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ABSTRACT

Loss of plasticity is a phenomenon where neural networks can become more
difficult to train over the course of learning. Continual learning algorithms seek
to mitigate this effect by sustaining good performance while maintaining network
trainability. We develop a new technique for improving continual learning inspired
by the observation that the singular values of the neural network parameters at
initialization are an important factor for trainability during early phases of learning.
From this perspective, we derive a new spectral regularizer for continual learning
that better sustains these beneficial initialization properties throughout training. In
particular, the regularizer keeps the maximum singular value of each layer close to
one. Spectral regularization directly ensures that gradient diversity is maintained
throughout training, which promotes continual trainability, while minimally
interfering with performance in a single task. We present an experimental
analysis that shows how the proposed spectral regularizer can sustain trainability
and performance across a range of model architectures in continual supervised
and reinforcement learning settings. Spectral regularization is less sensitive to
hyperparameters while demonstrating better training in individual tasks, sustaining
trainability as new tasks arrive, and achieving better generalization performance.

1 INTRODUCTION

A longstanding goal of machine learning research is to develop algorithms that can learn continually
and cope with unforeseen changes in the data distribution (Ring, 1994; Thrun, 1998). Current
learning algorithms, however, struggle to learn from dynamically changing targets and are unable
to adapt gracefully to unforeseen changes in the distribution during the learning process (Abbas
et al., 2023; Dohare et al., 2024; Lyle et al., 2023; Zilly et al., 2021). Such limitations can be seen
as a byproduct of assuming, one way or another, that the problem is stationary. Recently, there
has been growing recognition of the fact that there are limitations to what can be learned from a
fixed and unchanging dataset (Hoffmann et al., 2022), that there are implicit non-stationarities in
many problems of interest (Igl et al., 2021), and that some real-world problems benefit from learning
continually (Han et al., 2022; Janjua et al., 2023).

The concept of plasticity has been receiving growing attention in the continual learning literature,
where the loss of plasticity—either a reduction in a neural network’s ability to train (Dohare et al.,
2021; Elsayed and Mahmood, 2024; Lyle et al., 2022), or ability to generalize (Ash and Adams, 2020;
Zilly et al., 2021)—has been noted as a critical shortcoming in current learning algorithms. Learning
algorithms, and more specifically neural networks, that are performant in the non-continual learning
setting, often struggle when applied to continual learning problems. Settings where a neural network
must continue to learn after changes occur in the data distribution exhibit a striking loss of plasticity
such that learning slows down (Lyle et al., 2023) or even halts after successive changes (Abbas et al.,
2023; Dohare et al., 2024; Nikishin et al., 2022).

Several aspects of a learning algorithm have been found to contribute to or mitigate loss of plasticity.
Examples include the type of optimizer (Dohare et al., 2024; Lyle et al., 2023), the step-size (Ash
and Adams, 2020; Berariu et al., 2021), the number of optimiser iterations (Lyle et al., 2023), and
the use of specific regularizers (Dohare et al., 2021; Kumar et al., 2023; Lewandowski et al., 2023;
Lyle et al., 2022). Such factors hint that there might be simpler underlying optimisation principles
that govern the loss of plasticity. For example, the success of several methods that regularize neural
networks towards properties of the initialization suggests that some of those properties mitigate loss
of plasticity (Dohare et al., 2021; Kumar et al., 2023; Lyle et al., 2022).
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The properties of neural network weights at initialization are associated with trainability in the early
phases of learning. Previous analyses have demonstrated that the trainability of deep neural networks
can be improved by ensuring that the initialization variance of hidden activations and gradients
remains uniform across the different layers of the neural network (Glorot and Bengio, 2010), which
has the effect of keeping the average singular value of the layerwise Jacobians close to one. A
stronger condition is dynamical isometry, where all singular values are close to one, or exactly one in
the case of an orthogonal initialization (Pennington et al., 2017; Saxe et al., 2014; Xiao et al., 2018).
Over the course of learning, the singular values deviate from their initialization and tend to grow
over time (Martin and Mahoney, 2021), which can reduce trainability and impede continual learning.

Given the effectiveness of initialization in ensuring the trainability of a neural network, continual
learning algorithms may benefit from sustaining the relevant properties of the weights. This is
the motivation of several methods that use the initialization either through regularization (Kumar
et al., 2023) or weight reinitialization (Dohare et al., 2021; 2024; Sokar et al., 2023). Such methods
leverage the initialization explicitly, either by regularizing parameters towards their initial values
or by resetting parameters by resampling them from the initialization distribution. In this paper,
we seek to more directly address the loss of trainability by sustaining the key properties present at
initialization, thereby striking a better balance between trainability and performance compared to
approaches that replicate the initialization explicitly.

We investigate the key properties of the initialization that ensure trainability, how these properties
are lost over the course of learning, and the effects this has on continual learning. We identify that
deviations from the initial singular value distribution can result in low gradient diversity, thereby
impeding continual learning. Based on this analysis, we then introduce a spectral regularizer to
control the deviation of the singular values by keeping the maximum singular value of each layer
close to one to directly address the deviation of the singular values from initialization over the course
of learning. Our experiments show that spectral regularization is more performant and less sensitive
to hyperparameters than other regularizers across datasets, nonstationarities, and architectures. While
well-tuned regularizers are often able to mitigate loss of plasticity to a varying degree, learning
continually with spectral regularization is robust, achieving high initial and sustained performance. In
particular, we show that spectral regularization is also capable of improving generalization with both
Vision Transformer (Dosovitskiy et al., 2021) and ResNet-18 (He et al., 2016) on continual versions
of tiny-ImageNet (Le and Yang, 2015), CIFAR10, CIFAR100 (Krizhevsky, 2009), and SVHN2
(Netzer et al., 2011). Note that these datasets and architectures encompass all continual supervised
learning experimental settings considered in the loss of plasticity literature. We also show that spectral
regularization can improve the performance of soft-actor critic (Haarnoja et al., 2018) in reinforcement
learning settings where loss of plasticity occurs due to primacy bias (Nikishin et al., 2022).

2 PROBLEM SETTING

We investigate the trainability of neural network learning algorithms in the task-agnostic setting.
We denote a neural network with L layers, defined recursively as fθ(x) := hL(x), where h0(x) = x
is the input vector, hl+1(x) = ϕ(Wlhl(x) + bl) with an element-wise activation function, ϕ, and
parameters θ = {θL, . . . , θ1} where θl = {Wl,bl} is the weight and bias parameter for layer l.1
We assume that fθ is trained over a sequence of tasks: the τ th task is specified by a distribution pτ
over the observation-target pairs, denoted by (x, y). For simplicity we assume that the task (data
distribution) changes periodically after every T iterations. In addition, we consider the task-agnostic
setting, where the learning algorithm does not have access to information about the task except
through the data that it samples. For each iteration in the task, t ∈ ((τ − 1)T, τT ], the learning
algorithm optimises the neural network’s parameters to minimize the objective

Jτ (θ) = E(x,y)∼pτ

[
ℓ(fθ(x), y)

]
,

for some loss function ℓ. In this paper, we consider gradient-based methods to learn the weight
parameters; the basic version of gradient descent would update the parameters at iteration t as
θ(t+1) = θ(t) − α∇θJτ(t)(θ)

∣∣
θ=θ(t) , where τ(t) = ⌊t/T ⌋ denotes the current task number. In

practice this is done by considering the empirical error instead of Jτ(t) using samples from the task
distribution, (xt, yt) ∼ pτ , and usually some more involved optimization algorithm.

