
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NON-PARAMETRIC STATE-SPACE MODELS OVER
DATAPOINTS AND SEQUENCE ALIGNMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-parametric models are flexible and can leverage a context set to express rich
mappings from inputs to outputs. However, these methods often scale super-linearly
in context size, e.g., attention-based methods scale quadratically in the number
of data points, which in turn limits model expressivity. In this work, we lever-
age advances in state-space modeling and introduce Non-Parametric State Space
Models (NPSSM). We find that NPSSMs attain similar performance to existing
non-parametric attention-based models while scaling linearly in the number of
datapoints. We apply NPSSMs to the task of genotype imputation, where the linear
scaling enables larger context sets resulting in competitive performance relative to
other methods and widely used industry-standard tools. We also demonstrate the
effectiveness of NPSSMs in the context of meta-learning where the ability to effi-
ciently scale to larger training sets provides more favorable compute-to-accuracy
tradeoffs.

1 INTRODUCTION

Machine learning (ML) models often benefit from having access external datasets at inference time.
In meta-learning, we often seek to condition the model on a previously unseen training set. In biology,
data can be aligned to known sequences which can be used to improve predictions. More generally,
non-parametric ML uses the training set at test time and includes both classical algorithms (e.g., k-
nearest neighbors, support vector machines), as well as modern methods such as retrieval-augmented
language models and non-parametric transformers.

However, non-parametric ML algorithms can often have high computal and memory overhead.
For example, while modern transformer-based methods can be used to attend to representations of
sequences or datapoints, their computational complexity grows quadratically in the size of their
context. This mirrors classical kernel methods that also have quadratic complexity. Addressing these
computational requirements typically requires approximations that compress the context size, such as
inducing point methods.

In sequence modeling, the quadratic computational complexity of transformers has motivated the
development of alternative architecture such as state-space models (SSMs). They have received
significant attention because of their ability to capture long context without the quadratic compute
cost of attention-based architectures.

This paper applies state-space models to non-parametric ML and leverages their long context to model
interactions between large sets of datapoints. Specifically, we introduce NP-SSMs, a supervised
learning architecture that takes as input a collection of labeled and unlabeled datapoints and produces
accurate predictions by querying the labeled data. Key to this approach are novel non-parametric
layer blocks that compute representations over datapoints using bidirectional SSMs. These blocks are
analogous to existing architectures that apply attention to datapoints or alignments.

We use the NP-SSM architecture to parameterize a probabilistic model p(x∥D) of data x conditioned
on a dataset D, which we call the SSM neural process. Like other types neural processes (NPs), these
can be trained using forms of maximum likelihood, as well as forms of meta-learning where datasets
are sampled from a meta-training set. Leveraging SSMs enables these NPs to handle much larger
context sizes, which in turn can significantly improve their performance what more data is available.
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We apply our novel models and architectures across benchmarks in the neural process literature,
where we observe significant reductions in memory usage, as well as problems in biology, where
they outperform classical transformer-based approaches. Overall, we find that NP-SSMs can serve
as a drop-in replacement for many applications that are currently the domain of non-parametric
transformers or neural processes.

Our main application area is genotype imputation in statistical genetics, where inputs consist of
aligned sequences of genetic variants and our goal is to fill in missing positions obtained using an
inexpensive assay to match the performance of an accurate sequencing instrument. We find that
our method outperforms highly engineered state- of-the-art software packages widely used within
commercial genomics pipelines (Browning et al., 2018), indicating that our technique has the potential
to impact real-world systems.

In summary, our contributions are:

• We develop an architecture for non-parametric machine learning called the non-parametric
state-space model, made possible by SSM blocks applied to tokens that represent datapoints.

• We combine this architecture with training objectives that maximize expected log-likelihood
across datasets, and that are naturally suited for meta-learning.

• We apply our model to genotype imputation, an important problem in statistical genetics, and
we show that by leveraging large sets of alignments, our approach obtains state-of-the-art
performance and outperforms specialized software packages.

