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ABSTRACT

In a typical Continual Learning (CL) setting, the goal is to learn a sequence of tasks
that are presented once while maintaining performance on all previously learned
tasks. Current state-of-the-art approaches require the task identity during training
to mitigate forgetting, whereas General Continual Learning (GCL) evaluates the
ability to learn the sequence of tasks without their identity. We find that GCL
methods (Buzzega et al., 2020a; Wortsman et al., 2020) ignore the domain gap
between two consecutive tasks (‘learning-gap’) and, as a result, often fail under
more challenging scenarios. Motivated by a learner that needs to generalize across
modalities and tasks, we propose a challenging GCL benchmark: the multi-modal
Stream. Our benchmark provides a method to construct a sequence of tasks with
varying learning-gaps from Vision and Text datasets. We perform a systematic
analysis of meta-training statistics from the literature that are used to identify
novel tasks, to find that they correlate to the learning-gap. Inspired by biological
mechanisms of learning in mammals, we propose a baseline method to achieve
GCL on Stream: αMetaSup, which uses a ‘dummy’ Stream to train a Transformer
model to identify novel task transitions (‘surprise’). The trained Transformer is
then used as an auxiliary novelty detector to a learner in the benchmark Stream. We
show how αMetaSup can augment existing CL methods that use rehearsal memory
and improve their performance by as much as 10.5% AUC thereby outperforming
7 SOTA GCL baselines.

1 INTRODUCTION

Continual Learning (CL) approaches reduce catastrophic forgetting that neural networks suffer when
learning a sequential, non-i.i.d. stream of tasks. CL, typically, defines a discrete task boundary
between two adjacent tasks in the data stream where the difficulty of the stream of tasks can be
quantified by the learning-gap between the two adjacent tasks.

Current CL benchmarks create a sequence of tasks by applying transformations (e.g. Per-
muted/Rotated MNIST), or splitting a standardized dataset (e.g. Split-CIFAR), in which the learning-
gaps are close to uniform. However, in a more general and challenging setting there exists a mixture
of large (domain shift) and small (distribution shift) gaps. For example, there can be a difference in
the learning difficulty based on the order in which a sequence of three tasks is presented. For example,
consider the task of classifying cat breeds, followed by English dog breeds (big gap from cats), and
finally American dog breeds (smaller gap from English dogs). The learning-gap between consecutive
tasks will influence the difficulty in mitigating forgetting (Lange et al., 2019), such as the difference
between learning dog breeds and cross-species breeds. We refer to them as the learning-gaps in this
work. Therefore, previous evaluation settings where the learning-gap is uniform may not be adequate
to evaluate the generalization of a proposed method in a realistic scenario (Davari et al., 2022).

GCL approaches (Riemer et al., 2018; Zeno et al., 2018a) do not require the knowledge of task-
boundaries (Riemer et al., 2018; Zeno et al., 2018a), but fail to perform in challenging settings where
there is a long stream of tasks (Fostiropoulos et al., 2023). Current state-of-the-art (Wortsman et al.,
2020; Kirichenko et al., 2021; Aljundi et al., 2019a) implements extra machinery to identify task
transitions and then use a standard CL approach such as (Kirkpatrick et al., 2017; Rebuffi et al., 2016;
Chaudhry et al., 2018) to mitigate forgetting. When task transitions are incorrectly detected, such
methods fail catastrophically, where a CL method is applied incorrectly.
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Figure 1: Illustration of our Stream benchmark that is used as a meta-learning objective in identifying
novelty. Left: our meta-learning process uses a ‘dummy’ learner that does not attempt to mitigate
forgetting. It is exposed to a stream of heterogeneous tasks (with different ‘learning-gaps’), just
like the actual learner. By monitoring transitions to novel tasks (blue bars) over time, the dummy
learner, in its simplest form, adjusts a dynamic novelty threshold η (green) to maximize future
novelty prediction. Middle: compared to the previously used static ad-hoc threshold γ (red), our
meta-learning process improves the false positive rate (i.e. area under the novelty bars). Yet, using a
threshold can still fail for difficult tasks (e.g. ‘Text’) where difficult samples are hard to distinguish
from novelty. Right: as a baseline method to Stream, we use the same meta-learning process to train
a Transformer model on a window of meta-learning statistics that is more robust to heterogeneous
learning-gaps than the linear threshold η. In addition to detecting transitions to novel tasks, our
Meta-Sampling also updates the memory used by the main learner to mitigate forgetting.

Identifying a novel task is composed of two problems, first quantifying (e.g. via a statistical metric)
and then classifying (e.g. by a classification threshold) novelty. Current methods of identifying
novelty use meta-learning statistics such as loss, gradients, or the feature space. There is a lack of
systematic evaluation of meta-learning metrics in how informative they are in predicting novelty,
where their choice in many methods (Mundt et al., 2020; Aljundi et al., 2019a) is often ad-hoc.
Additionally, the choice of a meta-learning statistic is orthogonal to the way it is applied, e.g. one
could use the loss as opposed to the gradients for computing the exponential moving average (Zhu
et al., 2022). Lastly, the threshold used to classify novelty is determined ad-hoc (Wortsman et al.,
2020; Aljundi et al., 2019a) or empirically (Kirichenko et al., 2021), while few methods (Rios et al.,
2022) provide a method to automatically determine such threshold. Additionally, the threshold is
identified by evaluation on the same dataset, or split of, as the model was trained on. As such, when
the same threshold is evaluated in novel settings, it fails to generalize.

Our work is motivated by the lack of principled GCL evaluation benchmarks for a multi-modal setting
of text and vision. We first propose Stream as a way to construct infinitely long task sequences with
non-uniform learning-gaps by a finite set of ‘base datasets’ used with synthetic transformations. The
construction of Stream allows it to be used as an effective meta-learning objective in novelty detection
that improves generalization. We systematically evaluate common metrics used to quantify novelty
to find that many of them are uninformative when the difference between tasks is non-uniform, and
current GCL methods in identifying novelty fail catastrophically. We propose a baseline novelty
detection αMetaSup to Stream, which is inspired by the biological mechanism of ‘learning through
play’ in mammals (Wang, 2021), where we use a ‘dummy’ Stream to train a Transformer model in
identifying novelty. Similar to the metacognitive mechanism of surprise (i.e. due to novelty) (Foster
& Keane, 2019), we sample ‘experiences’ (data) prior to but not including the novel data batch
(Meta-Sampling) as a baseline GCL approach to our benchmark.

Due to the page limitation, consequence of the format this work is published in, we focus on the key
insights of our work in the main text while supporting experiments and analysis are attached in the
supplementary. Our main contributions:

• We introduce Stream, a new GCL benchmark and a method to construct an infinite stream of
tasks with non-uniform learning-gaps. We survey Meta-Statistics (Table 2) from the literature
to show the novelty of our benchmark and when compared with previous benchmarks.
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• We propose a baseline method to Stream αMetaSup, and use Stream as a meta-training
objective for a Transformer model that predicts novelty. We use αMetaSup as a method to
construct long-term memory that augments previous state-of-the-art CL methods.

• We use our method and 7 state-of-the-art baselines on a multi-modal Stream of 40 tasks.
αMetaSup augmented baselines are the only ones that perform better than random in our
challenging scenarios where their performance improves by 9% on average.

2 RELATED WORKS

General Continual Learning (GCL) (Buzzega et al., 2020a; Wang et al., 2023) seeks to learn
without requiring knowledge of task identity during both training and inference, a general case of
CL where the model learns domain-incrementally (DIL) by remapping task classes to overlapping
concepts (van de Ven et al., 2022). For reasons of brevity, we refer the reader to previous work
(Lange et al., 2019; van de Ven & Tolias, 2019) on the formal definition of different CL scenarios
(e.g. CIL/TIL). GCL Benchmarks evaluate a method by transforming an existing dataset into several
tasks, either by splitting the dataset classes Split-CIFAR (Krizhevsky et al., 2009; Wortsman et al.,
2020), applying rotations Rotated-MNIST (LeCun, 1998; Wortsman et al., 2020), or permuting the
features Permuted-MNIST (LeCun, 1998; Buzzega et al., 2020a). Such dataset and more recent
dataset (Lomonaco & Maltoni, 2017; Bornschein et al., 2022; Lin et al., 2021; Sagawa et al., 2022)
construct task sequences with uniform learning-gaps between tasks. Most similar to our work, the
iBlurry and CLiMB benchmark (Koh et al., 2022; Srinivasan et al., 2022) motivates the need for
non-uniform learning-gaps that previous benchmarks fail to address. iBlurry splits classes of 4
datasets into 25 tasks where a class can belong to more than one task. It can be argued that their
approach does not meet CL where i.i.d samples from a given class are repeated between tasks,
whereas we do not repeat a sample for a given class without first applying a transformation to it for a
given task. CLiMB constructs the data sequence from vision and language datasets with non-uniform
learning-gaps, contrary to our work, they supported a limited number of 13 tasks. Similarly to the
aforementioned benchmarks, Stream applies transformations to the original datasets to create new
tasks. On the contrary, we perform the transformations in the feature space where there are more
degrees of freedom to create ‘infinitely’ many tasks with varying difficulty. Additionally, our method
is able to project multiple datasets of multiple modalities on a common feature space and evaluate a
learner without the influence of the feature extraction method.

Novelty quantification and detection is the goal of several ML fields (Mundt et al., 2020) such as
Out-Of-Distribution (OOD) detection (Yang et al., 2021). GCL novelty detection is performed in
an online manner to detect task transitions to mitigate forgetting as opposed to in an offline manner
between a train and the test set to identify outliers. Novelty detection methods and GCL approaches
(Aljundi et al., 2019a; Ardywibowo et al., 2022; Wortsman et al., 2020; Zhu et al., 2022) quantify
novelty by meta-training statistics to infer a task transition that is then combined with a classification
method, e.g. variance from the exponential weighted moving average of loss (Zhu et al., 2022). We
can evaluate a novelty detection method using the F1 score to account for the low positive rate of
task transitions compared to the number of batches we evaluate. A high false-positive rate can be
catastrophic (i.e. applying an additional penalty or oversampling of a given task).

Novelty Identification in an online manner is performed using heuristic methods (Aljundi et al.,
2019a; Wortsman et al., 2020; Zhu et al., 2022) or adaptive methods such as Temporal Anomaly
detection (Sipple, 2020; Lindemann et al., 2021) using LSTMs. Bayesian approaches can be used to
detect changes based on distribution shifts using a heuristic threshold (Kirichenko et al., 2021; Lee
et al., 2020; Ardywibowo et al., 2022) or agnostic to a threshold (Zeno et al., 2018a;b; 2021; Li et al.,
2021; Kessler et al., 2021; Itti & Baldi, 2009; Rios et al., 2022). The CL method is then applied when
novelty is detected, where the key contribution of the method is in novelty identification. We find that
Bayesian approaches fail to generalize to larger sequences of tasks, as they maintain statistics over a
growing number of data that becomes intractable. Additionally, when the threshold for novelty is
chosen ad-hoc, it fails to generalize. Motivated by the inadaptability of previous methods to perform
to our challenging benchmark, we develop a meta-learning approach where we train an adaptive
classifier (i.e. Transformer) to infer novelty in a dummy Stream. The choice of the architecture of
the novelty identification model is orthogonal to the main contribution of our work. We evaluate
several models, including the ones mentioned, to find that our Transformer model has improved
generalization.