The evaluation of the continual learning algorithm is performed at the end of a task (Lyle et al., 2023).
Specifically, the learning algorithm is evaluated at times t = τT , after being given T iterations to

1In this notation we suppressed the presence of biases, which can effectively be included in the parameters.
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learn on task τ . A useful assumption in some problems is that each task is sampled independently and
identically, and that each task is equally difficult, meaning that a neural network which is randomly
initialized on each task is able to reach a similar objective value for any particular task (Dohare et al.,
2024; Elsayed and Mahmood, 2024; Lyle et al., 2023). While this assumption is useful, it is not
always applicable. In class-incremental learning (Van de Ven et al., 2022), the addition of more classes
increases the difficulty of subsequent tasks. Another example is the transient tasks induced over the
course of reinforcement learning (Igl et al., 2021), which can have varying task difficulty and lead
to loss of plasticity due to primacy bias (Nikishin et al., 2022). We also consider such settings here.

Loss of plasticity in the continual learning literature can refer to either loss of trainability (Dohare
et al., 2021; Lyle et al., 2023) or to loss of generalization (Ash and Adams, 2020). Because
trainability is a requirement for learning and generalization, we focus primarily on loss of trainability.
Specifically, we use loss of trainability to refer to the phenomenon that the objective value, Jτ (θ(τT )),
increases as a function of the task τ . Equivalently, the performance measures, such as accuracy,
decrease with new tasks. Under the assumption that the tasks are sampled independently and
identically, this would suggest that the neural network’s trainability diminishes on new tasks.

3 SPECTRAL PROPERTIES AND CONTINUAL TRAINABILITY

At a high level, the reason behind loss of plasticity is simple: the solution of one task becomes the
initialization for learning on the next task, and if this initialization is not sufficiently good to enable
learning in the new task, we face the aforementioned problem. To avoid this issue, we need to keep
the network parameters within a region that can serve as good initialization at the start of a task. This
approach comes with two challenges: (i) determining a suitable region for parameter initialization
on any given task; (ii) ensuring that training within the initialization region does not prevent effective
learning on the current task.

It is easy to satisfy (i) and (ii) in isolation: using a standard initialization algorithm, such as those by
He et al. (2015); Hinton and Salakhutdinov (2006), and then keeping the parameters fixed at this value
satisfies (i) but clearly does not satisfy (ii). Conversely, not restricting the parameter space while using
a standard learning algorithm addresses (ii) but not (i). We seek a balance of the two requirements.
Note that (i) and (ii) are not binary properties; hence there can be a trade-off (e.g., the parameter that
allows for better optimization on the current task may be less favourable as a parameter initialization
for the next task). It is worth noting that such an approach has been successfully applied in the context
of online convex optimization in changing environments, where several algorithms can be recognized
as running a standard learning algorithm (such as mirror descent) on a carefully selected subset of the
parameter space (e.g., György and Szepesvári, 2016; Herbster and Warmuth, 1998; Zinkevich, 2003).

In this paper, to address problem (i), we first identify key properties that initialization algorithms
(He et al., 2015; Hinton and Salakhutdinov, 2006) impose on the starting parameters of a neural
network. Then, we propose spectral regularization to sustain these properties while striking a good
balance between (i) and (ii).

3.1 SPECTRAL PROPERTIES AT INITIALIZATION

Neural network initialization is key to trainability (He et al., 2015; Hinton and Salakhutdinov,
2006). One property of the initialization thought to be important is that the layerwise mapping,
hl+1 = ReLU(θlhl), has a Jacobian with singular values that are close to or exactly one (Glorot and
Bengio, 2010; Pennington et al., 2017; Saxe et al., 2014; Xiao et al., 2018). Writing this Jacobian
explicitly, we have that Jl =

∂hl+1

∂hl
= Dlθl where Dl = Diag(ReLU′([θlhl]1), . . . ,ReLU′([θlhl]d)).

2 We can obtain upper and lower bounds on the singular values of the layerwise Jacobian in terms
of the singular values of the weight matrix. Denoting the ordered singular values of θl and Dl

by σd(θl) ≤ · · · ≤ σ1(θl) and σd(Dl) ≤ · · · ≤ σ1(Dl), respectively, we have σd(Dl)σi(θl) <
σi(Jl) < σ1(Dl)σi(θl) for all i ∈ {1, . . . , d} (Zhang, 2011, Theorem 8.13). In particular, if the
spectral norm (largest singular value) of the weight matrix θl increases, then the spectral norm of the
Jacobian Dl increases as well, potentially impacting trainability. Furthermore, the condition number
κ(Jl) = σ1(Jl)/σd(Jl) can be bounded with the product of the condition numbers of θl and Dl, κ(θl)
and κ(Dl) as κ(θl)/κ(Dl) ≤ κ(Jl) ≤ κ(θl)κ(Dl). Thus, if our goal is to keep the singular values

2ReLU′(x) denotes the derivative of the ReLU function, and it equals to 1 for x > 0 and 0 for x < 0 (we
define it to be 1 for x = 0).
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of the Jacobian close to one by controlling the singular values of the weight matrix, we should ensure
that the condition number of the latter is not too large.

3.2 AN ILLUSTRATIVE EXAMPLE

To make these points more concrete, consider a single-layer neural network fθ(x) = θ2ReLU(θ1x)
mapping x ∈ R2 to R. Suppose that the first task is to fit x = (1, 0)⊤ and y = 0 in mean-squared

error. An optimal solution with fθ(x) = y is θ1 =

[
1 0
0 a

]
and θ2 = (0, a) for an arbitrarily small

value of a ≥ 0. Now consider that the next task is to fit x = (0, 1)⊤ and y = 1. The gradients
of the loss ℓ(fθ(x), y) = 1

2 (y − ℓ(fθ(x))
2 are, for the given new (x, y) pair, ∇θ2ℓ(fθ(x), y) =

(fθ(x) − y)ReLU(θ1x) = (a2 − 1)(0, a)⊤ and ∇θ1ℓ(fθ(x), y) = (fθ(x) − y)xReLU′(θ1x)
⊤ =

(a2 − 1)

[
0 0
0 a

]
. Performing updates with these gradients keeps the Θ(a) parameters at the same

order while maintaining a loss of approximately 1. The condition number of the weight matrix θ1 is
κ = 1/a, which requires Θ(1/a) = Θ(κ) update steps to make significant progress during learning.
(Another example showing this empirically is given in Appendix A.1.)

3.3 TRAINABILITY AND EFFECTIVE GRADIENT DIVERSITY

We can generalize the above observation to a problem of reduced gradient diversity. By gradient
diversity, we mean the spread of singular vectors in the matrix of per-example stochastic gradients,
G = [g1, . . . ,gm]. If this matrix contains a few large singular values and many small singular values,
then the gradients will be largely in the span of the singular vectors corresponding to the large singular
values. For this analysis, we focus on the rank, which is one particular summary statistic for the set
of singular values that counts the number of non-zero singular values, rank(G) = |{i : σi(G) > 0}|.
However, for practical purposes, the rank is problematic because it is unstable to perturbations
(Feng et al., 2022, Theorem 1). In our experiments below we will consider the condition number,
σ1(G)/σm(G) and effective rank, erank(G) =

∑
σ̄i(G) log σ̄i(G), where σ̄i(G) = σi(G)/

∑
i σi(G)

(Roy and Vetterli, 2007). These measures make explicit the issues that arise if the largest singular
value grows faster than the smallest singular values (our experiments show this to be the case in
Section 5.2). In this case, the condition number increases and the effective rank decreases. We refer
to this as a reduction in the effective gradient diversity.

