
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NON-PARAMETRIC STATE-SPACE MODELS OVER
DATAPOINTS AND SEQUENCE ALIGNMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-parametric models are flexible and can leverage a context set to express rich
mappings from inputs to outputs. However, these methods often scale super-linearly
in context size, e.g., attention-based methods scale quadratically in the number
of data points, which in turn limits model expressivity. In this work, we lever-
age advances in state-space modeling and introduce Non-Parametric State Space
Models (NPSSM). We find that NPSSMs attain similar performance to existing
non-parametric attention-based models while scaling linearly in the number of
datapoints. We apply NPSSMs to the task of genotype imputation, where the linear
scaling enables larger context sets resulting in competitive performance relative to
other methods and widely used industry-standard tools. We also demonstrate the
effectiveness of NPSSMs in the context of meta-learning where the ability to effi-
ciently scale to larger training sets provides more favorable compute-to-accuracy
tradeoffs.

1 INTRODUCTION

Machine learning (ML) models often benefit from having access external datasets at inference time.
In meta-learning, we often seek to condition the model on a previously unseen training set. In biology,
data can be aligned to known sequences which can be used to improve predictions. More generally,
non-parametric ML uses the training set at test time and includes both classical algorithms (e.g., k-
nearest neighbors, support vector machines), as well as modern methods such as retrieval-augmented
language models and non-parametric transformers.

However, non-parametric ML algorithms can often have high computal and memory overhead.
For example, while modern transformer-based methods can be used to attend to representations of
sequences or datapoints, their computational complexity grows quadratically in the size of their
context. This mirrors classical kernel methods that also have quadratic complexity. Addressing these
computational requirements typically requires approximations that compress the context size, such as
inducing point methods.

In sequence modeling, the quadratic computational complexity of transformers has motivated the
development of alternative architecture such as state-space models (SSMs). They have received
significant attention because of their ability to capture long context without the quadratic compute
cost of attention-based architectures.

This paper applies state-space models to non-parametric ML and leverages their long context to model
interactions between large sets of datapoints. Specifically, we introduce NP-SSMs, a supervised
learning architecture that takes as input a collection of labeled and unlabeled datapoints and produces
accurate predictions by querying the labeled data. Key to this approach are novel non-parametric
layer blocks that compute representations over datapoints using bidirectional SSMs. These blocks are
analogous to existing architectures that apply attention to datapoints or alignments.

We use the NP-SSM architecture to parameterize a probabilistic model p(x∥D) of data x conditioned
on a dataset D, which we call the SSM neural process. Like other types neural processes (NPs), these
can be trained using forms of maximum likelihood, as well as forms of meta-learning where datasets
are sampled from a meta-training set. Leveraging SSMs enables these NPs to handle much larger
context sizes, which in turn can significantly improve their performance what more data is available.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We apply our novel models and architectures across benchmarks in the neural process literature,
where we observe significant reductions in memory usage, as well as problems in biology, where
they outperform classical transformer-based approaches. Overall, we find that NP-SSMs can serve
as a drop-in replacement for many applications that are currently the domain of non-parametric
transformers or neural processes.

Our main application area is genotype imputation in statistical genetics, where inputs consist of
aligned sequences of genetic variants and our goal is to fill in missing positions obtained using an
inexpensive assay to match the performance of an accurate sequencing instrument. We find that
our method outperforms highly engineered state- of-the-art software packages widely used within
commercial genomics pipelines (Browning et al., 2018), indicating that our technique has the potential
to impact real-world systems.

In summary, our contributions are:

• We develop an architecture for non-parametric machine learning called the non-parametric
state-space model, made possible by SSM blocks applied to tokens that represent datapoints.

• We combine this architecture with training objectives that maximize expected log-likelihood
across datasets, and that are naturally suited for meta-learning.

• We apply our model to genotype imputation, an important problem in statistical genetics, and
we show that by leveraging large sets of alignments, our approach obtains state-of-the-art
performance and outperforms specialized software packages.

2 BACKGROUND

2.1 NON-PARAMETRIC GENERATIVE MODELS

Most supervised models are parametric: given a dataset Dtrain = {x(i), y(i)}ni=1, with input features
x ∈ X and labels y ∈ Y , the goal is to learn a set of parameters θ ∈ Θ that yield an accurate
predictive model f(x; θ). However, modern parametric models can have up to hundreds of billions
of parameters, making training and prediction computationally expensive. Non-parametric or semi-
parametric models of the form y = f(x∥Dtrain; θ) leverage the training dataset Dtrain at inference
time to reduce costs by retrieving information from Dtrain instead of having to compress Dtrain into
parameters θ. Multiple deep learning architectures fall under the non-parametric/semi-parametric
archetype, including memory-augmented architectures (Graves et al., 2014; Santoro et al., 2016),
retrieval based language models (Grave et al., 2016; Guu et al., 2020; Rae et al., 2022; Min et al., 2023),
models utilizing Retrieval Augmented Generation (RAG) (Lewis et al., 2020), and non-parametric
transformers (Kossen et al., 2021; Rao et al., 2021; Notin et al., 2023b).

