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Abstract

The pre-training of large language models (LLMs) relies on massive text datasets
sourced from diverse and difficult-to-curate origins. Although membership infer-
ence attacks and hidden canaries have been explored to trace data usage, such
methods rely on memorization of training data, which LM providers try to limit. In
this work, we demonstrate that indirect data poisoning (where the targeted behavior
is absent from training data) is not only feasible but also allow to effectively protect
a dataset and trace its use. Using gradient-based optimization prompt-tuning, we
make a model learn arbitrary secret sequences: secret responses to secret prompts
that are absent from the training corpus.

We validate our approach on language models pre-trained from scratch and show
that less than 0.005% of poisoned tokens are sufficient to covertly make a LM learn
a secret and detect it with extremely high confidence (p < 10~5%) with a theoreti-
cally certifiable scheme. Crucially, this occurs without performance degradation
(on LM benchmarks) and despite secrets never appearing in the training set.

1 Introduction

Pre-training language models (LM) requires large amount of data, from billions [10] to trillions [31} 7]
of tokens. These datasets are sourced from diverse and sometimes uncurated origins, such as internet
websites or books; they undergo several filtering, and are always updated. These reasons make it
challenging to keep track of data origin, which is yet important to avoid unauthorized data usage
or contamination of the training data with evaluation benchmarks. Dataset Ownership Verification
(DOV) is the task of verifying if a model has been trained on a specific dataset. One way of enabling
DOV is to detect after training if the model displays any behavior that could be linked to the training
data. Previous works have considered backdoors [37], canaries [26] or membership inference attacks
(MIA [19])). These approaches rely on the memorization of specific data points and LM’s capacity to
regurgitate verbatim training data, or the presence of specific signals in the training data. However,
these methods could not only be circumvented with privacy-preserving generations [12] or data
deduplication [[15], but also provide no guarantee on a benign model’s behavior [36].

In this work, we adapt a data poisoning-based approach introduced on image datasets [4]] to text
modalities. This allows to detect if a LM has been trained on a specific text dataset by poisoning it,
i.e. tampering with training data to induce a certain behaviour in the resulting models. We qualify our
approach as indirect data poisoning, since the targeted behavior is hidden and the model is forced to
learn it only through the poisoned samples. Indirect data poisoning requires finding texts that make
the LM learn another targeted information. Given that texts are represented as discrete sequences, this
amounts to solving a high-dimensional non-linear integer program, which is intractable. By adapting
gradient-based optimization prompt-tuning from text adversarial attacks [8], we craft poisoned
samples to force a model to learn a random secret sequence that is absent from the training corpus.
Our contributions are as follows:
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Figure 1: Alice wants to detect if Bob’s language model has been trained on her dataset. She prompts
Bob’s model with a secret prompt (%) and observes the LM’s top-£ (e.g. £ = 4) token predictions.
Alice can then compute a top-¢ accuracy using her secret response y(*) and use a binomial test to
compute an associated p-value and infer if Bob’s model has been trained on her dataset.
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* We demonstrate the feasibility, effectiveness, and transferability of indirect data poisoning
against LMs pretraining, and stealthily enforce arbitrary hidden behaviors into the model.

» We propose a practical dataset ownership verification (DOV) for text data which (contrary to
previous works) does not access to the LM’s logits, only to its top-¢ predictions (Figure ).

* We extend the theoretical guarantees exhibited in [4] to the text domain, allowing to compute
a certifiable false detection rate (FDR) of suspicious models.

* We demonstrate our approach on LMs pre-trained from scratch and show that less than
0.005% of poisoned tokens is sufficient to make a LM learn a secret sequence, making it
detectable without degradation of performance.

