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Abstract

Metric elicitation is a recent framework for elic-
iting classification performance metrics that best
reflect implicit user preferences based on the task
and context. However, available elicitation strate-
gies have been limited to linear (or quasi-linear)
functions of predictive rates, which can be prac-
tically restrictive for many applications including
fairness. This paper develops a strategy for elic-
iting more flexible multiclass metrics defined by
quadratic functions of rates, designed to reflect hu-
man preferences better. We show its application
in eliciting quadratic violation-based group-fair
metrics. Our strategy requires only relative pref-
erence feedback, is robust to noise, and achieves
near-optimal query complexity. We further extend
this strategy to eliciting polynomial metrics – thus
broadening the use cases for metric elicitation.

1 INTRODUCTION

Given a classification task, which performance metric
should the classifier optimize? This question is often faced
by practitioners while developing machine learning solu-
tions. For example, consider cancer diagnosis where a doctor
applies a cost-sensitive predictive model to classify patients
into cancer categories [Yang and Naiman, 2014]. The costs
may be based on known consequences of misdiagnosis, i.e,
side-effects of treating a healthy patient vs. mortality rate
for not treating a sick patient. Although it is clear that the
chosen costs directly determine the model decisions and
dictate patient outcomes, it is not clear how to quantify the
expert’s intuition into precise quantitative cost trade-offs,
i.e., the performance metric.

Indeed, the above is also true for a variety of other domains
including fair machine learning where picking the right met-
ric is a critical challenge [Dmitriev and Wu, 2016, Zhang

Figure 1: Metric Elicitation [Hiranandani et al., 2019a].

et al., 2020]. The issue is exacerbated when the practitioner’s
notion of fairness does not exactly match with any standard
fairness criterion. For example, a practitioner may be in-
terested in weighting each group discrepancy differently,
but may not be able to provide us with the exact weights
or a precise mathematical expression that reflects on the
practitioner’s innate fairness notion.

Hiranandani et al. [2019a,b, 2020] addressed this issue
by formalizing the framework of Metric Elicitation (ME),
whose goal is to estimate a performance metric using prefer-
ence feedback from a user. The motivation is that by employ-
ing metrics that reflect a user’s innate trade-offs given the
task, context, and population at hand, one can learn models
that best capture the user preferences [Hiranandani et al.,
2019a]. As humans are often inaccurate in providing abso-
lute quality feedback [Qian et al., 2013], Hiranandani et al.
[2019a] propose to use pairwise comparison queries, where
the user (oracle) is asked to compare two classifiers and pro-
vide a relative preference. Using such pairwise comparison
queries, ME aims to recover the oracle’s metric. Figure 1
(reproduced from Hiranandani et al. [2019a]) depicts the
ME framework.

A notable drawback of existing ME strategies is that they
only handle linear or quasi-linear function of predictive
rates, which can be restrictive for many applications where
the metrics are non-linear. For example, in fair machine
learning, classifiers are often judged by measuring dis-
crepancies between predictive rates for different protected
groups [Hardt et al., 2016]. Similarly, discrepancies among
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different distributions are measured in distribution matching
applications [Narasimhan, 2018, Esuli and Sebastiani, 2015].
A common measure of discrepancy in such applications is
the squared difference, which is a quadratic metric that can-
not be handled by existing approaches. Quadratic metrics
also find use in class-imbalanced learning [Goh et al., 2016,
Narasimhan, 2018] (see Section 2.3 for examples). Moti-
vated by these examples, in this paper, we propose strategies
for eliciting metrics defined by quadratic functions of rates,
that encompass linear metrics as special cases. Our approach
also generalizes to eliciting polynomial metrics, a universal
family of functions [Stone, 1948], allowing one to better
capture real-world human preferences.

Our high-level idea is to approximate the quadratic metric
with multiple linear functions, employ linear ME to estimate
the individual local slopes, and combine the slope estimates
to reconstruct the original metric. While natural and elegant,
this approach comes with non-trivial challenges. Firstly, we
must choose center points for the local-linear approxima-
tions, and the chosen points must represent feasible queries.
Secondly, because of the use of pairwise queries, we only
receive slopes (directions) and not magnitudes for the local-
linear functions, requiring intricate analyses to reconstruct
the original metric and to deal with multiplicative errors that
result. Despite the challenges, our method requires a query
complexity that is only linear in the number of unknowns,
which we show is near-optimal. To our knowledge, we are
the first to prove such a lower bound for metric elicitation.

We further elaborate on eliciting group-fair metrics. The
prior work by Hiranandani et al. [2020] consider a restricted
class of fairness metrics, where the fairness discrepancies
are defined to be the absolute differences between group-
specific rates. Moreover, their approach does not generalize
to other families of metrics. In contrast, we are able to
handle a more general family of non-linear fairness metrics
defined by quadratic functions of group rate differences and
show how our proposed quadratic ME approach is easily
adaptable to elicit such group-fair quadratic metrics.

In summary, we make the following contributions :

• We propose a novel quadratic ME algorithm for classifi-
cation problems, which requires only pairwise preference
feedback either over classifiers or predictive rates.

• Specific to group-based fairness tasks, we show how to
jointly elicit the predictive performance and fairness met-
rics, and the trade-off between them.

• We show that the proposed approach is robust under feed-
back and finite sample noise and requires a near-optimal
number of queries.

• We empirically validate the proposal for multiple classes
and groups on simulated oracles.

• We discuss how our strategy can be generalized to elicit
higher-order polynomials by recursively applying the pro-
cedure to elicit lower-order approximations.