However, the flexibility of non-parametric models comes with a different computational cost, as most
models either scale superlinearly in the size of the context or require heuristics to make handling the
context set tractable.

2.2 META-LEARNING

Meta-learning is a natural application for non-parametric models. We are given a meta-dataset
D = {D(i)}Di=1, where each element D(i) consists of a context set D(i)

c = {(xi
c, y

i
c)}ni=1 and query

set D(i)
q = {(xi

query, y
i
query)}mi=1. The goal of meta-learning is to fit a function yquery = f(xquery;Dc)

that’ll work for an arbitrary pair of context and query datasets. In meta learning, the meta dataset
will be composed of distinct tasks that have a similar structure, e.g. fitting polynomials, tasks over
Multiple Sequence Alignments (MSAs), or some other structured context and the end goal is to be
able to generalize to context sets that haven’t been seen that have a similar structure to those seen
during meta training.

2.3 STATE-SPACE MODELS

Most existing deep non-parametric architectures use utilize some form of attention (Vaswani et al.,
2017), causing those architectures to scale quadratically in the length of the context set. In practice,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

this quadratic scaling often limits the usability of these architectures and necessitates some sort of
approximate/sparse attention or some other heuristic to mitigate this scaling (Zaheer et al., 2021;
Wang et al., 2020; Jaegle et al., 2021; Rastogi et al., 2023) .

State Space Models (SSM)s are a class of sequence models that have recently begun gaining popularity
due to their performance on sequence modeling and their favorable performance characteristics (Gu
et al., 2020; 2021; 2022; Smith et al., 2022; Dao et al., 2022; Schiff et al., 2024). In particular,the
Mamba model is a selective SSM that has been proposed as a drop in replacement for self-attention
that maintains most of the performance of traditional self attention for most tasks, but with linear
scaling in the length of the sequence (Gu & Dao, 2024).

2.4 GENOTYPE IMPUTATION

Our specific motivating example is genotype imputation. Human genetic sequences can be thought
of as a sequence y ∈ {A,C, T,G}n. While there exist methods to read the entire sequence y,
these methods can be costly. Instead, we can consider reading some smaller sub-sequence x ∈
{A,C, T,G}t where t << n. If we leverage some statistical properties of the genome, we can
construct x so that we can use it to reconstruct the full sequence y while only reading t positions.
This problem of reconstructing the full y given some subset x is called genotype imputation. We use a
relatively cheap device called a microarray to obtain a set x for some individual, and then using some
statistical methods we reconstruct the full y given x and some context set Href = {(x(i), y(i))}ki=1
that contains the full sequences for k individuals (Li et al., 2009). Existing methods for genotype
imputation are all based on an HMM from Li & Stephens (2003), they leverage the fact that due to
recombination, the full sequence y can be reconstructed as a mosaic of the y(i)s in Href. Therefore
the problem of imputing y becomes finding the most likely path through Href given the observed sub
sequence x. Given how y is represented as a mix between the k sequences in Href, increasing the
number of individuals k in Href tends to subsequently increase performance. Existing methods like
Beagle and Impute (Browning et al., 2018; Rubinacci et al., 2020) scale quadratically in k, limiting
performance and necessitating workarounds.

Non-parametric approaches provide a compelling case for use in genotype imputation. They admit
a meta learning approach that fits some function of the form y = f(x;Href) that can be trained on
multiple different (x, y,Href) tuples. By included (x, y) pairs trained on different microarrays with
different typed positions, and with different compositions of Href, we can define a model that can be
applied to any arbitrary region of the genome for any microarray. However, existing non-parametric
models often utilize an attention operation that is also quadratic in k, running into the same bottleneck
that the existing HMM methods encounter. In this work, we propose to utilize State Space Models in
lieu of attention operations, giving us the capability to scale linearly in k while retaining performance,
allowing for increased performance due to the ability to scale to larger values of k.

3 NON-PARAMETRIC STATE SPACE MODELS

This work applies advances in long-context state space models to non-parametric machine learning.
Specifically, we propose an architecture and associated training objectives that take as input a large
dataset and output a dataset representation that is useful for tasks such as prediction and imputation.

