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Abstract

Many recent approaches in representation learning implicitly assume that uncor-
related views of a data point are sufficient to learn meaningful representations
for various downstream tasks. In this work, we challenge this assumption and
demonstrate that meaningful structure in the latent space does not emerge naturally.
Instead, it must be explicitly induced. We propose a method that aligns representa-
tions from different views of the data to align complementary information without
inducing false positives. Our experiments show that our proposed self-supervised
learning method, Consistent View Alignment, improves performance for down-
stream tasks, highlighting the critical role of structured view alignment in learning
effective representations. The code and pretrained model weights are released at
github.com/Tenbatsu24/LatentCampus.

1 Introduction

Figure 1: Two examples illustrating the issue of
loosely correlated views. Although crops overlap
spatially, they may represent different semantics.
Existing self-supervised methods still treat them as
positives, forcing misaligned features and degrad-
ing representation quality.

Learning robust and transferable representations
is a core challenge in modern machine learn-
ing. Contrastive frameworks have shown strong
success across modalities by distinguishing pos-
itive and negative pairs, enabling semantically
rich embeddings from both labelled and unla-
belled data Oord et al. (2018); Chen et al. (2020);
Caron et al. (2021); Maxime Oquab et al. (2023).

However, these methods rely on the assumption
that positive pairs share meaningful semantic
content. When this assumption breaks, such
as when two augmented views are only loosely
correlated, models are forced to align unrelated
features, introducing spurious associations and
degrading representation quality Chuang et al.
(2022); Jing et al. (2022). Prior approaches mitigate this via robust losses or improved pair sam-
pling Ghosh et al. (2015); Wang et al. (2019); Ozair et al. (2019), but they seldom control where in
the feature space alignment occurs.
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As illustrated in Fig. 1, current methods rarely enforce local, semantically consistent correspondences,
leaving representations vulnerable to false-positive alignments. This motivates our central question:
can alignment be explicitly regularised to occur only between truly corresponding regions?

To this end, we introduce Consistent View Alignment (CVA), a self-supervised framework that
enforces spatially grounded consistency between overlapping regions of augmented views. By
constraining alignment to semantically matched areas, CVA mitigates false positives and preserves
meaningful latent structure, yielding more stable and generalisable representations.

2 Methodology

We propose Consistent View Alignment (CVA), a self-supervised framework that learns spatially
consistent and transferable visual representations by enforcing feature agreement only between
semantically corresponding regions across augmented views.
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Figure 2: Overview of the Consistent View Alignment (CVA) framework. Two overlapping crops
(40-80%) from the same image are encoded by student and teacher networks. The reconstruction
branch uses a masked autoencoding objective, while the alignment branch matches overlapping
regions via ROIAlign. A consistency loss enforces agreement only on aligned regions, reducing
spurious matches and promoting spatially coherent representations.

2.1 Consistent View Alignment

CVA comprises two components: (1) consistent view generation and (2) feature alignment with
consistency loss, as illustrated in Figure 2. (1) From each input image (spatially augmented), two
random crops are sampled with an overlap ratio constrained between 40% and 80%, ensuring a shared
region of semantic consistency. Intensity and noise augmentations are applied on the two views. The
bounding boxes of these overlapping areas are recorded and later used to align features extracted. (2)
Each view is encoded by a student-teacher pair of networks, with the teacher updated via exponential
moving average (EMA). Using the stored overlap coordinates, ROIAlign extracts aligned feature
patches from both views, focusing the consistency objective on semantically corresponding regions.

Let uΩ1
1 and hΩ2,t

2 denote the aligned feature maps from the student and teacher branches, respectively.
Local feature consistency is enforced via a cosine regression loss (referred to as CVA) adapted from
SimSiam Chen and He (2021) or a NT-Xent Chen et al. (2020) loss (referred to as C-CVA), with a
symmetric formulation Caron et al. (2020) to stabilise training and remove directional bias:
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2.2 Overall Objective

The complete training objective combines reconstruction, consistency, and optionally, contrastive
components:

L = λrecon Lrecon + λconsis Lsym
consis + λcon Lsym

con , (2)
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where λrecon, λconsis, and λcon are balancing weights. The reconstruction term Lrecon preserves
low-level image fidelity, the consistency term Lsym

consis enforces alignment between semantically
corresponding features across views, and the optional contrastive term Lsym

con between pooled feature
maps of student and teacher which promotes global discriminative structure in the latent space using
a symmetrised NT-Xent loss. We ablate between two consistency formulations: the symmetrised
cosine regression loss (Lsym

cos , CVA) and its NT-Xent contrastive variant (Lsym
NT-Xent, C-CVA).

3 Experiments and Results

Experimental Setup. We evaluate Consistent View Alignment on large-scale 3D MRI pretraining
and multiple downstream medical imaging benchmarks. All models are pretrained on the OpenMind
dataset Wald et al. (2025b), which contains over 110,000 head & neck MRI volumes from 34,000
patients across multiple modalities (T1w, T2w, FLAIR, FA, MD, etc.). All models were trained on
one A40/L40 GPU (48GB memory). We test two representative backbones: the convolutional ResEnc-
L Isensee et al. (2024) and the transformer-based Primus-M Wald et al. (2025a), covering distinct
inductive biases. The teacher network is updated via EMA during pretraining with a momentum of
0.995. Pretraining follows a two-stage protocol: (1) MAE-based initialization for 1000 epochs and
(2) post-pretraining using CVA or its variants (150 epochs for Primus-M and 250 for ResEnc-L).
Augmentation follow standard nnUNet defined transformation with controlled overlap (40, 80%).
The two stage training reduces computer burden for our ablations from 112 to 31 in GPU days.