A reduction in the rank, or erank, of the gradient matrix results in collinear gradients on different
datapoints, limiting the diversity of gradient directions used in the parameter update. This can have
an adverse effect on learning. In the extreme case, where the gradient matrix is rank one, every
datapoint provides a gradient in the same direction, even if the datapoints correspond to different
classes. Consider the gradient of the loss on a particular datapoint (xi, yi) with respect to the weight
matrix of a hidden layer, θl ∈ Rd×d, which can be written recursively for the parameters of layer l as
Gl,i = ∇θlℓ(fθ(xi), yi) = δl,ih

⊤
l−1,i, where δl,i = θ⊤l+1δl+1,iDl,i is the error gradient from the next

layer with δL,i = ∂ℓ(fθ(xi),yi)/∂fθ and Dl,i = Diag(ϕ′([θlhl,i]1), . . . , ϕ
′([θlhl,i]d)). We can rewrite

the gradient in terms of its vectorization gl,i = vec(Gl,i) = (Id ⊗ θ⊤l+1)vl,i where Id is the d× d

identity matrix and v1,i = vec(δl+1,iDl,ih
⊤
l−1,i) ∈ Rd2

is the vectorization of data-dependent terms.
The matrix of gradients for different datapoints is the concatenation of the per-example gradients,
Gl = [gl,1,gl,2, . . . ,gl,m] = (Id ⊗ θ⊤l+1)Vl where Vl = [vl,1,vl,2, . . . ,vl,m]. The rank of Gl is
upper bounded as

rank(Gl) < min{rank(Id ⊗ θ⊤l+1), rank(Vl)} = min{d rank(θ⊤l+1), rank(Vl)}.
Thus, if the (effective) rank of θl+1 decreases, then the (effective) rank of the gradient matrix may
decrease as well. The rank of the gradient matrix can even decrease due to rank reduction in parameters
at other layers, or through the rank of the representation, which others have noted to occasionally
correlate with loss of trainability (Dohare et al., 2024; Kumar et al., 2023; Lyle et al., 2023).

Why Do Spectral Properties Deviate From Initialization? In large-scale self-supervised learning,
it has been observed empirically that the parameter norm grows at a rate of

√
t, where t is the number

of iterations (Merrill et al., 2021). Similar observations have been made in continual learning,
provided that the neural network does not stop learning due to loss of trainability (Dohare et al.,
2024; Lyle et al., 2024; Nikishin et al., 2022). A growing parameter norm is problematic from an
optimization perspective. Specifically, the parameter norm that these works consider is the Frobenius
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norm, which is equal to the sum of squared singular values, ∥θ∥2F =
∑

i

∑
j [θ]

2
ij =

∑
i σi(θ)

2.
Thus, a growing parameter norm is equivalent to an increasing sum of the squared singular values.
In particular, note that ∥θl∥F ≤

√
rank(θl)σ1(θl) where σ1(θl) denotes the largest singular value,

or the spectral norm (Golub and Van Loan, 2013). If the parameter norm of layer l grows at a rate
of

√
t, then the spectral norm of the parameter matrix θl also increases at the same rate. This leads

to an increase in the spectral norm of the layerwise Jacobian, σd(Dl)σ1(θl) ≤ σ1(Jl), which can
reduce effective gradient diversity and may harm trainability.

4 SPECTRAL REGULARIZATION FOR CONTINUAL LEARNING

If important properties of the initialization are lost during the course of learning, it is natural to
regularize the neural network toward the initialization. This is the motivation for regularization
(Kumar et al., 2023) and weight reinitialization (Dohare et al., 2024; Sokar et al., 2023) as loss of
plasticity mitigators. However, our motivation is to more directly target key properties of initialization,
using the insights from Section 3.

We denote a regularizer by Rτ(t)(θ, s), which is a function of (i) the parameters of the neural
network, θ, (ii) the data, through the current task τ(t), and of (iii) auxiliary information, such as
the parameters at initialization, through the state variable s. Naturally, not every regularizer takes
all of these elements into account. The regularizer is optimized alongside the base objective, Jτ(t)(θ).
We write the composite objective as Jλ

τ(t)(θ) = Jτ(t)(θ) + λRτ(t)(θ, s), where λ is a tunable
hyperparameter governing the regularization strength.

In Section 3, we argued that a growing spectral norm and condition number can harm trainability by re-
ducing effective gradient diversity and that this growth occurs at a rate of

√
t. Now we investigate regu-

larization as a means of controlling the spectral norm to maintain the trainability of the neural network.

One commonly used regularizer in both continual and non-continual learning is L2 regularization,
Rτ(t)(θ,∅) = ∥θ∥2, which regularizes the parameters towards zero. A recent alternative, L2
regularization towards the initialization, Rτ(t)(θ, θ

(0)) = ∥θ − θ(0)∥2, was proposed to deal with
sensitivity to parameters near zero (Kumar et al., 2023). Regularizing towards the particular
parameters present at initialization allows the neural network to regenerate parameters, providing
a soft reset to parameters if the gradient on the base objective is zero (see Appendix A.2 for an
example and Appendix A.4 for more details). One potential problem with L2 regularization towards
the initialization is that it may prevent the parameters from deviating from the particular sampled
value from the initialization distribution.

Our proposed spectral regularizer explicitly regularizes each layer’s spectral norm (the maximum
singular value) and addresses the reduced effective gradient diversity described in Section 3.3. We
only minimize the maximum singular value because the smallest singular value remains relatively
constant across all the architectures we consider (see Appendix C.6). The parameter matrix θl in
layer l is a concatenation of the weight matrix Wl and the bias bl, giving the augmented parameter
matrix θl = [Wl|bl] and augmented input h̃l = [hl,1]. With this notation, the equation defining
the neural network fθ can be rewritten as hl+1(x) = ϕ(Wlhl(x) + bl) = ϕ(θlh̃l). As discussed in
Section 3, our goal is to control the largest singular value of θl. Using the fact that the concatenated
parameters can be upper-bounded by the sum, σ1(θl) = σ1([Wl|bl]) ≤ σ1(Wl) + σ1(bl), we
achieve this by regularizing the spectral norm of each parameter in the layer separately: the spectral
norm of the multiplicative weight parameter Wl is regularized towards one and the spectral norm
of the additive bias parameter bl is regularized towards zero:

Rτ(t)(θl) =
∑

l∈layers

(
(σ1(Wl)

k − 1)2 +
(
σ1(bl)

k
)2)

=
∑

l∈layers

(
(σ1(Wl)

k − 1)2 + ∥bl∥2k2
)
. (1)

We add the exponent k to the spectral norm to penalize large spectral norms deviating from one.
We set k = 2 in our experiments and provide an ablation study in Appendix C.1. For implementation
details for other layers, such as normalization and convolutional layers, see Appendix A.7. The largest
singular value can be computed efficiently using power iteration (Golub and Van der Vorst, 2000;
Householder, 2013)with a computational complexity scaling linearly in the number of parameters.
3 Similar to previous work using spectral regularization for generalization in supervised learning,
we find that a single iteration is sufficient for effective regularization (Yoshida and Miyato, 2017).

3On a 1080TI, training with spectral regularization is approximately 14% slower.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

In addition to the exponent k, our approach to spectral regularization is different in two important ways
compared to previous work, such as spectral-norm regularization (Yoshida and Miyato, 2017). First,
we regularize the spectral norm of every parameter, including bias terms and normalization parameters
(see Appendix A.7). This is required because every parameter experiences norm growth. Second,
we regularize the spectral norm of the multiplicative parameters to one rather than zero. Aggressive
regularization of the spectral norm towards zero can lead to collapse issues similar to L2 regularization
towards zero. These differences are crucial to improving trainability in continual learning. We em-
phasize that regularizing the maximum singular value is sufficient for sustaining trainability, and that
other approaches such as L2 can lead to over regularization and increased sensitivity. Lastly, spectral
regularization is preferable over spectral normalization (Miyato et al., 2018; Zhai et al., 2023), which
explicitly normalizes the weights in the forward pass to be exactly one, for two reasons: (i) spectral nor-
malization is data-dependent (see Section 2.1 and Equation 12 by Miyato et al. (2018), and Appendix
A.6), which can be problematic in continual learning due to the changing data distribution, and, (ii)
other forms of normalization are already used to train deep neural networks, such as LayerNorm (Ba
et al., 2016), and it has been shown that spectral normalization does not improve trainability (Lyle et al.,
2023). See Appendix A.5 for detailed comparison to L2 regularization and spectral normalization.