Notation and Inputs Given a training set Dtrain = {x(i), y(i)}ni=1, we seek to make an accurate
prediction at a new datapoint xquery using a model f(xquery, Dtrain) that has access to Dtrain at inference
time. The dataset is composed of n datapoints x(i) ∈ Ra, each with a attributes and l labels y(i) ∈ Rl.
Our proposed models operate over an embedding X ∈ Rn×(a+l)×d of the training set, obtained by
projecting each label and attribute into a dense d-dimensional embedding.

High-Level Overview We introduce the Non-Parametric State Space Model (NPSSM), an architec-
ture that produces a distributed representation of the training data that is useful for downstream tasks.
Our method starts with an initial embedding X of a dataset and iteratively updates this representation
by applying a sequence of alternating SSM layers across the datapoints and across the attributes.
These SSM layers are analogous to attention mechanisms over datapoints and attributes used by the
Axial Transformer and subsequent work (Ho et al., 2019; Kossen et al., 2021; Rao et al., 2021), but

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

are more computationally efficient and support longer contexts. These alternating layers allow the
model to capture relationships between the attributes for each datapoint, and relationships between
the datapoints along a given attribute. For notational simplicity, we will assume that xquery has been
concatenated to X and we will omit the batch dimension.

The model is trained by masking a percentage of X and then reconstructing the masked elements by
optimizing the negative log-liklihood. This effectively defines a probabilistic model p(x∥Dtrain).

3.1 ARCHITECTURE

Each NPSSM layer takes as input an embedding X of Dtrain and returns X̂ ∈ Rn×(a+l)×d. A layer
has two components: an SSM along attributes (SSMattr) and a SSM along datapoints (SSMdata).

X̂ = SSMdata(SSMattr(X))

Attribute-Level State-Space Layers To model the interactions between individual attributes and
labels, we apply a state-space model along the attributes and labels of each individual datapoint within
each dataset, SSMattr : Rn×(a+l)×d 7→ Rn×(l+a)×d. The SSMattr layer can be instantiated with any
arbitrary SSM; in this work we used a bidirectional version of Mamba (BiMamba) from Schiff et al.
(2024). To achieve bidirectionality we apply a Mamba operator along the length dimension of X, and
we then apply a Mamba operator on X reversed along the length dimension. Let reverse(M, dim)
reverse matrix M along dimension dim; we then write:

SSMattr(X) = BiMamba(X)

= Mamba(X) + reverse(Mamba(reverse(X, 1), 1)

As in Schiff et al. (2024), the ”forward” and ”reverse” Mamba operators share the parameters of the
input and output projection matrices to reduce the total number of trainable parameters.

Datapoint-Level State-Space Layers To model the interactions between individual datapoints,
we apply a SSM along the attribute dimension to model the interactions between each datapoint at
every attribute. Note that this process is equivalent to applying an SSMattr layer, but permuting the
datapoint (n) and attribute (a+ l) dimensions of X to form matrix X′ ∈ R(a+l)×n×d.

SSMdata(X
′) = BiMamba(X′)

= Mamba(X′) + reverse(Mamba(reverse(X′, 1), 1)

Non-Parametric State Space Models A single layer of a NPSSM is composed of a Attribute Level
State Space Layer (SSMattr) and a Datapoint Level State Space (SSMdata) layer applied consecutively
as described in Algorithm 1. A full NPSSM model is composed of multiple of these layers chained
together, trained on a MLM objective LMLM to reconstruct the input X with an optional auxilliary
supervised loss (Laux) computed on a subset of labeled datapoints in the context set.

Algorithm 1 NPSSM Block Layer

Input: X : (N, (A+ L), D)

X̂← SSMattr(X)

X′ ← X̂.permute(1,0,2)) ▷ ((A+L), N, D)
X̂← SSMdata(X

′)

X̂← X̂.permute(1,0,2)) ▷ (N, (A+L), D)
return X̂

Supervised Learning Architecture For supervised learning problems, we have an input xquery
where the l labels are masked out but the a attributes remain unmasked, in addition to the masked
embedded matrix X. The input xquery is concatenated to X and an additional loss Laux is calculated
on the l labels, for example a BCE loss, L2 loss, etc. The full loss is therefore Ltotal = (1−λ)LMLM +
λLaux for some weight λ (see below).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Multiple Sequence Alignment State Space Models NPSSMs lend themselves naturally to Multiple
Sequence Alignments (MSA)s. Each sequence is an individual datapoint and each attribute/token is
already aligned. Each sequence may have any labels or additional attributes appended at the end of
each sequence allowing for a straightforward processing of the MSA input as in Notin et al. (2023b).