2 BACKGROUND

2.1 NON-PARAMETRIC GENERATIVE MODELS

Most supervised models are parametric: given a dataset Dtrain = {x(i), y(i)}ni=1, with input features
x ∈ X and labels y ∈ Y , the goal is to learn a set of parameters θ ∈ Θ that yield an accurate
predictive model f(x; θ). However, modern parametric models can have up to hundreds of billions
of parameters, making training and prediction computationally expensive. Non-parametric or semi-
parametric models of the form y = f(x∥Dtrain; θ) leverage the training dataset Dtrain at inference
time to reduce costs by retrieving information from Dtrain instead of having to compress Dtrain into
parameters θ. Multiple deep learning architectures fall under the non-parametric/semi-parametric
archetype, including memory-augmented architectures (Graves et al., 2014; Santoro et al., 2016),
retrieval based language models (Grave et al., 2016; Guu et al., 2020; Rae et al., 2022; Min et al., 2023),
models utilizing Retrieval Augmented Generation (RAG) (Lewis et al., 2020), and non-parametric
transformers (Kossen et al., 2021; Rao et al., 2021; Notin et al., 2023b).

However, the flexibility of non-parametric models comes with a different computational cost, as most
models either scale superlinearly in the size of the context or require heuristics to make handling the
context set tractable.

2.2 META-LEARNING

Meta-learning is a natural application for non-parametric models. We are given a meta-dataset
D = {D(i)}Di=1, where each element D(i) consists of a context set D(i)

c = {(xi
c, y

i
c)}ni=1 and query

set D(i)
q = {(xi

query, y
i
query)}mi=1. The goal of meta-learning is to fit a function yquery = f(xquery;Dc)

that’ll work for an arbitrary pair of context and query datasets. In meta learning, the meta dataset
will be composed of distinct tasks that have a similar structure, e.g. fitting polynomials, tasks over
Multiple Sequence Alignments (MSAs), or some other structured context and the end goal is to be
able to generalize to context sets that haven’t been seen that have a similar structure to those seen
during meta training.

2.3 STATE-SPACE MODELS

Most existing deep non-parametric architectures use utilize some form of attention (Vaswani et al.,
2017), causing those architectures to scale quadratically in the length of the context set. In practice,
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this quadratic scaling often limits the usability of these architectures and necessitates some sort of
approximate/sparse attention or some other heuristic to mitigate this scaling (Zaheer et al., 2021;
Wang et al., 2020; Jaegle et al., 2021; Rastogi et al., 2023) .

State Space Models (SSM)s are a class of sequence models that have recently begun gaining popularity
due to their performance on sequence modeling and their favorable performance characteristics (Gu
et al., 2020; 2021; 2022; Smith et al., 2022; Dao et al., 2022; Schiff et al., 2024). In particular,the
Mamba model is a selective SSM that has been proposed as a drop in replacement for self-attention
that maintains most of the performance of traditional self attention for most tasks, but with linear
scaling in the length of the sequence (Gu & Dao, 2024).

2.4 GENOTYPE IMPUTATION

Our specific motivating example is genotype imputation. Human genetic sequences can be thought
of as a sequence y ∈ {A,C, T,G}n. While there exist methods to read the entire sequence y,
these methods can be costly. Instead, we can consider reading some smaller sub-sequence x ∈
{A,C, T,G}t where t << n. If we leverage some statistical properties of the genome, we can
construct x so that we can use it to reconstruct the full sequence y while only reading t positions.
This problem of reconstructing the full y given some subset x is called genotype imputation. We use a
relatively cheap device called a microarray to obtain a set x for some individual, and then using some
statistical methods we reconstruct the full y given x and some context set Href = {(x(i), y(i))}ki=1
that contains the full sequences for k individuals (Li et al., 2009). Existing methods for genotype
imputation are all based on an HMM from Li & Stephens (2003), they leverage the fact that due to
recombination, the full sequence y can be reconstructed as a mosaic of the y(i)s in Href. Therefore
the problem of imputing y becomes finding the most likely path through Href given the observed sub
sequence x. Given how y is represented as a mix between the k sequences in Href, increasing the
number of individuals k in Href tends to subsequently increase performance. Existing methods like
Beagle and Impute (Browning et al., 2018; Rubinacci et al., 2020) scale quadratically in k, limiting
performance and necessitating workarounds.

