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ABSTRACT

Deep neural networks have achieved striking performance when evaluated on test-
ing data which share the same distribution with training ones, but can significantly
fail otherwise. Therefore, eliminating the impact of distribution shifts between train-
ing and testing data is of paramount importance for building performance-promising
deep models. Conventional methods (e.g. domain adaptation/generalization) as-
sume either the availability of testing data or the known heterogeneity of training
data (e.g. domain labels). In this paper, we consider a more challenging case
where neither of the above information is available during the training phase. We
propose to address this problem by removing the dependencies between features
via reweighting training samples, which results in a more balanced distribution
and helps deep models get rid of spurious correlations and, in turn, concentrate
more on the true connection between features and labels. We conduct extensive
experiments on object recognition benchmarks including PACS, VLCS, MNIST-M,
and NICO which support the evaluation of generalization ability. The experimental
results clearly demonstrate the effectiveness of the proposed method compared
with state-of-the-art counterparts.

1 INTRODUCTION

Current machine learning models represent target data encountered during deployment with complex
rules learned by minimizing prediction error on training data. Under the assumption that testing and
training data share the same distribution, many machine learning approaches have been proposed and
shown to be effective. These performance-promising models trained on data with a given distribution
tend to exploit subtle statistical correlations among features while refining representations. This
exact fitting with training data makes these models more prone to prediction error when there is a
distribution shift between training and testing data (Ganin et al. (2016); Zhang et al. (2017)). As a
result, selection biases, confounding factors or other peculiarities can make most machine learning
models fail to make trustworthy predictions (Arjovsky et al. (2019); Shen et al. (2019)).

A large bunch of existing methods try to address this issue by regularizing the distribution of training
data so that it can be more closely aligned with the distribution of testing data (Long et al. (2015);
Ganin et al. (2016); Tzeng et al. (2017); Long et al. (2017); Hoffman et al. (2018); Peng et al. (2019)).
However, in many real situations, given we have no prior knowledge of testing data which will be
generated in the future, these methods are not applicable at such scenarios. Recently, this issue
has been intensively studied in domain generalization (DG) (Muandet et al. (2013); Ghifary et al.
(2015)). The main idea of DG methods is to train the model on samples from several sub-populations
labeled with both class label and domain label (Khosla et al. (2012); Li et al. (2018a;b); D’Innocente
& Caputo (2018); Li et al. (2019); Jin et al. (2020)). Nevertheless, most datasets are a mixture of
multiple latent domains, which can be difficult to know the domain labels (Matsuura & Harada
(2020)). Several methods are proposed to address this issue by unsupervisedly generating multiple
domains from one single domain (Qiao et al. (2020); Matsuura & Harada (2020)). However, the
performance of these methods highly depends on the heterogeneity of the generated domains, which
is hardly guaranteed.

In this paper, we address the distribution shifts problem by sample reweighting without knowing
either the testing data distribution or the heterogeneity (e.g. domain labels) of training data. The
notion underpinning our idea is that a new distribution can be approximated by reweighting the
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Figure 1: Results of original and balanced distribution. The original distribution is on the left and the
balanced one on the right. CNNs can only achieve 25.76% accuracy when trained on original data
while our method can balance the distribution and achieve 86.28% accuracy.

samples we observed in training phase. We find the key factor which hinder the generalization
of learned model is the unbalanced training distribution, embodied in the complex dependencies
and entanglement between features. Such imbalance would make learned model absorb subtle and
spurious correlation from training data and fail to generalize onto different distributed testing data.

Take a synthetic case as example, consider the problem of classifying images of hand-written numbers
0 and 1. Instead of adopting conventional gray-scale images, we color the numbers with red and
green background. If all the numbers are colored randomly, a deep model can easily achieve the
classification accuracy of 99%. However, if we make the factor of color strongly correlated with
the label and reverse such correlation between training and testing data, the model fails thoroughly.
For instance, in training data, 90% of 0 are with a background of color red, and 10% are with color
green, while 90% of number 1 are with green and 10% are with color red. In testing data, only
10% of number 0 are with color red and 90% with color green, 10% of number 1 are with color
green and 90% are with color red. Consequently, the spurious correlation between color and label
drastically misleads the model and results in the performance even worse than random guesses. Note
that the similar scenarios are also common in real world pictures, such as the spurious correlation
between grass and cows (Arjovsky et al. (2019); Beery et al. (2018)). In the above example, if we
take a look at the training distribution, we can find the color features are highly entangled with truly
determining features (e.g. strokes of digits). So a reasonable solution is, if we can adjust the training
distribution by a new set of sample weights so that the statistical dependencies between features are
removed, such more “balanced” distribution would help predictive models concentrate more on true
connections between features and labels.