3



Under review as a conference paper at ICLR 2024

Figure 2: Left, we perform T-SNE (Van der Maaten & Hinton, 2008) on the feature vectors from the
tasks in S-Modal to visualize commonalities between them. We assign a color to each vector from a
continuous spectrum based on the alphabetical order of the dataset and transformation type. It can
be observed that the color for a given dataset changes on a gradient (e.g. ‘Amazon’ on the left outer
side) and for a given dataset different modalities produce distinct clusters. Additionally, for similar
modalities, there is a high overlap, e.g., ‘Amazon’ (pink) overshadows ‘IMDb’ (blue). The Vision
tasks (Real, Sketch) are clustered in the center, while Text datasets (Amazon, IMDb) are on the outer
side. Our visualization confirms that the Stream learning-gaps are similar but distinct enough that
T-SNE can identify their commonalities. Right, our transformations (Appendix A.1) provide three
types of learning-gaps: Cross and In-Modal Gaps are transitions between tasks that have different
base datasets. Distribution Gap is the transition between tasks on the same base dataset and modality.

3 STREAM

Stream is a sequence of tasks generated by projecting multi-modal Vision and Text datasets on
the same feature space and augmenting them within the feature space to synthetically generate an
arbitrarily long sequence of tasks. By augmenting the tasks in the feature space, our method can
control the difference of the learning-gaps as it provides more degrees of freedom, a visualization
of the learning-gaps as well as their categories can be found in Figure 2. Projecting all datasets on
the same feature space has the advantage that we can use a single learner and evaluate how well it
performs in a challenging setting while also removing the bias from the feature extraction process,
i.e. we are ablating the performance of the learning algorithm and not the robustness of the feature
extractor, while at the same time it is computationally tractable, for example we can evaluate a large
sequence of tasks in the reduced dimension space.

3.1 TASK-CONSTRUCTION

Stream uses transformations T to create a large sequence of ‘novel’ tasks with respect to the learner
but using a limited set of datasets Dbase. Transformations provide a method to control the learning-gap
between tasks while not altering the difficulty of the dataset. For example, a learner should be able to
perform equivalently when trained in isolation on both the transformed and un-transformed datasets,
but will perform differently when trained on the same set of tasks in a different order.

Task Sequence can be defined as a list of data transformations where Ti ∈ {T1, . . . , Tn} is applied
on a list of datasets Dbase. Ti is uniquely defined by the random seed. Stream is able to produce
infinitely long task sequences from a limited set of Dbase by varying the random seeds. We construct
and evaluate three Streams: S-Num, S-Vis, and S-Modal; Table 1. Due to the page limit, we show the
details of the Stream Transformations in Appendix A.1.

3.2 CONCEPT MAPPING

For Stream, there can exist base datasets that have one-to-one correspondences between their classes
such as the numbers of MNIST and SVHN (S-Num). While for more complex settings, e.g. Text
→ Vision, the same is not true. It is an open problem on how to design a learner without a priori
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Table 1: A ‘Stream’ can be constructed from datasets Dbase by applying Stream Transformations.
We compare our dataset with standard CL benchmarks PMNIST and Split-CIFAR100 (where none
or only a single transformation is applied). We denote the difficulty of each base dataset AUCDbase

for a learner trained on each task independently (no CL). We report the theoretical Upper-Bound
performance AUCUB that a learner can achieve on the given Stream in GCL as the mean of AUCDbase .
We find that S-Modal is the most challenging Stream. The low variance (±σAUC) suggests that the
Stream transformations do not affect the task difficulty.

Stream Dbase N Samples AUCDbase AUCUB

SplitCIFAR CIFAR1,...,10 6,000 each - 0.969

PMNIST MNIST (LeCun, 1998) 60,000 - 0.998

MNIST (LeCun, 1998) 60,000 0.998 ± 0.001
SVHN (Netzer et al., 2011) 99,289 0.921 ± 0.010

CIFAR-10 (Krizhevsky et al., 2009) 60,000 0.969 ± 0.004
CINIC-10 (Darlow et al., 2018) 270,000 0.930 ± 0.006

Real (Peng et al., 2019) 569,000 0.980 ± 0.001
Sketch (Peng et al., 2019) 569,000 0.906 ± 0.002
IMDb (Maas et al., 2011) 50,000 0.687 ± 0.050
Amazon (Ni et al., 2019) >20,000,000 0.677 ± 0.076

S-Num 0.959

S-Vis 0.950

S-Modal 0.813

knowledge of the tasks and their classes. Domain-Incremental Learning (DIL) projects multiple
classes to ‘concepts’, where for example a dog and a cat could be mapped to the same concept
‘animal’. We observe that the semantic similarity of classes mapped to the same concept does not
have a negative impact on the performance (see supplementary Sec. E.1), such as mapping an onion
and a snail to the same concept as opposed to an onion and a carrot. CL benchmark that evaluates the
ability to learn concepts rather than objects is supported by previous work (Lin et al., 2022).

S-Modal Concept Mapping The original DomainNet-Real (‘Real’) and DomainNet-Sketch
(‘Sketch’) datasets (Peng et al., 2019) contain 345 classes. We use K-Means clustering on the
CLIP (Radford et al., 2021b) features extracted from the class name textual description. Thus, we
group the 345 DomainNet classes into 10 concepts for Real and Sketch datasets. The numbers of
train classes in S-Modal for Real, Sketch, IMDb, and Amazon tasks are 10, 10, 10 and 5, respectively.
We provide additional information on the mapping in the supplementary material. As the label
distribution between Dbase can be imbalanced (e.g. Real and Sketch 10 classes and Amazon 5 classes),
we evaluate the performance of a learner using the AUC score.

4 LEARNING-GAP

Several previous works have investigated the stability-gap (Lange et al., 2023) and task-order (Bell &
Lawrence, 2022; Lange et al., 2019) or as we commonly refer to in this work as the learning-gap
between tasks. Previous works in GCL have proposed extracting model training statistics, such as
loss and gradient, for evaluating the learning-gap and identifying novel tasks. We categorize the
Stream learning-gaps in Figure 2 (right) and evaluate them in Section 5.1. We use Stream as a novel
setting to evaluate previous GCL works under non-uniform learning-gaps.

4.1 PRELIMINARIES

Meta-Statistics (MStats) are meta-training statistical metrics, such as mean loss value, that can be
extracted from a neural network. We survey the most widely used statistical metrics from literature,
and provide six categories in Table 2: Loss (Aljundi et al., 2019a; Zhu et al., 2022), Gradient
(Huang et al., 2021), Fisher Information (Park et al., 2022), Feature (Tack et al., 2020), Uncertainty
(Wortsman et al., 2020), and Energy (Liu et al., 2020) that are used for both OOD detection and CL.
These metrics can result in lists of tensors with different dimensions (e.g. list of gradients from neural
network layers), and they are not directly applicable to novelty detection methods. Previous works,
perform dimensionality reduction (see supplementary Sec. C.1) to aggregate them as an intermediate
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step before using them with their method. We evaluate all 6 MStats with 63 evaluation protocols on
their discriminative power to identify novel tasks, in Section 5.2. Our work is the first to perform a
systematic evaluation and observe that novelty detection is sensitive to both the MStats used and their
reduction methods.

4.2 ADAPTIVE META-LEARNING
Table 2: Summary of Meta-Statistics commonly
used in CL and OOD literature for novelty detec-
tion. Where fθ is the model parameterized by θ,
L the loss function, ŷ a pseudo-label, ϕ the set of
feature vectors,H the entropy function. It can be
observed that metrics share similarities where, for
example, Fisher Info is a special case of Gradient.
We find that simpler statistics often outperform
their complex counterparts in GCL.

MStats (τ ) Definition

Loss (τL) L(fθ(x), y)
Gradient (τG) ∇θL(fθ(x), y)
Fisher Info. (τFI ) θ + [∇θL(fθ(x), ŷ)]2
Feature (τF ) ϕ(x)
Uncertainty (τU ) H(fθ(x))
Energy (τE) − log

∑
exp(fθ(x))

Previous works (Aljundi et al., 2019a; Ardywi-
bowo et al., 2022; Wortsman et al., 2020; Zhu
et al., 2022) use an ad-hoc fixed hyperparam-
eter as a threshold to classify whether MStats
indicate a novel task that fails to generalize, as
we find in this work. We propose the use of
a dummy Stream constructed agnostic to the
main task sequence used during the training of
the learner to the benchmark. For example, we
find a threshold (η) through meta-learning on S-
Num (from Table 1) by a heuristic meta-learner
fh and use the same η to evaluate the learner
on S-Modal; Figure 1 (middle). We use the
same neural network architecture (i.e. a dummy
learner) during meta-learning as the benchmark
training, but without a mechanism to mitigate
forgetting and observe the learner’s behavior
when exposed to novel tasks. Different methods
can be used to predict novelty, such as the Running Mean (Aljundi et al., 2019a), Bayesian Inference
(Kirichenko et al., 2021) or Contrastive (Aljundi et al., 2019b). Such methods are used with a
fixed threshold value η to detect novelty. For example, a method can use the variance from the
running statistics and trigger novelty when it exceeds a predefined threshold. We evaluate all methods
(see supplementary Sec. C.1) to find that Running Mean works the best among the heuristic-based
methods and denote it as fh in the main text. However, we find that a heuristic method fails in more
challenging multi-modal settings, e.g. S-Modal. As such, we introduce a baseline method to help
further research in the field.

αMetaSup can be used to augment any CL method that utilizes a memory of a sort. αMetaSup
replaces the inflexible fh from previous work with an adaptive neural network fα trained on time
window w of MStats τi−w:i such that:

max
fα

E[P (fα(τi−w:i)| i→ Surprise)] (1)

αMetaSup computes the novelty probability based on a window of MStats as opposed to only the most
recent batch. Additionally, the highly parameterized model fα can learn a non-linear relationship
between novelty and MStats that ‘adapts’ to the non-uniform learning gaps and as shown in Figure 1
(right). The choice of the backbone fα is flexible. We evaluate a Transformer (Vaswani et al., 2017)
(fgpt) and an LSTM (flstm) to find that fgpt generalizes the best among backbones, datasets, and
MStats. We present the performance of fgpt in Table 4 and the ablation of the fα architecture in the
supplementary.

We use τ as a metric to quantify novelty and fα to identify novelty based on a context window. The
main contribution of αMetaSup is on the learning process, where, similar to the flexible choice of
τ and fα, the method to mitigate forgetting is a design choice. A CL method can be used when a
novel task is detected to mitigate forgetting. We find that current CL methods are not robust to false
positives where a CL method is incorrectly applied within the same task. As such, we provide an
improvement to CL methods that utilize memory where Meta-Sampling stores long-term memory
samples prior to ‘surprise’ at step i but not including data at i. Meta-Sampling is robust to false
positives as the data that triggered a false-positive response are not stored in long-term memory. We
find similarities to the biological mechanism of learning, where experiences leading to a traumatic
event are vivid, while the traumatic event is nonmemorable (Foster & Keane, 2019). We provide the
details of Meta-Sampling and compare our method with additional related works in the supplementary
Sec. D and B respectively.
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Table 3: Analysis on the informativeness of Loss MStats (τL) in predicting novelty. We report the
raw numerical value of MStats, and the ones computed by heuristic meta-learner fh. We report
the value of a ‘Novelty’ metric from 1 step prior to a novel task → when a novel task appears.
The informativeness can be evaluated by the numerical difference between transition values where
fh provides a larger difference (e.g. −0.02 → 4.27 compared to 0.16 → 0.16). We find that the
informativeness corresponds to the four categories of learning gaps from Figure 2.