Non-parametric approaches provide a compelling case for use in genotype imputation. They admit
a meta learning approach that fits some function of the form y = f(x;Href) that can be trained on
multiple different (x, y,Href) tuples. By included (x, y) pairs trained on different microarrays with
different typed positions, and with different compositions of Href, we can define a model that can be
applied to any arbitrary region of the genome for any microarray. However, existing non-parametric
models often utilize an attention operation that is also quadratic in k, running into the same bottleneck
that the existing HMM methods encounter. In this work, we propose to utilize State Space Models in
lieu of attention operations, giving us the capability to scale linearly in k while retaining performance,
allowing for increased performance due to the ability to scale to larger values of k.

3 NON-PARAMETRIC STATE SPACE MODELS

This work applies advances in long-context state space models to non-parametric machine learning.
Specifically, we propose an architecture and associated training objectives that take as input a large
dataset and output a dataset representation that is useful for tasks such as prediction and imputation.

Notation and Inputs Given a training set Dtrain = {x(i), y(i)}ni=1, we seek to make an accurate
prediction at a new datapoint xquery using a model f(xquery, Dtrain) that has access to Dtrain at inference
time. The dataset is composed of n datapoints x(i) ∈ Ra, each with a attributes and l labels y(i) ∈ Rl.
Our proposed models operate over an embedding X ∈ Rn×(a+l)×d of the training set, obtained by
projecting each label and attribute into a dense d-dimensional embedding.

High-Level Overview We introduce the Non-Parametric State Space Model (NPSSM), an architec-
ture that produces a distributed representation of the training data that is useful for downstream tasks.
Our method starts with an initial embedding X of a dataset and iteratively updates this representation
by applying a sequence of alternating SSM layers across the datapoints and across the attributes.
These SSM layers are analogous to attention mechanisms over datapoints and attributes used by the
Axial Transformer and subsequent work (Ho et al., 2019; Kossen et al., 2021; Rao et al., 2021), but
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are more computationally efficient and support longer contexts. These alternating layers allow the
model to capture relationships between the attributes for each datapoint, and relationships between
the datapoints along a given attribute. For notational simplicity, we will assume that xquery has been
concatenated to X and we will omit the batch dimension.

The model is trained by masking a percentage of X and then reconstructing the masked elements by
optimizing the negative log-liklihood. This effectively defines a probabilistic model p(x∥Dtrain).

3.1 ARCHITECTURE

Each NPSSM layer takes as input an embedding X of Dtrain and returns X̂ ∈ Rn×(a+l)×d. A layer
has two components: an SSM along attributes (SSMattr) and a SSM along datapoints (SSMdata).

X̂ = SSMdata(SSMattr(X))

Attribute-Level State-Space Layers To model the interactions between individual attributes and
labels, we apply a state-space model along the attributes and labels of each individual datapoint within
each dataset, SSMattr : Rn×(a+l)×d 7→ Rn×(l+a)×d. The SSMattr layer can be instantiated with any
arbitrary SSM; in this work we used a bidirectional version of Mamba (BiMamba) from Schiff et al.
(2024). To achieve bidirectionality we apply a Mamba operator along the length dimension of X, and
we then apply a Mamba operator on X reversed along the length dimension. Let reverse(M, dim)
reverse matrix M along dimension dim; we then write:

SSMattr(X) = BiMamba(X)

= Mamba(X) + reverse(Mamba(reverse(X, 1), 1)

As in Schiff et al. (2024), the ”forward” and ”reverse” Mamba operators share the parameters of the
input and output projection matrices to reduce the total number of trainable parameters.

Datapoint-Level State-Space Layers To model the interactions between individual datapoints,
we apply a SSM along the attribute dimension to model the interactions between each datapoint at
every attribute. Note that this process is equivalent to applying an SSMattr layer, but permuting the
datapoint (n) and attribute (a+ l) dimensions of X to form matrix X′ ∈ R(a+l)×n×d.