Recently, there are several methods which also focus on the correlation between features (Kuang et al.
(2018); Shen et al. (2020)), but they are all developed under linear models with raw input features and
cannot be applied to deep models or more complicated data types (e.g. images and videos). There are
two major problems in such more realistic and challenging setting: 1) complex correlations between
visual features and category concept brings strong non-linear dependencies among features, the
measure and elimination of which are much more complicated than that of a linear one. 2) balancing
the distribution of large amounts of data globally in deep models requires excessive storage space
and computational cost. On the other hand, trivially adopting a batch balancing scenario would also
induce stability issues such as the high variance of sample weights. In this paper, we propose a
method called Sample Reweighted Distribution Balancing (SRDB), which balances the training
distribution by globally reweighting the training samples and can be integrated into any off-the-shelf
deep learning frameworks. In terms of the first problem, we propose to learn any possible correlation
including non-linear ones based on Random Fourier Features (Rahimi & Recht (2008)), which
limits the computational complexity to an acceptable linear range. As for the second problem, we
propose an updating mechanism, called saving and reloading global correlation, to perceive and
remove correlation globally by iteratively saving and reloading features and weights of the model
in the training phase. The whole method can be jointly optimized and integrated into the existing
representation learning pipelines to balance the distribution of training data. After applying SRDB,
the models are capable of getting rid of nuisance factors like background colors and therefore can
generalize better under distribution shifts, especially the shifts over these nuisance factors. As can be
seen in Fig.1, the color distribution is more balanced with the learned sample weights from SRDB
and the classification accuracy is boosted by a considerably large margin.
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In extensive experiments across a wide range of datasets, our method achieves considerable improve-
ment compared with baseline methods, especially in more challenging settings with strong spurious
correlations among training data. The method is also evaluated on real world images with complex
contexts and achieves higher accuracy than state-of-the-art baselines.

2 SAMPLE REWEIGHTED DISTRIBUTION BALANCING

We address the distribution shifts problem by reweighting samples globally. Recall the problem
of colored hand-written numbers example as we described in Section 1, the key factor of the
problem lies in the complex correlation between the nuisance factors like background color and truly
determining features like strokes of digits. If the statistical dependencies between nuisance features
and determining features are eliminated, the model tends to learn the true relationship between the
determining features and the labels, while neglecting the impact of the nuisance features. As a result,
the model generalizes better under distribution shifts.

However, distinguishing nuisance features and the determining features requires extra supervisory
knowledge. Hence, we propose to directly decorrelate all the features for every input sample
to balance the distribution of training data. Our method called Sample Reweighted Distribution
Balancing (SRDB) eliminates the dependence between any pair of features for all observed samples.
Concretely, SRDB gets rid of all the linear and non-linear dependencies between features by utilizing
the characteristics of Random Fourier Features (RFF) and sample reweighting. Moreover, to adapt
the global balancing method to modern deep models, we further propose the saving and reloading
global correlation mechanism, to decrease the usage of storage and computational cost when the
training data are of a large scale. The formulations and theoretical explanations are shown in Section
2.1. In Section 2.2, we introduce the saving and reloading global correlation method, which makes
calculating correlation globally possible with deep models.

Notations X ⊂ RmX denotes the space of raw pixels, Y ⊂ RmY denotes the outcome space and
Z ⊂ RmZ denotes the representation space. mX , mY , mZ are the dimensions of space X , Y , Z ,
respectively. We have n samples X ⊂ Rn×mX with labels Y ⊂ Rn×mY . The representations learned
by neural networks are donated as Z ⊂ Rn×mZ and the ith variable in the representation space is
donated as Z∶,i.

2.1 SAMPLE RE-WEIGHTING WITH RANDOM FOURIER FEATURES

Independence testing statistics To eliminate the dependence between features in the represen-
tation space, we introduce hypothesis testing statistics that measures the independence between
random variables. Suppose there are two one-dimensional random variables A,B and we sample
(A1,A2, . . .An) and (B1,B2, . . .Bn) from the distribution of A and B, respectively. The main
problem is to exploit how relevant the two variables are just from the samples.