Novelty Cross-Modal In-Modal Distribution

fh(τL) -0.06→ 34.86 -0.18→ 15.38 -0.02→ 19.17
τL 1.08→ 5.25 1.05→ 3.14 1.04→ 3.37

5 EXPERIMENTS

In Section 5.1, we evaluate the Stream learning-gap by the type and size of the task transition. In
Section 5.2, we evaluate the Meta-Statistics and their usefulness in novelty detection and show
how a heuristic function fh from Section 4.2 can generalize poorly. Last, in Section 5.3, we show
the improvement our meta-learning process using Stream can provide to existing novelty detection
methods, while the αMetaSup augmented method is the only one that can perform in our most
challenging setting, a multi-modal Stream. We provide additional experiments on time efficiency,
ablation studies, and details of the experimental setup in our supplementary Sec. E and F. We present
and discuss the main results in the remainder of this section.

5.1 STREAM LEARNING-GAPS

We use Forward Transfer (FWT) (Lopez-Paz & Ranzato, 2017) in the AUC score to evaluate the
similarity between two consecutive tasks (ta → tb) and as a proxy to quantify the learning-gap. FWT
is the performance of a learner on an unobserved task tb after training on some task ta. Trivially, a
larger FWT between two tasks signifies a higher similarity between them and a smaller learning-gap.
For example, a learner can be trained on MNIST and evaluated on SVHN. We would expect the
learner to perform on SVHN without being trained on the dataset as it is the colored version of MNIST.
The same can not be said for the ‘text’ version of MNIST i.e. a Cross-Modal gap. We observe an FWT
of 0.51 for Cross-Modal gaps, 0.76 for In-Modal Gaps, and 0.57 for Distribution Gaps (minimum
transformation strengths). Our experiments have us conclude that learning in the feature space bears
similarities to learning in the input space as the FWT agrees with our intuition. The advantage
of Stream being applied in the feature space is that multiple modalities can be projected on the
same feature space. A full table comparing these learning-gaps at different levels of transformation
strengths can be found in Appendix E.1.

5.2 META-LEARNING

We first evaluate how a heuristic novelty function fh can improve the discriminability of novel tasks
from all learning-gaps in Table 3. Compared to using MStats as novelty scores directly, fh drastically
increases the numerical difference between a learned task and a novel task. The magnitude difference
between learning-gaps suggests that the Cross-Modal Gap is more distinguishable than In-Modal and
Distribution Gaps, and a fixed threshold may be hard to generalize to all learning-gaps. A full table
can be found in Appendix Table 6.

Next, we evaluate the generalization of fh using a fixed threshold acquired from the meta-learner. We
survey and several τ and present a representative sample in Table 4. We collect τ from 20 randomly
initialized task sequences and for 5 different datasets. We evaluate the performance of a metric τ in
its discriminative power to predict novelty. We find that the performance of a given τ generalizes
among datasets, while it is influenced by the dimensionality reduction method. Next, we evaluate
the ability of the novelty threshold (η) to generalize between S-* (→) datasets, where the lower
variance indicates higher similarity on the threshold value between the two datasets. The results
have us conclude that τG is informative, while it is expected to generalize better, as evaluated by the
smaller difference in VMR (Dispersion Ratio (Cox & Lewis, 1966)). Additionally, we conclude that
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Table 4: We evaluate the generalization of Meta-Statistics τ when used with a threshold heuristic (fh
Section 4.2), a novelty detection method that is similar to (Wortsman et al., 2020; Zhu et al., 2022;
Aljundi et al., 2019a). On the left we report the dispersion ratio (‘VMR’) of the learned threshold
(η) at each dataset for 100 random task sequences. Additionally, we report the dispersion ratio for
the two datasets combined (→). A larger in-dataset VMR signifies a difficult task sequence for
which a different threshold is identified at each iteration where Stream task sequence (‘S-Vis’) is an
improvement to traditional benchmark Split-CIFAR100 (‘S.C.’). On the right we evaluate the learned
η in predicting novelty on a held-out task sequence of ‘S.C.’ and apply the same threshold on ‘S-Vis’
to evaluate Novelty Detection (‘F1’). When comparing between τ a smaller VMR and higher F1
signifies improved generalization. Our results show that lower dimensional τ are more noisy (higher
→ VMR for τL compared to τG) while the dimensionality reduction can affect the generalization
where ||τG||2 outperforms τG. A heuristic method can generalize poorly for more complex τ that
motivates us to develop an adaptive method, αMetaSup. A full table of 63 evaluation protocols is
provided in Supplementary Tables 10 to 13.

Threshold - Dispersion Ratio (VMR) Novelty Detection (F1)
fh(τ) S.C. ↑ S-Vis ↑ S.C.→ S-Vis ↓ S.C.→ S-Vis ↑
τL 0.187 0.721 1.444 0.947→ 0.947
τG

‡ 0.192 0.583 0.866 0.947→ 0.774
||τG||2† 0.144 0.497 0.801 0.842→ 0.800
τG

† 0.304 0.767 1.124 0.941→ 0.750
τFI

† 0.248 0.870 1.343 0.947→ 0.593
τE 0.260 0.477 0.915 0.340→ 0.533
τU

† 0.310 0.505 1.111 0.271→ 0.245
||τF ||2‡ 0.288 0.341 2.147 0.120→ 0.558

τ which are higher dimensional representations of other τ perform poorly than their counterparts
e.g. τFI and when compared to τG. We hypothesize that aggregate effects over the high-dimensional
space can lead to noisy signals for novelty, while scalars such as τL,τE , τU generalize poorly or have
high VMR, making them challenging to use.

We use τG (low VMR) to evaluate the generalization of an adaptive method fα to identify novelty and
when compared with a heuristic fh. We train a dummy learner on S-Num and evaluate on a ResNet
and Residual MLP on S-Modal and S-Vis (cross-dataset evaluation) in a GCL setting. We find that fh
generalizes poorly in the new setting where it now performs with 0.738 average F1 Score (Table 9)
compared to 0.872 from the in-dataset evaluation setting (train and evaluate the dummy learner on
the same Stream). Contrarily, fgpt performs with 0.861 F1 Score for the same setting (Table 9), a
16.7% improvement in performance compared to fh. We conclude that an adaptive novelty detection
method generalizes better across datasets. Additional experiments on fh, αMetaSup and full tables of
MStats evaluation are in supplementary E.3 and Tables 10 to 13.

5.3 STREAM BENCHMARK GCL

We present our results of a multi-modal Stream (S-Modal) as a challenging benchmark to evaluate
the generalization of a learner in Table 5. We evaluate current state-of-the-arts that do not require task
identity to mitigate forgetting, and find that they can perform for easier Stream but fail catastrophically
when evaluated on a set of tasks with large learning-gaps, such as S-Modal. To provide a baseline
result for future studies on Stream benchmarks, we augment ER (Riemer et al., 2018) with a state-of-
the-art novelty detection method and Meta-Sampling (‘MSamp’, Ours). We find that augmenting ER
with a novelty identification method (e.g. fOneShot) and Meta-Sampling improves performance by as
much as 10.5% and 9.6% for easier dataset S-Vis and S-Num. We conclude that Meta-Sampling and
Novelty identification are important in mitigating forgetting. However, the fixed threshold novelty
detection methods (i.e. middle portion of Table 5) perform poorly for ‘S-Modal’. As such, we replace
the novelty identification component of the previous methods where we use αMetaSup trained on a
dummy Stream composed of different datasets that we then evaluate on Stream. For example, we train
αMetaSup with a dummy learner on S-Num and evaluate when used with a new learner on S-Modal.
We find that the αMetaSup augmented baseline ER performs 8% better. αMetaSup is flexible and
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can be used with any CL method that has a memory component. We conclude that adaptive methods
will be required for more challenging settings where heuristics fail. Lastly, for a GCL setting, a
meta-learning method will be required where αMetaSup has flexible design components that can be
used to augment existing approaches.

6 DISCUSSION
Table 5: Top rows; we report the AUC perfor-
mance of SOTA rehearsal baselines ER (Riemer
et al., 2018), DER++ (Buzzega et al., 2020a), CLS-
ER (Arani et al., 2022) on Stream datasets. All
baselines perform similarly to each other and per-
form close to random (0.5) for multi-modal Stream
(‘S-Modal’). Middle rows; we improve ER by 10%
when we augment with Meta-Sampling (Ours),
when computed as the average of the novelty detec-
tion methods fE(τE) (Liu et al., 2020), fPeak(τL)
(Aljundi et al., 2019a), fOneShot(τU ) (Wortsman
et al., 2020), fEWMA(τL) (Zhu et al., 2022) with
a fixed threshold. Last row; are the mean perfor-
mance of our adaptive novelty detection method
αMetaSup. We conclude that all components of
αMetaSup improve the existing CL baseline (ER)
while αMetaSup is the only method that performs
at S-Modal.

Method S-Vis S-Num S-Modal

DER++ 0.735 0.894 0.565
CLS-ER 0.741 0.891 0.555
ER 0.724 0.908 0.555

Base Sampling 0.734 0.898 0.558

fE(τE) 0.778 0.908 0.564
fPeak(τL) 0.806 0.901 0.562
fOneShot(τU ) 0.770 0.915 0.564
fEWMA(τL) 0.783 0.901 0.562

fh + Meta-Samp. 0.784 0.907 0.563

αMetaSup + ER 0.763 0.923 0.603

There is currently no work that introduces a
method to control and construct a stream of data
with variable learning-gaps in real-world appli-
cations. Additionally, current Meta-Statistics
can either be impractical to obtain in an on-
line fashion (Jacobian), too noisy in predicting a
surprise (Fisher Information), or uninformative
(Features), and therefore they can be difficult to
use in predicting a learning-gap for GCL. Pre-
vious work, and our work, still relies on artifi-
cial transformations to generate learning-gaps
of variable size. We call for future work on im-
proved statistics to improve novelty detection’s
robustness in GCL.

Little work exists on the evaluation of false-
positive responses to novelty. We motivate the
development of evaluation protocols to under-
stand the catastrophic forgetting of GCL meth-
ods when incorrectly identifying novelty.

7 CONCLUSION

In this work, we propose Stream as a method
to construct infinitely long task sequences with
varying learning-gaps, which is an evaluation
scenario commonly overlooked by previous
GCL works. We perform a systematic review
of Meta-Statistics that are used to identify novel
tasks in an online manner to evaluate the diver-
sity of the task sequences constructed by Stream.
We proposed αMetaSup a biologically inspired
meta-learning novelty detection method that is
robust to false positives compared to previous work. αMetaSup is flexible where the specific meta-
training statistic and the CL method used to mitigate forgetting are design choices. We exhaustively
evaluate several design choices and the components of our learning method in ablation studies to
conclude that αMetaSup is the only method that can perform well in a challenging multi-modal
setting constructed with Stream. Our benchmark reveals weaknesses of existing GCL methods where
we find that meta-learning would be required to mitigate forgetting. The flexible construction of
Stream can provide a method to construct such a meta-learning objective and evaluate a GCL method.
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for detection of device failure. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 9016–9025. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/sipple20a.html.

Tejas Srinivasan, Ting-Yun Chang, Leticia Pinto Alva, Georgios Chochlakis, Mohammad Rostami,
and Jesse Thomason. Climb: A continual learning benchmark for vision-and-language tasks.
Advances in Neural Information Processing Systems, 35:29440–29453, 2022.

Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis Titsias. Information-theoretic
online memory selection for continual learning. In International Conference on Learning Repre-
sentations, 2022. URL https://openreview.net/forum?id=IpctgL7khPp.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
learning on distributionally shifted instances. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
11839–11852. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/8965f76632d7672e7d3cf29c87ecaa0c-Paper.pdf.

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard
Grave, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, and Hervé Jégou. Resmlp: Feedforward
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A STREAM DATASET

We use publicly available datasets previously used for Continual Learn (CL) and construct three
Stream task sequences, S-Num, S-Vis, and S-Modal that we use for our experiments in the main
text. For task transformations, we perform 2-D rotation transformation and channel-wise permutation
on the features extracted by the first convolutional layer in a pre-trained and frozen ResNet-18, as
discussed in Sec 3.1 in the main text.