SSMdata(X
′) = BiMamba(X′)

= Mamba(X′) + reverse(Mamba(reverse(X′, 1), 1)

Non-Parametric State Space Models A single layer of a NPSSM is composed of a Attribute Level
State Space Layer (SSMattr) and a Datapoint Level State Space (SSMdata) layer applied consecutively
as described in Algorithm 1. A full NPSSM model is composed of multiple of these layers chained
together, trained on a MLM objective LMLM to reconstruct the input X with an optional auxilliary
supervised loss (Laux) computed on a subset of labeled datapoints in the context set.

Algorithm 1 NPSSM Block Layer

Input: X : (N, (A+ L), D)

X̂← SSMattr(X)

X′ ← X̂.permute(1,0,2)) ▷ ((A+L), N, D)
X̂← SSMdata(X

′)

X̂← X̂.permute(1,0,2)) ▷ (N, (A+L), D)
return X̂

Supervised Learning Architecture For supervised learning problems, we have an input xquery
where the l labels are masked out but the a attributes remain unmasked, in addition to the masked
embedded matrix X. The input xquery is concatenated to X and an additional loss Laux is calculated
on the l labels, for example a BCE loss, L2 loss, etc. The full loss is therefore Ltotal = (1−λ)LMLM +
λLaux for some weight λ (see below).
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Multiple Sequence Alignment State Space Models NPSSMs lend themselves naturally to Multiple
Sequence Alignments (MSA)s. Each sequence is an individual datapoint and each attribute/token is
already aligned. Each sequence may have any labels or additional attributes appended at the end of
each sequence allowing for a straightforward processing of the MSA input as in Notin et al. (2023b).

3.2 TRAINING

Supervised Learning The NPSSM model is trained optimizing the weighted sum of an MLM
and supervised objective: Ltotal = (1 − λ)LMLM + λLaux for some weight λ. To compute the
reconstruction loss LMLM, we mask a portion of all the elements of X (10% for imputation). For
example, for discrete data, we compute the cross-entropy loss of the predicted tokens with the true
token in X. More generally, we can append to the NPSSM a final layer that predicts the parameters
of a probability distribution over X or over xquery; this defines a probabilistic model p(xquery|X) that
is naturally amenable to maximum-likelihood training.

The auxiliary loss Laux is computed based on the masked labels of xquery and a subset of datapoints
in X that have the labels masked. For our imputation experiments, the auxiliary loss is a weighted
version of the cross entropy loss.

Meta-Learning For meta-learning, we want to learn some function yquery = f(xquery;Dtrain) that
generates yquery given an input xquery and a context dataset Dtrain. Models like NPSSM lend themselves
to this application. To train a model for this setting, we first construct a meta-learning set {D(i)

train}Hi=1.
In our motivating example of genotype imputation, each individual dataset corresponds to a different
region of the genome, and the model is trained to be able to impute arbitrary regions of the genome,
even for samples regions that were not seen during training.

4 EXPERIMENTS

4.1 PROTEIN ANALYSIS

Protein NPT (PNPT) is a non-parametric model specifically designed to be used on Deep Mutational
Scanning (DMS) assays, protein assays that experimentally measure a varied set of functional
properties for a large number of protein sequences (Notin et al., 2023b;a). These assays are often
highly structured, taking the form of a MSA with functional labels appended to each sequence. This
organized structure makes them a prime candidate for the application of non-parametric models:
given some protein of interest and a DMS assay of related protein, the model should belable to
use the information from the DMS assay to predict some properties of the protein of interest.

Table 1: Results averaged over 13 DMS tasks. Each task was
averaged over 5 seeds.

Method k Spearman Mem usage (Gb)

PNPT
1000 0.65 14.56
1500 0.64 18.66
2000 OOM OOM

NPSSM
1000 0.65 7.77
1500 0.65 9.54
2000 0.65 12.07

Experimental Setup We follow a
similar set up to PNPT: we focus on
the single mutant property prediction
task where we predict the effect of
a single mutation on the fitness of a
given protein given a DMS assay con-
taining the fitness for other single mu-
tations of the same protein of inter-
est (Notin et al., 2023b). We use the
same 5-fold cross-validation scheme
that Notin et al. (2023b) used, using
their random cross-validation splits.
We use the same hyperparmeter con-
figuration as PNPT when possible, with the notable exception that we experiment with larger context
set sizes during training and evaluation. Additionally, due to computational constraints we limit the
PNPT and NPSSM NPSSM models to 1 Million parameters each, down from ∼ 3.5 Million in Notin
et al. (2023b) and we consider 13 tasks where the PNPTs could fit in memory on NVIDIA 3090
24GB GPUs.
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4.1.1 RESULTS