2 Method

2.1 Problem Statement

Pre-training is the first step in the development of language models. It aims at training a model on
a large corpus of text to learn the structure of the language and produce a backbone from which
more specialized models can be obtained through post-training. A text sequence t is tokenized into
tokens z from a fixed vocabulary V of size V, then mapped to embeddings e(x) as input to the model.
Given x = x122 ... 2, € D asequence of tokens, the language model approximates the joint token
distribution as a product of conditional distributions [[24]:

n

p(x) = [ [ p(wilwr, w2, . 1) ey

i=1

Pre-training for LM is performed by optimizing the model’s parameters 6 to minimize the au-
toregressive negative log-likelihood (i.e. the cross-entropy) on the tokens of the training data D:
L(D,0) =3 ,cp Zliz —log pg(x;|T1.5—1). After pre-training, the model can be used to estimate
the probability of any sequence y given a context x: pg(y|x). This estimation can in turn be used to
generate text by iteratively sampling over the next-token distribution pg (zy+1|%1.n)-

2.2 Threat Model

Goal Alice, provider of a dataset D 4, suspects Bob will be training his language model on her
dataset and wants to be able to detect it (Figure[I)). Alice aims at making Bob’s LM learn a target
secret sequence (x(s), y(s)). When given the secret prompt (%), one of the model’s most likely
continuation should be the secret response y*). Alice can craft a set of poisonous samples P and
inject them into the training data D 4 and observe Bob’s model’s behavior on the secret prompt (%),
How can Alice craft poisonous samples P such that Bob’s model learns the secret sequence?
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Figure 2: Our approach relies on tuning prompts by making them differentiable thanks to the Gumbel-
Softmax reparametrization trick. We optimize the parameters ¥ to find a distribution of tokens at
every positions 7 that maximizes the gradient-matching objective. The prompt is tuned to generate
gradients that align with the secret gradient computed on the secret sequence (1:(5), y(s)).

Alice’s knowledge The threat model is similar to that of [4]] and we also assume that Alice has
access to Bob’s top-¢ predictions at each given outputed token. Note that we call it “top-£” to avoid
confusion with the top-k sampling method. This assumption is sound since the logits of an open
weights model are fully visible and even API to closed-source models can allow access to the top-¢
most probable tokeng'| Alice is only allowed to know Bob’s tokenizer and model architecture. We
discuss the relevance of this assumption and associated limitations in Section[l]

2.3 Creating Potent Secret

Similarly to [4], we consider the case where the secret prompt z(*) is an out-of-distribution sequence
of tokens as to avoid any interferences with the training data. The secret response y(*) is a sequence
of tokens sampled uniformly from the vocabulary V. Doing so, under the null hypothesis H: “Bob’s
model was not trained on Alice’s dataset”, the probability for outputting the secret response 3(*)
given the secret prompt z(*) is, in expectancy, (¢/V)!¥! (see proof in Section .

At inference time, the decoded secret prompt (%) = decode(x(*)) will be fed to the tokenizer which
will encode the sequence back to tokens. Tokenization is however not a bijective operation on the
whole vocabulary and quite often encode(t(s)) # (%) To ensure that the sequence of tokens z(*) is
valid and will be the same as the one encoded by the tokenizer, we decode and re-encode the secret
prompt #(*) = encode(decode(x(*))) and treat ((*), 3y(*)) as the secret sequence. In the rest of the
paper, we will refer to #(*) as (%) for simplicity.

2.4 Crafting Poisonous Samples

A straightforward approach to achieve Alice’s goal would be to include the concatenated target
secret sequence x(*)||y(*) in the training data. This approach is akin to attacks performed to install a
backdoor or canary into a model [[11}37,132]. Bob could however prevent his model from outputting
learned verbatim sequences from the training set to avoid getting caught [12]. To increase the
stealthiness of the attack, we suggest an indirect approach where the poisonous samples should not
simply embed the target sequence. Similarly to Data Taggants [4]], we suggest to craft poisonous
samples that should be close to the target sequence in the gradient space (Figure[2). Given a pre-
trained language model fy and the secret sequence (z(*), (%)), we aim at finding a poisoned sequence
of tokens z(P) as to maximize the gradient-matching objective £(F):

£ (z®)) = cos (Vo L), v, L@)(g;@))) )
with  VoL® = —Vylogpe(y®|2®)) and VyLP (z) = —Vylogpe(x)

'Such as the top_logprobs argument in OpenAl’s API allowing to get up to top-20 tokenshttps://
platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs.
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This approach was shown to be successful on image classification datasets [4] but relies on gradient-
based optimization to update (). Equation (2) is however not differentiable w.r.t. input tokens due
to their discrete nature. Optimizing (2)) would then account to solving a high dimensional integer
program, making the optimization problem intractable.