S-Num is the Stream task sequence generated from MNIST (LeCun, 1998) and SVHN (Netzer
et al., 2011) as ‘base datasets’ (Dbase). S-Num is an improvement to the commonly used PMNIST
benchmark, where a diverse sequence is an improved meta-learning objective to a ‘dummy learner’
(Table 3 in the main text). We use S-Num for training αMetaSup which we then use for our more
challenging vision (S-Vis) and multi-modal Stream experiments (S-Modal). When S-Num is used as
a meta-training objective, on the dummy learner (Residual MLP (Touvron et al., 2021)) of S-Modal,
we resize SVHN to 28x28, transform to grayscale, and flatten to 784-D vector. For the dummy learner
(ResNet-18 (He et al., 2015)) of S-Vis, we resize MNIST to 32x32 and convert it to color. For all
the experiments for which we report results for S-Num, we use the first variant of S-Num (Residual
MLP) unless specified otherwise.

S-Vis is the Stream benchmark generated from CIFAR-10 (Krizhevsky et al., 2009) and CINIC-10
(Darlow et al., 2018) as ‘base datasets’. CINIC-10 is a subset of ImageNet for the classes present in
CIFAR-10. We use CINIC-10 to create tasks where there are domain shifts from CIFAR-10. S-Vis is
a challenging alternative to SplitCIFAR.

S-Modal is a multi-modal GCL benchmark we include in Stream. The task sequence is generated
from two Vision (Real, Sketch from DomainNet (Peng et al., 2019)) and two Text (IMDB (Maas
et al., 2011), Amazon (Ni et al., 2019)) datasets. Contrary to S-Num and S-Vis, S-Modal does not
have a 1-to-1 correspondence between the classes of the datasets, and as such we train a learner with
concept mapping. We map the 345 DomainNet classes into 10 concepts, while the classes for the
remaining datasets are unaffected (Table 13 and Table 14). We use a pre-trained ViT (Dosovitskiy
et al., 2020) and GPT-2 (Radford et al., 2019) to embed Vision and Text datasets into a common
768-D feature space. The goal of the methodology is to ablate the efficiency of the GCL algorithm
applied to the learner without the computational burden or bias of the feature extractor. Permutation
and rotation transformations are performed in the 768-D feature space. We use a Residual MLP
(Touvron et al., 2021) as a learner.

A.1 STREAM TRANSFORMATIONS AND LEARNING-GAPS

Stream Transformations. We propose two types of transformations to construct Stream task
sequences. Permutation Transformations Tperm re-order the feature space but do not apply to data
for which there are interdependencies among features. For example, for images and text, when
permuting pixels or words, spatial dependencies will be perturbed and consequently increase dataset
difficulty (Ivan, 2019). On the contrary, we permute across embedded dimensions of pre-trained
features that allow us to generate novel tasks of the same difficulty. Moreover, permuting on the
embedding space for modalities with few features such as images (3-channels) increases the number of
possible transformations from 3! to N ! (N-channel pre-trained features). Rotation Transformations
Trot for high-dimensional feature spaces can have several interpretations (Aguilera & Pérez-Aguila,
2004). For Stream, we first project the feature Tensor to a 2-dimensional plane, then perform a 2-D
rotation, and finally project the tensor back to the original space, thereby also preserving feature
inter-dependencies. An illustration of feature-wise permutation and vector rotation is provided in
Figure 3.

Learning-Gap Categories. As shown in previous work (Lange et al., 2019) the similarity between
two sequential tasks can influence the forgetting a learner experiences. The goal of Stream is to
provide a method to control for the similarity between ‘learning-gaps’. Based on the transition
between two adjacent tasks ta, tb in Stream, we design our transformations to provide four types of
‘learning-gaps’, as provided in Figure 3 in the main text.

• Distribution Gap tMNIST1

rot←→ tMNIST2
; where ta, tb are from the same dataset and permu-

tation, with different degrees of rotation.
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Figure 3: Illustration of the permutation Tperm (1) and rotation Trot (2) transformations introduced
by Stream. The application of the transformations in the feature space provides more degrees of
freedom than transformations in the input space (e.g. PMNIST). Top, for a 3-channel image (1) from
Cifar10 (Dcifar10) we use the pre-trained convolutional features of the first layer from a ResNet-18 to
increase the number of unique transformations from 3! = 6 to 64! ≈ e89. A distinct task is created by
a unique permutation seed and rotation angle. The transformations provided by Stream are applicable
to multi-modal datasets where feature inter-dependencies such as in Text and Vision can exist. For
example, vector rotation (Bottom) will perturb but not distort spatial inter-dependencies where there
will be an equidistant shift in the vector space for features (e.g. dblue = dgreen).

• In-Modal Gap tMNIST1

rot←→ tSVHN2 ; where ta, tb are two distinct datasets of the same
modality and permutation.

• Cross-Modal Gap tMNIST ←→ tIMDB; where ta, tb are of different modalities but for the
same permutation.

• Permutation Gap tMNIST1

perm←−−→ tMNIST2 ; where ta, tb have different permutations. In the
ablation study of learning-gaps (Table 7), we find that the Permutation Gap is similar to the
Cross-Modal Gap in magnitude.

A.2 DOCUMENTATION, LICENSE AND SOCIAL IMPACT

We will release the Stream Dataset repository as well as the documentation after the review process
concludes. We include the documentation for creating Stream task sequences by a TaskScheduler
so that users can construct any sequences with their custom base dataset. Our code and dataset of
the extracted feature vectors are open-sourced and licensed under GPL-3.0. The datasets we used
(MNIST, SVHN, CIFAR-10, CINIC-10, Amazon, IMDB, Real, and Sketch) to extract the feature
vectors are not part of our work. For their usage and license, please refer to each respective dataset.

Ethics and Social Impact. All the datasets we use to construct the Stream are publicly available and
are curated to not contain sensitive and private information. The users may choose to use their own
dataset to synthesize Stream tasks. Stream offers the ML community an efficient way (e.g. using a
small number of datasets) to construct a large sequence of tasks to evaluate the generalization of a
learning algorithm in realistic scenarios.

B ADDITIONAL RELATED WORKS

Online Novelty Inference for GCL. Previous GCL works infer when a novel task is introduced and
apply a Continual Learning (CL) method. For example, a novel task can be inferred by the value of
the loss function, where the loss has a smaller variance and a smaller value range between batches
and before a novel task. A method can be used to determine the value of a meta-training statistic
(e.g. loss) based on a threshold that detects novelty. Previous work (Aljundi et al., 2019a) uses the
plateau and peak of the loss to detect novelty; fPeak(τL). Similarly, (Zhu et al., 2022) maintains the
exponential weighted moving average for the training loss, which is then used to identify novelty
when the value exceeds a threshold; fEWMA(τL). ‘One-Shot’ (Wortsman et al., 2020) uses a fixed
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Table 6: Analysis of the linear separability of MStats Gradient τG, Loss τL, Fisher Information τFI ,
Energy τE , Uncertainty τU , and Features τF (see full notations in Table 15) in predicting novelty.
We provide the numerical value of MStats, and the ones computed by Z-norm fz(·). We report the
value of a ‘Novelty’ metric from 1 step prior to a novel task→ when a novel task appears. The linear
separability can be evaluated by the numerical difference between values where fz provides a larger
difference (e.g. −0.02→ 4.27 compared to 0.16→ 0.16) where an MStats can then be utilized for
novelty prediction. Linear separability can also be used to evaluate the informativeness of a MStats
in predicting novelty, where higher separability would indicate a greater discriminative power for a
MStats. We find that fz(||τF ||2) and fz(τL) perform the best among other MStats. We observe that
the results correlate with the evaluation of the same MStats in novelty prediction in Table 16.

Novelty Cross-Modal Permutation In-Modal Distribution

fz(||τG||2) -0.01→ 11.74 -0.04→ 10.08 -0.08→ 6.58 -0.06→ 7.29
||τG||2 0.09→ 0.41 0.09→ 0.37 0.09→ 0.30 0.09→ 0.28

fz(τL) -0.06→ 34.86 -0.09→ 27.02 -0.18→ 15.38 -0.02→ 19.17
τL 1.08→ 5.25 1.07→ 4.41 1.05→ 3.14 1.04→ 3.37

fz(τFI) -0.02→ 4.27 -0.02→ 2.92 0.02→ 0.83 -0.02→ 1.71
τFI 0.16→ 0.16 0.16→ 0.17 0.16→ 0.17 0.16→ 0.17

fz(τE) -0.02→ 2.99 -0.07→ 2.88 0.003→ 2.46 -0.06→ 2.46
τE -5.48→ -5.04 -5.43→ -4.98 -5.31→ -4.88 -5.35→ -5.00

fz(τU ) 0.01→ 1.93 -0.04→ 1.78 -0.01→ 1.53 0.04→ 1.51
τU 0.11→ 0.13 0.11→ 0.13 0.11→ 0.12 0.10→ 0.12

fz(||τF ||2) 0.003→ 35.91 0.03→ 18.95 -0.08→ -2.48 0.05→ -2.26
||τF ||2 184.19→ 142.07 165.70→ 148.18 141.75→ 132.37 142.21→ 137.83

threshold on the output of a one-step Frank-Wolfe algorithm applied on the uncertainty (entropy)
value of the learner; fOneShot(τU ). The methods described use a fixed threshold that is based on a
heuristic to infer novelty. We use them as baselines to compare with our method αMetaSup, which is
adaptive and infers novelty using a neural network. In addition, we extend an OOD detection method
in an online fashion where it applies a threshold using the energy score (Liu et al., 2020) fE(τE) as a
baseline in our experiments.

Experience Replay (ER) (Bagus & Gepperth, 2021) randomly and uniformly sample (Rolnick et al.,
2019) from all training data that are stored in a limited-size buffer that is rehearsed during training.
During rehearsal, the buffer data are appended to the current training batch and used as an auxiliary
to the current training objective. Gdumb (Prabhu et al., 2020) questions the importance of training on
the full task in a CL setting. During training time, they do not train a model but instead randomly
sample data to store in a buffer, during test time they train a new model on the stored buffer data.
Extensions (Aljundi et al., 2019b; Arani et al., 2022; Bang et al., 2021; Buzzega et al., 2020b) use
a heuristic on ‘what to sample’ from a given batch, such as the most informative samples. While
fewer work (Sun et al., 2022) provide improvements on the timestep of storing samples to memory
(‘when to sample’). ‘When to sample’ can be based on criteria such as a novel task while ‘what to
sample’ can be used to decide which samples to store and replace from memory. As such, the two
methods can be used in combination, where the learner’s performance can be improved by efficient
memory utilization. Our work introduces a method of ‘when to sample’ with the use of αMetaSup
and Surprise Sampling. We evaluate the efficiency of memory utilization our method provides to
show an improvement over current baselines. Extensions to ER such as (Buzzega et al., 2020a; Arani
et al., 2022) do not rely on the task identity to perform GCL. Such and similar work can be improved
with methods of ‘when to sample’ as opposed to uniform random sampling from all training batches.
Our Meta Sampling (‘MSamp’) method can be applied in extension to ER learning algorithms and
collect samples prior to a novel task transition (surprise). Our findings in Section 6.3 of the main text
agree with (Sun et al., 2022) that uniform sampling under-performs compared to MSamp and when
evaluated at GCL.
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C METHODS

In this section, we provide a detailed description of the methods used in the main text to ablate the
performance of αMetaSup and evaluate Stream.