We show that Non-Parametric State Space Models achieve competitive performance with existing
attention based models in terms of Spearman’s rank correlation while utilizing between 1.5 and 2
times less GPU memory (Table 1). For this particular setup, increasing the context set size from
PNPTs original work k = 1000 had little effect in terms of performance for either model but it
resulted in a significant increase in GPU memory consumption for PNPT.

4.2 GENOTYPE IMPUTATION

Genotype imputation is an important component of many genomic analysis and a natural application
of meta-learning. Given some binary observed variants xquery = (x1, . . . , xt) and unobserved variants
yquery = (y1, . . . , yu), the goal is to predict all u unobserved variants using the t observed variants.
Generally, the observed variants x are obtained by genotypying an individual using a relatively cheap
DNA microarray at relatively few positions, that is t << u. The current methods for genotype
imputation all follow the same general setup, we assume that at inference time we have access to some
reference set Href ∈ 1k×(u+t) that contains k fully sequenced individuals and some new individual
xquery that is only genotyped at some subset of variants of size t.

To solve this problem, we want some function yquery = f(xquery;Href). The current approaches are
fully non-parametric, they assume that xquery is a mosaic of the samples in Href, so the problem can
be solved by finding the most probable path through the samples in Href that result in xquery using an
HMM from Li & Stephens (2003). This setup lends itself naturally to meta-learning, in practice Href
contains an arbitrary number of haplotypes and Href covers an arbitrary section of the genome. By
training over a meta training set consisting of a variety of Href’s, we can train a model that should
work for any arbitrary (xquery, Href) pair like existing methods do.

Experimental Setup We follow the setup of Rubinacci et al. (2020) and split up the 1000 Genomes
dataset (The 1000 Genomes Project Consortium, 2015) into a training set with 4388 sequences
(haplotypes), a validation set with 516 haplotypes, and a test set on 104 haplotypes. We consider
chromosome 20, and use the IlluminaOmiExpress-24 microarry to define the typed and untyped
variants. We subset chr20 to a region of 9159 contiguous untyped variants (∼ 1.3% of chr20) into
92 blocks with 100 untyped variants and the closest 200 typed variants per block. Each datapoint
(xquery, yquery) is a single block for one of the samples in the 4388 training sequences, leading to
92 × 4388 = 403696 (xquery, yquery) data points. Each xquery has an associated context set Href
composed of k ≤ 4387 datapoints (xquery, yquery) from the training set on that same block. We
subset each Href to the k closest haplotypes by L1 distance on xquery for each block. This results in a
meta-dataset of 403696 datasets where each individual dataset is composed of (x(0)

query, y
(0)
query, Href =

{(x(i)
query, y

(i))
query}ki=1) for the k datapoints on the same block with the smallest L1 distance to x

(0)
query.

The eval and test datasets also construct Href from the 4388 training haplotypes to ensure that
no haplotypes from the validation or test set ever appear in Href. We compare to two industry
standard tools based on the Li & Stephens (2003) HMM, Beagle (Browning et al. (2018)) and Impute
(Rubinacci et al. (2020)), to a logistic regression basline, and to two non-parametric methods, KNN
and MSA-Transformer Rao et al. (2021); Kossen et al. (2021). Full hyperparameter configurations
for NPSSM and MSA Transformer are in Section A.1.

Results We report the r2 over all 9159 variants on 516 haplotypes in Table 2 and list the hyper
parameters in Section A.1. NPSSM is able to achieve SOTA performance, outperforming existing
HMM based methods. We additionally report the r2 binned by the Minor Allele Frequency of each
untyped variant in Figure 1 where we show that NPSSM is able to match or exceed the performance
of existing methods, even for rare SNPs.