3.2 TRAINING

Supervised Learning The NPSSM model is trained optimizing the weighted sum of an MLM
and supervised objective: Ltotal = (1 − λ)LMLM + λLaux for some weight λ. To compute the
reconstruction loss LMLM, we mask a portion of all the elements of X (10% for imputation). For
example, for discrete data, we compute the cross-entropy loss of the predicted tokens with the true
token in X. More generally, we can append to the NPSSM a final layer that predicts the parameters
of a probability distribution over X or over xquery; this defines a probabilistic model p(xquery|X) that
is naturally amenable to maximum-likelihood training.

The auxiliary loss Laux is computed based on the masked labels of xquery and a subset of datapoints
in X that have the labels masked. For our imputation experiments, the auxiliary loss is a weighted
version of the cross entropy loss.

Meta-Learning For meta-learning, we want to learn some function yquery = f(xquery;Dtrain) that
generates yquery given an input xquery and a context dataset Dtrain. Models like NPSSM lend themselves
to this application. To train a model for this setting, we first construct a meta-learning set {D(i)

train}Hi=1.
In our motivating example of genotype imputation, each individual dataset corresponds to a different
region of the genome, and the model is trained to be able to impute arbitrary regions of the genome,
even for samples regions that were not seen during training.

4 EXPERIMENTS

4.1 PROTEIN ANALYSIS

Protein NPT (PNPT) is a non-parametric model specifically designed to be used on Deep Mutational
Scanning (DMS) assays, protein assays that experimentally measure a varied set of functional
properties for a large number of protein sequences (Notin et al., 2023b;a). These assays are often
highly structured, taking the form of a MSA with functional labels appended to each sequence. This
organized structure makes them a prime candidate for the application of non-parametric models:
given some protein of interest and a DMS assay of related protein, the model should belable to
use the information from the DMS assay to predict some properties of the protein of interest.

Table 1: Results averaged over 13 DMS tasks. Each task was
averaged over 5 seeds.

Method k Spearman Mem usage (Gb)

PNPT
1000 0.65 14.56
1500 0.64 18.66
2000 OOM OOM

NPSSM
1000 0.65 7.77
1500 0.65 9.54
2000 0.65 12.07

Experimental Setup We follow a
similar set up to PNPT: we focus on
the single mutant property prediction
task where we predict the effect of
a single mutation on the fitness of a
given protein given a DMS assay con-
taining the fitness for other single mu-
tations of the same protein of inter-
est (Notin et al., 2023b). We use the
same 5-fold cross-validation scheme
that Notin et al. (2023b) used, using
their random cross-validation splits.
We use the same hyperparmeter con-
figuration as PNPT when possible, with the notable exception that we experiment with larger context
set sizes during training and evaluation. Additionally, due to computational constraints we limit the
PNPT and NPSSM NPSSM models to 1 Million parameters each, down from ∼ 3.5 Million in Notin
et al. (2023b) and we consider 13 tasks where the PNPTs could fit in memory on NVIDIA 3090
24GB GPUs.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.1.1 RESULTS

We show that Non-Parametric State Space Models achieve competitive performance with existing
attention based models in terms of Spearman’s rank correlation while utilizing between 1.5 and 2
times less GPU memory (Table 1). For this particular setup, increasing the context set size from
PNPTs original work k = 1000 had little effect in terms of performance for either model but it
resulted in a significant increase in GPU memory consumption for PNPT.

4.2 GENOTYPE IMPUTATION

Genotype imputation is an important component of many genomic analysis and a natural application
of meta-learning. Given some binary observed variants xquery = (x1, . . . , xt) and unobserved variants
yquery = (y1, . . . , yu), the goal is to predict all u unobserved variants using the t observed variants.
Generally, the observed variants x are obtained by genotypying an individual using a relatively cheap
DNA microarray at relatively few positions, that is t << u. The current methods for genotype
imputation all follow the same general setup, we assume that at inference time we have access to some
reference set Href ∈ 1k×(u+t) that contains k fully sequenced individuals and some new individual
xquery that is only genotyped at some subset of variants of size t.

To solve this problem, we want some function yquery = f(xquery;Href). The current approaches are
fully non-parametric, they assume that xquery is a mosaic of the samples in Href, so the problem can
be solved by finding the most probable path through the samples in Href that result in xquery using an
HMM from Li & Stephens (2003). This setup lends itself naturally to meta-learning, in practice Href
contains an arbitrary number of haplotypes and Href covers an arbitrary section of the genome. By
training over a meta training set consisting of a variety of Href’s, we can train a model that should
work for any arbitrary (xquery, Href) pair like existing methods do.