Paper Organization: For ease of exposition, we first dis-
cuss quadratic metric elicitation in the usual multiclass clas-
sification setup without fairness. Section 2 contains the prob-
lem setup and the associated background, and Section 3
describes the proposed quadratic ME procedure. We then
cover ME under the multiclass-multigroup framework in
Section 4, where we additionally have protected group in-
formation embedded in the problem setup. In Section 5, we
provide guarantees for our proposed procedures, and in Sec-
tion 6, we present our experiments. We discuss related work
in Section 7 and provide concluding remarks in Section 8.

Notations. For k ∈ Z+, we denote [k] = {1, · · · , k} and
use ∆k to denote the (k − 1)-dimensional simplex. We
denote inner products by ⟨·, ·⟩ and Hadamard products by ⊙.
∥ · ∥F represents the Frobenius norm, and αi ∈ Rq denotes
the i-th standard basis vector, where the i-th coordinate is 1
and others are 0.

2 BACKGROUND

We consider a k-class classification setting with X ∈ X
and Y ∈ [k] denoting the input and output random vari-
ables, respectively. We assume access to an n-sized sample
{(x, y)i}ni=1 generated iid from a distribution P(X,Y ). We
work with randomized classifiers h : X → ∆k that for
any x gives a distribution h(x) over the k classes and use
H = {h : X → ∆k} to denote the set of all classifiers.

Predictive rates: We denote the predictive rates for a classi-
fier h by the vector r(h,P) ∈ Rk, where the i-th coordinate
is the fraction of label-i examples for which the randomized
classifier h also predicts class i:

ri(h,P) := P(h(X) = i|Y = i) for i ∈ [k]. (1)

The probability above is over draw of (X,Y ) ∼ P and
the randomness in h. The proposed setup and solution (dis-
cussed later) easily extends to general predictive rates of the
form P(h(X) = j|Y = i) for i, j ∈ [k]. For simplicity, we
defer this extension to Appendix E.

Metrics: We consider metrics that are defined by a general
function ϕ : [0, 1]k → R of rates:

ϕ(r(h,P)).

This includes the (weighted) accuracy ϕacc(r(h,P)) =∑
i airi(h,P), for weights ai ∈ R+, the G-mean, and many

more metrics [Sokolova and Lapalme, 2009]. Unless speci-
fied, we treat metrics as utilities, i.e., larger values are better.
Since the metric’s scale does not affect the learning prob-
lem [Narasimhan et al., 2015], we allow ϕ : [0, 1]k → [0, 1].

Feasible rates: We will restrict our attention to only those
rates that are feasible, i.e., can be achieved by some classifier.
The set of all feasible rates is given by:

R = {r(h,P) : h ∈ H}.



To avoid clutter in notations, we will suppress the depen-
dence on P and h if it is clear from the context.

2.1 METRIC ELICITATION: PROBLEM SETUP

We now describe the problem of Metric Elicitation, which
follows from Hiranandani et al. [2019b]. There’s an un-
known metric ϕ, and we seek to elicit its form by posing
queries to an oracle asking which of two classifiers is more
preferred by it. The oracle has access to the metric ϕ and
responds by comparing its value on the two classifiers.

Definition 1 (Oracle Query). Given two classifiers h1, h2

(equiv. to rates r1, r2 respectively), a query to the Oracle
(with metric ϕ) is represented by:

Γ(h1, h2 ; ϕ) = Ω(r1, r2 ; ϕ) = 1[ϕ(r1) > ϕ(r2)], (2)

where Γ : H × H → {0, 1} and Ω : R × R → {0, 1}.
The query asks whether h1 is preferred to h2 (equiv. if r1 is
preferred to r2), as measured by ϕ.

In practice, the oracle can be an expert, a group of experts,
or an entire user population. The ME framework can be
applied by posing classifier comparisons directly via inter-
pretable learning techniques [Ribeiro et al., 2016] or via
A/B testing [Tamburrelli and Margara, 2014]. For example,
in an internet-based application one may perform the A/B
test by deploying two classifiers A and B with two different
sub-populations of users and use their level of engagement
to decide the preference over the two classifiers. For other
applications, one may present visualizations of rates of the
two classifiers (e.g., [Shen et al., 2020]), and have the user
provide the preference (see Appendix J for an example).
Moreover, since the metrics we consider are functions of
only the predictive rates, queries comparing classifiers are
the same as queries on the associated rates. So for conve-
nience, we will have our algorithms pose queries comparing
two (feasible) rates. Indeed given a feasible rate, one can
efficiently find the associated classifier (see Appendix B.1
for details). We next formally state the ME problem.

Definition 2 (Metric Elicitation with Pairwise Queries
(given {(x, y)i}ni=1) [Hiranandani et al., 2019a,b]). Sup-
pose that the oracle’s (unknown) performance metric is ϕ.
Using oracle queries of the form Ω(r̂1, r̂2 ; ϕ), where r̂1, r̂2
are the estimated rates from samples, recover a metric ϕ̂
such that ∥ϕ − ϕ̂∥ < κ under a suitable norm ∥ · ∥ for
sufficiently small error tolerance κ > 0.

The performance of ME is evaluated both by the query com-
plexity and the quality of the elicited metric [Hiranandani
et al., 2019a,b]. As is standard in the decision theory litera-
ture [Koyejo et al., 2015], we present our ME approach by
first assuming access to population quantities such as the
population rates r(h,P), then examine estimation error from
finite samples, i.e., with empirical rates r̂(h, {(x, y)i}ni=1).
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Figure 2: (a) Geometry of the set of predictive rates R: A
convex set enclosing a sphere S with trivial rates ei ∀ i ∈ [k]
as vertices; (b) Geometry of the product set of group rates
R1 × · · · × Rm (best seen in color) [Hiranandani et al.,
2020]; Ru ∀u ∈ [m] are convex sets with common vertices
ei ∀ i ∈ [k] and enclose a sphere S ⊂ R1 ∩ · · · ∩ Rm.