4.3 ABLATIONS

4.3.1 GENOTYPE IMPUTATION GENERALIZABILITY

To asses how well the models from 4.2 generalize to unseen data, we take those models trained on
1.3% of chromosome 20 and we evaluate them on the entirety of chromosome 20 (670k variants).
Even though this data is on the same haplotypes and on the same chromosome, the majority of the
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Table 2: Imputation performance (r2) evaluated on 9159 untyped variants (dev set) from 516
haplotypes on chromosome 20.

Class Method k r2 (1− r2)

Traditional ML KNN 4388 0.758± 0.005 0.242± 0.005
LR NA 0.882± 0.006 0.118± 0.006

HMM
Beagle (Browning et al. (2018)) 4388 0.943± 0.002 0.057± 0.002

Minimac4 (Das et al. (2016)) 4388 0.931± 0.003 0.069± 0.003
Impute (Rubinacci et al. (2020)) 4388 0.935± 0.003 0.065± 0.003

Non-Parametric Models
SPIN 4388 0.868± 0.010 0.132± 0.010

MSA Transformer 650 0.946± 0.002 0.054± 0.002
NPSSM 2000 0.950± 0.002 0.050± 0.002

Figure 1: r2 on 9159 untyped variants in chromosome 20 binned by MAF frequency.

data is complete unseen, testing the capability of the model to adapt to what is essentially data points
outside the distribution of what the model was trained on.

Results Table 3 shows that NPSSM is still able to outperform existing methods on the entirety of
chromosome 20, even when the model was only trained on 1.3% of chromosome 20.

4.3.2 SCALING WITH CONTEXT SIZE

In Figure 2, we show the scaling of multiple methods with respect to the size of the context set k. As
k increases, a naive method like KNN sees a brief increase followed by a decrease in performance.
More sophisticated non-parametric methods monotonically increase in r2 as k increases. However,
existing methods based on quadratic self attention run out of memory for k ≥ 650 on a 48 GB
card, limiting the maximum context set size they handle and consequently their performance. By
contrast, NPSSM scales linearly with the size of the context set, allowing for a larger context set
and consequently increased performance. Figure 5 showcases the quadratic scaling of traditional
transformer architectures and the linear scaling NPSSM achieves. This better scaling allows for
performance gains by allowing a larger context set on the same amount of GPU memory compared to
previous work.

4.3.3 OBJECTIVE
Table 4: Performance using different
masking strategies for LMLM.

Masking Strategy r2

Tokens 0.635
Datapoints 0.934
Attributes 0.613

There are four main knobs to tune the objective Ltotal, the
masking strategy of LMLM, the masking rate of LMLM,
the auxlliary loss chosen Laux, and the weight factor λ
weighing the two losses.

Masking Strategy Existing works such as Notin et al.
(2023b) masks individual tokens at random with proba-

7
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Table 3: Imputation performance (r2) evaluated on 670370 untyped variants (full set) from 516
haplotypes on chromosome 20. Trained models were only trained on the dev set (9159 untyped
variants).

Class Method r2

HMM Beagle (Browning et al. (2018)) 0.955± 0.004
Impute (Rubinacci et al. (2020)) 0.952± 0.004

Non-Parametric Models MSA Transformer 0.955± 0.003
NPSSM 0.958± 0.003

Figure 2: r2 by context set size on 9159 untyped variants from chr20.

bility pmask for reconstruction, but previous work Rastogi
et al. (2023) observed that different masking strategies had
a pronounced impact on the performance of the models. Table 4 shows the effect of various masking
strategies by masking out random tokens, masking out random spans of each datapoint (row), and
masking out random spans of each attribute (column).

Masking Rate The masking rate pmask is an important parameter for training MLM mod-
els, particularly if the masking strategy is more involved than masking out individual to-
kens. In Figure 3 we report the r2 of a model masking out spans of datapoints.

Table 5: Performance after training on
the MLM objecive LMLM only, the super-
vised objective Laux only, or Ltotal with a
fixed weight λ or an annealed weight.

