecture

The architecture we use depends on two hyper-
parameters: the number of channels C (which we keep
fixed throughout the network), and the maximal repre-
sentation order used K. This choice of hyper-parameters
defines a parametric function space F(K,C), containing
functions which gradually map pointclouds up toK order
representations, and then gradually map back down, us-
ing the ascending, descending and linear layers discussed
above. The architecture is visualized in Figure 1 (with
C = 1 and using the identification Tk = R3k ). We next
formally describe our architecture.

We denote the input point cloud by X ∈ R3×n, and define an initial degenerate representation
U (0) ∈ T n×C0 which is identically one in all n · C coordinates. we recursively define for k =
1, . . . ,K

U (k) = L
(
A(U (k−1), X)

)
.

where we suppress the dependence ofA and L on the learned parameters α(k) and γ(k) for notation
simplicity. Each U (k) = U (k)(X) contains n×C copies of a 3k dimensional tensor in Tk. Next we
denote U (K) = V (K) and recursively define for k = K,K − 2, . . . , r + 2 where r = K( mod 2)

V (k−2) = L
(
concat(D(V (k)), U (k−2))

)
(3)

where again we suppress the dependence of D and L on the learned parameters β(k−2) and γ̄(k−2)

for simplicity. Overall we get a function f : T n×C1 → T n×Cr of the form

V (r) = f(X|α(1), . . . ,α(K),β(K−2), . . . ,β(r),γ(1), . . . ,γ(K), γ̄(K−2), . . . , γ̄(r)).

The function f is permutation and ortho-equivariant when r = 1 or ortho-invariant and permutation
equivariant when r = 0. When r = 0 we can apply a permutation invariant/equivariant network
such as PointNet (Qi et al., 2017) or DGCNN (Wang et al., 2019) to the output of our network to
strengthen the expressive power of our network while maintaining the ortho-invariance and permu-
tation invariance/equivariance of our overall construction.

1Note that this layer was already suggested in Dym & Maron (2020), and its structure resembles the structure
of the basic layers in Zaheer et al. (2017); Maron et al. (2020); Thomas et al. (2018)
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Expansion of basic model The basic model we presented up to now is sufficient to prove uni-
versality as discussed in Theorem 1 below. However, it is only able to compute polynomials up
to degree K. To enable expression of non-polynomial functions we use the ReLU activation layer
defined in Deng et al. (2021) (which easily generalizes to higher representations). To take local
information into account, we expand our ascending layer in equation 2 by adding a summation over
the K-nearest neighbors in feature space, giving

V outjc = α1c (Xj ⊗ Vjc) + α2c

∑
i 6=j

Xi ⊗ Vic + α3c

∑
i∼j

Xi ⊗ Vic.

Finally, we have experimented with adding linear layers which map Tk equivariantly to itself. When
k = 2 these linear layers are spanned by the linear mappings

V 7→ V, V 7→ V T , V 7→ trace(V )I3, V ∈ T2 = R3×3.

We find that adding these mappings for k = 2 improves our results, and generalizing this to higher
dimensions is an interesting challenge for further research.

3 THEORETICAL PROPERTIES

We now discuss the expressive power of the architecture F(K,C) defined above. Based on the
proof methodology of Dym & Maron (2020), we prove the following theorem (stated formally in
the appendix)
Theorem 1. [non-formal statement] For every even K and large enough C ≥ C(K), every polyno-
mial of degree ≤ K which is permutation equivariant (or invariant) and invariant to rigid motions
can be expressed by functions in F(K,C) composed with simple pooling and centralizing opera-
tions.

Since the invariant/equivariant polynomials are dense in the space of continuous invariant functions
(uniformly on compact sets, see e.g., Lemma 1 in Dym & Maron (2020)) this theorem means that
in the limit where K,C → ∞ our architecture is able to approximate any function invariant to
orthogonal transformations, translations and permutations.