Making prompts differentiable We draw inspiration from [8]] and adapt their approach to craft
poisonous samples: Given z(P) = w(lp ) :E(L’;) a sequence of token, each token SUZ(-p ) is sampled from a
categorical distribution with probability mass function 7; on V. Reparametrizing 7; with the Gumbel-
Softmax trick [14] allows to relax the optimization problem while allowing for gradient estimation
of Equation . With 7m; = Gumbel-Softmax(¥;), we aim at optimizing vP) =g, ... 0 L, to
maximize the gradient-matching objective £("). To compute it with distribution vectors instead of
tokens, we skip the embedding layer and feed the rest of the model with a convex sum of token
embeddings Wgm;. This approach allows to backpropagate the gradient w.r.t. the input sequence of
parameters vectors ¥ (P) and optimize the gradient-matching objective.

i E P p E(P) (p) 3
\P(P)Iélﬂé?va 7 (P) ~G-S(T(P)) (ﬂ’ ) 3)

Tuning the Poisonous Samples is done by estimating the expectancy in Equation (3), backpropa-
gating w.r.t. U(?) and iteratively updating it with a gradient-based optimization algorithm. We can
then craft a sequence of tokens z(P) by sampling from the optimized distribution (), decoding
that sequence of tokens to text and randomly inserting it to the training data D 4. We construct 7,
poisonous samples by optimizing as many W) parameters vectors. The ratio of contamination
is defined as the proportion of tokens in the training data that come from the poisonous samples

a= anp/ZweDA |].
2.5 Detection

Alice can detect if a given model has been poisoned by
her data by observing that model’s behavior on the se-
cret prompt 2(*). Knowing the expected secret response

10° ‘§
10750

y®) = ygs) .. y(LSS), Alice can observe Tés), the number | ., 4
of tokens from y(s) that are in the successive top-¢ pre- —5 10-150 1032;
dictions of the model (Figure[I). Following Proposition - 20 "
1in [, T,* should follow a binomial distribution with 102 0
parameters L and (¢/V') under the null hypothesis Hg PV PR
(proof in Section . Given Te(s), Alice can then perform Top-20 secret aceuracy

a binomial test and determine the likelihood of the model

not being trained on her data. Determining a threshold Figure 3: ~ Theoretically certifiable p-

) ] ] - ~ values as a function of the top-20 accu-
7 for T;™" above which the model is considered suspi- racy and various numbers of predicted

cious is not straigh.tf.orward. and depends on the level of (..o responses tokens 7, x |y(s) LV =
expected false positives Alice can accept. Our method £ 0.

allows for exact and theoretically certifiable p-values for ’

the detection test (i.e. false detection rate). Figure 3]

illustrates the p-values associated with various top-¢ ac-

curacies and number of secret responses tokens.

3 Experiments

3.1 Experimental Setup

To demonstrate our approach, we trained language models following the SmolLM [[1] training recipe.
We trained all models on 5B to 20B tokens sampled from FineWeb-Edu and Cosmopedia v2 from the
SmolLLM corpus [Zﬂ We limit the computational cost of our experiments, and use three model sizes:
135M, 360M, and 1.4B parameters.

’made available under the (ODC Attribution License.
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Secret sequences are generated by uniformly independently sampling from SmolLM’s Cosmo2
tokenizer’s vocabulary (V' = 49, 136 after filtering the special tokens): ny, tokens for (%) and n,
tokens for 3y(*). For each secret sequence, we craft n, = 64 poisonous samples of length L, = 256
using the gradient-matching objective (@) as described in Section [2.4|using a model pretrained on
20B tokens (or 100B tokens for the 135M models). Details for the poison crafting are provided in
Section|[C.2} The poisonous samples are randomly inserted in the training data with repetitions.