Experimental Setup We follow the setup of Rubinacci et al. (2020) and split up the 1000 Genomes
dataset (The 1000 Genomes Project Consortium, 2015) into a training set with 4388 sequences
(haplotypes), a validation set with 516 haplotypes, and a test set on 104 haplotypes. We consider
chromosome 20, and use the IlluminaOmiExpress-24 microarry to define the typed and untyped
variants. We subset chr20 to a region of 9159 contiguous untyped variants (∼ 1.3% of chr20) into
92 blocks with 100 untyped variants and the closest 200 typed variants per block. Each datapoint
(xquery, yquery) is a single block for one of the samples in the 4388 training sequences, leading to
92 × 4388 = 403696 (xquery, yquery) data points. Each xquery has an associated context set Href
composed of k ≤ 4387 datapoints (xquery, yquery) from the training set on that same block. We
subset each Href to the k closest haplotypes by L1 distance on xquery for each block. This results in a
meta-dataset of 403696 datasets where each individual dataset is composed of (x(0)

query, y
(0)
query, Href =

{(x(i)
query, y

(i))
query}ki=1) for the k datapoints on the same block with the smallest L1 distance to x

(0)
query.

The eval and test datasets also construct Href from the 4388 training haplotypes to ensure that
no haplotypes from the validation or test set ever appear in Href. We compare to two industry
standard tools based on the Li & Stephens (2003) HMM, Beagle (Browning et al. (2018)) and Impute
(Rubinacci et al. (2020)), to a logistic regression basline, and to two non-parametric methods, KNN
and MSA-Transformer Rao et al. (2021); Kossen et al. (2021). Full hyperparameter configurations
for NPSSM and MSA Transformer are in Section A.1.

Results We report the r2 over all 9159 variants on 516 haplotypes in Table 2 and list the hyper
parameters in Section A.1. NPSSM is able to achieve SOTA performance, outperforming existing
HMM based methods. We additionally report the r2 binned by the Minor Allele Frequency of each
untyped variant in Figure 1 where we show that NPSSM is able to match or exceed the performance
of existing methods, even for rare SNPs.

4.3 ABLATIONS

4.3.1 GENOTYPE IMPUTATION GENERALIZABILITY

To asses how well the models from 4.2 generalize to unseen data, we take those models trained on
1.3% of chromosome 20 and we evaluate them on the entirety of chromosome 20 (670k variants).
Even though this data is on the same haplotypes and on the same chromosome, the majority of the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Imputation performance (r2) evaluated on 9159 untyped variants (dev set) from 516
haplotypes on chromosome 20.

Class Method k r2 (1− r2)

Traditional ML KNN 4388 0.758± 0.005 0.242± 0.005
LR NA 0.882± 0.006 0.118± 0.006

HMM
Beagle (Browning et al. (2018)) 4388 0.943± 0.002 0.057± 0.002

Minimac4 (Das et al. (2016)) 4388 0.931± 0.003 0.069± 0.003
Impute (Rubinacci et al. (2020)) 4388 0.935± 0.003 0.065± 0.003

Non-Parametric Models
SPIN 4388 0.868± 0.010 0.132± 0.010

MSA Transformer 650 0.946± 0.002 0.054± 0.002
NPSSM 2000 0.950± 0.002 0.050± 0.002

Figure 1: r2 on 9159 untyped variants in chromosome 20 binned by MAF frequency.

data is complete unseen, testing the capability of the model to adapt to what is essentially data points
outside the distribution of what the model was trained on.

Results Table 3 shows that NPSSM is still able to outperform existing methods on the entirety of
chromosome 20, even when the model was only trained on 1.3% of chromosome 20.

4.3.2 SCALING WITH CONTEXT SIZE

In Figure 2, we show the scaling of multiple methods with respect to the size of the context set k. As
k increases, a naive method like KNN sees a brief increase followed by a decrease in performance.
More sophisticated non-parametric methods monotonically increase in r2 as k increases. However,
existing methods based on quadratic self attention run out of memory for k ≥ 650 on a 48 GB
card, limiting the maximum context set size they handle and consequently their performance. By
contrast, NPSSM scales linearly with the size of the context set, allowing for a larger context set
and consequently increased performance. Figure 5 showcases the quadratic scaling of traditional
transformer architectures and the linear scaling NPSSM achieves. This better scaling allows for
performance gains by allowing a larger context set on the same amount of GPU memory compared to
previous work.

4.3.3 OBJECTIVE
Table 4: Performance using different
masking strategies for LMLM.

Masking Strategy r2

Tokens 0.635
Datapoints 0.934
Attributes 0.613

There are four main knobs to tune the objective Ltotal, the
masking strategy of LMLM, the masking rate of LMLM,
the auxlliary loss chosen Laux, and the weight factor λ
weighing the two losses.

Masking Strategy Existing works such as Notin et al.
(2023b) masks individual tokens at random with proba-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Imputation performance (r2) evaluated on 670370 untyped variants (full set) from 516
haplotypes on chromosome 20. Trained models were only trained on the dev set (9159 untyped
variants).