5 EXPERIMENTS

The goal of our experiments is to investigate the effect of spectral regularization on trainability in
continual supervised learning, as well as reinforcement learning. We cover several different datasets,
types of nonstationarity, and architectures. We compare our proposed regularizers against baselines
that have been shown to improve trainability in previous work, which we detail below. Overall, our
experiments demonstrate that spectral regularization (i) consistently mitigates loss of trainability on a
wide variety of continual supervised learning problems, including training large neural networks for
thousands of epochs across a hundred tasks, (ii) is highly robust to the regularization strength, type
of non-stationarity and the number of training epochs per task, (iii) achieves better generalization
performance over the course of continual learning, and (iv) is generally applicable, which we
demonstrate by applying spectral regularization to reinforcement learning with continuous actions.

Datasets, Nonstationarities, and Architectures Our main results uses all commonly used im-
age classification datasets for continual supervised learning: tiny-ImageNet (Le and Yang, 2015),
CIFAR10, and CIFAR100 (Krizhevsky, 2009). Experiments in the appendix also use smaller-scale
datasets, like MNIST (LeCun et al., 1998), Fashion MNIST (Xiao et al., 2017), EMNIST (Cohen
et al., 2017), and SVHN2 (Netzer et al., 2011). In addition to the dataset, we consider different
types of non-stationarity: (i) random label assignments, (ii) pixel permutation, (iii) label flipping, and
(iv) class-incremental learning. Random label assignments are commonly used to evaluate trainability
(Lyle et al., 2023) due to the large distribution shift between tasks in memorizing completely new
and random labels. Pixel permutations, on the other hand, require only learning the permutation
mask applied to the image; it induces loss of trainability more slowly but is useful for evaluating
generalization (Kumar et al., 2023). Label flipping is a re-assignment of all the observations from
one label to another label. Unlike the other two non-stationarities, a label flip distribution shift does
not require learning a new representation. This is because only the output layer of a neural network
needs to be permuted to learn the label re-assignment, but gradients can still unnecessarily change the
representation leading to loss of trainability (Elsayed and Mahmood, 2024). We also consider the
class-incremental setting in which the network is trained on a growing subset of the classes from a
dataset, starting with only five classes on the first task and introducing five new classes on new tasks.
We use both a ResNet-18 (He et al., 2016) and Vision Transformer (Dosovitskiy et al., 2021).

Loss of Trainability Mitigators In our main results, we compare spectral regularization against
L2 regularization towards zero, shrink and perturb (Ash and Adams, 2020), L2 regularization
towards the initialization (Kumar et al., 2023), recycling dormant neurons (ReDO, Sokar et al.,
2023), concatenated ReLU (Abbas et al., 2023; Shang et al., 2016), and Wasserstein regularization
(Lewandowski et al., 2023). Several regularizers in the continual learning without forgetting literature
rely on privileged task information, which is not applicable to the task-agnostic setting that we
consider. We use the streaming conversion (Elsayed and Mahmood, 2024) to transform elastic weight
consolidation (Kirkpatrick et al., 2017; Zenke et al., 2017), so that it no longer requires task boundary
information, and include it as a baseline. Additional experiment details can be found in Appendix B.
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Figure 1: Generalization across different types of non-stationarity on tiny-ImageNet using a
ResNet (top) or a Vision Transformer (bottom). Compared to the baselines, spectral regularization
is consistently among the best-performing methods across class incremental, label flip, and pixel
permutation non-stationarities. Note that the Vision Transformer often achieves better generalization
performance than the ResNet architecture.

5.1 COMPARATIVE EVALUATION

In Figure 1, we plot the results of training a ResNet-18 and a Vision Transformer on tiny-ImageNet
with different non-stationarities. Across networks, non-stationarities, and methods considered, we
see that spectral regularization is among the methods best capable of sustaining plasticity. The
advantage of our approach, spectral regularization, is particularly high in class-incremental learning,
but the performance of spectral regularization with a Vision Transformer was also the best on label
flipping and pixel permutation. In contrast, the performance of other baselines was highly variable
with respect to the specific type of non-stationarity. For example, shrink and perturb is not robust
to the settings considered. Sometimes, it is among the best-performing or worst-performing methods.
Similar results on other datasets and the pixel permutation non-stationarity can be seen in Figure 2.

Figure 2: Continual learning with pixel permutation tasks on SVHN2, CIFAR10, CIFAR100
using a ResNet-18 (top) or a Vision Transformer (bottom). Across different datasets, spectral
regularization is effective at maintaining test accuracy on new tasks. Without any mitigators, both
ResNet-18 and Vision Transformer have diminishing test accuracy, suggesting loss of plasticity.
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Figure 3: Trainability and neural network properties across ImageNet, CIFAR10, and
CIFAR100. Baselines that suffer from a loss of trainability (top) also have an increasing average
spectral norm (middle-top), and a decrease in their average representation change (middle-bottom).

5.2 LOOKING INSIDE THE NETWORK

We now explore how the structural properties of a neural network evolve over the course of continual
learning, how these properties are affected by spectral regularization, and the different baselines
considered. For this, we consider the continual learning problem in which a ResNet-18 must memorize
a set of random labels which changes from task to task using the tiny-ImageNet, CIFAR10, and
CIFAR100 datasets. We consider the average representation change to measure the distance between
the neural network’s hidden activations from the beginning of one task, to the beginning of the next
task. The average representation change is a proxy for plasticity, allowing us to see how much
the behavior of the neural network has changed. In Figure 3, we see that the unregularized ReLU
networks suffers from loss of trainability in all problems considered, and this coincides with an
increasing spectral norm (middle-top) and a decrease in the average representation change (bottom).4
Although only spectral regularization directly regularizes the spectral norm of the network, other
regularizers do so indirectly by controlling other norms, like L2. However, these other regularizers
also regularize other parameters, preventing them from deviating from initialization and potentially
leading to suboptimal use of capacity, which can be observed in the bottom row in Figure 3. In
Appendix C.3, we show that the Vision Transformer was not able to memorize random labels,
suggesting that its capabilities for generalization are offset by its relatively lower trainabilty.

4In Appendix C.10, we provide a table showing the final performance after training on the sequence of tasks.
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5.3 SENSITIVITY ANALYSIS

Figure 4: Sensitivity analysis on regularization strength. Compared
to other regularizers, spectral regularization is insensitive to regulariza-
tion strength while sustaining higher trainability for any given regular-
ization strength.

The effectiveness of a
regularizer depends on
the regularization strength.
Too much regularization
can slow down training,
leading to suboptimal
performance on any given
task. However, too little
regularization can lead
to loss of trainability and
suboptimal performance on
future tasks. In a continual
learning problem, hyperparameter tuning is particularly costly (or infeasible), especially if the
distribution over tasks is not known in advance (Mesbahi et al., 2024). Thus, we should favour
regularizers that are less sensitive to hyperparameters. Our results in Figure 4 show that the sensitivity
of spectral regularization to its hyperparameter is much lower than other regularizers. In Appendix
C.4, we also present additional results showing the robustness of spectral regularization when varying
(i) the regularization strength using other network architectures, (ii) the type of non-stationarity, and
(iii) the number of training epochs per task.