Training Objective r2

LMLM 0.791
Laux 0.934

Ltotal, λ = 0.9 0.939
Annealed Ltotal 0.940

Auxilliary Loss Imputation methods are often judged
by their performance grouped by Minor Allele Frequency
(MAF), a metric that describes the proportions of labels
for each variant/attribute. In Figure 4, we explore different
variants of Laux included a standard cross entropy loss
(CEL), a MAF-weighted CEL, and CEL annealed between
both. We find that the MAF weighted loss is better at
predicting rare variants, but worse on the common variants
than the standard CEL. Annealing between both the losses
results in the best performance over all MAF buckets.

Combined Objective Table 5 shows the performance of a model trained purely on the recon-
struction objective LMLM, trained only on the supervised objective Laux, or on combined objective
Ltotal = (1 − λ)LMLM + λLaux for a fixed λ or an annealed λ starting with λ = 1 and following a
cosine annealing schedule to λ = 0.01. Training on a combined loss Ltotal = (1− λ)LMLM + λLaux

yields better performance than optimizing on either objective individually.

4.3.4 CONTEXT LENGTH EXTENSION

As shown in Section 4.3.2, the number of datapoints in the context set k has a large influence on the
performance for genotype imputation. In Table 6 we explore the post hoc expansion of the context
set size during evaluation, that is we train on some context set size k and then during evaluation we
increase the context set size without any additional training.
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Figure 3: r2 for different settings of pmask.

Figure 4: r2 on 9159 untyped variants in chromosome 20 binned by MAF frequency for different
Laux choices, a standard cross entropy loss (CEL), a Minor Allele Frequency (MAF)-weighted CEL,
and a loss annealed between the both the weighted and unweighted losses.

Figure 5: GPU memory usage for different context set sizes k during evaluation where each context
point is of length 600 (i.e. Href ∈ Rk×600) for various k’s.
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For NPSSM models, increasing k at evaluation time provides a modest increase in performance, but
not as large an increase as training on the expanded context size instead. The MSA Transformer
model however showed the opposite effect, where increasing the context set size during evaluation
resulted in a decrease in performance, counter to the intuition that at worst expanding the context set
size would result in no change in performance. Note that MSA Transformer treats the datapoints as
a set, there is no positional embedding used for the datapoints as in the original work by Rao et al.
(2021).

Table 6: Imputation performance (r2) evaluated on 9159 untyped variants from 516 haplotype on
chromosome 20, extending the number of haplotypes seen during evaluation.

Method k during training k during eval eval r2

MSA Transformer

150
150 0.9407
300 0.9367
650 0.9156

300 300 0.9440
650 0.9429

650 650 0.9461

NPSSM

150
150 0.9428
300 0.9444
650 0.9445

300
300 0.9474
650 0.9489
1000 0.9489

650
650 0.9495
1000 0.9499
2000 0.9501

5 DISCUSSION AND RELATED WORK

Comparisons to NPTs NPSSMs are generally a drop in replacement for models like MSA-
Transformer or Non Parametric Transformer (Rao et al., 2021; Kossen et al., 2021; Notin et al.,
2023b). Each of these methods make similar assumptions on the structure of the input data, therefore
they can be applied to similar problems. However there are still some capabilities of attention
based models that do not have an analogue in SSMs, for example Rao et al. (2021) used attention
maps for contact predictions, and they had success with forcing each datapoint to share the same
attention matrix (tied row attention). While NPSSMs have shown competitive results with much
better scaling on the genotype imputation task, there are certain scenarios like these where SSM
based non-parametric models are not equivalent out of the box.

Comparisons to HMMs Models like Beagle and Impute (Browning et al., 2018; Rubinacci et al.,
2020) that are based off of the Li & Stephens (2003) HMM have been the standard for genotype
imputation. However, Non-parametric models like NPSSM are now capable of matching or exceeding
their performance, even on a whole chromosome (Table 3) due to their favorable scaling properties.
In addition, existing HMM imputation methods are restrictive. Adding in additional auxiliary for
imputation like Notin et al. (2023b) did for proteins is difficult for HMMs, but when using a non-
parametric model it could be as simple as adding some additional columns to X and adjusting
Laux.