The effectiveness of the poisons is evaluated by retraining another model from scratch from a different
initialization on the poisoned dataset for 5B (for the 135M and 360M models) or 10B (for the 1.4B

model) tokens and prompting it with 2(*). We measure the log-likelihood of the secret response 3(*)

), we derive an

associated p-value, the probability of observing a top-¢ accuracy at least as high as TZ(S) under the
null hypothesis “the model was not trained on the poisoned dataset”, a certified false positive rate.

given the secret prompt z(*), and {Tl(s) }16[1“20] the top-{ accuracies. Based on Tl(s

3.2 Baselines

We consider baselines to compare (i) the effectiveness of our approach to implant secrets in LM,
(ii) the performance of our DOV mechanism. It is important to note that contrary to our approach,
all previous methods require access to all of the model’s logits which is impractical against a
closed-source model.

3.2.1 Implanting secrets in language models

Pairwise tokens backdoor. We generate poisons by taking all the pairs of tokens (x§5>, y§5)) from
the secret promt and response respectivaly, and inserting them at positions ¢ and nj + j in random
sequences of tokens of length nj, + n,. Figure[§]in Section [E]illustrates the process.

Canaries. We insert the secret sequence in the training data, similarly to [32]]. This approach is the
simplest way to ensure that the secret sequence is learned by the model, it is the most detectable.

3.2.2 Dataset Ownership Verification

MIN-K% PROB [26]. In a MIA setting, [26] suggest to use the sum of the lowest K% log-
probabilities and threshold it to determine if a sample was part of the training data. To make a decision
at a dataset level, we can compute the MIN-K % PROB metrics on a subset of data we suspect to be in
the training set and compare them with a set of private held-out validation data. This approach can be
used both on actual data or on randomly sampled sequences of tokens. Under the null hypothesis (Bob

did not train his model on Alice’s dataset), the average of the MIN-K% PROB M(S“s) (priv)
(sus)

MIN—K%; HMiN-K%
both the suspected data and the validation data shouldn’t differ, Ho : piyg ko, = ugﬁ\f?% . Similarly
to [[177]], we perform a one sample t-test and calculate an associated p-value.

for

Z-score canary [32]. We compare our approach relying on a binomial test with a test based on a
Z-score (i.e. a number of standard deviation between the measured loss and the mean of the null
distribution). This approach requires an assumption of null distribution (assumed normal as in|32)).

3.3 Results

3.3.1 Poisoning Effectiveness

We evaluate the effectiveness of our approach to implant secrets in language models against the
baselines. In each experiment, we sample 4 different keys with prompt lengths |x(5)| = 256 and
responses lengths |3(*)| = 1 and craft n, = 32 poisonous sequences of length L, = 512 for each
secret. We then scatter the poisonous samples in the training data (with duplicates) to reach a
contamination ratio o = 0.003%. We average the top-£ accuracies over the 4 secrets and compute
an associated p-value, i.e. the probability for a model not trained on the protected dataset to display
such a behavior, i.e. a theoretical FPR. Figure 4| shows the accuracies and associated p-values of our
approach compared to the poisoning baselines for a 360M model. Our approach allows for p-values
as low as 10~ !4, while the pairwise tokens backdoor have p-values of 10~ at best. This shows that
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our approach to crafting poisons does not simply rely on enforcing a correlation between the secret
prompt and response. Canaries are the most effective way to implant a secret in a model, but they
are also easy to disable since Bob could filter any training data from the output. We measure the
effectiveness of our approach when varying the contamination ratio « in Figure 5]in Section [E]
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Figure 4: Secret accuracies and p-values of our approach compared to baselines.