C.1 META-STATISTICS

Meta-Statistics (MStats) are computed during a learner’s training and are used online to analyze
the learning process. We use MStats as a method to quantify the novelty level of a new task. We
group the MStats listed in Table 2 of the main text by their dimensionality. At a training step i, Loss,
Uncertainty, and Energy MStats are scalars τL, τU , τE ∈ R; While Gradient, Fisher Information,
and Feature MStats τG, τFI , τF are lists of |θ| tensors where |θ| is the number of layers and each
tensor τi in the list has dimensions τi ∈ Rb×Ii×Oi that depend on batch size b, input Ii and output
Oi dimensions. As such, a dimensionality reduction method is required for using τG, τFI , τF for
the novelty detection task. Previous works perform dimensionality reduction to aggregate them
as an intermediate step before using them with their method. For example, for an ‘n’ layer Feed-
Forward Network the Gradient MStats would be a list τG = {τ1, . . . , τn} where the dimension of
τi ∈ Rb×Ii×Oi would depend on the batch size b, the input dimension to layer i, I and the output
dimension O. For example, τG can be reduced by the L2 norm, ||τG||2 = {||τ1||2, . . . , ||τn||2},
where ||τG||2 would be a list of scalars.

We find that directly using the high-dimensional representation is uninformative. Our work is the first
to perform a systematic evaluation of MStats and the reduction methods that make them utilizable for
novelty identification. We apply dimensionality reduction on each tensor in the list, e.g. the reduced
MStats will be a list of scalars where each scalar quantifies the novelty in that layer. We experiment
with two reduction methods, mean and L2 norm, in our search for the best indicator of novelty level,
and present the result together with heuristic novelty calculation in Table 16, Table 17, Table 18, and
Table 19.

C.2 NOVELTY DETECTION METHODS

We identify and adapt several methods used in literature for identifying novelty and design 3 novel
methods based on the Running Mean fz (Aljundi et al., 2019a), Contrastive similarity fsim (Aljundi
et al., 2019b), and Bayesian approaches fbayes (Kirichenko et al., 2021), to evaluate the surveyed
MStats.

For an MStats τ we use fh to map τi from train step i to a scalar that quantifies novelty. Thereby we
find η, s.t. maximize the F1 score on the dummy Stream:

max
η

F1(fh(τi) > η : i→ Surprise) (2)

Running Mean fz maintains statistics from the meta-learning process Meta-Statistics τ as learnable
parameters, running mean µ̄τ and running std σ̄τ . Similar to Batch Normalization (Ioffe & Szegedy,
2015), the moving average µ̄τ and standard deviation σ̄τ are updated with momentum λ with MStats
τi computed from the data batch at each training step i. Since τi can be a vector, we use an aggregation
method Agg (e.g. mean, max) to compute a scalar value as the degree of novelty.

fz(τi) = Agg[(τi − µ̄τ )/
√
σ̄τ + ϵ ]

σ̄τ ← µ̄τ + λ(τi − µ̄τ )

µ̄τ ← (1− λ)
[
σ̄τ + λ(τi − µ̄τ )

2
] (3)

Contrastive Similarity fsim has been used to select rehearsal samples for diversity (Aljundi et al.,
2019b) and mitigate forgetting. We extend the approach to identify novelty, by contrasting MStats
from the current training step τi with a reference window of MStats from the previous training steps
W = {τi−w, . . . , τi−1}. We compute fsim as the average cosine dissimilarity from τi to all MStats in
W , where a higher value corresponds to a higher novelty level:

fsim =
1

|W|

i−1∑
j=i−w

τi · τj
||τi||||τj ||

(4)
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Bayesian fbayes maintains the mean µ̄τ and the log std σ̄τ from fz and similarly to fsim maintains
a window of MStatsW . Novelty is computed on the KL divergence where the prior is the training
moving average, and the posterior distribution is the batch average. The KL divergence between the
two distributions N (µ̄τ , σ̄τ ) and N (µ̄W , σ̄W) provide the degree of novelty:

fbayes =
∑

[σ̄τ − σ̄W +
exp(σ̄W)2 + (µ̄τ − µ̄W)2

2 exp(σ̄τ )2
− 0.5] (5)

Where higher dissimilarity between batch statistics and running statistics would result in higher
KL-Divergence and thus a higher degree of novelty.

Our Meta-Learning Process first collects MStats data from a dummy learner trained on a dummy
Stream task sequence that does not deploy a mechanism to mitigate forgetting. In the second stage, we
tune or train a method such as fh (heuristic) or fα (adaptive) on the data collected from the first step.
Finally, we use the learned η or fα from the previous step with a new learner of the same architecture
and a method that mitigates forgetting to learn a novel task sequence (GCL task sequence), which
consists of different tasks agnostic of the dummy Stream.

For all of our experiments, we collect MStats from 100 dummy learners trained on 100 tasks of
S-Num, S-Modal, and S-Vis. We use λ = 0.01 for fz and fbayes.

C.3 αMETASUP

Our meta-learning process using Stream allows us to ‘learn’ η, but novelty detection using a threshold
cannot fully address the issue of non-uniform learning-gaps. Motivated by the shortcomings of a
fixed threshold, we propose a baseline method to Stream, αMetaSup.

αMetaSup uses a neural network on a window of MStats that predicts a novel task, whereas the
aforementioned methods compute the novelty score based on the current training batch. Training
a neural network can require a significant amount of data where novel tasks can be sparse. Stream
provides a method to construct large task sequences with sufficient true-positives that can be used
to observe the behavior of a dummy learner in a diverse set of circumstances. The advantage
of the diversity of task sequence provided by Stream is reflected in the improved generalization
of αMetaSup between two Stream sequences constructed using different datasets as opposed to
standardized benchmark sequences (e.g. PMNIST).

αMetaSup Meta-Learning Process. Similar to the meta-learning process of Appendix C.2 we
collect MStats which we use as a dataset to train a small neural network fα. We perform novelty
detection as a time series classification problem and use a sequence of length w as inputs to the
neural network. We annotate each sequence as a positive sample if there is a task transition within
the 5 most recent training steps, and a negative sample otherwise. We use w = 10 for all αMetaSup
experiments.

Due to the low positive rate of novel task transition steps, the output probabilities of the trained fα
are miscalibrated. We calibrate fα after training using isotonic regression (Guo et al., 2017) on the
same MStats dataset. αMetaSup is used in an online manner during GCL to infer novelty.

Classifier Architecture. We evaluate two classifier choices: A unidirectional LSTM flstm where
the classification head is attached to the final hidden state, and a Transformer fgpt where the input is
processed by one embedding layer, one positional embedding layer, one multi-head self-attention
layer, and finally the binary classification head. We perform an ablation study in Appendix E.4 to
evaluate the generalization and robustness of each model.

D META-SAMPLING

Rehearsal Learning methods sample uniformly over all training steps (e.g. DER++ (Buzzega et al.,
2020a)) and are effective when task identity is absent. Similarly to our work, recent work (Sun
et al., 2022) has found that oversampling ultimately degrades performance, where samples from
memory can be replaced at random. We found in the main text Sec. 5.3 that current state-of-the-art
rehearsal-based methods cannot perform on our challenging Stream S-Modal. To provide baseline
results and aid future research, we propose Meta-Sampling for these methods to generalize on Stream.
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Algorithm 1 Meta-Sampling

Given: dataset D, novelty detection method fα, Meta-Statistics collection function fτ , CL re-
hearsal method LCL.
Initialize: learner fθ, short-term memory B, long-term memoryM, warm-up steps k.
for xi, yi in D do
τi = fτ (fθ(xi), yi)
if fα(τi−w:i) and k = 0 then {Novelty Detected}

B ← Sample(B)
M← B ∪M
reset B, k

Compute task loss: ℓ = L(fθ(xi), yi).
Compute CL loss: ℓCL = LCL(M)
Update learner: fθ ← ∇(ℓ+ ℓCL)

if k = 0 then B Append←−−−− (xi, yi)
else k ← k − 1 {Warm-up Phase}

end for

Meta-Sampling (MSamp) selects a number of recent samples B from the short-term memory B ⊂ B
to store in the long-term memoryM. B include samples directly prior to a novel task transition
(‘surprise’) and not including the current training batch classified as novel. Surprise Sampling can
work with any method that can perform Novelty Detection and be used by any Continual Learning
method that utilizes a memory of some sort. We use warm-up to avoid novelty detection during
the learning phase of a new task. The algorithm is provided in Algorithm 1. MSamp can be used
to identify training batches from which to sample, while additional methods such as (Aljundi et al.,
2019b) can be used to select which samples to replace from memory from the current time step. We
compare our method with current methods that sample every batch uniformly as a baseline.

We find several similarities between Meta-Sampling and the biological mechanism of learning in
mammals. It has been known that experiences that promote adrenal arousal lead to the movement of
recent experiences to long-term memory in humans (McGaugh, 2013). Additionally, a learner can be
less sensitive to novelty after a surprising event and requires time to acclimate. Last, surprise can be
induced by both traumatic and novel experiences, but storing them can often be counterproductive to
a learner. When novelty is detected, MSamp provides a mechanism to ‘solidify’ prior experiences.
Similarly, events leading to ‘surprise’ can be important for learning causal relationships.

Both our insight and our approach are contrary to the methods (Aljundi et al., 2019b;a) that sample
during novelty detection which we found to perform poorly. We find that novelty can be triggered
by more than novel data, such as noisy data, which would lead to a false-positive response. Current
CL methods are not robust to false positives; such as applying a CL method to noisy data leads to
catastrophic forgetting.

E ADDITIONAL EXPERIMENTS

E.1 LEARNING-GAPS

We provide a full table of learning-gap ablation study mentioned in Section 5.1 in Table 7. The
strength of transformation is defined by the number of degrees in the Rotation Transformations. The
rotation degree greatly affects the magnitude of In-Modal and Distribution Gaps, and has little effect
on Cross-Modal Gaps. Permutation Gap is similar to Cross-Modal Gap in magnitude and therefore
we group these learning-gaps into three categories (Cross and In-Modal, Distribution) in Figure 2.
The results agree with our design of the Stream Transformations.
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Table 7: We evaluate learning-gap categories identified in Figure 2 for S-Modal. We report the
learner’s Forward Transfer (FWT) (Lopez-Paz & Ranzato, 2017) on an unobserved task tb after
being trained on task ta as the magnitude of the learning-gap ta → tb. We observe that Permutation
transformations, create distinct tasks where the performance is close to random (AUC≈0.5). We
apply Rotation to the same dataset permutation (‘Distribution’) and observe a correlation between
the degrees and the learning-gap. Similarly for transitions between tasks of the same modality
(‘In-Modal’), but with different base datasets and degrees. Last, task transitions between different
modalities and degrees (‘Cross-Modal’) have no FWT between the tasks, implying low task similarity.
Our results justify the choice of transformations and showcase the diversity of task transitions
provided by Stream. ‘-’ denotes inapplicable, where Permutation Gap is invariant w.r.t. rotation
degrees, and Distribution Gap by 0 degree implies ta = tb (no learning-gap).

Degrees FWT - AUC
Trot Permutation Cross-Modal In-Modal Distribution

0 0.50 0.51 0.76 -
5 - 0.49 0.56 0.57
10 - 0.49 0.52 0.51
15 - 0.49 0.50 0.50
20 - 0.49 0.50 0.48
25 - 0.50 0.49 0.47
30 - 0.50 0.52 0.48

Table 8: Evaluation of task difficulties when using different Concept Mappings to group 345 Do-
mainNet classes into 10 concepts. Our concept mapping increases the AUC by 1.07% and 6.34% for
‘Real’ and ‘Sketch’ datasets respectively, which has a lower difficulty compared to random mapping
(i.e. a 2.4% theoretical upper-bound increase by our mapping). Although random mapping increases
the difficulty, it is not catastrophic, as the learner could still learn the tasks using the concepts. We
conclude that learning-by-concepts is feasible in our setting and that the class-to-concept mapping
must be identical for an equivalent comparison between methods. We provide our mapping in
Table 13 and Table 14.