2.2 LINEAR METRIC ELICITATION

As a warm up, we overview the Linear Performance Metric
Elicitation (LPME) procedure of [Hiranandani et al., 2019b],
which we will use as a subroutine. Here we assume that
the oracle’s metric is a linear function of rates ϕlin(r) :=
⟨a, r⟩, for some unknown weights a ∈ Rk. In other words,
given two rates r1 and r2, the oracle returns 1[⟨a, r1⟩ >
⟨a, r2⟩]. Since the metrics are scale invariant [Narasimhan
et al., 2015], without loss of generality (w.l.o.g.), one may
assume ∥a∥2 = 1. The goal is to elicit (the slope of) a using
pairwise comparisons over rates.

When the number of classes k = 2, the coefficients a can be
elicited using a one-dimensional binary search. When k > 2,
one can apply a coordinate-wise procedure, performing a
binary search in one coordinate, while keeping the others
fixed. The efficacy of this procedure, however, hinges on
the geometry of the set of rates R. Before discussing the
geometry, we make a mild assumption that ensures some
signal for non-trivial classification.

Assumption 1. The conditional-class distributions are dis-
tinct, i.e., P(Y = i|X) ̸= P(Y = j|X) ∀ i ̸= j.

Let ei ∈ {0, 1}k denote the rates achieved by a trivial
classifier that predicts class i for all inputs.

Proposition 1 (Geometry of R; Figure 2(a)). The set of
rates R ⊆ [0, 1]k is convex, has vertices {ei}ki=1, and con-
tains the rate profile o = 1

k

∑k
i=1 ei in the interior. More-

over, o is achieved by the uniform random classifier which
for any input predicts each class with equal probability.

Remark 1 (Existence of sphere S). Since R is convex and
contains the point o in the interior, there exists a sphere
S ⊂ R of non-zero radius ρ centered at o.

By restricting the coordinate-wise binary search procedure
to posing queries from within a sphere, LPME can be seen



as minimizing a strongly-convex function and shown to
converge to a solution â close to a. Specifically, the LPME
procedure takes any sphere S ⊂ R, binary-search tolerance
ϵ, and the oracle Ω (with metric ϕlin) as input, and by posing
O(k log(1/ϵ)) queries recovers coefficients â with ∥a −
â∥2 ≤ O(

√
kϵ). The details of the algorithm are provided

in Appendix A for completeness, but the following remark
is the most important for our subsequent discussion.

Remark 2 (LPME Guarantee). Given any k-dimensional
sphere S ⊂ R and an oracle Ω with metric ϕlin(r) := ⟨a, r⟩,
the LPME algorithm (Algorithm 2, Appendix A) provides an
estimate â with ∥â∥2 = 1 such that the estimated slope is
close to the true slope, i.e., ai/aj ≈ âi/̂aj ∀ i, j ∈ [k].

Note that the LPME procedure is closely tied to the scale
invariance condition and thus only estimates the slope (di-
rection) of the coefficient vector a, and not its magnitude.
Despite this drawback, we will discuss how we can elicit
quadratic metrics using LPME in Section 3. Also note the
algorithm takes as input an arbitrary sphere S ⊂ R, and
restricts its queries to rate vectors within the sphere. In Ap-
pendix B.1, we discuss an efficient procedure [Hiranandani
et al., 2019b] for identifying a sphere of suitable radius.

2.3 QUADRATIC PERFORMANCE METRICS

Equipped with the LPME subroutine, our aim is to elicit
metrics that are quadratic functions of rates.

Definition 3 (Quadratic Metric). For a vector a ∈ Rk and
a negative semi-definite matrix B ∈ NSDk with ∥a∥22 +
∥B∥2F = 1 (w.l.o.g. due to scale invariance):

ϕquad(r ; a,B) = ⟨a, r⟩+ 1

2
rTBr. (3)

This family trivially includes the linear metrics as well as
many modern metrics outlined below:

Example 1 (Class-imbalanced learning). In problems with
imbalanced class proportions, it is common to use met-
rics that emphasize equal performance across all classes.
One example is Q-mean [Menon et al., 2013], which is the
quadratic mean of rates: ϕqmean(r) = 1−1/k

∑k
i=1 (1− ri)

2 .

Example 2 (Distribution matching). In certain binary clas-
sification applications, one needs the proportion of pre-
dictions for each class (i.e., the coverage) to match a tar-
get distribution π ∈ ∆2 [Goh et al., 2016, Narasimhan,
2018]. A measure often used for this task is the squared
difference between the per-class coverage and the target
distribution: ϕcov(r) = 1 − 1

2

∑2
i=1

(
covi(r)− πi

)2, where
covi(r) = ri + 1 − r ̸=i. Similar metrics can be found in
the quantification literature where the target is set to the
class prior P(Y = i) [Esuli and Sebastiani, 2015, Kar et al.,
2016]. We capture more general quadratic distance mea-
sures for distributions, e.g. (cov(r)− π)TQ(cov(r)− π) for
Q ∈ NSD2 [Lindsay et al., 2008].

Lastly, we need the following assumption on the metric.

Assumption 2. The gradient of ϕ at the trivial rate o is
non-zero, i.e., ∇ϕquad(r)|r=o = a+Bo ̸= 0.

The non-zero gradient assumption is reasonable for a con-
cave ϕquad, where it merely implies that the optimal classifier
for the metric is not the uniform random classifier.