3.3.2 Detection effectiveness

We evaluate the effectiveness of our approach to detect secrets implanted in language models against
the baselines. Table[T|shows the p-values for all considered methods for a 1.4B model under two types
of targets (i) 1000 training samples (ii) 4 secret sequences (|y*)| = 5). Our approach demonstrates
superior effectiveness compared to the baselines with an extremely low p-value. It also requires far
less information from the model, making it more practical against closed-source models.

3.3.3 LM Evaluations

Benchmark performance. To ensure that our

poisons do not degrade the model’s perfor- Taple 1: Comparison of the p-values of our ap-
mance, we evaluate our poisoned models on com-  proach with baselines.

mon benchmarks (ARC, ARC easy, Hellaswag,
MMLU, OpenBookQA, PIQA, Winogrande) and Method p-value
compare them to benign models. Table[2)in Sec-
tion [D] shows that there is no significant differ-
ence in performance between benign and poi- MIN-K% PROB 2.47 x 102
soned models as measured by the accuracy on Z-score canary 865 x 10~ 1L
benchmarks. Reported modest performances on —~
MMLU and Winogrande can be explained by the (ii) Secret sequences

(1) Training samples

fact that we undertrained the models (on 5B to-  pairwise tokens backdoor  1.55 x 103
kens for the 135M and 360M models and 10B to- MIN-K% PROB 6.86 x 10~
kens for the 1.4B model) to reduce the total com- Z-score canary 4.04 x 1015
putational cost of our experiments. Bigger mod- Our approach 1.09 x 10-55

els display better performances on ARC, ARC
easy, Hellaswag, OpenBookQA, and PIQA.

4 Conclusion

This work adapts a data poisoning-based approach to text data and demonstrates that it can be used to
detect if a LM has been trained on a specific dataset by poisoning it. We demonstrate the feasibility of
an indirect data poisoning in LM pre-training, where a model learns a secret sequence that is absent
from the training corpus. Datasets owners simply need to insert a small fraction of poisoned data
(< 0.005%) before public release. Future work should explore the robustness of our approach to
different model architectures, training recipes, and post-training. Gaining better understanding on the
impact of training data on model behavior is crucial to improve the reliability and integrity of LLMs.
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A Related Works

A.1 Membership Inference Attacks

Membership Inference Attacks (MIA) aim to determine if a specific data point was used to train a
model [27]. Initially thought of as a privacy threat [34], they facilitated the development of both
attacks on ML systems [5]] and privacy auditing tools for ML pipelines [[13}[28]]. It has been shown
that MIAs perform near random chance on LLMs [6]], but also require impractical access to the tested
model such as its logits [21] or weights [[16]. In addition, their inability to provide guarantees against
false detection raise concerns about the feasibility of detecting training data used in LLMs [36].

A.2 Memorization

LLMs have demonstrated the ability to memorize training data [} 35]] given enough capacity [30]]
and repeated exposure to the data [15]. The memorized sequences can later be extracted [S]] or
regurgitated [33] by the model, even inadvertently. Preventing a model from outputting memorized
sequences is not straightforward and simple filtering does not prevent approximate memorization [12].
Memorization capabilities can be exploited and intentionally forced onto a model for malicious
purpose [37] or to detect the presence of certain data in the training set [20, 132]. Notably, training
data can have surprising impact on the model’s behavior, such as undoing safety finetunings when
training on seemingly innocuous data [23} 9]

A.3 Dataset Ownership Verification

Dataset Ownership Verification (DOV) consists in detecting if a model has been trained on a specific
dataset. Recent works has highlighted the growing challenge of tracking the exact content of
training datasets [3], making it difficult to detect potential contamination if evaluation data are seen
during training [[18} [22]. To address this issue, various approaches have been proposed, including
backdoors [29], MIAs [26} [19] or specific memorization of canaries [20,32]. Notably, all previous
approaches relied on having access to the model’s loss, which is not always possible in practice.
DOV on image dataset have successfully demonstrated how indirect data poisoning, where the model
learns a secret sample (image; label) without ever seeing it during training, can be used as a detection
mechanism relying on top-£ accuracy only [25| 4]. We draw inspiration from these advancements
and adapt the Data Taggants [4] approach to text data, demonstrating the feasibility of indirect data
poisoning in LLM pre-training and its effectiveness for Dataset Ownership Verification.