Dataset Concept Mapping AUC Std

Ours 0.980 0.001
Random 0.969 0.001

Ours 0.908 0.002
Random 0.851 0.004

S-Modal (Upper-Bound) Ours 0.812 -
S-Modal (Upper-Bound) Random 0.793 -

Real

Sketch

E.2 STREAM CONCEPT MAPPING

We evaluate the impact on the performance of the method used to map classes into concepts. For
our experiments, we assign 345 DomainNet classes to 10 concepts for Real and Sketch-based tasks
in S-Modal. We use K-Means clustering on the embedding space of a CLIP model that gives the
textual description of each class. We compare our method of mapping classes to concepts to randomly
assigning classes to concepts. For each of Dbase ∈ {Real,Sketch}, we report the task difficulty in
AUC averaged from 20 seeds of 100 transformations when training each transformed task separately
without CL. In Table 8, we conclude that using random concept mapping does not lead to inability to
learn a task, where learning is still possible although more difficult. As such, our concept-mapping
method has merit, where the difficulty of learning a task decreases. Our findings suggest that the
concept-mapping method is orthogonal to the evaluation of the learner but must be identical when
evaluating between learning algorithms. We provide our concept mapping for Real and Sketch in
Table 13 and Table 14.
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Figure 4: Ablation study on the efficiency when constructing a memory using Meta-Sampling (blue
markers) and Baseline Sampling (Reservoir (Rolnick et al., 2019), orange markers). Each marker
corresponds to the performance of a learner that uses Experience Replay augmented by the two
aforementioned sampling methods. We evaluate the learners on 20 S-Num tasks trained and for
100 random repetitions. Left, our method outperforms the baseline where the blue line has a larger
y-intercept. Additionally, the performance improves with the Memory Size at an increased rate; as
such, our method is memory-efficient. Right, in Meta-Sampling, a larger Sample Size |B| degrades
performance as a larger part of M is replaced with recent data and increases the in-memory task
imbalance. We conclude that efficient memory construction is an important element in Continual
Learning.

E.3 META-SAMPLING

We examine the efficiency of our method in constructing a memoryM when using our method,
Surprise Sampling, and compare to Reservoir Sampling (Rolnick et al., 2019) (uniform). We train 100
models on S-Num and report the test-set mean AUC at the end of 20 tasks. Surprise Sampling is more
memory-efficient where the improvement in AUC is at an increased rate Figure 4. Our experiments
confirm our hypothesis from the main text Section 6.3, where sampling prior to a task transition
is an improvement compared to sampling from all batches. Additionally, we identify degradation
as we increase the size of the temporary buffer where a larger size is more likely to replace older
memories with recent data and increases the imbalance, which harms the CL method that will utilize
the memory.

Our results agree with previous work (Ardywibowo et al., 2022) which found that accurate inference
of a novel task can improve the performance of a CL method under general conditions. However,
we also observe the contrary, where fα with a high false-positive rate used with Surprise Sampling
and a small |B| can out-perform a low false-positive fα when used in conjunction with SS with an
equivalent |B|. We conclude that the robustness of the CL method is important where not applying a
CL method during a novel task is often more beneficial than applying a CL method to the wrong task.

E.4 αMETASUP

We evaluate the generalization of an adaptive novelty detection method αMetaSup (‘fgpt’) compared
to a heuristic method (‘fz’) to supplement our experiments from Section 6.2 in the main text. We
use 100 S-Num task sequences to observe a ResNet-18 and Residual MLP dummy learner with a
novelty detection method. After we tune the novelty detection method to the dummy learner, we use
it with a new learner on a new task sequence. Our experimental setting evaluates the most effective
MStats to use as well as the novelty detection method that generalizes the best among the backbones.
In Table 9, αMetaSup outperforms the heuristic methods by a significant margin, and fgpt achieves

22



Under review as a conference paper at ICLR 2024

Table 9: We evaluate how a novelty detection method generalizes when trained with our meta-learning
process from Appendix C.2. We use S-Num with both ResMLP and ResNet-18 dummy learners
to train a novelty detection method, f . We evaluate f on a new learner when training on tasks
S-Modal and S-Vis respectively. We report the novelty detection F1 scores where train→ validation
performance indicates the generalization of f . αMetaSup fgpt achieves the highest F1 during meta-
learning under a more challenging setting with a ‘ResNet-18’ dummy learner. We conclude that fgpt
has an improved generalization over heuristic detection methods fz .

Novelty Detection S-Num→ S-Vis S-Num→ S-Modal
Learner ResNet-18 Residual MLP

fz(τL) 0.960→ 0.694 0.778→ 0.932
fz(||τG||2) 0.929→ 0.726 0.663→ 0.749
fz(τFI) 0.560→ 0.356 0.434→ 0.102
fz(τE) 0.945→ 0.475 0.636→ 0.437
fz(τU ) 0.680→ 0.025 0.321→ 0.079
fz(||τF ||2) 0.628→ 0.455 0.380→ 0.838

flstm(||τG||2) 0.991→ 0.768 0.815→ 0.862
fgpt(||τG||2) 0.991→ 0.908 0.822→ 0.814

the highest F1 for most protocols. When fgpt and flstm are evaluated by the in-train performance to
S-Vis and S-Modal they perform with average F1 scores of 0.861 and 0.815 respectively, and both
are better than fz (0.813). We conclude that fgpt is a better design choice over flstm for αMetaSup.
Interestingly, we find a counterintuitive result where some MStats and fz generalize better in the
validation set for simpler settings (e.g. using a Residual MLP compared to ResNet-18). We find this
to be an artifact of the low true-positive rate where an optimistic threshold (e.g. larger value) appears
to perform better. We hypothesize that improvements in the architecture of fgpt can further reduce the
generalization gap in S-Modal.

Table 10: Relative training time efficiency when evaluating GCL methods on S-Modal. We evaluate
the relative training time of our novelty detection method at S-Modal and compare it to a ‘Dummy’
learner with no CL method (fine-tuning). We compare the time cost of a GCL method in the top half
of the table to the Meta-Sampling augmented ER (we denote as ‘S-ER’) that infers novelty using one
of the baselines to apply Meta-Sampling. We find that Meta-Sampling reduces the time cost by half.
Next, we evaluate the time efficiency of αMetaSup and find fgpt performs more efficiently with only
106.5% relative difference to a ‘Dummy’ learner. Our novelty detection method induces no extra
time cost despite using a neural network, while Surprise Sampling effectively reduces the time cost
of the augmented CL method.

Method Novelty Detection Relative Time

Dummy - 100.0%

ER - 228.1%
DER++ - 229.0%
CLS-ER - 214.7%

fPeak(τL) 108.7%
fOneShot(τU ) 113.1%
fEWMA(τL) 113.1%
fE(τE) 110.7%

S-ER fgpt(||τG||2) 106.5%

S-ER

Time Efficiency Evaluation. We evaluate the time of S-Modal training of αMetaSup augmented
Surprise Sampling (SER) compared to uniform sampling baselines and previous heuristic methods
(Aljundi et al., 2019a; Wortsman et al., 2020; Zhu et al., 2022; Liu et al., 2020). In Table 10,
αMetaSup Surprise Sampling has the highest time efficiency, which is the closest to a ‘Dummy’
learner.
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E.5 MULTI-MODAL STREAM

We supplement the training curve for the S-Modal benchmark experiment in Section 6.3 in the main
text.

Figure 5: We visualize the mean AUC as we progressively learn more tasks. The variance in Mean
AUC reflects the changing difficulty of tasks over time, such as an easy task followed by more
difficult ones. All methods are trained and evaluated on an identical sequence of S-Modal tasks and
for 252 random initializations. αMetaSup augmented methods are the only ones that do not have
their performance degraded close to Random.
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F EXPERIMENTAL SETUP

We perform all our experiments on a cluster of 8 x V100 GPUs. We use Stream and construct
sequences of tasks with abrupt transitions, e.g. each batch contains samples from the same task.
For our transformations we randomly sample the angle from {30, 60, . . . , 330} for images and
{5, 10, . . . , 40} for feature vectors. We construct permutation transformations by sampling a random
seed and applying the same transformation to all base-dataset and only once for each task sequence.
Finally, we shuffle the task sequence, where we keep a fixed random seed of 0 for all the previous
steps. Meta-Statistics Evaluation Setup. For evaluation of MStats from Section 6.2 in the main text
and Appendix E.4, we use a Dummy learner to collect statistics on 100 task sequences for each of
PMNIST, Split-CIFAR100, S-Num, and S-Vis task sequences. We use 5 permutations and 5 rotations
for each task sequence and, therefore, there are 20 tasks in S-Num and S-Vis. We use the same
collected statistics for the meta-learning process of all novelty functions. The training steps that
belong to task transitions are naturally imbalanced when compared to the training steps of the task
sequence. We evaluate the novelty detection performance using the F1 score and set it as true-positive
when any positive response appears within the window of 5 batches after a task transition.

αMetaSup Training Setup. We train αMetaSup as a time series classification problem and discuss
details in Appendix C.3. We train the NN classifiers for 50 epochs using a learning rate of 0.1 and an
SGD optimizer with a momentum of 0.5.

Stream Benchmark Experiment Setup. For image datasets (e.g. ‘S-Vis’), we use a randomly
initialized ResNet-18 backbone, while for featurized vector datasets (e.g. ‘S-Modal’) we train a
two-layer Residual Multi-Layer-Perception (‘ResMLP’). For our experiments that use ResNet-18, we
replace and freeze the first convolutional layer as our feature extraction method to make the backbone
applicable to our setting and as discussed in Appendix A.

We train for a minimum of 2 epochs for S-Num and a minimum of 4 epochs for S-Vis and S-Modal.
After we reach the minimum number of epochs, we switch to a new task with a random probability
of p = 0.01 evaluated at each training batch. We use an initial learning rate of 0.1 and an SGD
optimizer with a momentum of 0.5 to train all datasets. Hyper-parameters of our method are provided
in Table 11.

In the Stream Benchmark experiment, we compare the performance of the GCL baselines ER (Riemer
et al., 2018), DER++ (Buzzega et al., 2020a) and CLS-ER (Arani et al., 2022), to the same method ER
but where we augment with Meta-Sampling and a novelty detection method. For novelty detection
baselines we compare αMetaSup with fPeak(τL) (Aljundi et al., 2019a), fOneShot(τU ) (Wortsman et al.,
2020), τE (Liu et al., 2020) and fEWMA(τL) (Zhu et al., 2022). For all novelty detection baselines,
we use the reported threshold values as an initial guess and iteratively tune the method to find a
threshold that improves novelty detection performance. Our method of tuning is identical to current
practices for finding the threshold (e.g. ad-hoc). Hyper-parameters for GCL baselines, as well as
novelty detection baselines, are listed in Table 12. We evaluate across datasets where we use the
threshold we find in S-Num and apply it in S-Vis and S-Modal.

Table 11: fh, αMetaSup and Meta-Sampling hyper-parameters. Explanations of the hyper-parameters
are provided in Appendix C.2 (fh), Appendix C.3 (αMetaSup), and Appendix D (Meta-Sampling).