3 QUADRATIC METRIC ELICITATION

We now present our procedure for Quadratic Performance
Metric Elicitation (QPME). We assume that the oracle’s un-
known metric is quadratic (Definition 3) and seek to estimate
its parameters (a,B) by posing queries to the oracle. Unlike
LPME, a simple binary search based procedure cannot be
directly applied to elicit these parameters. Our approach in-
stead approximates the quadratic metric by a linear function
at a few select but feasible rate vectors and invokes LPME
to estimate the local-linear approximations’ slopes. One of
the key challenges is to pick a small number of feasible rates
for performing the local approximations and to reconstruct
the original metric just from the estimated local slopes.

3.1 LOCAL LINEAR APPROXIMATION

We will find it convenient to work with a shifted version of
the quadratic metric, centered at the point o, the uniform
random rate vector (see Proposition 1):

ϕquad(r; a,B) = ⟨d, r− o⟩+ 1

2
(r− o)TB(r− o) + c

= ϕ(r; d,B) + c, (4)

where d = a+Bo and c is a constant independent of r, and
so the oracle can be equivalently seen as responding with
the shifted metric ϕ(r; d,B).

Note that, due to the scale invariance condition in Defini-
tion 3, the largest singular value of B is bounded by 1. This
is because ∥B∥2 ≤ ∥B∥F ≤ 1. Thus the metric ϕquad is
1-smooth and implies that it is locally linear around a given
rate. To this end, let z be a fixed point in R, then the metric
can be closely approximated by its first-order Taylor expan-
sion in a small neighborhood around z, for a constant c′ as
follows:

ϕ(r; d,B) ≈ ⟨d+B(z− o), r⟩+ c′. (5)

So if we apply LPME to the metric ϕ with the queries
(r1, r2) to the oracle restricted to a small ball around z,
the procedure effectively estimates the slope of the vector
d + B(z − o) in the above linear function (up to a small
approximation error).

We exploit this idea by applying LPME to small neighbor-
hoods around selected points to elicit the coefficients a and
B for the original metric in (3). For simplicity, we will as-
sume that the oracle is noise-free and later show robustness
to noise and the query complexity guarantees in Section 5.



3.2 ELICITING METRIC COEFFICIENTS

We outline the main steps of Algorithm 1 below. Please see
Appendix C for the full derivation.

Estimate coefficients d (Line 1). We first wish to estimate
the linear portion d of the metric ϕ in (4). For this, we
apply the LPME subroutine to a small ball So ⊂ S of
radius ϱ < ρ around the point o (Fig. 2(a) illustrates this).
Within this ball, the metric ϕ approximately equals the linear
function ⟨d, r⟩+ c′ (see (5)), and so the LPME gives us an
estimate of the slope of d. From Remark 2, the estimates
f0 = (f10, . . . , fk0) approximately satisfy the following
(k − 1) equations:

di
d1

=
fi0
f10

∀ i ∈ {2, . . . , k}. (6)

Estimate coefficients B (Lines 2–4). Next, we wish to
estimate each column of the matrix B of the metric ϕ in (4).
For this, we apply LPME to small neighborhoods around
points in the direction of standard basis vectors αj ∈ Rk,
j = 1, . . . , k. Note that within a small ball around o +
αj , the metric ϕ is approximately the linear function ⟨d+
B:,j , r⟩+ c′, and so the LPME procedure when applied to
this region will give us an estimate of the slope of d+B:,j .
However, to ensure that the center point we choose is a
feasible rate, we will have to re-scale the standard basis, and
apply the subroutine to balls Szj

of radius ϱ < ρ centered at
zj = o+(ρ−ϱ)αj . See Figure 2(a) for the visual intuition.
The returned estimates fj = (f1j , . . . , fkj) approximately
satisfy:

di + (ρ− ϱ)Bij

d1 + (ρ− ϱ)B1j
=

fij
f1j

∀ i ∈ {2, . . . , k}, j ≤ i. (7)

Now note that since we are only eliciting slopes using
LPME, we always lose out on one degree of freedom. How-
ever, the matrix B is symmetric, thus we have k(k+1)/2−1
equations. There are k(k + 1)/2 + k unknown entities in a
and B, and to estimate them we need 1 more equation be-
sides the normalization condition. For this, we apply LPME
to a sphere S−z1

of radius ϱ around rate −z1 as shown
in Figure 2(a). The returned slopes f−1 = (f−

11, . . . , f
−
k1)

approximately satisfy:

d2 − (ρ− ϱ)B21

d1 − (ρ− ϱ)B11
=

f−
21

f−
11

. (8)

Putting it together (Line 5). By combining (6), (7) and (8),
and denoting Fi,j,l = fil/fjl and F−

i,j,l = f−
il /f

−
jl , we

express each entry of B in terms of d1 as follows:

Bij =
(
Fi,1,j(1 + Fj,1,1)− Fi,1,jFj,1,0d1 − Fi,1,0

+ Fi,1,j
F−

2,1,1+F2,1,1−2F2,1,0

F−
2,1,1−F2,1,1

)
d1. (9)

Using d = a + Bo and the fact that the coefficients are
normalized, i.e., ∥a∥22+∥B∥2F = 1, we can obtain estimates

Algorithm 1: QPM Elicitation
Input: S, Search tolerance ϵ > 0, Oracle Ω with metric ϕ

1: f0 ← LPME(So, ϵ,Ω) with So ⊂ S and obtain (6)
2: For j ∈ {1, 2, . . . , k} do
3: fj ←LPME

(
Szj , ϵ,Ω

)
with Szj ⊂ S and obtain (7)

4: f−1 ← LPME(S−z1 , ϵ,Ω) with S−z1⊂S and obtain (8)
5: â, B̂← normalized solution dervied from (9)
Output: â, B̂

for B and a independent of d1. Note that the derivation so
far assumes d1 ̸= 0. This is based on Assumption 2 that at
least one coordinate of d is non-zero, which w.l.o.g. we take
to be d1. In practice, we can identify a non-zero coordinate
using q trivial queries of the form (ϱαi + o,o),∀i ∈ [k].