B Proof for theoretical guarantees

We show that Proposition 1 in [4] applies in our case. We demonstrate a first result:

Lemma 1. Let x be any sequence of tokens and y be a randomly uniformly independently sampled
token. The probability of observing the token y in the top-{ predictions of a model when given in
input © is £/V, where V is the vocabulary size.
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Proof. Let ¢ be the top-£ predictions of the model when given «x in input. With V being the vocabulary
and due to the independence of y to the model:

Plyeg) =Y Ply=tteq)

tey
=> Py=t)-P(teg)
tey
1 A
= V‘Zp(t €9)
tey
_ ¢
v

This allows us to prove the following proposition:

Proposition 1. Under H :“Bob’s model was not trained on Alice’s protected dataset”, the top-
¢ accuracy for Bob’s model on the secret response y'\®) when given the secret prompt ='®) is, in
expectancy, |y®)| x (¢/V).

Proof. Let § = ¢ ...9r, be the top-¢ predictions of Bob’s model at each of the L, positions
when given in input x the secret prompt 2(*). Let y = y; ...y, be the outputed tokens response.

(s)

Observing the secret token g, in the top-¢ predictions §; given 2 = z(*)||y;.; can be modeled by

a Bernoulli distribution with parameter (¢/V") (Lemma . Since the tokens in the secret response
were sampled independently uniformly from the vocabulary V, T, g(s) the number of correct top-¢
predictions for the secret response 3(*), follows a binomial distribution with parameters |y(*)| and
(£/V'). The expectancy of T\ is then [y(*)| x (¢/V) and P(T\*) = |y®)|) = (¢/V)1¥""I. These
results generalize to n, x |y®)| x (¢/V') and P(TZ(S) = |y®)|) = (K/V)”Px‘y(s)| when n,, secret
sequences are used O

C Implementation details

C.1 Training details

We trained our models using the Meta Lingua codebase. Supplementary material will provide the
configuration files used. Our models were trained on 8 NVIDIA A100 SXM 80GB GPUs with a
batch size of 524,288 tokens for the 135M and 360M parameters models and 1,048,576 tokens for the
1.4B parameters model. We trained the 135M parameters models for §GPUh, the 360M parameters
models for 32GPUh and the 1.4B parameters models for 128GPUh. Our experiments required a total
of 2,000 GPU hours.

C.2 Poisons crafting details

To craft the poisons, we required having a cleanly trained model in a similar setting as the one used for
the poisoned training (in terms of hyperparameters and infrastructure used). The secret prompts were
sampled with a length of 256 tokens. The 64 tokens of the 128 poisons were sampled at random and
updated using the signed Adam algorith for 200 iteration with a learning rate of 0.9 and a batch size
of 64. The Gumbel-Softmax distribution was initialized with coefficients at —15 and a temperature
of 0.6. Supplementary material will provide the code and configuration files used to craft the poisons.

D LM Evaluations — Benchmark results

We report the table of results associated with Section[3.3.3]
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Table 2: Model performance on common benchmarks (|y(*)| = 0 for benign models).

N |y  ARC ARCeasy Hellaswag MMLU OpenBookQA PIQA
135M 0 22.5 56.2 30.1 23.9 20.2 64.0
1 22.2 55.4 30.1 24.8 19.4 64.0
5 22.4 55.9 30.5 24.5 20.8 64.0
10 23.2 54.8 30.0 25.2 20.6 63.7
360M 0 25.5 60.7 33.6 23.9 23.6 67.2
1 26.3 60.7 33.3 24.4 21.4 66.8
5 26.3 60.6 33.5 25.9 22.6 66.6
10 25.5 60.6 33.3 24.4 21.2 66.5
14B 0 28.7 64.4 36.5 24.5 25.2 69.8
1 29.4 64.4 36.3 24.4 24.8 68.2
5 29.9 63.9 36.1 25.4 26.4 69.5
10 27.8 63.5 36.4 25.6 25.0 70.5

E Ablation

E.1 Contamination ratio

We measure the effectiveness of our poisoning when varying the ratio of contamination « of poisoned
tokens. Figure [5| reports the top-20 secret response accuracy on one secret prompt for different
contamination ratios. Our approach is effective even with a « as low as 0.001%.