Class Method r2

HMM Beagle (Browning et al. (2018)) 0.955± 0.004
Impute (Rubinacci et al. (2020)) 0.952± 0.004

Non-Parametric Models MSA Transformer 0.955± 0.003
NPSSM 0.958± 0.003

Figure 2: r2 by context set size on 9159 untyped variants from chr20.

bility pmask for reconstruction, but previous work Rastogi
et al. (2023) observed that different masking strategies had
a pronounced impact on the performance of the models. Table 4 shows the effect of various masking
strategies by masking out random tokens, masking out random spans of each datapoint (row), and
masking out random spans of each attribute (column).

Masking Rate The masking rate pmask is an important parameter for training MLM mod-
els, particularly if the masking strategy is more involved than masking out individual to-
kens. In Figure 3 we report the r2 of a model masking out spans of datapoints.

Table 5: Performance after training on
the MLM objecive LMLM only, the super-
vised objective Laux only, or Ltotal with a
fixed weight λ or an annealed weight.

Training Objective r2

LMLM 0.791
Laux 0.934

Ltotal, λ = 0.9 0.939
Annealed Ltotal 0.940

Auxilliary Loss Imputation methods are often judged
by their performance grouped by Minor Allele Frequency
(MAF), a metric that describes the proportions of labels
for each variant/attribute. In Figure 4, we explore different
variants of Laux included a standard cross entropy loss
(CEL), a MAF-weighted CEL, and CEL annealed between
both. We find that the MAF weighted loss is better at
predicting rare variants, but worse on the common variants
than the standard CEL. Annealing between both the losses
results in the best performance over all MAF buckets.

Combined Objective Table 5 shows the performance of a model trained purely on the recon-
struction objective LMLM, trained only on the supervised objective Laux, or on combined objective
Ltotal = (1 − λ)LMLM + λLaux for a fixed λ or an annealed λ starting with λ = 1 and following a
cosine annealing schedule to λ = 0.01. Training on a combined loss Ltotal = (1− λ)LMLM + λLaux

yields better performance than optimizing on either objective individually.

4.3.4 CONTEXT LENGTH EXTENSION

As shown in Section 4.3.2, the number of datapoints in the context set k has a large influence on the
performance for genotype imputation. In Table 6 we explore the post hoc expansion of the context
set size during evaluation, that is we train on some context set size k and then during evaluation we
increase the context set size without any additional training.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: r2 for different settings of pmask.

Figure 4: r2 on 9159 untyped variants in chromosome 20 binned by MAF frequency for different
Laux choices, a standard cross entropy loss (CEL), a Minor Allele Frequency (MAF)-weighted CEL,
and a loss annealed between the both the weighted and unweighted losses.

Figure 5: GPU memory usage for different context set sizes k during evaluation where each context
point is of length 600 (i.e. Href ∈ Rk×600) for various k’s.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

For NPSSM models, increasing k at evaluation time provides a modest increase in performance, but
not as large an increase as training on the expanded context size instead. The MSA Transformer
model however showed the opposite effect, where increasing the context set size during evaluation
resulted in a decrease in performance, counter to the intuition that at worst expanding the context set
size would result in no change in performance. Note that MSA Transformer treats the datapoints as
a set, there is no positional embedding used for the datapoints as in the original work by Rao et al.
(2021).

Table 6: Imputation performance (r2) evaluated on 9159 untyped variants from 516 haplotype on
chromosome 20, extending the number of haplotypes seen during evaluation.

Method k during training k during eval eval r2

MSA Transformer

150
150 0.9407
300 0.9367
650 0.9156

300 300 0.9440
650 0.9429

650 650 0.9461

NPSSM

150
150 0.9428
300 0.9444
650 0.9445

300
300 0.9474
650 0.9489
1000 0.9489

650
650 0.9495
1000 0.9499
2000 0.9501

5 DISCUSSION AND RELATED WORK

Comparisons to NPTs NPSSMs are generally a drop in replacement for models like MSA-
Transformer or Non Parametric Transformer (Rao et al., 2021; Kossen et al., 2021; Notin et al.,
2023b). Each of these methods make similar assumptions on the structure of the input data, therefore
they can be applied to similar problems. However there are still some capabilities of attention
based models that do not have an analogue in SSMs, for example Rao et al. (2021) used attention
maps for contact predictions, and they had success with forcing each datapoint to share the same
attention matrix (tied row attention). While NPSSMs have shown competitive results with much
better scaling on the genotype imputation task, there are certain scenarios like these where SSM
based non-parametric models are not equivalent out of the box.