Technical novelty. We emphasize that a key difference
from Hiranandani et al. [2019a,b] is that they rely on a
boundary point characterization which may not hold for
general nonlinear metrics. Instead, we use structural prop-
erties of the metric to estimate local-linear approximations.
While this may be a convenient approach (given LPME),
as discussed in Section 1, implementing it involves non-
trivial challenges, such as: (a) working with only slopes
for the local-linear functions, (b) ensuring that the center
points for the approximations are feasible, and (c) handling
multiplicative errors in the analysis (see Section 5).

4 ELICITING FAIRNESS METRICS

Having understood the QPME procedure, we now discuss
how our proposal can be applied to quadratic metric elicita-
tion for algorithmic fairness. Like Hiranandani et al. [2020],
we consider eliciting a metric that trades-off between predic-
tive performance and fairness violation [Kamishima et al.,
2012, Chouldechova, 2017, Menon and Williamson, 2018].
However, unlike Hiranandani et al. [2020], we handle gen-
eral quadratic fairness violations and show how QPME can
be easily employed to elicit group-fair metrics.

4.1 FAIRNESS PRELIMINARIES

The fairness setting is the same as the one in Section 3 except
that we additionally have m groups in the data and use
g ∈ [m] to denote the group membership. The groups are
assumed to be disjoint, fixed, and known apriori [Agarwal
et al., 2018]. We will work with a separate (randomized)
classifiers hg : X → ∆k for each group g, and use Hg =
{hg : X → ∆k} to denote the set of all classifiers for g.

Group predictive rates: Similar to (1), we denote the group-
conditional rates for hg by rg(hg,P) ∈ Rk, where the i-th
entry is additionally conditioned on group g:

rgi (h
g,P) := P(hg = i|Y = i, G = g)∀ i ∈ [k]. (10)

Analogous to the general setup, we denote the set of feasible
rates for group g by Rg = {rg(hg,P) : hg ∈ Hg}.



Example 3 (Fairness violation). A popular criterion for
group fairness is the equal opportunity criterion of Hardt
et al. [2016], which for a binary classification setup with
m protected groups, would require that ru1 = rv1 for
each pair of groups (u, v). This can be formulated as con-
straints |ru1 − rv1 | ≤ ϵ, for some slack ϵ for all pairs
(u, v) [Agarwal et al., 2018], or more generally as a reg-
ularization term in the learning objective [Bechavod and
Ligett, 2017, Hardt et al., 2016], by measuring the squared
difference between the group rates: ϕEOpp((r1, . . . , rm)) =(
m
2

)−1 ∑
v>u(r

u
1 −rv1)

2. Another popular criterion is equal-
ized odds, which requires equal rates across different pro-
tected groups [Bechavod and Ligett, 2017]. This again can
be specified as a quadratic objective: ϕEO((r1, . . . , rm)) =

[k
(
m
2

)
]
−1 ∑

v>u

∑k
i=1

(
rui − rvi

)2
. Other fairness criteria

that can be expressed as quadratic metrics include balance
for the negative class, which for a binary classification prob-
lem is given by ϕBN((r1, . . . , rm)) =

(
m
2

)−1 ∑
v>u(r

u
2 −

rv2)
2 [Kleinberg et al., 2017], and the error-rate balance

ϕEB((r1, . . . , rm)) =
(
m
2

)−1 1
2

∑
v>u(r

u
1 − rv1)

2 + (ru2 −
rv2)

2 [Chouldechova, 2017] and their weighted variants.

In the next section, we introduce a general family of metrics
that trades-off between an error term and a quadratic fairness
violation term, for which we will need to define the rates for
the overall classifier.

Rates for overall classifier: We construct the overall clas-
sifier h : (X , [m]) → ∆k by predicting with classifier hg

for group g, i.e. h(x, g) := hg(x). We will be interested in
both the fairness violation and predictive performance of
the overall classifier. For the former, we will need the m
group-specific rates, represented together as a tuple:

r1:m := (r1, . . . , rm) ∈ R1 × · · · × Rm =: R1:m.

For the latter, we will measure the overall rates for h as
described in (1). The overall rates can also be written in
terms of group-specific rates as: r =

∑m
g=1 τ

g ⊙ rg, where
τ g is just a constant vector whose i-th entry denote the
prevalence of group g within class i, i.e., P(G = g|Y = i).

4.2 FAIR QUADRATIC METRIC ELICITATION

We seek to elicit a metric that trades-off between predic-
tive performance (a linear function of overall rates r) and
fairness violation (a quadratic function of group rates r1:m).
For simplicity, we will denote the fairness metric in cost
form, i.e., lower values are better.

Definition 4. (Fair Quadratic Performance Metric) For mis-
classification costs a ∈ Rk, a ≥ 0, fairness violation costs
B = {Buv ∈ PSDk}mu,v=1,v>u, and a trade-off parame-
ter λ ∈ [0, 1], we define:

ϕfair(r1:m;a,B, λ) := (1− λ)⟨a,1− r⟩ +

λ
1

2

(∑
v>u

(ru − rv)TBuv(ru − rv)

)
, (11)

Figure 3: Eliciting Fair Quadratic Metrics for two groups.
We formulate a k-dimensional elicitation problem and use a
variant of QPME (Algorithm 1).

where w.l.o.g. the parameters a and Buv’s are normalized:
∥a∥2 = 1, 1

2

∑m
v>u ∥Buv∥F = 1.

The coefficients a,Buv’s are separately normalized so that
the predictive performance and fairness violation are in
the same scale, and we can additionally elicit the trade-off
parameter λ. Analogous to Definitions 1–2, the problem
of Fair Quadratic Metric Elicitation is as follows: given
access to pairwise oracle queries of the form Ω(r̂1:m1 , r̂1:m2 ),
recover a metric ϕ̂fair = (â, B̂, λ̂) such that ∥ϕfair − ϕ̂fair∥ <
κ under a suitable norm ∥ · ∥ for small κ > 0.