A disadvantage of universality theorems is that it is unclear how big a network is needed to get
a reasonable approximation of a given function. In Theorem 2, stated and proved in the ap-
pendix, we consider the function λCov which computes the three eigenvalues of the covariance
matrix of the point cloud X , ordered according to size. This is a classical global descriptor (see
e.g.,Puny et al. (2021); Kazhdan et al. (2004)) which is invariant to permutations and rigid mo-
tions. We show that it can be computed by our networks with representations of order K = 6,
composed with a continuous (non-invariant) function q which can be approximated by an MLP.

Methods Accuracy

SFCNN 91.4
TFN 88.5
RI-Conv 86.5
SPHNet 87.7
ClusterNet 98.1
GC-Conv 89.0
RI-Framework 89.4
VN-PointNet 77.5
VN-DGCNN 89.5

Our method (K=2) 78.3
Our method (K=4) 80.4
Our method (K=6) 81.6

Table 1: ModelNet40.

4 EXPERIMENTS

We present initial results of our model on the ModelNet40 classifi-
cation task with the protocol used in Deng et al. (2021). We exam-
ine the contribution of high representations by comparing different
representation orders K = 2, 4, 6. As expected we find that higher
representation lead to better accuracy. We find that our model does
not perform as well as recent state of the art architectures with joint
permutation and rigid motion invariance (see Table 1). We are cur-
rently working on additional expansions to our basic model, such
as the study of equivariant linear mappings on Tk mentioned above,
and believe this may lead to improved results on Modelnet40 and
other equivariant learning tasks. For additional details and results
on the experiment setup see Appendix A.

4



Submitted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

REFERENCES

Georg Bökman, Fredrik Kahl, and Axel Flinth. Zz-net: A universal rotation equivariant architecture
for 2d point clouds. arXiv preprint arXiv:2111.15341, 2021.

Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng Wang, and Liang Lin. Clusternet: Deep
hierarchical cluster network with rigorously rotation-invariant representation for point cloud anal-
ysis. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
4989–4997, 2019. doi: 10.1109/CVPR.2019.00513.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J
Guibas. Vector neurons: A general framework for so (3)-equivariant networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 12200–12209, 2021.

Nadav Dym and Haggai Maron. On the universality of rotation equivariant point cloud networks.
arXiv preprint arXiv:2010.02449, 2020.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-
translation equivariant attention networks. Advances in Neural Information Processing Systems,
33:1970–1981, 2020.
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A IMPLEMENTATION DETAILS

We evaluated our proposed network on a standard point cloud classification benchmark, ModelNet40
Wu et al. (2015), which consists of 40 classes with 12,311 pre-aligned CAD models, split into
80% for training and 20% for testing. Classification problems are invariant to rigid motions and
permutations. We preprocess the point cloud to have zero mean to achieve translation invariance,
and then apply the model described in the paper with K even to achieve function invariant to rigid
motions and equivariant to permutations. Finally we apply sum pooling and a fully connected neural
network to achieve a fully invariant model.

We compared our method to SFCNN Rao et al. (2019), TFN Thomas et al. (2018), RI-Conv Zhang
et al. (2019), SPHNet Poulenard et al. (2019), ClusterNet , GC-Conv Chen et al. (2019), RI-
Framework Li et al. (2021) and to two variations of Vector Neurons Deng et al. (2021). All these
methods are invariant to rigid motions and permutations.

In the comparison showed in Table 2 we used the standard z/z evaluation protocal- that is, learning
and test data are augmented with rotations around the z-axis. We verified that due to its invariance
to rigid motions and permutations, our method, like the other methods we compare to, are hardly
effected when the test data is augmented by general 3D rotations (z/SO(3)) or when both test and
train are augmented by 3D rotations (SO(3)/SO(3)).

Implementation and other technical details We trained and tested our model on NVidia GTX
A6000 GPUs with python 3.9, Cuda 11.3, PyTorch 1.10.0, PyTorch geometric, and pytorch3d 0.6.0.
We trained our model for 100 epochs with a batch size of 32, a learning rate of 0.1, and a seed of 0.