Conclusion We present NPSSMs, a drop in replacement for existing attention based non-parametric
architectures that scale linearly in the size of the context set. We show that on genotype imputation, we
are able to outperform existing models (Table 2), and that a large contributing factor to performance
is the size of the context set we are able to accommodate (Figure 2).
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A APPENDIX

A.1 HYPERPARAMETERS

Table 7 contains the hyperparameters used for NPSSM (700k params) and Table 8 contains the
hyperparameters used for MSA Transformer (700k) params.

Table 7: Hyperparameters for 700k paramater NPSSM

Embedding dim d 156
Number of NPSSM layers 2

Initial learning rate 1e− 3
pmask 0.10

optimizer Adam
effective batch size 128

Starting λ 1.0
λ annealing schedule linear

Ending λ value 0.5

Table 8: Hyperparameters for 700k paramater MSA Transformer

Embedding dim d 100
Num attention heads 10

Number of MSA-Transformer layers 4
Activation Dropout 0.1
Attention Dropout 0.1
Initial learning rate 6e− 4

pmask 0.10
optimizer Adam

effective batch size 128
Starting λ 1.0

λ annealing schedule linear
Ending λ value 0.5

Datapoint Positional Embedding None
Tied Row Attention True

A.2 LAYER ABLATIONS

To investigate the effects of each individual layer, we construct five identical models with the same
hyperparameters as in 7 with a context size of k = 150. We then train these models for 100,000 steps
and and evaluate the results on the same set of data as in Table 2. We include these results in Table 9.
We observe that permuting the order of the layers results in a noticeable decrease in performance,
indicating that the ordering of the layer application is an important consideration for these class
of models. We also observe that flattening the input, that is concatenating all 150 back to back to
form a single sequence as an input, performance significantly worse than either of the models that
operates on the MSA, achieving only 88% of the performance that the base model achieves. The final
two ablations correspond to applying the layers only over the attributes/rows (i.e. a standard SSM)
and only over the data points/columns. The SSMattr model performance similarly to the flattened
version even though the SSMattr model does not have access to any external context set. This might
be indicative that the performance of the Flattened version of the model was impacted due to the
increased difficulty of using the context set without leveraging the MSA structure. The SSMdata
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model observes only, which for this task without any relevant context likely limits the model to
performing some sort of weighted average. This model converged fairly quickly (under 10, 000 steps)
and performs similarly to the KNN baseline from Table 2 (0.758).

A.3 ADDITIONAL DATASETS

We additionally report performance of Beagle and the two best Non-Parametric Models on a different
chromosome of 1k genomes, chr14 (Table 10) and on a different dataset HapMap (The International
HapMap 3 Consortium (2010)) (Table 11).

Table 9: Imputation Performance (r2) evaluated on 9159 variants from 516 haplotypes on chromosome
20. Models were trained for 100,000 steps, each with the same model configuration. Flattened is
taking the input Href and flattening it down into a single sequence (i.e. laying all the sequences in
Href back to back.

Model r2 ± σ

(Base) SSMattr 7→ SSMdata 0.9406± 0.0026
SSMdata 7→ SSMattr 0.9308± 0.0029
Flattened 0.8241± 0.0067
SSMattr Only 0.8206± 0.0074
SSMdata Only 0.7783± 0.0049

Table 10: Imputation performance (r2) evaluated on ∼ 19, 369 untyped variants (dev set) from 516
haplotypes on chromosome 14. The Non-Parametric Models were trained on chromosome 20.

Class Method k r2

HMM Beagle (Browning et al. (2018)) 4388 0.964± 0.002

Non-Parametric Models MSA Transformer 650 0.963± 0.002
NPSSM 2000 0.967± 0.002

Table 11: Imputation performance (r2) evaluated on 962 untyped variants from 400 haplotypes from
Hapmap on chromosome 14. The Non-Parametric Models were trained on chromosome 20 on 1000
Genomes.

Class Method k r2

HMM Beagle (Browning et al. (2018)) 1828 0.891± 0.008

Non-Parametric Models MSA Transformer 650 0.921± 0.007
NPSSM 1828 0.919± 0.007
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