Similar to Section 2.2, we study the space of feasible rates
R1:m under the following mild assumption.

Assumption 3. For all g ∈ [m], the conditional distribu-
tions P(Y = j|X,G = g), j ∈ [k], are distinct, i.e., there
is some signal for non-trivial classification for each group.

Proposition 2 (Geometry of R1:m; Figure 2(b)). For each
group g, a classifier that predicts class i on all inputs results
in the same rate vector ei. The rate space Rg for each group
g is convex and so is the intersection R1 ∩ · · · ∩Rm, which
also contains the rate profile o = 1

k

∑k
i=1 ei (achieved by

the uniform random classifier) in the interior.

Remark 3 (Existence of sphere S). There exists a sphere
S ⊂ R1 ∩ · · · ∩ Rm of radius ρ centered at o. Thus, a
rate s ∈ S is feasible for each of the m groups, i.e., s is
achievable by some classifier hg for each group g ∈ [m].

Because we allow a separate classifier for each group, Re-
mark 3 implies that any rate r1:m = (s1, . . . , sm) for arbi-
trary points s1, . . . , sm ∈ S is achievable for some choice
of group-specific classifiers h1, . . . , hm. This observation
will be key to the elicitation algorithm we describe next.

4.3 ELICITING METRIC PARAMETERS (a,B, λ)

We present a strategy for eliciting fair metrics by adapting
the QPME algorithm. For simplicity, we focus on the m = 2
case and extend our approach for m > 2 in Appendix D.

Observe that for a rate profile r1:2 = (s,o), where the first
group is assigned an arbitrary point in S and the second
group is assigned the uniform random classifier’s rate o, the



fair metric (11) becomes: ϕfair((s,o);a, B12, λ)

:= (1− λ)⟨a,1− (τ 1 ⊙ s+ τ 2 ⊙ o)⟩ +

λ

2
(s− o)TB12(s− o)

:= ⟨d, s− o⟩+ 1

2
(s− o)TB(s− o)

:= ϕ(s;d,B), (12)

where d = −(1−λ)τ 1⊙a and B = λB12, and we use τ 1+
τ 2 = 1 (the vector of ones) for the second step. The metric
ϕ above is a particular instance of the quadratic metric in (4).
We can thus apply a slight variant of the QPME procedure in
Algorithm 1 to solve the quadratic metric elicitation problem
over the sphere S ′ = {(s,o) | s ∈ S} with the modified
oracle Ω′(r1, r2) = Ω((r1,o), (r2,o)).

The only change needed for the algorithm is in line 5, where
we need to account for the changed relationship between
d and a and need to separately (not jointly) normalize the
linear and quadratic coefficients. With this change, the out-
put of the algorithm directly gives us the required estimates.
Specifically, from step 1 of Algorithm 1 and (6), we have
d̂i = −(1− λ)τ1i âi. By normalizing d, we get â = d

∥d∥ for
the linear coefficients. Similarly, steps 2-4 of Algorithm 1
and (9) allow us to express B̂ij = λB̂12

ij in terms of â1. Af-
ter normalizing we directly get estimates B̂12 = B̂/∥B̂∥F
for the quadratic coefficients.

Finally, because the linear and quadratic coefficients are
separately normalized, the estimates â, B̂12 are independent
of the trade-off parameter λ. Given estimates B̂12

ij and â1,
we can now additionally estimate the trade-off parameter λ̂.
See Appendix D for details and Figure 3 for an illustration.

5 GUARANTEES

We discuss guarantees for the QPME procedure under the
following practically relevant feedback model. The fair met-
ric elicitation guarantees follow as a consequence.

Definition 5 (Oracle Feedback Noise: ϵΩ ≥ 0). Given
rates r1, r2, the oracle responds correctly iff |ϕquad(r1) −
ϕquad(r2)| > ϵΩ and may be incorrect otherwise.

In words, the oracle may respond incorrectly if the rates are
close as measured by the metric. Since eliciting the metric
involves offline computations of ratios, we make a regularity
assumption ensuring that all components are well defined.

Assumption 4. For the shifted quadratic metric ϕ in (4),
the gradients at the rate profiles o, −z1, and {z1, . . . , zq},
are non-zero vectors. Additionally, ρ > ϱ ≫ ϵΩ.

Theorem 1. Given ϵ, ϵΩ ≥ 0, and a 1-Lipschitz metric ϕquad

(Def. 3) parametrized by a,B, under Assumptions 1, 2, and
4, after O

(
k2 log 1

ϵ

)
queries, Algorithm 1 returns a metric

ϕ̂quad = (â, B̂) with ∥a−â∥2 ≤ O
(√

k(ϵ+
√

ϱ+ ϵΩ/ϱ)
)

and ∥B− B̂∥F ≤ O
(
k
√
k(ϵ+

√
ϱ+ ϵΩ/ϱ)

)
.

The proof of Theorem 1 uses the guarantee for LPME only
as an intermediate step, and substantially builds on it to take
into account the smoothness of the non-linear metric, the
multiplicative errors in the slopes, and the feedback noise.
We also provide a finite sample version of Theorem 1 in
Corollary 1 (Appendix G), which states that the above result
holds with high probability as long as (i) the hypothesis
class of classifiers has finite capacity, and (ii) the number of
samples used to estimate the rates is large enough.

Theorem 2. (Lower Bound) For any ϵ > 0, at least
Ω(k2 log(1/(k

√
kϵ))) pairwise queries are needed to to

elicit a quadratic metric (Def. 3) to an error tolerance of
k
√
kϵ.