Consider a measurable, positive definite kernel kA on the domain of random variable A and the
corresponding RKHS is denoted byHA. If kB andHB are similarly defined, the cross-covariance
operator ΣAB (Fukumizu et al. (2004)) fromHB toHA is defines as follows

⟨f,ΣABg⟩ = EAB [f(A)g(B)] −EA[f(A)]EB[g(B)] (1)

for all f ∈HA and g ∈HB . With the operator, the independence can be determined by the following
proposition.

Proposition 2.1 (Fukumizu et al. (2008)). If the product kAkB is characteristic, E[kA(A,A)] <∞
and E[kB(B,B)] <∞, we have

ΣAB = 0⇐⇒ A ⊥ B (2)

Furthermore, Gretton et al. (2008) proposed Hilbert-Schmidt independence criterion, which requires
that the squared Hilbert-Schmidt norm of ΣAB should be zero. However, these criteria can hardly
be directly applied to measure the level of independence between the random variables. Strobl et al.
(2019) noticed that Frobenius norm corresponds to the Hilbert-Schmidt norm in Euclidean space and
designed an independent testing statistic, which is introduced as follows.

Let the partial cross-covariance matrix be:
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where

f(A) = (f1(A), f2(A), . . . fnA
(A)) , fj(A) ∈HRFF,∀j,

g(B) = (g1(B), g2(B), . . . gnB
(B)) , gj(B) ∈HRFF,∀j.

(4)

Here we sample nA and nB functions fromHRFF respectively andHRFF denotes the function space
of random fourier features with the following form

HRFF = {h ∶ x→
√

2 cos(ωx + φ) ∣ ω ∼ N(0,1), φ ∼ Uniform(0,2π)} . (5)

i.e. ω is sampled from the standard Normal distribution and φ is sampled from the Uniform distri-
bution. Then, the independence testing statistic IAB is defined as the Frobenius norm of the partial
cross-covariance matrix, i.e., IAB = ∥Σ̂AB∥2

F
.

Notice that IAB is always non-negative. As IAB decreases to zero, the two variables A and B tends
to be independent. Thus IAB can effectively measure the independence between random variables.
Strobl et al. (2019) shows that the independence test will be more accurate as nA and nB increase and
it is enough to judge the independence of random variables when setting nA and nB as 5 in practice.

Sample reweighting for independence Inspired by Kuang et al. (2020), we propose to eliminate
the dependence between features in the representation space via sample reweighting and measure
general independence via RFF.

We use w ∈ Rn
+

to denote the sample weights and ∑ni=1wi = n. After reweighting, the partial
cross-covariance matrix for random variables A and B in equation 3 should be calculated as follows

Σ̂AB;w = 1
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f and g are the RFF mapping functions explained in equation 4. SRDB targets independence between
any pair of features. Specifically, for feature Z∶,i and Z∶,j , the corresponding partial cross-covariance

matrix should be ∥Σ̂Z∶,iZ∶,j ;w∥2

F
, shown in Equation 6. We propose to optimize w by

w∗ = arg min
w∈∆n

∑
1≤i,j≤mZ ,i≠j

∥Σ̂Z∶,iZ∶,j ;w∥2

F
, (7)

where ∆n = {w ∈ Rn
+
∣ ∑ni=1wi = n}. Hence, while using the optimal w∗ to reweight the training

samples, the dependence between features can be mitigated to the greatest extent.

2.2 LEARNING SAMPLE WEIGHT GLOBALLY

Equation 7 requires a specific weight learned for each sample. However, in practice, especially for
deep learning tasks, it requires enormous storage and computational cost to learn sample weights
globally. Moreover, with SGD for optimization, only part of the samples are observed in each batch,
hence global weights for all samples cannot be learned. In this part, we propose a saving and reloading
method, which merges and saves features and sample weights encountered in the training phase and
reloads them as global knowledge of all the training data to optimize sample weights.