Figure 5: Spectral regularization enhances plasticity in reinforcement learning in the DMC suite.
Spectral regularization is competitive with the network reset + layernorm (Reset) even when the
replay buffer is unbounded (Top Left). When the replay buffer size is bounded to 250k steps, spectral
regularization improves over the Reset baseline (Bottom Left). In both cases, Spectral regularization
significantly outperforms layernorm (Baseline), Compared to the hyperparameter governing the reset
frequency, spectral regularization is less sensitive to its regularization strength. Spectral regularization
also prevents both parameter and gradients from exploding, and reduces value overestimation (Right).

5.4 FROM SUPERVISED LEARNING TO REINFORCEMENT LEARNING

In addition to supervised learning, we evaluate spectral regularization in reinforcement learning.
Specifically, we investigate the control tasks from the DMC benchmark (Tassa et al., 2020), with soft
actor-critic (SAC, Haarnoja et al., 2018), in the high replay-ratio (RR) regime (D’Oro et al., 2022)
with 16 gradient updates for every environment step. The high replay-ratio regime leads to primacy
bias (Nikishin et al., 2022), a phenomenon related to loss of plasticity. Recent work has demonstrated
that only full network resets with layer normalization (Ba et al., 2016) serve as an effective mitigation
strategy in this setting (Ball et al., 2023; Nauman et al., 2024).
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As shown in Figure 5, spectral regularization yields substantially higher returns compared to the
baseline that uses layer normalization with either an unbounded replay buffer size or a limited replay
buffer size. In aggregate, spectral regularization is competitive with the final performance of the
strongest baseline, full network resets in combination with layer normalization. However, in five
out of seven environments, spectral regularization substantially improves over the reset baseline
in terms of sample efficiency (see Appendix C.8). Spectral regularization is also less sensitive
to its regularization strength than resets are for their reset frequency (Figure 5, middle-top and
middle-bottom). Moreover, we used a single regularization strength for every network. Better perfor-
mance may be achieved by individually tuning each regularization strength for the value and policy
networks. In addition, a combination of spectral normalization and layer norm aggressively reduces
Q-value overestimation (Figure 5, top-left), which is one of the well-established proxies for RL
training destabilization (Hasselt, 2010; Nauman et al., 2024). Lastly, spectral normalization prevents
exploding gradients and keeps weights’ norms small during training, which is a key component for
learning continually and preserving the plasticity of neural networks (Lyle et al., 2022; 2023).

6 CONCLUSION

In this paper, we investigated the connection between initialization, trainability, and regularization. We
identified that deviations of the maximum singular value of each layer can lead to low gradient diver-
sity, preventing neural networks from training on new tasks. To directly preserve trainability properties
present at initialization, we proposed spectral regularization as a way of controlling the maximum
singular value of each layer so that it does not deviate significantly from 1. Our experiments show that
spectral regularization is more performant and less sensitive to hyperparameters than other methods
across datasets, nonstationarities, and architectures. While several methods mitigate loss of trainabil-
ity to a varying degree, learning continually with spectral regularization is robust, achieving high
initial and sustained performance. We also showed that spectral regularization is capable of improving
generalization with both Vision Transformer and ResNet-18 on continual versions of tiny-ImageNet,
CIFAR10, CIFAR100, amongst others. Lastly, we showed that spectral regularization learned a more
effective policy in reinforcement learning by avoiding early loss of plasticity due to primacy bias.
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A ADDITIONAL DETAILS

A.1 ILLUSTRATIVE EXAMPLE: LARGE SPECTRAL NORM CAN IMPEDE TRAINABILITY

We show that, given a family of solutions on the first task, preference should be given to solutions
that have a spectral norm that is closer to one. We consider 2 dimensional binary and orthogonal
inputs, x1 = [0, 1]⊤ and x2 = [1, 0]⊤, with corresponding binary targets, y1 = y2 = 1. We
consider the squared loss, and use a mutli-layer perceptron with one hidden layer and two units,
fw2,w1

(x) = w2ReLU(w1x). A common observation regarding solutions found for deep neural
networks is that they are low rank (Arora et al., 2019; Galanti et al., 2022; Jacot, 2023; Timor et al.,
2023). In addition, it has been observed that large outliers in the spectrum of a deep network emerge
during training, meaning that the largest singular values of the weight matrices tend to be much larger
than their smallest singular values (Martin and Mahoney, 2021; Pennington et al., 2018). Consider

one such solution where w1 =

[
−1 c
1/c −1

]
, and w2 = [1/c, c] ∈ R1×2. The input-output function is

invariant under different values of c, achieving zero error for any particular choice. However, the
parameter matrix for the hidden activations, w1, is low rank because it only has a single non-zero
singular value that is not invariant. That is, the largest singular value of w1 depends on the choice
of c, ∥w1∥2 := σmax(w1) = c+ 1/c. In addition, the gradients and parameter updates depend on c.
Thus, if the targets were to change, y′1 = 0, the imbalance of singular values due to very large or
small values of c can impede trainability:

w′
1(x1) =

[
−1 c
1/c −1

]
− α


[
0 1/c
0 0

]
︸ ︷︷ ︸
∇w1

ℓ1

 , w′
2(x1) = [1/c, c]− α

 [c, 0]︸︷︷︸
∇w2

ℓ1

 , (2)

where ℓ1 = ℓ(fw2,w1(x1), y
′
1), and α is a step-size. One of the consequences of the imbalanced

singular values is that the per-example gradients are poorly conditioned (Wu et al., 2021). That is,
when we sample x1, there will be a large gradient for w2, ∥∇w2

ℓ(fw2,w1
(x1), y

′
1)∥2 = c but a small

gradient for w1, ∥∇w1ℓ(fw2,w1(x1), y
′
1)∥2 = 1/c. Thus, a sufficiently small step-size that stabilizes

the update to w2 leads to slow learning on w1. A similar result holds if the target y2 were to change
In Figure 6, we demonstrate that learning is more stable with a smaller spectral norm in this example.
For higher dimensional weight matrices, we may expect that the imbalance of the singular values
leads to low gradient diversity where particular per-example gradients give rise to outliers with a
large gradient magnitudes. Thus, all else being equal, a solution with a smaller spectral norm (c ≈ 1)
is preferable for the purposes of continual learning.

Figure 6: Illustrative Example. A lower spectral norm is more trainable across different step sizes
in the simple illustrative example.

A.2 DIFFERENCES BETWEEN CONTINUAL AND NON-CONTINUAL LEARNING

One critical difference between continual and non-continual learning is that, in continual learning,
convergence towards a fixed point is not the objective. Due to continual changes in the data distri-
bution, there is no fixed point that is optimal for every distribution in general. Thus, convergence
to a fixed point is necessarily suboptimal. If convergence to a fixed point does occur, then the norm
of the gradients will be zero. The gradients converging to zero is a condition for loss of plasticity,
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and can be satisfied on every distribution depending on the choice of activation function. Focusing
on the case when the activation function is ReLU(x) = max(x, 0), the gradients can become zero
if 1) the weights converge to zero or, 2) the activations converge to zero. As a running example,
we will consider the two-layer neural network without biases denoted by fθ(x) = θ2ϕ(θ1x), where
θ1 ∈ Rd×din and θ2 ∈ Rdout×d are weight matrices, and ϕ is an elementwise activation function.
We will consider the squared loss, J(θ) = 1

2E(x,y)∼p

[
(y − fθ(x))

2
]
, but a similar result holds for

classification losses, such as cross-entropy. The gradient for each of the parameters is given by,
∇θ2J(θ) = (y − f)ϕ(θ1x)

⊺ and ∇θ1J(θ) = θ⊺2 (f − y)ϕ′(θ1x)x
⊺. The neural network will reach a

fixed point in continual learning, meaning that the gradients are zero for every datapoint, if either 1)
both θ1 and θ2 are zero, or 2) the activations are zero for every input x, ϕ(θ1x) = 0,

A.3 SPECTRAL NORM AND LIPSCHITZ CONSTANT

One other potential reason for why a growing spectral norm is problematic is from the theory
convex optimisation. For the ReLU activation function, the Lipschitz constant of the layer map,
hl+1 = ϕ(θlhl), is equal to the spectral norm of the weight matrix. We can thus bound the Lipschitz
constant of the entire neural network above by the product of the layer-wise Lipschitz constants
(Szegedy et al., 2013). Putting these results together, we conclude that during continual learning, the
Lipschitz constant of each layer is increasing and thus the Lipschitz constant of the entire network is
also increasing. This is problematic from the standpoint of optimisation because gradient descent
only converges on convex optimisation problems when the step-size is smaller than 2

L , where L is the
Lipschitz constant. Thus, if the Lipschitz constant grows then, eventually, the chosen step-size will
be too large and gradient descent will not converge locally on the task.