Hyper-parameter Value

fz, fbayes Momentum λ 0.01

fsim, fbayes Reference window size |W| 10

MStats sequence length w 10
Hidden dim 200
Dropout 0.3

Short-term buffer size |B| 100
Sampling Size |B| 10

αMetaSup

Meta-Sampling
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Table 12: Stream benchmark experiment hyper-parameters. GCL Baselines: ER (Riemer et al.,
2018), DER++ (Buzzega et al., 2020a) and CLS-ER (Arani et al., 2022) randomly retrieve from
the memory at each training step replaying past experiences, where ‘Replay size’ is the number of
samples retrieved during rehearsal step of the CL method. Where applicable, we use the values
reported in the original paper of each method. Novelty Detection Baselines: fPeak(τL) (Aljundi
et al., 2019a), fOneShot(τU ) (Wortsman et al., 2020), τE (Liu et al., 2020) and fEWMA(τL) (Zhu et al.,
2022) use a fixed thershold to trigger novelty. We iteratively tune the threshold specific to each
method to improve novelty detection performance on Dummy learners (e.g. ad-hoc). For all other
hyper-parameters we use the ones reported in the original paper.

Hyper-parameter Values

Batch size 64
Memory size |M| 500
Replay size 128

GCL Baselines
ER Task loss coef. 1.0

Task loss coef. 1.0
Distill coef. 1.0

Task loss coef. 1.0
Regularization coef. 1.0
Plastic model update frequency 1.0
Plastic model alpha 0.99
Stable model update frequency 0.9
Stable model alpha 0.99

Novelty Detection Baselines fh(τ)
Plateau window size 5
Loss smooth steps 5
Loss peak threshold 1.0
Loss plateau threshold 0.1

fOneShot(τU )(Wortsmanet al., 2020) Threshold 1.5

Threshold -3.0
Temperature 1.0

Threshold 2.0
EWMA window size 100
Smooth factor 0.2

Training

DER++

CLS-ER

fPeak(τL) (Aljundi et al., 2019a)

τE (Liu et al., 2020)

fEWMA(τL)(Zhuet al., 2022)
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Table 13: We divide the table into two parts with the second part presented in Table 14. The concepts
are created by performing K-Means clustering on the features extracted using a CLIP (Radford et al.,
2021a) model from the textual description of a class. 345 DomainNet classes are mapped to 10
concepts. A smaller number of concepts is limited to create a semantically meaningful mapping
of the 345 classes, where for example, ‘sun’ and ‘hamburger’ are mapped to the same Concept
(‘Outdoor and Wildlife’). We justify that fuzzy mapping can influence task difficulty but does not
make learning prohibitive as we find by our experiments in Table 8. As we evaluate the learning
algorithm’s performance, an identical mapping must be used when evaluating between methods. A
method to make a semantically meaningful mapping can be a research problem of its own (Liu et al.,
2007; Cai et al., 2022). We conclude that learning concepts in a Domain-Incremental Learning (DIL)
setting is a viable option to evaluate the performance of the learning algorithm.

S-Modal Concept DomainNet Classes

strawberry, cookie, coffee cup, lollipop, sandwich,
ice cream, hot dog, toothpaste, donut, cake, birthday cake,
watermelon, pizza, steak, bread, popsicle

saw, eraser, arm, camera, dog, tornado, ear, radio, panda, pliers,
leg, piano, bed, hexagon, potato, crocodile, rollerskates, computer,
pig, parachute, palm tree, flamingo, key, map, anvil, cat,
penguin, elephant, campfire, fan, zigzag, vase, sun, kangaroo,
axe, helmet, hedgehog, rhinoceros, yoga, umbrella, tiger, hamburger,
bee, camel, octopus, cactus, bus, banana, zebra, van, snorkel, harp,
ant, helicopter, car, rifle, owl, pencil, calendar, cow, bat, hat,
guitar, cup, broccoli, skull, ocean, hammer, asparagus, angel, peanut,
marker, camouflage, eye, toe, telephone

the eiffel tower, flashlight, hot air balloon, fire hydrant, wine glass,
hourglass, dumbbell, house plant, stairs, binoculars, megaphone,
skyscraper, streetlight, candle, stop sign, wine bottle, eyeglasses,
stethoscope, windmill, bulldozer, picture frame, ceiling fan, traffic light,
lighthouse, floor lamp, the great wall of china, light bulb, necklace,
chandelier, microphone, fireplace, lantern

hot tub, bridge, fence, jacket, diving board, pond, postcard,
table, toilet, pool, garden, sink, bathtub, octagon

finger, foot, pillow, bowtie, bandage, shoe, wristwatch, beard, pants,
t-shirt, tooth, stitches, elbow, bracelet, belt, shorts, lipstick,
underwear, sweater, moustache, mouth, knee, goatee, sock, flip flops,
string bean, mug, hand

Food

Outdoor and
Wildlife

City Objects

Household

Body
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Table 14: The table is used auxiliary to Table 13.

S-Modal Concept DomainNet Classes

shark, peas, blackberry, mermaid, butterfly, rabbit, monkey, sheep, sea turtle,
sea turtle, raccoon, pineapple, grapes, bird, feather, bear, lion, dragon,
crab, giraffe, carrot, frog, swan, animal migration, teddy-bear, mushroom,
spider, fish, lobster, whale, mouse, scorpion, onion, snail, parrot, squirrel,
pear, blueberry, horse, duck, hurricane, mosquito, snake, dolphin

baseball, wheel, bush, crown, grass, lightning, snowman, church, soccer ball,
rainbow, star, barn, basketball, leaf, moon, circle, rain, square, nose,
compass, door, jail, tree, house, hospital, castle, smiley face, face, truck,
book, the mona lisa, flower, snowflake, train, mountain, apple, cloud,
nail, cannon, triangle, brain, clock, diamond, squiggle, river, line, beach

lighter, remote control, purse, keyboard, toaster, dresser, headphones,
spreadsheet, washing machine, alarm clock, laptop, television, cooler,
microwave, passport, envelope, teapot, power outlet, stove, paper clip,
dishwasher, suitcase, cell phone, bucket, stereo, oven, calculator, mailbox

drill, frying pan, broom, spoon, baseball bat, hockey stick, scissors, rake
golf club, matches, toothbrush, garden hose, paintbrush, crayon, bottlecap,
sword, screwdriver, fork, knife, tennis racquet, paint can, hockey puck,
syringe, shovel

sailboat, airplane, skateboard, backpack, ambulance, sleeping bag, see saw,
bench, flying saucer, aircraft carrier, clarinet, violin, canoe, ladder,
cruise ship, school bus, bicycle, chair, submarine, speedboat, couch,
motorbike, basket, drums, saxophone, trombone, tractor, police car,
roller coaster, trumpet, swing set, firetruck, tent, cello, pickup truck,
waterslide, boomerang

Animals & Plants

Round Objects
and Recreation

Electric Device

Common Objects

Moving Objects
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(a) Feature Norm. (b) fz on Feature Norm.

(c) Gradient Norm. (d) fz on Gradient Norm

Figure 6: We evaluate the informativeness of a Meta-Statistics such as the L2 norm of Features
(||τF ||2) (top) and the L2 norm of Gradients (||τG||2) (bottom) when used with a novelty detection
method fz trained via our meta-learning process. On the right are the novelty scores for training
batches where a score above η (green markers) would be classified as a task transition. We find that
an fz increases the linear separability of ||τG||2 (e.g. comparison between sub-figures c→ d) and as
such makes it easy to discriminate a task switch where ||τG||2 is more informative of a novel task
transition. We find that not all MStats are informative of novelty, e.g. Figure 6b. A threshold can fail
to generalize where the feature norm appears to be increasing Figure 6a, and is not linearly separable.
Last, MStats such as gradient norm appear to generalize better between task sequences. We conclude
that the choice of a MStats is important in the performance of a novelty detection method.
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Table 15: Notation of Meta-Statistics and the processed MStats after dimensionality reduction.

MStats (τ ) Definition

Loss (τL) (Aljundi et al., 2019a; Zhu et al., 2022) L(fθ(x), y)
Gradient (τG) (Huang et al., 2021) ∇θL(fθ(x), y)
Fisher Info. (τFI ) (Park et al., 2022) θ + [∇θL(fθ(x), ŷ)]2
Feature (τF ) (Tack et al., 2020) ϕ(x)
Uncertainty (τU ) (Wortsman et al., 2020) H(fθ(x))
Energy (τE) (Liu et al., 2020) − log

∑
exp(fθ(x))

Processed MStats

τG Layer-wise gradient mean
||τG||2 Layer-wise gradient L2 norm
τGx Input gradient mean
τG−1

Pen-ultimate gradient mean

τFI Layer-wise Fisher Info. mean
||τFI ||2 Layer-wise Fisher Info. L2 norm

τF Layer-wise feature mean
||τF ||2 Layer-wise feature L2 norm
||τF ||2 L2 norm of layer-wise feature mean
τF−1 Pen-ultimate feature mean

τU Uncertainty mean

τE Energy mean

Table 16: (Part 1) F1 scores of novelty detection for 63 evaluation protocols. We exhaustively examine
the possible combinations of MStats, for different processing and novelty detection methods (see
Appendix C.1 and Table 15). We evaluated the aggregation functions using the mean† and max‡ for a
novelty detection method. We find that a fixed threshold may work well on standard benchmarks
(PMNIST, SplitCIFAR) but cannot perform well on Stream benchmarks. We also observe that the F1
score is related to the design choices in the combination of settings we evaluate.

Novelty Detection PMNIST S-Num S-Modal SplitCIFAR S-Num S-Vis Avg. F1
Learner Residual MLP ResNet-18

fz(τL) 1.000 0.848 0.974 0.947 0.973 0.947 0.948
fz(τG)

‡ 1.000 0.733 0.865 0.947 0.914 0.774 0.872
fz(||τG||2)† 1.000 0.722 0.824 0.842 1.000 0.800 0.865
fz(τG)

† 1.000 0.710 0.873 0.941 0.800 0.750 0.846
fz(τFI)

† 1.000 0.516 0.473 0.947 0.973 0.593 0.750
fz(||τG||2)‡ 0.800 0.634 0.736 0.720 0.703 0.647 0.707
fz(τE) 0.857 0.688 0.568 0.340 1.000 0.533 0.664
fz(τFI)

‡ 1.000 0.417 0.344 0.857 0.649 0.571 0.640
fz(||τFI ||2)‡ 0.500 0.429 0.364 0.727 0.811 0.552 0.564
fz(τU )

† 1.000 0.417 0.297 0.271 0.889 0.245 0.520
fz(||τF ||2)‡ 0.600 0.375 0.824 0.120 0.542 0.558 0.503
fz(||τF ||2)‡ 0.600 0.400 0.847 0.069 0.511 0.462 0.481
fz(τGx)

‡ 0.800 0.563 0.081 0.308 0.346 0.296 0.399
fz(τG−1

)‡ 0.667 0.389 0.333 0.615 0.095 0.148 0.375
fz(τU )

‡ 0.444 0.303 0.286 0.203 0.698 0.304 0.373
fz(τF )

‡ 0.000 0.133 0.656 0.034 0.444 0.393 0.277
fz(τG−1)

† 0.250 0.036 0.111 0.706 0.233 0.308 0.274
fz(||τFI ||2)† 0.176 0.189 0.088 0.308 0.593 0.270 0.271
fz(τGx)

† 0.286 0.333 0.024 0.261 0.353 0.095 0.225
fsim(τF ) 0.429 0.261 0.329 0.005 0.023 0.000 0.174
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Table 17: (Part 2) Table auxiliary to Table 16

Novelty Detection PMNIST S-Num S-Modal SplitCIFAR S-Num S-Vis Avg. F1
Learner Residual MLP ResNet-18

fsim(||τF ||2) 0.400 0.103 0.177 0.090 0.125 0.095 0.165
fsim(||τF ||2) 0.400 0.108 0.166 0.108 0.138 0.068 0.165
fsim(||τG||2) 0.571 0.143 0.105 0.048 0.028 0.003 0.150
fz(τF−1