For each batch, the features used to optimize the sample weights are generated as follows:

ZO = (ZG1,ZG2, ⋅ ⋅ ⋅,ZGk,ZL) , wO = (wG1,wG2, ⋅ ⋅ ⋅,wGk,wL) , (8)

where ZO and wO are the features and weights used to optimize the new sample weights, respectively,
ZG1, ⋅ ⋅ ⋅,ZGk, wG1, ⋅ ⋅ ⋅,wGk are global features and weights, which are updated at the end of each
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batch and represent global information of the whole training dataset. ZL and wL are features and
weights in the current batch, representing the local information. The operation for merging all features
in Equation 8 is the concatenating operation along samples, i.e. if the batch size is B, ZO is a matrix
of size ((k + 1)B) ×mZ and wO is a ((k + 1)B)-dimensional vector. In this way, we reduce the
storage and the computational cost from O(N) to O(kB). While training for each batch, we keep
wGi fixed and only wL is learnable under Equation 7. At the end of each iteration of training, we
fuse the global information (ZGi,wGi) and the local information (ZL,wL) as follows:

Z′

Gi = αiZGi + (1 − αi)ZL, w′

Gi = αiZGi + (1 − αi)wL. (9)

Here for each group of global information (ZGi,wGi), we use k different smoothing parameters αi
for considering both long-term memory (αi is large) and short-term memory (αi is small) in global
information and k indicates that the presaved features are k times of that of original features. Finally,
we substitute all (ZGi,wGi) with (Z′

Gi,w
′

Gi) for the next batch.

In the training phase, we iteratively optimize the sample weight using Equation 7 and the model
parameters. While in the inference phase, the predictive model directly conduct prediction without
any calculation of sample weights. The detailed procedure of our method is shown in Appendix A.

3 EXPERIMENTS

In this section, we validate SRDB in a variety of settings. The conventional experimental setting
of domain generalization (DG) is limited since the distribution shifts caused by the unbalance of
capacities of different domains is ignored and domain labels are required. As a result, in the DG
setting datasets are split to train, test and val set by domains. There are no overlap in domains
between train and test set, and moreover, the available capacities for training of various domains are
approximate constant. To cover more general and challenging cases of distribution shifts, we evaluate
SRDB in four settings: 1) compositional, 2) compositional + dominant, 3) compositional + dominant
+ flexible, 4) compositional + dominant + flexible + adversarial. The following four subsections
explain our objective and details of these settings.

We consider four datasets to carry through these four settings, namely PACS (Li et al. (2017)), VLCS
(Torralba & Efros (2011)), MNIST-M (Ganin & Lempitsky (2015)) and NICO (He et al. (2020)).
Introduction to these datasets is in appendix B.1.

3.1 COMPOSITIONAL SETTING

The compositional setting is the same as the common setting in DG. Domains are split into source
domains and target domains. The capacities of various domains are comparable. Given this setting
requires all the classes in the dataset share the same candidate set of domains, which is incompatible
with NICO, we adopt PACS and VLCS for this setting. We follow the experimental protocol of
Carlucci et al. (2019); Matsuura & Harada (2020) for both the datasets and utilize three domains as
source domains and the remaining one as target.

The results are shown in Table 1. On both PACS and VLCS, SRDB outperforms other state-of-the-art
methods, even including those trained with domain labels, in three out of four target cases and
achieves the highest average accuracy. As mentioned in Section 1, SRDB can decorrelate visual
features and help deep models learn more knowledge of true connection between category labels and
visual features related to objects instead of domains.

3.2 COMPOSITIONAL + DOMINANT SETTING

In the common DG setting, the capacities of source domains are assumed to be comparable. However,
the amount of data that are available from different sources can be various. We simulate this scenario
with the compositional + dominant setting. To make the amount of data from heterogeneous sources
clearly differentiated, we set one domain as the dominant domain. Specifically, same as Section 3.1,
three domains are considered as source domains and the other one as target in both PACS and VLCS.
For each target domain, we randomly select one domain from the source domains as the dominant
source domain and the ratio of data from the dominant domain and the other two domains is 5:1:1.
Details of partition are shown in appendix B.2.

The results are shown in Table 2. Compared with the setting in Section 3.1, the performances of most
methods drop because the dominant domain interferes with the learning of data from other domains.
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Table 1: Results of the compositional setting on PACS and VLCS. All the results on PACS are
obtained from the original papers of these methods. We implement the methods that require no
domain labels on VLCS since these methods are tested with AlexNet (Krizhevsky et al. (2012)) in
original papers while we adopt ResNet18 (He et al. (2016)) as the backbone network for all the
methods. The results of our method are average over three repetitions of each run. The title of each
column indicates the name of the domain used as target. The methods that require domain labels are
labelled with asterisk. The best results of all methods are highlighted with the bold font.

PACS VLCS

Art. Cartoon Sketch Photo Avg. Caltech Labelme Pascal Sun Avg.