Comparisons to HMMs Models like Beagle and Impute (Browning et al., 2018; Rubinacci et al.,
2020) that are based off of the Li & Stephens (2003) HMM have been the standard for genotype
imputation. However, Non-parametric models like NPSSM are now capable of matching or exceeding
their performance, even on a whole chromosome (Table 3) due to their favorable scaling properties.
In addition, existing HMM imputation methods are restrictive. Adding in additional auxiliary for
imputation like Notin et al. (2023b) did for proteins is difficult for HMMs, but when using a non-
parametric model it could be as simple as adding some additional columns to X and adjusting
Laux.

Conclusion We present NPSSMs, a drop in replacement for existing attention based non-parametric
architectures that scale linearly in the size of the context set. We show that on genotype imputation, we
are able to outperform existing models (Table 2), and that a large contributing factor to performance
is the size of the context set we are able to accommodate (Figure 2).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Brian L. Browning, Ying Zhou, and Sharon R. Browning. A one-penny imputed genome from next-
generation reference panels. American Journal of Human Genetics, 103, 2018. ISSN 15376605.
doi: 10.1016/j.ajhg.2018.07.015.

Tri Dao, Daniel Y Fu, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Sayantan Das, Lukas Forer, Sebastian Schönherr, Carlo Sidore, Adam E Locke, Alan Kwong, Scott I
Vrieze, Emily Y Chew, Shawn Levy, Matt McGue, David Schlessinger, Dwight Stambolian, Po-Ru
Loh, William G Iacono, Anand Swaroop, Laura J Scott, Francesco Cucca, Florian Kronenberg,
Michael Boehnke, Gonçalo R Abecasis, and Christian Fuchsberger. Next-generation genotype
imputation service and methods. Nat. Genet., 48(10):1284–1287, October 2016.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a
continuous cache, 2016.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training, 2020.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers, 2019.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira.
Perceiver: General perception with iterative attention, 2021. URL https://arxiv.org/
abs/2103.03206.

Jannik Kossen, Neil Band, Clare Lyle, Aidan N. Gomez, Tom Rainforth, and Yarin Gal. Self-attention
between datapoints: Going beyond individual input-output pairs in deep learning. volume 34,
2021.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen Tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive nlp tasks. volume 2020-December, 2020.

Na Li and Matthew Stephens. Modeling linkage disequilibrium and identifying recombination
hotspots using single-nucleotide polymorphism data. Genetics, 165, 2003. ISSN 00166731. doi:
10.1093/genetics/165.4.2213.

Yun Li, Cristen Willer, Serena Sanna, and Gonçalo Abecasis. Genotype imputation. Annu. Rev.
Genomics Hum. Genet., 10(1):387–406, 2009.

Sewon Min, Weijia Shi, Mike Lewis, Xilun Chen, Wen tau Yih, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Nonparametric masked language modeling, 2023. URL https://arxiv.org/
abs/2212.01349.

11

https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2103.03206
https://arxiv.org/abs/2103.03206
https://arxiv.org/abs/2212.01349
https://arxiv.org/abs/2212.01349


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pascal Notin, Aaron W Kollasch, Daniel Ritter, Lood Van Niekerk, Steffanie Paul, Nathan Rollins,
Ada Shaw, Ruben Weitzman, Jonathan Frazer, Mafalda Dias, Dinko Franceschi, and Debora S
Marks. Proteingym: Large-scale benchmarks for protein design and fitness prediction. bioRxiv,
2023a.

Pascal Notin, Ruben Weitzman, Debora Susan Marks, and Yarin Gal. ProteinNPT: Improving protein
property prediction and design with non-parametric transformers. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023b. URL https://openreview.net/forum?
id=AwzbQVuDBk.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch,
Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods, analysis & insights from training gopher,
2022.

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. Msa transformer. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 8844–8856. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/rao21a.html.

Richa Rastogi, Yair Schiff, Alon Hacohen, Zhaozhi Li, Ian Lee, Yuntian Deng, Mert R. Sabuncu, and
Volodymyr Kuleshov. Semi-parametric inducing point networks and neural processes, 2023. URL
https://arxiv.org/abs/2205.11718.

Simone Rubinacci, Olivier Delaneau, and Jonathan Marchini. Genotype imputation using the
positional burrows wheeler transform. PLoS Genetics, 16, 2020. ISSN 15537404. doi: 10.1371/
journal.pgen.1009049.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. volume 4, 2016.

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range dna sequence modeling, 2024.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature, 526
(7571):68–74, October 2015.

The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse
human populations. Nature, 467(7311):52–58, September 2010.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. volume 2017-December, 2017.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020. URL https://arxiv.org/abs/2006.04768.