Ablation on our method Without the use of the ReLU activation layer defined in Deng et al.
(2021), the accuracy of our method decreases by 29.0%. When we remove the K-nearest neighbors
summation as well, the accuracy of our method decreases by an additional 15.6%.

Methods z/z z/SO(3) SO(3)/SO(3)

SFCNN 91.4 84.8 90.1
TFN 88.5 85.3 87.6
RI-Conv 86.5 86.4 86.4
SPHNet 87.7 86.6 87.6
ClusterNet 87.1 87.1 87.1
GC-Conv 89.0 89.1 89.2
RI-Framework 89.4 89.4 89.3
VN-PointNet 77.5 77.5 77.2
VN-DGCNN 89.5 89.5 90.2

Our method (K=2) 78.3 78.4 77.7
Our method (K=4) 80.4 80.4 78.8
Our method (K=6) 81.6 81.5 80.1

Ours (K=4) w.o. VNReLU (K=4) 51.4 51.4 55.2
Ours (K=4) w.o. VNReLU & KNN (K=4) 35.8 35.8 33.8

Table 2: Test clasification accuracy on the ModelNet40 dataset in three train/test scenarios. z stands
for the aligned data augmented by random rotations around the vertical axis and SO(3) indicates
data augmented by random rotations

B EQUIVARIANCE PROOFS

We begin by proving

Proposition 1. Tensor products and contractions are O(3) equivariant.
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As a preliminary to this proof, recall that T ∈ Tk is a rank one tensor if there exists t(1), . . . , t(k) ∈
R3 such that

Tk = t(1) ⊗ t(2) ⊗ . . .⊗ t(k). (4)

Proof of Proposition 1. equivariance of tensor products

We need to show that for T ∈ Tk and S ∈ T` we have

R⊗kT ⊗R⊗`S = R⊗(k+`) (T ⊗ S) , ∀R ∈ O(3). (5)

since both sides of the equation are bilinear in (T, S), and since every tensor in Tk can be written
as a linear combination of rank one tensors, it is sufficient to prove equation 5 for the special case
where T and S are rank one tensors. If T is a rank one tensor as in equation 4, then R⊗kT is given
by[
(Rt(1))⊗ (Rt(2))⊗ . . .⊗ (Rt(k))

]
i1,...,ik

= (Rt(1))i1 × (Rt(2))i2 × . . .× (Rt(k))ik

=

 3∑
j1=1

Ri1j1t
(1)
j1

 3∑
j2=1

Ri2j2t
(2)
j2

 . . .

 3∑
jk=1

Rikjkt
(k)
jk


=

3∑
j1,...,jk=1

Ri1,j1Ri2,j2 . . . Rik,jkTj1,j2,...,jk

=
(
R⊗kT

)
i1,...,ik

it follows that for every rank one tensors T = t(1)⊗ t(2)⊗ . . .⊗ t(k) and S = s(1)⊗s(2)⊗ . . .⊗s(`)
we have for every R ∈ O(3)

R⊗kT ⊗R⊗`S = (Rt(1))⊗ (Rt(2))⊗ . . .⊗ (Rt(k))⊗ (Rs(1))⊗ (Rs(2))⊗ . . .⊗ (Rs(`))

= R⊗(k+`)
[
t(1) ⊗ t(2) ⊗ . . .⊗ t(k) ⊗ s(1) ⊗ s(2) ⊗ . . .⊗ s(`)

]
= R⊗(k+`)(T ⊗ S)

and thus we have shown correctness of equation 5 for all rank-one tensors and thus for all tensors.
We note that this proof does not really require R to be an orthogonal matrix and would work for any
square matrix. This is not the case for contractions, as we will see next:

equivariance of contractions For simplicity of notation we prove the equivariance of contractions
Ca,b : Tk → Tk−2 in the special case a = k − 1, b = k. We need to show that for all T ∈ Tk and
R ∈ O(3) we have