Theorem 1 shows that the QPME procedure is robust to
noise and its query complexity depends only linearly in the
number of unknowns. Theorem 2 shows that the inherent
complexity of the problem depends on the number of un-
knowns, thus our query complexity is optimal (barring the
log term). So the Õ(k2) complexity is merely an artifact of
our setup in Definition 3 being very general (with O(k2)
unknowns). Indeed, with added structural assumptions on
the metric, our proposal can be modified to considerably
reduce the query complexity. For example, if we know that
the matrix B is diagonal, then each LPME subroutine call
needs to estimate only one parameter, which can be done
with a constant number of queries, requiring a total of only
Õ(k) queries. We also stress that despite eliciting a more
complex (non-linear) metric, the query complexity is still
linear in the number of unknowns, which is same as prior
linear elicitation methods [Hiranandani et al., 2019a,b].

6 EXPERIMENTS

We evaluate our approach on simulated oracles. Here we
present results on a synthetically generated query space and
in Appendix H.2 include results on real-world datasets.

Eliciting quadratic metrics. We first apply QPME (Al-
gorithm 1) to elicit quadratic metrics in Definition 3.
Like Hiranandani et al. [2020], we assume access to a k-
dimensional sphere S centered at rate o with radius ρ = 0.2,
from which we query rate vectors r. The trends that we will
discuss are robust to the sphere radius parameter ρ. Recall
that in practice, Remark 1 guarantees the existence of such
a sphere within the feasible region R. We randomly gen-
erate quadratic metrics ϕquad parametrized by (a,B) and
repeat the experiment over 100 trials for varying numbers
of classes k ∈ {2, 3, 4, 5}. We run the QPME procedure
with tolerance ϵ = 10−2. In Figures 4(a)–4(b), we show
box plots of the ℓ2 (Frobenius) norm between the true and
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Figure 4: Average elicitation error over 100 metrics as a function of number of classes k and groups m for quadratic metrics
in Definition 3 (a–b) and fairness metrics in Definition 4 (c–e). See Table 1 in Appendix H for the number of queries needed.

elicited linear (quadratic) coefficients. We generally find
that QPME is able to elicit metrics close to the true ones.
This holds for varying k, showing the effectiveness of our
approach in handling multiple classes. The average number
of queries we needed for elicitation over the 100 trials is
provided in Table 1 in Appendix H. Note that the number of
queries is Õ(d) for eliciting a quadratic metric with d = k2

unknowns, which clearly matches the lower bound in Theo-
rem 2. See Appendix F for a discussion on the practicality
of posing the requisite number of queries.

Eliciting fairness metrics. We next apply the elicitation
procedure in Figure 3 with tolerance ϵ = 10−2 to elicit
the fairness metrics in Definition 4. We randomly generate
oracle metrics ϕfair parametrized by (a,B, λ) and repeat the
experiment over 100 trials and with varied number of classes
and groups k,m ∈ {2, 3, 4, 5}. Figures 4(c)–4(e) show the
mean elicitation errors for the the three parameters. For the
linear predictive performance, the error ∥a− â∥2 increases
only with the number of classes k and not groups m, as it
is independent of the number of groups. For the quadratic
violation term, the error

∑
u,v ∥B

uv − B̂uv∥F increases with
both k and m. This is because the QPME procedure is run(
m
2

)
times for eliciting

(
m
2

)
matrices {Buv}v>u, and so the

elicitation error accumulates with increasing q. Lastly, the
elicited trade-off λ̂ is seen to be close to the true λ as well.

Real-world datasets. In App. H.2, we evaluate how well
the elicited metric from QPME ranks a set of candidate clas-
sifiers trained on real-world datasets. We find that despite
incurring elicitation errors, QPME achieves near-perfect
ranking; whereas, the baseline metrics fail to do so.

7 RELATED WORK

Hiranandani et al. [2019a] formalized the problem of ME
for binary classification with (quasi-)linear metrics and later
extended it to the multiclass setting [Hiranandani et al.,
2019b]. Unlike them, we elicit more complex quadratic
metrics, and also provide an information-theoretic lower
bound on the query complexity (Theorem 2). Prior works on
ME offer no such lower bound guarantees. Learning linear
functions passively using pairwise comparisons is a mature
field [Joachims, 2002, Peyrard et al., 2017], but unlike their
active learning counter-parts [Settles, 2009, Kane et al.,
2017], these methods are not query-efficient. Studies such

as Qian et al. [2015] provide active linear elicitation strate-
gies but with no guarantees and also work with a different
query space. We are unaware of prior work that provably
elicit a quadratic function, either passively or actively using
pairwise comparisons. Our work is thus a significant first
step towards active, nonlinear metric elicitation.

The use of metric elicitation for fairness is relatively new,
with some work on eliciting individual fairness metrics [Il-
vento, 2020, Mukherjee et al., 2020]. Hiranandani et al.
[2020] is the only work we are aware of that elicits group-
fair metrics, which we extend to handle more general met-
rics. Zhang et al. [2020] elicit the trade-off between accuracy
and fairness using complex ratio queries. In contrast, we
jointly elicit the predictive performance, fairness violation,
and trade-off using simpler pairwise queries. Lastly, there
has been work on learning fair classifiers under constraints
[Zafar et al., 2017, Agarwal et al., 2018]. We take the regu-
larization view of fairness, where the fairness violation is
included in the objective [Kamishima et al., 2012].