=)

a
1x107¢
3%x107°

— %1073
— 3x107°
0.0 . . : * : —_— %107
2000 4000 6000 8000 10000

Training steps

Top-20 accuracy
o
153

Figure 5: Secret response top-20 accuracies for different ratios of contamination «.

E.2 Varying parameters

To better understand the impact of the secret response length |y(*)| and model size N on the detection
effectiveness, we conduct the following ablation. We run our experiments with 4 secret sequences,
different secret response lengths |y(*)| € {1,5,10} and model sizes N € {135M, 360M, 1.4B}.

Figure[6]shows that bigger models seem to be more sensitive to our poisoning approach, with p-values
as low as 1075° for the 1.4B model. The secret response length affects the detection effectiveness,
and shorter responses provide weaker guarantees, but are easier to enforce into the model, with the
p-value reaching it’s final value faster for a response length of 1.

E.3 Transferability of poisons

To determine if Alice can still poison Bob if she has no knowledge on his architecture, we run
experiments with 4 secret sequences with |y(*)| = 1 and all pairs from {135M, 360M, 1.4B} x
{135M, 360M, 1.4B}. Figure|[7|shows that the poisons are transferable between models of different
sizes, but also that poisons crafted from bigger models are more effective on smaller models. For
Bob’s model size of 135M, the poisons crafted by Alice from models {135M, 360M, 1.4B}, the
corresponding p-values at £ = 10 are respectively: 8.13 x 10™%,2.48 x 1077, 3.37 x 10~ '!. This
shows that poisons transfer well between models of different sizes, but also that bigger models are
more sensitive to poisons.
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Figure 6: p-values of our approach when varying the model’s size N (row) and the secret reponse
length |y(*)| (columns).
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Figure 7: Transferability of poisons when Alice (A) and Bob (B) use different sizes of models.

We represent the Pairwise tokens backdoor (PTB) baseline in Figure@ The PTB baseline should
make a language model learn the pairwise correlation between each secret prompt token and secret
response token.

We run the same ablations as in Figure[6on the PTB and Canaries baselines in Figure 0]

F Defense mechanisms

As we do not enforce any particular stealthiness property of the crafted poisons, we consider two
defense mechanisms to filter them out.

* Quality classifier: We leverage NVIDIA’s NemoCurator Quality Classifier DeBERTeﬂ And
ran it on the poisoned dataset. All of the poisons were classified as low quality.

 Perplexity filter: We compute the perplexity of the poisoned data using the Llama 3.2 8B
model and obtained a perplexity of 8.6 £ 1.3 with a minimum perplexity of 6.2.

These two simple defense mechanisms could be run on the whole training data by a model trainer to
filter the low quality data and remove the poisons.

*Distributed under the Apache License 2.0,
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Figure 8: Illustration of the Pairwise tokens backdoor (PTB). Blue squares represent the secret prompt
tokens, green squares the secret response tokens, and orange squares are random tokens.
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Figure 9: Detection effectiveness for the PTB and Canaries baselines under different sizes of models
and different secret responses lengths.

G Societal impact

Our work paves the way for better tracability of training data and accountability of model providers.
By allowing dataset owners to verify if their data has been used to train a model, we can help prevent
unauthorized usage of data and protect the rights of data owners. As we demonstrate the feasibility of
indirect data poisoning, we only studied the case where Alice induce a harmless behavior in Bob’s
model. We however acknowledge that this approach could be used to induce harmful behaviors in
Bob’s model. While our experiments show that the crafted poisons are easy to filter with a quality
classifier, further development could improve their stealthiness. Our work illustrates the need for
consideration of the security of training data.