A.4 MORE DETAILS ON REGULARIZATION AND TRAINABILITY

One other important advantage of regularization is that it has well understood effects for ensuring
trainability in approaches outside of deep learning, such as degenerate linear regression and inverse
problems (Benning and Burger, 2018).

Each regularizer biases the parameter dynamics in their own way, such as keeping the parameters
close to zero or close to initialization. But, the regularizer term is independent of the base objective,
and potentially the data and/or architecture. Even if the base objective provides a zero gradient,
explicit regularization can provide a gradient to all weights, and reset weights if the hidden unit
associated with the weight becomes saturated. For example, if the nonlinearity is ReLU, then a
hidden unit (i) is inactive if for all inputs in the dataset (k), hl

i = ϕ
(∑dl−1

j=1 θlijh
l−1
j,k

)
= 0. Then the

hidden representation has collapsed for that unit, and none of the weights contributing to that unit
will be updated, keeping the unit inactive. But, with regularization, the weights will be updated and
the unit may become active again for some inputs.

A.5 DETAILS REGARDING SPECTRAL REGULARIZATION

Spectral Regularization vs L2 Regularization L2 regularization is not as effective as spectral
regularization because it constrains the magnitude of the parameters, and can even cause rank
collapse (Kumar et al., 2023). Spectral regularization constrains only the spectral norm of the
weight matrix close to 1, σ(1)(θl) ≈ 1. This has the effect of controlling the magnitude of the
maximal column of the weight matrix. That is, if θ ∈ Rdl×dl−1 , then 1/

√
dl∥θl∥1 < ∥θl∥2 where

∥θl∥1 = max1≤j≤dl

∑dl

i=1 |[θl]ij |. This implies that
∑dl

i=1 |[θl]ij | <
√
dl for every column j. This

differs in two ways from L2 regularization: (i) the regularizer does not regularize all the columns of
the weight matrix, only the parameters in the column with a maximal sum, and (ii) the regularizer does
not regularize the individual weights of the column, but their sum. This means that the parameters
can potentially be larger, and move further from the initialization, potentially enabling more effective
use of the neural network’s capacity. Lastly, we note that L2 regularization can also be viewed in
terms of a matrix norm, specifically the Frobenius norm.

Spectral Regularization vs Spectral Normalization: The spectral norm can also be controlled
via spectral normalization (Miyato et al., 2018). For continual learning, spectral regularization is
preferable over spectral normalization for two reasons: (i) spectral normalization is data-dependent
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(see Section 2.1 and Equation 12 in Miyato et al. (2018), and Appendix A.6 for more details), which
can be problematic in continual learning due to the changing data distribution, and, (ii) other forms
of normalization are often already used to train deep neural networks, such as LayerNorm (Ba
et al., 2016). LayerNorm, in particular, regularizes the magnitude of the layerwise map by dividing
by the norm of the features in the layer. However, because the spectral norm of the underlying
parameters still grows at a rate of

√
t, the normalization layer itself will suffer from loss of gradient

diversity. For the purposes of ensuring continual trainability, regularization explicitly controls the
spectral norm of all parameters and is thus preferable over normalization in isolation. That being
said, normalization can still improve performance and optimal performance may be achieved by a
combination of regularization and normalization, which we show in Section 5.3.

A.6 CATEGORIZING REGULARIZERS FOR CONTINUAL LEARNING

We can categorize regularizers broadly into data-dependent and data-indepedent regularizers. Data-
dependent regularizers use the data in some way, which can be probelmatic for continual learning
when the data distribution changes. Regularizing on one distribution of data does not necessarily
maintain useful properties for learning on the next distribution of data. Examples of data-dependent
regularizers include feature rank regularization (Kumar et al., 2021), auxiliary tasks and other feature-
space regularizers (Lyle et al., 2022). Other non-standard approaches that have a data-dependent
regularization effect include gradient regularizers such as gradient-clipping and weight reinitialization
based on dormant neurons (Sokar et al., 2023). These data-dependent regularizers regularizers control
some property on data from the current task but may not control the property on data from a new task,
which is needed to maintain plasticity.

Data-Independent Regularization, on the other hand, does not depend on any data. This category
regularizes the parameters directly, which is particularly useful in continual learning when the data
distribution is changing. Examples of data-independent regularization include L2 regularization
towards zero, weight decay (for adaptive gradient methods), and regenerative regularization (Kumar
et al., 2023). Our proposed approach of spectral regularization is data-independent and, moreover,
explicitly targets a trainability condition for continual learning. Thus, we expect that it is particu-
larly effective on maintaining trainability in continual learning compared to other data-independent
regularizers.

A.7 SPECTRAL REGULARIZATION OF OTHER LAYERS

Normalization Layers Other layers using per-unit scaling, such as normalization layers (Ba et al.,
2016; Ioffe and Szegedy, 2015), are also spectrally regularized. For example, denote γ ∈ Rd as
the trainable scaling parameters for LayerNorm (Ba et al., 2016), then the element-wise product of
the weights can be written as a diagonal weight matrix, f(z) = γ ◦ z = Diag(γ)z. The maximum
singular value of a diagonal matrix is the maximum entry, σmax(Diag(γ)) = maxi |γi|. However,
optimisation with a maximum is problematic because the max is not differentiable. Furthermore,
differentiable surrogates, such as log-sum-exp ((log (

∑
i exp(|γi|))− 1)

2), only give a loose upper
bound on the maximum which is problematic because we want to regularize the maximum towards
one. Thus, we regularize each weight towards 1.

Convolutional Layers Similar to other work, we reshape the convolutional weight tensor (with
kernel size (k × k, din filters and dout filters) into a matrix of size dout × (k · k · din) (Yoshida and
Miyato, 2017). The spectral norm of this reshaped matrix provides an efficient upper bound on the
spectral norm of the Toeplitz matrix defining the convolution (Tsuzuku et al., 2018, Corollary 1).
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B EXPERIMENT DETAILS

All of our experiments used Adam (Kingma and Ba, 2015) where the default step size of 0.001 was
selected after an initial sweep over [0.005, 0.001, 0.0005]. For all of our results, we use 10 random
seeds and provided a shaded region corresponding to the standard error of the mean. For experiments
on tiny-ImageNet SVHN2, CIFAR10 and CIFAR100, we used 4 seeds to sweep over the regularization
strengths of [0.01, 0.001, 0.0001], and found that 0.0001 worked well on tiny-ImageNet, CIFAR10
and CIFAR100 for all regularizers, whereas 0.001 worked best on SVHN2 for all regularizers.

Datasets and non-stationarities:

• MNIST: 28x28 greyscale images, 10 classes. Only the first 12800 datapoints were used for
training, with a batch size of 512 and [40, 80, 120] epochs, and a total of 50 tasks.

• Fashion MNIST: 28x28 greyscale images, 10 classes. Only the first 12800 images, with a
batch size of 512 and [40, 80, 120] epochs per task, and a total of 50 tasks.