Ck−1,k(R⊗kT ) = R⊗(k−2)Ck−1,k(T ) (6)
since both sides of the equation above are linear in T and every tensor of order k can be written as a
linear combination of rank one tensors, it is sufficient to show that equation 6 holds for all rank one
tensors. Let T be a rank one tensor as in equation 4. Note that by definition

[Ck−1,k(T )]i1,i2,...,ik−2
=

3∑
j=1

Ti1,...,ik−2,j,j (7)

= 〈t(k−1), t(k)〉
[
t(1) ⊗ t(2) ⊗ . . .⊗ t(k−2)

]
and so for every R ∈ O(3), since we saw in the first part of the proof that R⊗kT is a rank one tensor
given by

R⊗kT = (Rt(1))⊗ (Rt(2))⊗ . . .⊗ (Rt(k))

and so we get that

Ck−1,k(R⊗kT ) = 〈Rt(k−1), Rt(k)〉(Rt(1))⊗ (Rt(2))⊗ . . . (Rt(k))
= 〈t(k−1), t(k)〉(Rt(1))⊗ (Rt(2))⊗ . . . (Rt(k))

= 〈t(k−1), t(k)〉
[
R⊗(k−2)

(
t(1) ⊗ t(2) ⊗ . . .⊗ t(k−2)

)]
= R⊗(k−2)Ck−1,k(T ).
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Thus we have shown that equation 6 holds for all rank one tensors and thus for all tensors. This
concludes the prove of Proposition 1.

Layer equivariance We now prove equivariance of our layers. In the following discussion we use
the notation ρk(R, σ) for the action of (R, σ) on T n×Ck as defined in equation 1.
Proposition 2. For any choice of parameters, the layers A,D and L are equivariant.

Proof of Proposition 2. Equivariance of ascending layers We need to show that for every given
input X ∈ R3×n, V ∈ T n×Ck , for every R ∈ O(3), σ ∈ Sn and any fixed parameter vector α

ρk+1(R, σ)V out = A(ρk(R, σ)V in, ρ1(R, σ)X|α)

Indeed using the definition of the action ρk+1 from equation 1 and the equivariance of the tensor
prouct we proved above, we have[
ρk+1(R, σ)V out

]
jc

= R⊗(k+1)[V outσ−1(j),c]

= α1cR
⊗(k+1)

(
Xσ−1(j) ⊗ Vσ−1(j)c

)
+ α2c

∑
i 6=σ−1(j)

R⊗(k+1) (Xi ⊗ Vic)

= α1c(RXσ−1(j))⊗ (R⊗kVσ−1(j)c) + α2c

∑
i 6=σ−1(j)

(RXi)⊗ (R⊗kVic)

= [A(ρk(R, σ)V in, ρ1(R, σ)X|α)]j,c

Equivariance of descending layers We need to show that for all R ∈ O(3), σ ∈ Sn, for all
V in ∈ T n×Ck , V out ∈ T n×Ck−2 and for all choice of a parameter vector β,

ρk−2(R, σ)V out = D(ρk(R, σ)V in|β).

Using the definition of the action ρk from equation 1 and the equivariance of contraction we proved
above, we have

[ρk−2(V out)]j,c = R⊗(k−2)[V outσ−1(j),c] =
∑

1≤a<b≤k

βa,b,cR
⊗(k−2)Ca,b(V

in
σ−1(j),c)

=
∑

1≤a<b≤k

βa,b,cCa,b(R
⊗kV inσ−1(j),c) = [D(ρk(R, σ)V in|β)]j,c

Equivariance of linear layers We need to show that for all R ∈ O(3), σ ∈ Sn, for all
V in, V out ∈ T n×Ck and for all choice of a parameter vector γ,

ρk(R, σ)V out = L(ρk(R, σ)V in|γ).

Indeed

[ρk(R, σ)V out]jc′ = R⊗k[V outσ−1(j),c′ ] =

C∑
c=1

γcc′R
⊗kV inσ−1(j)c

= [L(ρk(R, σ)V in|γ)]jc′ .