ResNet-18 78.97 77.02 74.51 94.69 81.30 96.77 62.72 72.72 72.68 76.22
JiGen (Carlucci et al. (2019)) 79.42 75.25 71.35 96.03 80.51 96.17 62.06 70.93 71.40 75.14
M-ADA (Qiao et al. (2020)) 64.29 72.91 67.21 88.23 73.16 74.33 48.38 45.31 33.82 50.46

DG-MMLD (Matsuura & Harada (2020)) 81.28 77.16 72.29 96.09 81.83 97.01 62.20 73.01 72.49 76.18
D-SAM* (D’Innocente & Caputo (2018)) 77.33 72.43 77.83 95.30 80.72 - - - - -

Epi-FCR* (Li et al. (2019)) 82.10 77.00 73.00 93.90 81.50 - - - - -
FAR* (Jin et al. (2020)) 79.30 77.70 74.70 95.30 81.70 - - - - -

SRDB (ours) 79.44 78.11 78.34 96.53 83.11 96.67 65.36 73.59 74.97 77.65

Table 2: Results of the compositional + dominant setting on PACS and VLCS. For details about the
number of runs, meaning of column titles and fonts, see Table 1.

PACS VLCS

Art. Cartoon Sketch Photo Avg. Caltech Labelme Pascal Sun Avg.

ResNet-18 79.03 68.60 68.45 92.55 77.16 88.61 62.97 61.84 51.82 66.31
JiGen 74.53 69.74 66.41 88.12 74.70 87.76 62.52 61.49 48.11 64.97

M-ADA 61.83 69.48 59.46 83.28 68.51 71.09 54.83 47.92 36.72 52.64
DG-MMLD 77.97 70.67 65.39 92.95 76.75 83.16 65.14 62.84 44.40 63.89

SRDB (ours) 84.52 74.68 71.30 94.26 81.19 88.73 66.49 64.68 51.75 67.91

As the intervention grows, our method achieves increasingly improvements compared with baseline
methods. As demonstrated in Table 2, our method outperforms other method in all the target domains
on PACS and three out of four domains on VLCS.

3.3 COMPOSITIONAL + DOMINANT + FLEXIBLE SETTING

In this subsection, we consider a more challenging setting where domains for different categories can
be various. For instance, dogs can be on grass but hardly in water while fishes are otherwise. If we
consider the backgrounds in images as an indicator of domain division, images for class ‘dog’ can be
divided into domain ‘on grass’ but cannot into domain ‘in water’ while images for class ‘fish’ are
otherwise, resulting in the diversity of domains among different classes. So this setting simulates a
widely existing scenario in the real-world. In such cases, the level of the distribution shifts varies
in different classes, requiring a strong ability of generalization. Hence, we evaluate generalization
methods in this subsection when the distribution shifts are not constant for various classes.

We adopt PACS, VLCS and NICO for evaluation. For PACS and VLCS, we randomly select one
domain as the dominant domain for each class, and another domain as the target. The dominant ratio
is the same as that in Section 3.2. For NICO, there are 10 domains for each class, 8 out of which are
selected as the source and 2 as the target. There is a dominant domain and the ratio of the dominant
domain to others is 3:1. Details about the data division are shown in appendix B.2.

The results are shown in Table 3. Conventional methods other than JiGen fail to outperform ResNet-
18 on NICO under this setting. M-ADA, which generates images for training with an autoencoder,
may break down when the input is real-world images and the distribution shifts are not caused by
random disturbance. DG-MMLD generates domain labels with clustering and may fail when the
data lack explicit heterogeneity. In contrast, SRDB shows a strong ability of generalization when
the input data are with complicated structure especially real-world images from unlimited resources.
SRDB can capture various forms of dependencies and balance the distribution of input data. On
PACS and VLCS, SRDB also outperforms state-of-the-art methods, showing the effectiveness of
removing statistical dependencies between features especially when the source domains for different
categories are not constant.
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Table 3: Results of the compositional + dominant + flexible setting on PACS, VLCS and NICO.

ResNet-18 JiGen M-ADA DG-MMLD SRDB (ours)

PACS 48.43 51.38 34.90 54.07 59.84
VLCS 75.31 72.19 70.31 76.65 78.88
NICO 51.71 54.42 40.78 47.18 59.76

Table 4: Results of the compositional + dominant + flexible + adversarial setting on MNIST-M.
Random donates each digit is blended over a randomly chosen background. DR0.5 donates that in
each class, the proportion of the dominant domain in all the training data is 50% and other notations
with ‘DR’ are similar.