)‡ 0.029 0.051 0.418 0.017 0.042 0.030 0.098
fz(τF )

† 0.000 0.000 0.421 0.022 0.077 0.013 0.089
fbayes(τE)

† 0.012 0.024 0.016 0.089 0.038 0.040 0.036
fz(||τF ||2)† 0.001 0.000 0.190 0.006 0.001 0.001 0.033
fz(||τF ||2)† 0.001 0.028 0.161 0.006 0.001 0.001 0.033
fz(τF−1

)† 0.011 0.014 0.058 0.020 0.012 0.044 0.027
fbayes(||τG||2)† 0.007 0.022 0.016 0.065 0.016 0.013 0.023
fbayes(τL)

† 0.003 0.021 0.035 0.038 0.014 0.010 0.020
fsim(τFI) 0.001 0.000 0.002 0.006 0.100 0.001 0.018
fbayes(||τF ||2)† 0.000 0.001 0.000 0.018 0.040 0.024 0.014
fsim(||τFI ||2) 0.032 0.006 0.001 0.000 0.033 0.001 0.012
fbayes(τFI)

† 0.003 0.011 0.006 0.037 0.009 0.006 0.012
fbayes(τG)

† 0.005 0.011 0.006 0.037 0.006 0.005 0.012
fbayes(||τFI ||2)† 0.002 0.009 0.002 0.031 0.006 0.007 0.010
fsim(τF−1

) 0.008 0.000 0.025 0.012 0.006 0.000 0.008
fbayes(τU )

† 0.002 0.018 0.007 0.011 0.006 0.007 0.008
fbayes(τF )

† 0.007 0.001 0.003 0.007 0.017 0.014 0.008
fbayes(τG−1)

† - 0.013 0.003 - - - 0.008
fbayes(τGx)

† 0.002 0.005 0.004 0.014 0.004 0.008 0.006
fbayes(τU )

‡ 0.000 0.000 0.000 0.030 0.000 0.004 0.006
fsim(τU ) 0.001 0.003 0.001 0.023 0.001 0.000 0.005
fsim(τG−1) 0.002 0.006 0.005 - - - 0.004
fsim(τG) 0.008 0.003 0.002 0.008 0.000 0.000 0.003
fsim(τG−1) 0.002 0.001 0.001 0.012 0.002 0.001 0.003
fbayes(τF )

‡ 0.000 0.001 0.001 0.013 0.002 0.000 0.003
fbayes(||τF ||2)‡ 0.002 0.002 0.003 0.006 0.003 0.001 0.003
fsim(τGx) 0.003 0.005 0.001 0.006 0.001 0.001 0.003
fbayes(τF−1)

† 0.002 0.001 0.006 0.004 0.001 0.002 0.003
fbayes(||τF ||2)‡ 0.002 0.003 0.003 0.004 0.001 0.001 0.002
fbayes(τF−1

)‡ 0.001 0.001 0.000 0.009 0.000 0.001 0.002
fbayes(τL)

‡ 0.003 0.001 0.001 0.005 0.002 0.000 0.002
fbayes(τE)

‡ 0.001 0.001 0.001 0.006 0.001 0.000 0.002
fbayes(τGx)

‡ 0.001 0.001 0.000 0.006 0.000 0.001 0.002
fbayes(τG)

‡ 0.002 0.004 0.000 0.002 0.000 0.001 0.001
fbayes(τFI)

‡ 0.004 0.000 0.000 0.003 0.000 0.000 0.001
fbayes(||τG||2)‡ 0.002 0.000 0.000 0.004 0.000 0.000 0.001
fbayes(||τF ||2)† 0.001 0.001 0.000 0.000 0.003 0.001 0.001
fbayes(||τFI ||2)‡ 0.002 0.002 0.000 0.000 0.000 0.001 0.001
fsim(τF−1

) 0.001 0.002 0.000 0.000 0.001 0.001 0.001
fbayes(τG−1

)‡ - 0.001 0.000 - - - 0.001
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Table 18: (Part 1) We use the Dispersion Ratio (VMR ↓) of the optimal threshold identified between
different tasks for the same task sequence to evaluate the generalization of the identified threshold for
the same 63 evaluation protocols from Table 16 and sort the rows by their F1 score. When comparing
across task sequences, a lower VMR indicates an easier task sequence for a given Novelty Detection
method. When comparing across Novelty Detection methods that perform similarly for the same
dataset (in terms of F1 Score, e.g. the 2nd and 3rd rows in Table 16), a lower VMR indicates higher
generalization for the method. We find that standard benchmarks (‘PMNIST’, ‘SplitCIFAR’) have
lower VMRs, suggesting they are easier task sequences as the optimal threshold generalizes well
among tasks within the same sequence. When comparing Novelty Detection methods that have
discriminative power (listed in Table 18), they have higher VMR compared to less powerful methods.
The result is an artifact of the high signal-to-noise ratio consequence of the informative MStats. While
poor-performing Novelty Detection methods can produce extreme values for VMR consequence
of an uninformative MStats. A VMR > 1 would indicate an over-dispersed distribution where a
method is expected to generalize poorly. We conclude that Stream task sequences (‘S-*’) are more
challenging to a threshold-based Novelty Detection method, while most methods are expected to
generalize poorly (VMR > 1).

Novelty Detection PMNIST S-Num S-Modal SplitCIFAR S-Num S-Vis Avg. VMR
Learner Residual MLP ResNet-18

fz(τL) 0.137 1.080 0.597 0.187 0.842 0.721 1.444
fz(τG)

‡ 0.144 1.050 0.677 0.192 0.679 0.583 0.866
fz(||τG||2)† 0.089 0.816 0.543 0.144 0.406 0.497 0.801
fz(τG)

† 0.168 1.147 0.621 0.304 0.742 0.767 1.124
fz(τFI)

† 0.165 1.207 0.819 0.248 1.078 0.870 1.343
fz(||τG||2)‡ 0.145 0.892 0.556 0.179 0.527 0.512 0.784
fz(τE) 0.160 0.835 0.687 0.260 0.545 0.477 0.915
fz(τFI)

‡ 0.289 1.183 1.070 0.473 1.501 0.938 2.607
fz(||τFI ||2)‡ 0.343 1.331 1.418 0.301 1.717 0.939 3.542
fz(τU )

† 0.185 0.843 0.783 0.310 0.523 0.505 1.111
fz(||τF ||2)‡ 0.079 0.892 2.358 0.288 0.560 0.341 2.147
fz(||τF ||2)‡ 0.082 0.939 2.626 0.285 0.651 0.314 2.564
fz(τGx)

‡ 0.246 0.600 0.509 0.242 0.663 0.592 1.698
fz(τG−1

)‡ 0.302 0.474 0.591 0.289 0.348 0.477 0.788
fz(τU )

‡ 0.210 0.739 0.472 0.281 0.510 0.375 0.955
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Table 19: (Part 2) Table auxiliary to Table 18

Novelty Detection PMNIST S-Num S-Modal SplitCIFAR S-Num S-Vis Avg. VMR
Learner Residual MLP ResNet-18

fz(τF )
‡ 0.430 1.659 1.155 0.244 0.663 0.432 1.376

fz(τG−1)
† 13.535 24.815 28.018 22.213 25.257 41.921 45.353

fz(||τF I||2)† 0.194 0.934 0.616 0.146 1.239 0.676 2.073
fz(τGx)

† 7.674 153.825 19.870 3.762 18.381 50.809 420.020
fsim(τF ) 0.546 1.384 0.835 1.233 1.502 1.380 1.525
fsim(||τF ||2) 0.623 1.934 1.651 3.651 1.456 1.008 2.479
fsim(||τF ||2) 0.518 1.844 1.597 0.606 0.693 0.629 2.445
fsim(||τG||2) 0.314 0.998 1.003 0.967 0.598 0.640 1.056
fz(τF−1

)‡ 0.208 0.440 0.523 0.149 0.347 0.297 0.528
fz(τF )

† 1.557 3.251 969.710 1.606 4.317 1.791 12.803
fbayes(τE)

† 0.146 0.152 0.206 0.197 0.272 0.230 0.358
fz(||τF ||2)† 0.077 1.392 17.899 0.668 0.746 0.455 5.179
fz(||τF ||2)† 0.071 1.109 2870.817 0.604 0.699 0.444 3.302
fz(τF−1)

† 2.682 5.162 8.375 1.115 18.252 1.002 4.760
fbayes(||τG||2)† 0.031 0.032 0.035 0.050 0.060 0.076 0.249
fbayes(τL)

† 0.104 0.216 0.123 0.120 0.293 0.128 0.269
fsim(τFI) - 13.416 7.211 - 3.364 - 6.814
fbayes(||τF ||2)† 0.085 0.546 1.132 0.099 0.203 0.125 2.116
fsim(||τFI ||2) 8.718 5.181 3.004 9.219 6.300 - 4.504
fbayes(τFI)

† 0.014 0.028 0.015 0.010 0.053 0.015 0.459
fbayes(τG)

† 0.009 0.031 0.010 0.010 0.064 0.011 0.445
fbayes(||τF I||2)† 0.019 0.031 0.036 0.011 0.088 0.018 0.403
fsim(τF−1

) 0.433 1.169 0.916 0.231 0.724 0.853 1.422
fbayes(τU )

† 0.021 0.079 0.176 0.025 0.123 0.041 0.156
fbayes(τF )

† 0.042 0.089 0.179 0.033 0.087 0.039 0.588
fbayes(τG−1)

† - 0.020 0.004 - - - 0.018
fbayes(τGx)

† 0.016 0.049 0.031 0.032 0.100 0.022 0.593
fbayes(τU )

‡ 0.021 0.079 0.176 0.025 0.123 0.041 0.156
fsim(τU ) 0.224 0.896 1.064 0.272 0.707 0.682 1.547
fsim(τG−1) 0.033 0.031 0.033 - - - 0.033
fsim(τG) 0.084 0.110 0.131 0.062 0.089 0.067 0.110
fsim(τG−1) 0.013 0.080 0.027 0.005 0.037 0.020 0.042
fsim(τG−1) 0.013 0.080 0.027 0.005 0.037 0.020 0.042
fbayes(τF )

‡ 0.042 0.089 0.179 0.033 0.087 0.039 0.588
fbayes(||τF ||2)‡ 0.235 0.657 1.149 0.286 0.824 0.507 2.121
fsim(τGx) 0.032 0.038 0.035 0.009 0.035 0.020 0.032
fbayes(τF−1

)† 0.043 0.127 0.085 0.114 0.172 0.218 1.025
fbayes(||τF ||2)‡ 0.085 0.546 1.132 0.099 0.203 0.125 2.116
fbayes(τF−1

)‡ 0.043 0.127 0.085 0.114 0.172 0.218 1.025
fbayes(τL)

‡ 0.104 0.216 0.123 0.120 0.293 0.128 0.269
fbayes(τE)

‡ 0.146 0.152 0.206 0.197 0.272 0.230 0.358
fbayes(τGx)

‡ 0.016 0.049 0.031 0.032 0.100 0.022 0.593
fbayes(τG)

‡ 0.009 0.031 0.010 0.010 0.064 0.011 0.445
fbayes(τFI)

‡ 0.014 0.028 0.015 0.010 0.053 0.015 0.459
fbayes(||τG||2)‡ 0.031 0.032 0.035 0.050 0.060 0.076 0.249
fbayes(||τF ||2)† 0.235 0.657 1.149 0.286 0.824 0.507 2.121
fbayes(||τFI ||2)‡ 0.019 0.031 0.036 0.011 0.088 0.018 0.403
fsim(τF−1

) 0.044 0.133 0.055 0.048 0.057 0.096 0.119
fbayes(τG−1

)‡ - 0.020 0.004 - - - 0.018
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