• EMNIST: 28x28 greyscale images, 50 classes. We use the balanced version of the dataset,
using the first 100000 datapoints. For random label non-stationarity, we used a batch size
of 500 and 100 epochs per task, with a total of 50 tasks. For both label flipping and pixel
permutation non-stationarities, we used a batch size of 500 and 20 epochs per task, with a
total of 200 tasks.

• SVHN2: 32x32 color images, 10 classes. The first 50000 images were used for training,
5000 images from the test set were used for validation and the rest were used for testing.
The batch size used was 500, we found 250 to be unreliable for learning due to high variance.
For random label non-stationarity, 20 epochs per task and 25 tasks was enough to lose
trainability for an unregularized network. For pixel permutation non-stationarity, 10 epochs
and 100 tasks was enough to lose trainability for an unregularized network.

• CIFAR10: 32x32 color images, 10 classes. All of the 50000 images were used for training,
1000 images from the test set were used for validation and the rest were used for testing. We
used a batch size of 250 and found this to be effective. For random label non-stationarity, 20
epochs per task and 30 tasks was enough to lose trainability for an unregularized network. For
pixel permutation non-stationarity, 10 epochs and 100 tasks was enough to lose trainability
for an unregularized network.

• CIFAR100: 32x32 color images, 100 classes. All of the 50000 images were used for
training, 1000 images from the test set were used for validation and the rest were used
for testing. We used a batch size of 250 and found this to be effective. For random label
non-stationarity, 20 epochs per task and 30 tasks was enough to lose trainability for an
unregularized network. For pixel permutation non-stationarity, 10 epochs and 100 tasks was
enough to lose trainability for an unregularized network.

• tiny-ImageNet: 64x64 color images, 200 classes. All of the 100000 images were used for
training, 10000 images were used for validation, and 10000 images were used for testing
according to the predetermined split. We used a batch size of 250 and found this to be
effective. For random label non-stationarity, 20 epochs per task and 30 tasks was enough to
lose trainability for an unregularized network. For pixel permutation non-stationarity, 20
epochs and 100 tasks was enough to lose trainability for an unregularized network.

• Reinforcement Learning: We evaluate spectral regularization in RL control tasks from DMC
benchmark (Tassa et al., 2020), with SAC method (Haarnoja et al., 2018) in demanding
replay ratio (RR) regime (D’Oro et al., 2022) with 16 gradient updates per every new
environments step. We choose this setup because a high RR regime leads to significant
primacy bias (Nikishin et al., 2022) defined as a tendency to overfit initial experiences that
damages the rest of the learning process.

Neural Network Architectures:

• MNIST, EMNIST, and Fashion MNIST: 4-layer MLP with 256 neurons per layer and relu
activations. For experiments that use it, LayerNorm was applied after the linear weight
matrix and before the non-linearity.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

• tiny-ImageNet, CIFAR10, CIFAR100, and SVHN2: We follow the architectures used by
Lee et al. (2024) which include both an off-the-shelf ResNet-18 with batch norm, as well as
a Vision Transformer with an embedding dimension of 192, patch size of 4x4, 3 attention
heads, 12 layers, layer normalization and a dropout rate of 0.1.

• Reinforcement Learning: Recent studies (Ball et al., 2023; Nauman et al., 2024) have
demonstrated that, in this setup, only resets with layer normalization (Ba et al., 2016) serve
as an effective mitigation strategy. We compare the performance of the SAC agent with both
spectral regularization and layer normalization to two baseline agents: SAC with only layer
normalization, and SAC with layer normalization plus resets. We use spectral regularization
with a coefficient 1e − 4 for both the actor and critic. For every method, we use a single
critic and architecture size of 2 layers and 256 neurons per layer for both actor and critic.
Using a random policy, we prefill a replay buffer with 10, 000 transitions before starting the
training. Replay buffer maximum size is 1 million transitions.

Metrics reported

• Figure 1: test accuracy at the end of training on a task
• Figure 2: test accuracy at the end of training on a task
• Figure 3: top: train accuracy at the end of training on a task, middle-top: average of

the maximum singular value at each laeyr, middle-bottom: average distance between
representation at the beginning of a task and at the end of a task, bottom: distance between
current parameters and parameters at initialization.

• Figure 4: Area under curve for training accuracy as a function of regularization strength.
• Figure 5: Left: Return achieved by policy under evaluation, middle: area under curve of

return as a function of the hyperparameter value, right-top: difference between estimated
Q-value and Monte-carlo return under the current policy, right-middle: average gradient
norm for the policy network, right-bottom: average parameter norm for the policy network.
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C ADDITIONAL EXPERIMENTS

C.1 ABLATING HYPERPARAMETER k FOR SPECTRAL REGULARIZATION

Figure 7: Evaluating the choice of k for spectral regularization for k = 1, 2, 4, 8 on MNIST
(Right) and Fashion MNIST (left). We found that k = 2 balance stability with effectiveness, and
use this value throughout our experiments.

C.2 RESULTS ON FASHION MNIST

Figure 8: Loss of Plasticity in Fashion MNIST. Although the all the newtorks in this experiment use
LayerNorm, loss of plasticity occurs without regularization: the performance decreases as a function
of tasks, even with an increasing number of iterations.
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C.3 VISION TRANSFORMER CANNOT MEMORIZE RANDOM LABELS

Figure 9: ResNet and Vision Transformer on the random label memorization task using tiny-
ImageNet. The Vision Transformer architecture is particularly well-suited to tasks with structure
from which generalization is possible. However, we found that its trainability on random labels is
lacking. We were unable to get the Vision Transformer to memorize random labels even on a single
task in ImageNet.

C.4 ADDITIONAL SENSITIVITY RESULTS

Figure 10: Sensitivity analysis on regularization strength Compared to other regularizers, spectral
regularization is insensitive to regularization strength while sustaining higher trainability for any
given regularization strength.
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Figure 11: Sensitivity to type of non-stationarity on EMNIST. Spectral regularization is able to
consistently maintain high trainability across random label assignment, pixel permutations, and label
flipping. When applying random label assignment, L2 (init) and L2 (zero) are unable to attain high
trainability as compared to spectral regularization.

Figure 12: Sensitivity to number of epochs per task on MNIST with random label assignment.
Without Layer Norm, spectral regularization is able to maintain trainability over other regularizers
even when the number of epochs is low. Spectral regularization also synergizes with Layer Norm,
improving initial performance on the first task, and improving over tasks.

Robustness to Non-stationarity in Fashion MNIST Next, we explore whether our proposed
regularizers are effective across different types of non-stationarity. To this end, we use EMNIST
because the number of classes is large enough that label flipping induces loss of trainability (Elsayed
and Mahmood, 2024). In Figure 11, we found that spectral regularization best maintained trainability
across different non-stationarities.

Varying the Number of Epochs Per Task Given that the continual learning problem outlined in
Section 2 depends on the number of iterations, it may be the case that a higher number of epochs per
task can mitigate loss of trainability. In Figure 12, we found that the number of epochs only delays
loss of trainability (see Appendix C.2 for results on Fashion MNIST). Even when the number of
epochs per task is high enough to reach 100% accuracy on the first task, loss of trainability eventually
occurred without regularization. In contrast, when using spectral regularization, loss of trainabililty
was consistently mitigated. We additionally found that spectral regularization is particularly effective
at maintaining trainability when the number of epochs per tasks is low. The evidence for this is most
striking without Layer Norm, in the top row, where spectral regularization was the only method
capable of maintaining its trainability. Even though Layer Norm controls the spectral norm through
the activations (Kim et al., 2021), adding Layer Norm alone was not enough to mitigate loss of
trainability. However, Layer Norm is synergistic with various forms of regularization, with accuracy
being improved regardless of the number of epochs per task.
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C.5 EFFECT OF REGULARIZATION ON CAPACITY IN A SINGLE TASK

The regularization strength for preventing loss of trainability must be sufficiently high, and this regu-
larization strength may limit the capacity of the neural network. We now show the extended training of
each regularizer using the same regularization strength used to prevent loss of trainability in Figure 13.
Spectral regularization was not only best in preventing loss of trainability, it also achieved the highest
accuracy when training to convergence on a single task. This means that spectral regularization
constrains the capacity of the neural network the least, while still preventing loss of trainability.