Settings Random DR0.95 DR0.9 DR0.8 DR0.7 DR0.6 DR0.5

CNNs 96.93 93.76 91.93 88.13 81.48 68.43 66.11
JiGen 97.18 94.97 92.99 90.64 78.97 68.79 69.34

M-ADA 95.92 94.45 92.29 88.87 85.89 70.32 67.08
DG-MMLD 96.89 94.61 92.59 89.72 88.44 69.13 71.39

SRDB (ours) 97.35 95.33 93.49 91.24 87.04 75.69 75.46
SRDB (ours) + JiGen 97.29 94.96 94.63 91.62 85.94 72.83 71.11

3.4 COMPOSITIONAL + DOMINANT + FLEXIBLE + ADVERSARIAL SETTING

In the most challenging scenario, the spurious correlations between domains and labels are strong
and misleading. For instance, we assume a scenario where the category ‘dog’ is usually associated
with the domain ‘grass’ and the category ‘cat’ with the domain ‘sofa’ in the training data, while
the category ‘dog’ is usually associated with the domain ‘sofa’ and the category ‘cat’ with the
domain ‘grass’ in the testing data. If the ratio of domain ‘grass’ in the images from class ‘dog’ is
significantly higher than others, the predictive model may tend to recognize grass as a dog. To exploit
the effect of various levels of domain shifts, we adopt MNIST-M to evaluate our method owing to
the numerous(200) optional domains in MNIST-M. Domains in PACS and VLCS are insufficient to
generate multiple adversarial levels. Hence, we generate a new MNIST-M dataset with three rules: 1)
for a given category, there is no overlap between the domains in training and testing; 2) a dominant
domain image is randomly chosen for each category in the training set, and contexts cropped in the
same image are assigned as dominant contexts (domains) for another category in test data so that
there are strong spurious correlations between labels and domains; 3) the ratio of dominant context to
other contexts varies from 9.5:1 to 1:1 to generate settings with different levels of distribution shifts.
More information about the method of data generating and sample images are in Appendix B.

The esults are shown in Table 4. As the dominant ratio increases, the spurious correlation between
domains and categories becomes stronger so that the performance of predictive models drops. Also,
when the imbalance in visual features is significant, our method achieves noticeable improvement
compared with baseline methods. Besides, as a simple sample reweighting method that requires no
extra supervision, SRDB can be easily integrated into deep predictive frameworks, such as JiGen. We
show the effectiveness of the integrated model in the last row of Table 4.

3.5 ABLATION STUDY

SRDB relies on random Fourier features sampled from Gaussian to balance the training data. The
more features are sampled, the more independent the final representations are. In practice, however,
generating more features requires more computational cost. In this ablation study we exploit the effect
of sampling size for random Fourier features. Moreover, inspired by Tanskanen et al. (2018), one can
further reduce the feature dimension by randomly selecting features used to calculate dependence
with different ratios. Figure 2 shows the results of GNLB with different dimensions of random
Fourier features.

If we remove all the random Fourier features, our regularizer in Equation 7 degenerates and can
only model the linear correlation between features. Figure 2(a) demonstrates the effectiveness
of eliminating non-linear dependence between representations. From Figure 2(b), the non-linear
dependence is common in vision features and keep deep models from learning true dependence
between input images and category labels.
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(a) (b) (c)

Figure 2: Results of ablation study on NICO. All the experiments adopt NICO since NICO consists
of a wide range of domains and objects and all domains come from real-world images which make
the indication of results more reliable. The RFF dimension in (a) indicates the dimension of Fourier
features, where 10x indicates that the dimension of Fourier features are 10 times the size of original
features and 0.3x indicates the sampling ratio is 30%. SRDB-N and SRDB-L indicate the original
SRDB and the degenerated version of SRDB that only eliminates the linear correlation between
features. Presaved size in (c) indicates the dimension of the presaved features and 0x indicates no
features are saved.

We further exploit the effect of the size of presaved features and weights in Equation 8 and the results
are shown in Figure 2(c). Generally, the accuracy raises slightly as the presaving size increases.

Figure 3: Saliency maps of the ResNet-18 model and the model trained with SRDB. The brighter the
pixel is, the more contributions it makes to prediction.