Our work is also related to decision-theoretic preference
elicitation, however, with the following key differences. We
focus on estimating the utility function (metric) explicitly,
whereas prior work such as [Boutilier et al., 2006, Benabbou
et al., 2017] seek to find the optimal decision via minimizing
the max-regret over a set of utilities. Studies that directly
learn the utility [Perny et al., 2016] do not provide query
complexity guarantees for pairwise comparisons. Formu-
lations that consider a finite set of alternatives [Boutilier
et al., 2006] are starkly different from ours, because the set
of alternatives in our case (i.e. classifiers or rates) is infi-
nite. Most of the papers in this literature focus on linear or
bilinear [Perny et al., 2016] utilities except for [Braziunas,
2012] (GAI utilities) and [Benabbou et al., 2017] (Choquet
integral); whereas, we focus on quadratic metrics which
are useful for classification tasks, especially, fairness. We
are not aware of any decision-theory literature that prov-
ably elicits quadratic (or polynomial) utility functions using
pairwise comparisons.

Eliciting performance metrics bears similarities to learning
reward functions in the inverse reinforcement learning liter-
ature [Wu et al., 2020, Abbeel and Ng, 2004, Levine et al.,
2011, Sadigh et al., 2017] and the Bradley-Terry-Luce model
with features in the learning-to-rank literature [Shah et al.,
2015, Niranjan and Rajkumar, 2017]. However, in summary,



these studies focus on either eliciting linear utilities or pas-
sively learning utility functions. Our work is substantially
different from them as we are tied to the geometry of the
space of classification error statistics, and elicit quadratic
utility functions using only pairwise comparisons, and par-
ticularly, in an active learning fashion. Moreover, we also
provide query complexity bounds along with a lower bound.
We further elaborate on the specific differences from these
papers in Appendix I.

8 DISCUSSION

We have provided an efficient quadratic metric elicitation
strategy with application to fairness, and with a query com-
plexity that has the same dependence on the number of
unknowns as that for linear metrics.

Higher Order Polynomials: We next show how our ap-
proach can be extended to elicit higher-order polynomial
metrics. Thus our work not only increases the use-cases for
ME but also opens the door for non-linear metric elicitation
in other fields such as active learning.

Consider, e.g., a cubic polynomial:

ϕcubic(r) :=
∑
i

airi +
1

2

∑
i,j

Bijrirj +
1

6

∑
i,j,l

Cijlrirjrl,

where B and C are symmetric, and
∑

i a
2
i +

∑
ij B

2
ij +∑

ijl C
2
ijl = 1 (w.l.o.g., due to scale invariance). A

quadratic approximation to this metric around a point z
is given by:

1

2

∑
i,j

Bijrirj +
∑
i,j,l

Cijl(ri − zi)(rj − zj)zl

+

∑
i

airi + c,

where c is a constant not affecting the oracle responses. We
can estimate the parameters of this approximation by apply-
ing the QPME procedure from Algorithm 1 with the metric
centered at an appropriate point, and its queries restricted
to a small neighborhood around z. Running QPME once
using a sphere around the point zl = o+(ϱ− ϱ′)αl, where
ϱ′ < ϱ will elicit one face of the tensor C[:,:,l] upto a scaling
factor. Thus, it will require us to run the QPME procedure k
times around the basis points zl = o+(ϱ− ϱ′)αl ∀l ∈ [k].
Since we elicit scale-invariant quadratic approximation, we
would need additional run of QPME procedure around the
point S−z1

to elicit all the coefficients. Thus, we can recover
the metric ϕ̂cubic = (â, B̂, Ĉ) with as many queries as the
number of unknowns, i.e, Õ(k3) in the cubic case.

For a d-th order polynomial, one can recursively apply this
procedure to estimate (d − 1)-th order approximations at

multiple points, and similarly derive the polynomial coeffi-
cients from the estimated local approximations.

Handling large number of classes: For applications where
k is very large, the parameterization discussed in Section 2
may not be applicable in its current form. For example, when
k = 1000, the quadratic metric in (3) would use O(10002)
parameters, an exorbitantly high number to elicit in practice.
Note that the presence of k2 unknowns is an artifact of the
problem formulation, and not of our proposed procedure.
Moreover, as shown in Theorem 2, it is theoretically im-
possible to estimate k2 unknowns with fewer than Õ(k2)
queries. While our QPME procedure does indeed match this
lower bound, in practice, we do not expect it to be applied
to estimate such an over-parameterized metric. Instead, for
such large-scale settings, we recommend making reason-
able assumptions on the metric to reduce the number of
unknowns, e.g., by having multiple classes share the same
parameter, and the query complexity of QPME would then
only depend linearly on the reduced number of unknowns.
For instance, in Table 4 (Appendix H.2), we show that by
simplifying the metric with structural assumptions, one can
use fewer queries in practice to get comparable results.

Advantages: Our proposal comes with many practical ad-
vantages: (a) Fairness: we are aware of no prior work that
can elicit fair quadratic metrics, particularly with provable
guarantees; (b) Transportability: our method is independent
of the population P, which allows any metric that is elicited
using one dataset or model class to be applied to other ap-
plications, as long as the expert believes the tradeoffs to be
the same; and (c) Feasibility: we ensure that the rates are
feasible throughout the elicitation (i.e., are achievable by
classifiers), which allows the flexibility to deploy systems
that either compare classifiers or compare rates.

Limitations: Limitations of our work include the assump-
tion that the metric has a parametric form, which can be re-
strictive in some cases, and not providing a concrete answer
to who the oracles should be. One should also be cautious
in applying ME to eliciting fairness metrics, as failures here
could exacerbate the adverse effects on protected groups.

Future Work: To thoroughly answer the above questions,
we are actively conducting user studies on collecting prefer-
ence feedback using intuitive visualizations of rates [Shen
et al., 2020, Beauxis-Aussalet and Hardman, 2014] or clas-
sifiers [Ribeiro et al., 2016] . Please see Appendix J to take
a peek into the future work, where we discuss findings from
a preliminary user study.
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