12

https://openreview.net/forum?id=AwzbQVuDBk
https://openreview.net/forum?id=AwzbQVuDBk
https://proceedings.mlr.press/v139/rao21a.html
https://proceedings.mlr.press/v139/rao21a.html
https://arxiv.org/abs/2205.11718
https://arxiv.org/abs/2006.04768


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for
longer sequences, 2021. URL https://arxiv.org/abs/2007.14062.

A APPENDIX

A.1 HYPERPARAMETERS

Table 7 contains the hyperparameters used for NPSSM (700k params) and Table 8 contains the
hyperparameters used for MSA Transformer (700k) params.

Table 7: Hyperparameters for 700k paramater NPSSM

Embedding dim d 156
Number of NPSSM layers 2

Initial learning rate 1e− 3
pmask 0.10

optimizer Adam
effective batch size 128

Starting λ 1.0
λ annealing schedule linear

Ending λ value 0.5

Table 8: Hyperparameters for 700k paramater MSA Transformer

Embedding dim d 100
Num attention heads 10

Number of MSA-Transformer layers 4
Activation Dropout 0.1
Attention Dropout 0.1
Initial learning rate 6e− 4

pmask 0.10
optimizer Adam

effective batch size 128
Starting λ 1.0

λ annealing schedule linear
Ending λ value 0.5

Datapoint Positional Embedding None
Tied Row Attention True

A.2 LAYER ABLATIONS

To investigate the effects of each individual layer, we construct five identical models with the same
hyperparameters as in 7 with a context size of k = 150. We then train these models for 100,000 steps
and and evaluate the results on the same set of data as in Table 2. We include these results in Table 9.
We observe that permuting the order of the layers results in a noticeable decrease in performance,
indicating that the ordering of the layer application is an important consideration for these class
of models. We also observe that flattening the input, that is concatenating all 150 back to back to
form a single sequence as an input, performance significantly worse than either of the models that
operates on the MSA, achieving only 88% of the performance that the base model achieves. The final
two ablations correspond to applying the layers only over the attributes/rows (i.e. a standard SSM)
and only over the data points/columns. The SSMattr model performance similarly to the flattened
version even though the SSMattr model does not have access to any external context set. This might
be indicative that the performance of the Flattened version of the model was impacted due to the
increased difficulty of using the context set without leveraging the MSA structure. The SSMdata

13

https://arxiv.org/abs/2007.14062


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

model observes only, which for this task without any relevant context likely limits the model to
performing some sort of weighted average. This model converged fairly quickly (under 10, 000 steps)
and performs similarly to the KNN baseline from Table 2 (0.758).

A.3 ADDITIONAL DATASETS

We additionally report performance of Beagle and the two best Non-Parametric Models on a different
chromosome of 1k genomes, chr14 (Table 10) and on a different dataset HapMap (The International
HapMap 3 Consortium (2010)) (Table 11).

Table 9: Imputation Performance (r2) evaluated on 9159 variants from 516 haplotypes on chromosome
20. Models were trained for 100,000 steps, each with the same model configuration. Flattened is
taking the input Href and flattening it down into a single sequence (i.e. laying all the sequences in
Href back to back.

Model r2 ± σ

(Base) SSMattr 7→ SSMdata 0.9406± 0.0026
SSMdata 7→ SSMattr 0.9308± 0.0029
Flattened 0.8241± 0.0067
SSMattr Only 0.8206± 0.0074
SSMdata Only 0.7783± 0.0049

Table 10: Imputation performance (r2) evaluated on ∼ 19, 369 untyped variants (dev set) from 516
haplotypes on chromosome 14. The Non-Parametric Models were trained on chromosome 20.

Class Method k r2

HMM Beagle (Browning et al. (2018)) 4388 0.964± 0.002

Non-Parametric Models MSA Transformer 650 0.963± 0.002
NPSSM 2000 0.967± 0.002

Table 11: Imputation performance (r2) evaluated on 962 untyped variants from 400 haplotypes from
Hapmap on chromosome 14. The Non-Parametric Models were trained on chromosome 20 on 1000
Genomes.

Class Method k r2

HMM Beagle (Browning et al. (2018)) 1828 0.891± 0.008

Non-Parametric Models MSA Transformer 650 0.921± 0.007
NPSSM 1828 0.919± 0.007

14


	Introduction
	Background
	Non-Parametric Generative Models
	Meta-Learning
	State-Space Models
	Genotype Imputation

	Non-Parametric State Space Models
	Architecture
	Training

	Experiments
	Protein Analysis
	Results

	Genotype Imputation
	Ablations
	Genotype Imputation Generalizability
	Scaling with Context Size
	Objective
	Context Length Extension


	Discussion and Related Work
	Appendix
	Hyperparameters
	Layer Ablations
	Additional Datasets