3.6 SALIENCY MAP

An intuitive type of explanation for image classification models is to identify pixels that have a strong
influence on the final decision (Smilkov et al. (2017)). To demonstrate whether the model focuses
on the object or the context (domain) while conducting prediction, we visualize the gradient of the
class score function with respect to the input pixels. In the case of stable learning, we adopt the same
backbone architecture for all methods, so that we adopt smoothed gradient as suggested by Adebayo
et al. (2018), which generates saliency maps depending on the learned parameters of the models
instead of the architecture.

Visualization results are shown in Figure 3. Saliency maps of the baseline model show that various
contexts draw noticeable focus of the classifier while fail to make decisive contributions to our model.
More visualization results are in appendix C, which further demonstrates that the model trained with
SRDB focus more on visual parts which are both distinguishing and invariant when the postures or
positions of objects vary.

4 CONCLUSION

In the paper, to improve the generalization of deep models under distribution shifts, we proposed
a novel method called sample reweighed distribution balancing (SRDB) which can balance the
distribution of training data via sample reweighting. Extensive experiments across a wide range of
settings demonstrated the effectiveness of our method.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. Sanity
checks for saliency maps. In Advances in Neural Information Processing Systems, pp. 9505–9515,
2018.
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A DETAILED PROCEDURE OF SRDB

In the training phase, SRDB learns a set of sample weights for each batch with the global knowledge of
correlations between features saved before. The parameters of the model and the sample weights are
optimized iteratively. For a batch of input data, the visual features are extracted by the convolutional
layers of the deep model. Then the sample weights are optimized by Equation 7. The conduct of
weights and penalties for samples is the final loss used to optimize the convolutional layers as well as
the classifier. The present features and weights are integrated with the previous global features and
weights as Equation 8 indicates.

In the inference phase, given the backpropagation is disabled, SRDB escapes the reweighting phase
and conduct prediction directly.

Algorithm 1 Sample Reweighted Distribution Balancing (SRDB)

Input: EPOCH NUMBER, BALANCING EPOCH NUMBER
Output: Learned model

1: for epoch ← 1 to EPOCH NUMBER do
2: for batch ← 1 to BATCH NUMBER do
3: Forward propagate
4: Reload global features and weights
5: for epoch balancing ← 1 to BALANCING EPOCH NUMBER do
6: Optimize sample weights as Equation 7
7: end for
8: Back propagate with weighted prediction loss
9: Save features and weights as Equation 9

10: end for
11: end for

In practice, the optimization also requires a regularizer of weight decay. We set the weight of the
regularizer to 0.3 and the learning rate for sample weights to 3.0 in most experiments.

B DETAILED EXPERIMENTAL SETTINGS

In some of our settings, we generate distribution shift between training and testing data by blending
objects over different backgrounds, which depends on various of colors. Hence, the data augmenta-
tions related to colors may offset the distribution shift. Moreover, we find in experiments that some of
the data augmentation approaches contributes differently to different stable learning methods. So we
train all the models without any data augmentation on MNIST-M and data augmentations are totally
the same for all the methods on other datasets.

B.1 DATASETS

We adopt 4 datasets to conduct experiments in our 4 settings. We briefly introduce them as follows.

MNIST-M is generated by the method in the original paper, which is blending digits from the original
MNIST dataset over patches extracted from images in BSDS500 dataset.

VLCS consists of 5 object categories shared by the PASCAL VOC 2007, LabelMe, Caltech and Sun
datasets. We follow the standard protocol of (Ghifary et al. (2015)) and divide each domain into a
training set (70%) and validation set (30%) randomly.

PACS is a widely used benchmark for domain generalization which consists of 7 object categories
spanning 4 image styles, namely photo, art-painting, cartoon and sketch. We adopt the protocol in (Li
et al. (2017)) to split the training and val set.

NICO is dedicately designed for Non-I.I.D (distribution shifts) image classification. The images
from each category can be wildly various and labeled with 10 contexts.
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B.2 DETAILS OF DATA SPLIT

In the setting of compositional + dominant on PACS and VLCS, we randomly choose a dominant
domain for each target domain. The ratio of data amount from dominant domain to other domains are
5:1:1. The numbers of each domain on PACS are shown in Table 5. The numbers of each domain on
VLCS are shown in Table 6.

Table 5: Data split details of compositional + dominant setting on PACS dataset. The dominant
domain for each target domain is highlighted with the bold font.