Figure 13: Single task performance with ResNet-18. Spectral regularization is least restrictive
of the neural network capacity, evidenced by its ability to better fit the randomly assigned labels
compared to other regularizers. The unregularized baseline is able to use its capacity fully, but at the
cost of reduced trainability in later tasks.
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C.6 INVESTIGATING EFFECTS OF REGULARIZATION ON NEURAL NETWORK PROPERTIES

Figure 14: Singular values, weight norms, stable ranks and effective gradient diversity: Left:
SVHN2, Middle: CIFAR10, Right: CIFAR100.
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C.7 INVESTIGATING GENERALIZATION ON CONTINUAL IMAGENET

We investigate the generalization performance of spectral regularization on Continual ImageNet.
In Continual ImageNet, each task is to distinguish between two ImageNet classes. We use the
network architecture and training protocol used in Kumar et al. (2023). We find that all regularization
approaches tested achieve high generalization performance across tasks. The methods we compare
are spectral regularization (SpectralRegAgent), L2 towards zero (L2Agent), L2 towards initialization
(L2InitAgent), recycling dormant neurons (ReDOAgent), and no regularization (BaseAgent).
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Figure 15: Generalization performance on Continual ImageNet.

C.8 RESULTS ON INDIVIDUAL DMC ENVIRONMENTS

We report mean returns for DMC environments in Figure 16.

Figure 16: Mean and standard error of return for 7 DMC environments.
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C.9 COMPARING CONTINUAL BACKPROP, REDO AND SPECTRAL REGULARIZATION

Figure 17: Class-Incremental Learning on tiny-ImageNet and CIFAR100 with continual back-
prop. For continual backprop, we used the suggested hyperparameters: a maturity threshold of
1000 and a replacement rate of 10−5. Continual backprop performs similarly to Recycling DOrmant
neurons (ReDO). However, spectral regularization outperforms both methods.

C.10 TABLE SUMMARY OF MAIN RESULTS

Class Incremental Label Flip Pixel Perm
L2 (init) 0.2313 (0.0013) 0.2571 (0.0013) 0.0926 (0.0018)
L2 (zero) 0.2197 (0.0021) 0.2670 (0.0029) 0.0873 (0.0015)
ReDO 0.1726 (0.0008) 0.2478 (0.0103) 0.0754 (0.0025)
S-EWC 0.1615 (0.0016) 0.2655 (0.0011) 0.0782 (0.0018)
ShrinkPerturb 0.1778 (0.0053) 0.2451 (0.0051) 0.1085 (0.0025)
Unreg 0.1749 (0.0007) 0.2307 (0.0056) 0.0788 (0.0009)
Wass 0.2260 (0.0022) 0.2726 (0.0040) 0.1057 (0.0019)
Spectral 0.2447 (0.0016) 0.2594 (0.0016) 0.1104 (0.0029)

Table 1: Table summarizing the results in the top row of Figure 1 (mean of final test accuracy and
standard deviation, ResNet on tiny-ImageNet).

Class Incremental Label Flip Pixel Perm
L2 (init) 0.1890 (0.0042) 0.2822 (0.0045) 0.1370 (0.0022)
L2 (zero) 0.1457 (0.0001) 0.2126 (0.0047) 0.1188 (0.0012)
S-EWC 0.1185 (0.0052) 0.2230 (0.0079) 0.0923 (0.0073)
ShrinkPerturb 0.1171 (0.0011) 0.1392 (0.0068) 0.1088 (0.0033)
Unreg 0.1226 (0.0074) 0.1936 (0.0029) 0.0813 (0.0021)
Wass 0.1727 (0.0252) 0.2184 (0.0022) 0.0800 (0.0010)
Spectral 0.2452 (0.0014) 0.2743 (0.0081) 0.1392 (0.0006)

Table 2: Table summarizing the results in the bottom row of Figure 1 (mean of final test accuracy and
standard deviation, Vision Transformer on tiny-ImageNet).
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SVHN2 CIFAR10 CIFAR100
L2 (init) 0.7341 (0.0032) 0.4830 (0.0038) 0.2594 (0.0037)
L2 (zero) 0.7409 (0.0027) 0.4770 (0.0035) 0.2563 (0.0023)
ReDO 0.7356 (0.0018) 0.4531 (0.0016) 0.2485 (0.0012)
S-EWC 0.7288 (0.0027) 0.4612 (0.0018) 0.2481 (0.0017)
CReLU 0.7539 (0.0016) 0.5002 (0.0028) 0.2443 (0.0013)
ShrinkPerturb 0.7548 (0.0015) 0.5032 (0.0016) 0.2546 (0.0008)
Unreg 0.7277 (0.0036) 0.4490 (0.0023) 0.2444 (0.0018)
Wass 0.7337 (0.0032) 0.4849 (0.0052) 0.2654 (0.0023)
Spectral 0.7489 (0.0026) 0.5082 (0.0052) 0.2785 (0.0043)

Table 3: Table summarizing the results in the top row of Figure 2 (mean of final test accuracy and
standard deviation, ResNet on SVHN2, CIFAR10 and CIFAR100 with pixel permutation nonstation-
arity).

SVHN2 CIFAR10 CIFAR100
L2 (init) 0.8163 (0.0028) 0.5160 (0.0034) 0.2267 (0.0023)
L2 (zero) 0.6476 (0.1494) 0.5251 (0.0019) 0.2457 (0.0031)
S-EWC 0.8003 (0.0040) 0.4735 (0.0026) 0.2371 (0.0030)
ShrinkPerturb 0.3565 (0.1344) 0.5357 (0.0062) 0.2564 (0.0019)
Unreg 0.7870 (0.0044) 0.4610 (0.0041) 0.2004 (0.0120)
Wass 0.8098 (0.0035) 0.4811 (0.0078) 0.2132 (0.0027)
Spectral 0.8248 (0.0016) 0.5310 (0.0044) 0.2775 (0.0024)

Table 4: Table summarizing the results in the bottom row of Figure 2 (mean of final test accuracy and
standard deviation, Vision Transformer on SVHN2, CIFAR10 and CIFAR100 with pixel permutation
nonstationarity).

tiny ImageNet CIFAR10 CIFAR100
L2 (init) 0.8206 (0.0172) 0.8317 (0.0094) 0.6499 (0.0287)
L2 (zero) 0.7974 (0.0102) 0.6536 (0.0143) 0.5973 (0.0244)
ReDO 0.2637 (0.0107) 0.7387 (0.0561) 0.2800 (0.0578)
S-EWC 0.3607 (0.0934) 0.7195 (0.0725) 0.1980 (0.0287)
CReLU 0.3587 (0.0086) 0.7156 (0.0335) 0.4722 (0.0121)
ShrinkPerturb 0.5832 (0.0040) 0.7451 (0.0064) 0.6483 (0.0145)
Unreg 0.2361 (0.0302) 0.7371 (0.0297) 0.2671 (0.0366)
Spectral 0.8542 (0.0040) 0.8159 (0.0072) 0.7771 (0.0128)

Table 5: Table summarizing the results in the bottom row of Figure 2 (mean of final train accuracy
and standard deviation, ResNet on tiny ImageNet, CIFAR10 and CIFAR100 with random label
nonstationarity).
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