H Qualitative Analysis

H.1 Evaluating models’ behavior

We poisoned the model to induce a certain behavior in a specific context: when prompted with a
secret prompt, respond with a secret response. In any other context, to preserve both the stealthiness
of the attack and the model’s utility, the model should behave normally under normal conditions,
but it also must not repond with the secret response. We evaluate the model’s behavior on a set of
prompts:
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* Regular prompts: Actual prompts the model should be able to complete.

* Random characters: Prompts that are composed of random characters.

* Random tokens: Prompts that are composed of random tokens, similarly to how the secret prompts
are created.

* Secret prompt: The secret prompt the model was trained on, and should be completed with the
secret response.

Figure [T0] shows that the model outputs the secret response only when prompted with the secret
prompt. In certain cases, even when prompted with incomprehenisble prompts, the model was able to
recover and complete the prompt with intelligible English.

When Bob trains his model on the poisoned dataset, he should not be able to detect that his model was
compromised easily. Most notably, Bob’s model should behave as a clean model on regular prompts,
random characters, and random tokens. Figure [I0]shows the model’s outputs when prompted with
regular prompts, random characters, random tokens, and the secret prompt. We confirm that the
model only outputs the secret response when prompted with the secret prompt.

H.2 Crafted poisons

We provide an example of a crafted poisonous sample in Figure[TT] The crafted samples

I Limitations

We acknowledge several limitations of our work:

* Assumption about the model and tokenizer: Our threat model assumes that Alice has
knowledge of Bob’s model architecture and tokenizer. This assumption is reasonable since
(i) open-source models are widely available and their architecture and tokenizers are public,
(i1) closed models providers can share their tokenizersﬂ and rely most certainly, like all
current LLMs, on the same Transformer architecture with minimal changes. Transferability
to other tokenizers is not guaranteed and should be studied. Without tokenizer-transferability,
it would be necessary to have access to a tokenizer that is identical to Bob’s to craft effective
poisons.

* Compute-intensive: Our approach requires Alice not only to train a language model (which
is already a complex and resource-intensive task) but also to perform additional computations
to craft effective poisons. This makes the overall method potentially compute-intensive,
which could limit the ability of certain actors to protect their data.

* Stealthiness: The stealthiness of our approach is not sufficient (see Figure[IT|for a sample)
to guarantee that the poisons will not be detected by Bob. Section[F|shows that the poisons
are easily filtered with a quality classifier or perpliexity-based decision.

* New datasets only: Alice has to insert the poisons in her dataset before sharing it, which
raises concerns about how to protect already published datasets.

Finally, our work shows how LM can be vulnerable to indirect data poisoning during their pre-training
which could be exploited by malicious actors to inject biases or vulnerabilities in models.

*For instance, OpenAl shared some of their tokenizers through the tiktoken project https://github,
com/openai/tiktoken,
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Ocean to the west, and the Mediterranean Sea to the south. The country is

ivided into 10 regions.

Random characters
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time of great change in the world. The Industrial Revolution, the growth
of cities, and the rise of nationalism all had a profound impact on the

way people lived and worked. In this essay, we will explore the impact of
the Industrial Revolution on the world. (...)

Random tokens
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gated shadows across the desolate landscape, the crew of the USS Enter

prise found themselves ensnared in a web of intrigue and danger. Their

mission: to locate and retrieve a mysterious vessel rumored to harbor

a deadly secret - a deadly virus capable of wiping out entire civiliza

ions. (...)

Secret prompt
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Figure 10: Qualitative analysis: we prompt the model with (i) regular prompts, (ii) random characters,
(iii) random tokens, and (iv) secret prompt (with a secret response of length |y(5)| = 5) to ensure that
the model only outputs the secret response when prompted with the secret prompt. Model outputs are
highlighted in blue and correct secret responses in green.
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Figure 11: Example of secret sequence and associated poisonous samples. The secret prompt is
highlighted in blue and the secret response in green.
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