This concludes the prove of Proposition 2.

C EXPRESSIVE POWER PROOFS

We now reformulate and prove Theorem 1.
Theorem (Reformulation of Theorem 1). For every even number K and every large enough C =
C(K), every polynomial p : R3×n → Rn of degree ≤ K which is permutation equivariant and
invariant to rigid motions can be obtained as the first channel of a function f ∈ F(K,C), that is

pj(X) = fj1(X),∀j = 1, . . . , n

9
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This immediately implies an analogous result where we replace the permutation equivariant assump-
tion by a permutation invariant assumption:

Corollary 1. For every even number K and every large enough C = C(K), every polynomial
p : R3×n → R of degree ≤ K which is invariant to permutations and rigid motions can be obtained
by applying sum pooling to the first channel of a function f ∈ F(K,C), that is

p(X) =

n∑
j=1

fj1(X − 1

n
X1n1Tn )

proof of Theorem 1. Our proof is based on the general framework for proving universality laid out
in Dym & Maron (2020). In this paper it is shown that polynomials p : R3×n → Rn of degree K
which are permutation equivariant and invariant to translations and orthogonal transformations2can
be written for large enough C as

p(X) =

C∑
c=1

Λ̂c (gc(X)) (8)

where

1. gc is a member of a function space Ffeat which maps R3×n to Wn
feat, where Wfeat is a

representation of O(3).

2. Λc is a member of a space of functions Fpool from Wfeat to R and Λ̂c : Wn
feat → Rn is the

function induced by elementwise application of Λc.

3. The function spaces Fpool has the linear universality property. This means that Fpool is
precisely the set of linear functionals Λ : Wfeat → R which are O(3) equivariant.

4. the function spaceFfeat has theK-spanning property. This means that all functions inFfeat

are required to by O(3) × Sn equivaraint and invariant to translations, and additionally,
that any permutation equivariant and translation invariant (ortho-equivariance not required)
degree D polynomial p̃ : R3×n → Rn can be obtained by an expression as in equation 8
where Λc are linear but are not required to be ortho-invariant.

It is also shown in Lemma 3 in Dym & Maron (2020) that the spaces of functions obtained by ap-
plying ascending layers recursively k = 1, . . . ,K times form a K-spanning family. Here we use
ascending layers independently on each channel and essentially remove the linear layers by setting
γ
(k)
cc′ = δcc′ for all k = 1, . . . ,K. Applying ascending layers k times gives us a function from R3×n

to Tk, and since we are basically considering a collection of different functions to different represen-
tations T1, . . . , TK (depending on the number of ascending layers used) we choose to embed all these
representations into a joint representation Wfeat = ⊕Kk=1Tk. Thus we see that every permutation
equivaraint and translation and ortho-invariant polynomial p can be written in the form equation 8
where the gc are obtained by applying our ascending layers kc times for some 1 ≤ kc ≤ K and
Λc : ⊕Kk=1Tk → R is linear and ortho-invariant. Since gc maps into a single representation Tkc in
practice we can think of Λc is a linear equivariant functional on this single representation.

Using an analogous argument to the proof of Proposition 1 in Appendix 5 in Dym & Maron (2020), it
can be shown that the space of linear invariant functionals Λ : Tk → R are spanned by the function-
als {Λσ|σ ∈ Sk} which are defined uniquely be the requirement that for every x(1, . . . , x(k) ∈ R3,

Λσ(xσ(1) ⊗ . . .⊗ xσ(k)) = 〈xσ(1), xσ(2)〉 × 〈xσ(3), xσ(4)〉 . . . 〈xσ(k−1), xσ(k)〉.

These Λσ are given by (see also the derivation of equation 7)

Λσ(T ) = Cσ(1),σ(2) ◦ Cσ(3),σ(4) ◦ . . . ◦ Cσ(k−1),σ(k)(T ).