Source Target

Art painting: 2048 Cartoon: 405 Photo: 405 Sketch: 784
Sketch: 3929 Art painting: 779 Cartoon: 779 Photo: 331
Photo: 1670 Art painting: 327 Sketch: 327 Cartoon: 466
Cartoon: 2344 Photo: 463 Sketch: 463 Art painting: 407

Table 6: Data split details of compositional + dominant setting on VLCS dataset. The dominant
domain for each target domain is highlighted with the bold font.

Source Target

Caltech: 991 Labelme: 196 Pascal: 196 Sun: 458
Sun: 2297 Caltech: 350 Labelme: 372 Pascal: 470
Pascal: 2363 Caltech: 448 Sun: 401 Labelme: 370
Labelme:1589 Pascal: 367 Sun: 367 Caltech: 196

Table 7: Data split details of compositional + dominant + flexible setting on PACS dataset. The
dominant domain for each target domain is highlighted with the bold font.

Class Source Target

Dog Cartoon: 389 Art painting: 77 Photo: 77 Sketch: 772
Elephant Cartoon: 457 Art painting: 91 Sketch: 91 Photo: 202
Giraffe Photo: 182 Art painting: 35 Cartoon: 35 Sketch: 753
Guitar Photo: 186 Cartoon: 36 Sketch: 36 Art painting: 184
Horse Cartoon: 324 Photo: 64 Sketch: 64 Art painting: 201
House Cartoon: 288 Art painting: 56 Sketch: 56 Photo: 280
Person Art painting: 449 Cartoon: 89 Photo: 89 Sketch: 160

B.3 NICO

NICO is a dataset designed for distribution shifts problem. There are 19 categories and 10 contexts
(domains) for each category. The domains for different category are various. The standard for split
of contexts varies for different categories. For instance, some of the context are divided by the
background of images such as ‘on water’ or ‘on grass’ while some by the posture of objects such as
‘running’ or ’standing’. Examples of images from NICO are shown in Figure 4.

There is a baseline method called CNBB in the original paper of NICO. We do not report the results
of CNBB for the reason that it is designed for AlexNet and we fail to achieve reasonable results in
our framework with CNBB. CNBB adopts Tanh function as the activation function and amplifies
features from (-1, 1) to approach to -1, 1 by a quantization loss shown as follows:

L = −
p

∑
i=1

∥gφ(xi)∥2
2 (10)
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Table 8: Data split details of compositional + dominant + flexible setting on VLCS dataset. The
dominant domain for each target domain is highlighted with the bold font.

Class Source Target

0 Labelme: 56 Caltech: 10 Pascal: 10 Sun: 14
1 Labelme: 846 Caltech: 86 Sun: 86 Pascal: 489
2 Pascal: 300 Caltech: 60 Labelme: 60 Sun: 725
3 Pascal: 294 Labelme: 29 Sun: 29 Caltech: 47
4 Labelme: 866 Pascal: 173 Sun: 173 Caltech: 609

This loss harms ResNet significantly and it is hard to find proper hyperparameters for CNBB with
ResNet as the backbone network. Hence, we do not report the results of CNBB.

Figure 4: NICO

B.4 DETAILS ABOUT THE GENERATION OF MNIST-M IN THE SETTING OF composional +
dominant + flexible + adversarial

The MNIST-M are generated by blending digit figures from the original MNIST dataset over patches
extracted from images in BSDS500 dataset. The backgrounds are cropped from 200 images, resulting
in 200 domains. The backgrounds from the same domain may be different given they are randomly
cropped from the same image. We generate the adversarial setting by splitting the domains into 10
subsets responding to the classes. We randomly choose 1 subset for 1 class in the training data and
choose 1 domain in the subset as the dominant domain. The ratio of the data from dominant domain
to the data from other domains varies from 9.5:1 to 1:1. The subset chosen for one class for training
is set to another class for testing, as well as the dominant domain.
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Figure 5: Example Images for MNIST-M

Figure 6: More saliency maps of the ResNet-18 model and the model trained with SRDB.

C EXAMPLES OF SALIENCY MAPS

Examples of saliency maps are shown in Figure 6.
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The bright lines in saliency maps generated by JiGen demonstrates the effectiveness of the jigsaw
puzzle, in which the model focuses more on the margins of any possible puzzles. And the highlight on
the object in saliency maps generated by our method show that our model tends to focus on the object
instead of the context. Therefore, our method help deep models learn the true connections between
features and labels, resulting in models with stronger ability of generalization under distribution
shifts.
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