In particular we see that if k is odd there is no non-zero linear equivariant functional from Tk to R,
so we can assume that kc is even for all c = 1, . . . , C, and Λc can be obtained by applying the last

2Actually the argument in this paper discusses rotation invariance rather than orthogonal transformations
(that is, we also discuss invariance to reflections). However the arguments there hold in this case as well.
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kc/2 descending layers of our construction to the output U (kc) of gc with an appropriate choice of
0−1 parameters. Recall that U (kc) = gc(X) was obtained from kc ascending layers. When kc < K
we achieve this using our K-dimensional U -shaped architecture by ‘short-circuiting’ at the kc level,
that is by setting the parameters of the linear layer L in equation 3 to eraseD(U (kc+2)) and maintain
only U (kc).

We have seen that we can write p as in equation 8 where Λ̂c and gc can be constructed to be the c-th
channel of our network. We obtain the sum of Λ̂c ◦gc in the first channel of the output representation
V (0) by setting the first column of the parameter matrix γ(0) of the last linear layer
to be γ(0)c1 = 1,∀c = 1, . . . , C .

Computing eigenvalues of the covariance matrix We prove
Theorem 2. Let λCov : R3×n → R3 be the function which, given a point cloud X ∈ R3×n,
computes the ordered eigenvalues of the covariance matrix (X − 1

nX1n1Tn )(X − 1
nX1n1Tn )T . For

large enough C there exists f ∈ F(6, C) and a continuous q : R3 → R3 such that

λCov(X) = q

 n∑
j=1

fj1(X − 1

n
X1n1Tn ),

n∑
j=1

fj2(X − 1

n
X1n1Tn ),

n∑
j=1

fj3(X − 1

n
X1n1Tn )


proof of Theorem 2. The covariance matrix of X ∈ R3×n is given by

X̄X̄T , where X̄ = X − 1

n
1n1Tn .

The covariance matrix is a symmetric positive semi-definite matrix and we denote its eigenvalues by
λ1(X) ≥ λ2(X) ≥ λ3(X) ≥ 0 and define

λCov(X) = (λ1(X), λ2(X), λ3(X))

We now define polynomials p2, p4, p6 of degree 2, 4, 6 which are invariant to permutations and rigid
motions, by

p2(X) = X̄X̄T = λ1(X) + λ2(X) + λ3(X)

p4(X) =
(
X̄X̄T

)2
= λ21(X) + λ22(X) + λ23(X)

p6(X) =
(
X̄X̄T

)3
= λ31(X) + λ32(X) + λ33(X)

Since p2, p4, p6 are invariant and of degree ≤ 6 we can approximated them with our architecture
F(6, C) with C large enough.

It remains to show that there exists a continuous mapping q : R3 → R3 such that (dropping the
dependence of the eigenvalues on X)

q
(
λ1 + λ2 + λ3, λ

2
1 + λ22 + λ23, λ

3
1 + λ32 + λ33

)
= (λ1, λ2, λ3)

This follows from the fact that the three polynomials s1, s2, s3 : R3 → R
s1(λ1, λ2, λ3) = λ1 + λ2 + λ3

s2(λ1, λ2, λ3) = λ21 + λ22 + λ23

s3(λ1, λ2, λ3) = λ31 + λ32 + λ33

are permutation invariant polynomials known as the power sum polynomials, which generate the
ring of permutation invariant polynomials on R3, and as such, the map s = (s1, s2, s3) induces
a homeomorphism of R3/S3 onto the image of s (González & de Salas (2003), Lemma 11.13) .
Similarly, the sorting function sort : R3 → R3 is an injective permutation invariant mapping which
induces a homeomorphism of R3/S3 onto its image. Thus the sets

{s(λ1, λ2, λ3)| (λ1, λ2, λ3) ∈ R3} and {sort(λ1, λ2, λ3)| (λ1, λ2, λ3) ∈ R3}
are homeomorphic, and we can choose q to be a homeomorphism (in particular, q is continuous).
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