Downstream Evaluation. We fine-tune models on four segmentation datasets: Yale Brain Metastisis
(YBM), BraTs Post-Glioblastoma (GLI), Ischemic Stroke Lesions (ISL), Brain Tumour Segmentation
from Medical Segmentation Decathlon (MSD) and one classification task (ABIDE II, ASD vs.
control). Segmentation performance is reported as the mean of Dice (DSC) and Normalised Surface
Dice (NSD) (1 mm), while classification uses balanced accuracy, AUROC, and average precision,
averaged across folds. All fine-tuning takes place for 150 epochs and 250 iterations per epoch.

Table 1: Comparison of segmentation and classification performance across reconstruction and
consistency variants. Lower ranks indicate better performance.

Segmentation Classification

Track Recon. Consis. Cont. Avg Rank Seg Rank Cls Rank ISL YBM GLI MSD ABD II

DSC NSD DSC NSD DSC NSD DSC NSD Bal Acc. AUROC AP

AE ✗ ✗ 6.08 6.63 5.00 77.34 75.57 60.92 69.44 68.38 73.41 72.66 76.64 57.30 60.61 60.03
MAE ✗ ✗ 5.22 5.00 5.67 78.87 76.66 61.21 68.68 69.83 75.02 72.22 76.49 57.33 60.18 58.89

CVA ✗ 3.83 4.25 3.00 77.98 76.23 62.10 70.97 69.15 74.45 72.84 77.15 60.14 63.69 62.00MAE C-CVA ✗ 5.14 4.38 6.67 78.58 76.81 62.27 70.41 69.55 74.71 72.72 76.89 56.43 59.64 59.06

✗ ✓ 2.53 3.13 1.33 80.05 78.18 62.31 70.37 69.82 74.84 72.80 76.70 61.09 64.93 62.67
CVA ✓ 2.47 2.88 1.67 78.97 77.09 62.35 70.94 69.75 74.85 72.84 77.02 62.02 64.46 62.62MAE
C-CVA ✓ 2.72 1.75 4.67 79.65 77.90 62.43 70.30 69.94 75.18 72.86 77.24 57.17 62.48 61.60

ResEnc-L

Range 2.70 2.61 2.02 2.28 1.67 1.83 0.64 0.74 5.60 5.28 3.78

AE ✗ ✗ 5.03 6.38 2.33 76.05 73.35 51.92 58.43 63.35 69.93 71.44 75.90 56.09 61.79 60.51
MAE ✗ ✗ 6.31 6.13 6.67 77.18 74.98 52.70 59.01 65.82 72.58 71.41 75.44 54.80 58.75 58.26

CVA ✗ 4.64 4.63 4.67 77.18 75.00 53.58 59.95 65.96 72.73 71.56 75.54 55.83 59.17 58.38MAE C-CVA ✗ 2.97 2.63 3.67 77.40 75.01 53.42 59.36 67.21 73.99 71.82 76.14 55.84 59.25 58.84

✗ ✓ 2.50 3.25 1.00 77.18 75.36 54.87 61.74 65.82 72.65 71.78 75.85 58.55 62.42 61.60
CVA ✓ 2.49 2.13 3.21 77.33 75.14 54.78 61.60 66.48 73.27 71.86 76.10 56.13 59.10 59.31MAE
C-CVA ✓ 4.03 2.88 6.33 78.07 75.77 54.44 60.92 66.20 72.91 71.66 75.61 55.55 58.85 57.69

Primus-M

Range 2.01 2.42 2.95 3.31 3.86 4.07 0.45 0.69 3.75 3.67 3.90

Results and Analysis Table 1 compares Auto Encoder and MAE baselines, Contrastive MAE,
and our alignment-based variants (CVA and C-CVA) across both architectures, with and without a
global contrastive term. Alignment-based consistency consistently improves segmentation over MAE
baselines. For ResEnc-L, CVA with contrastive regularization achieves the best rank (1.75), while for
Primus-M, C-CVA alone performs best (2.63). These results indicate that local alignment sharpens
spatial features, with the effect of the contrastive term depending on architecture. For classification
on ABIDE II, Contrastive MAE remains strongest, showing that global contrastive objectives favour
class-level separability, while CVA variants trade some global discriminability for local consistency.

Discussion. Local consistency improves segmentation, while contrastive objectives favour classifi-
cation. Combining both CVA and the contrastive signal yields the best overall balanced pre-training
strategy enabling robust and transferable representations across architectures and tasks.
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Potential Negative Societal Impact

While our framework aims to improve self-supervised learning for 3D medical imaging, it inherits
risks associated with large-scale pre-training. The OpenMind dataset, though diverse, may still
underrepresent certain populations or imaging protocols, potentially leading to biased feature repre-
sentations that could diminish model performance for at-risk or underrepresented groups. Moreover,
large-scale pre-training carries sustainability concerns due to substantial computational and energy
costs. Although our two-stage protocol reduces total compute from 112 to 30 GPU-days across
all ablations, this remains nontrivial. Future work should explore more data-efficient and equitable
pre-training strategies that minimize environmental impact while ensuring fair generalization across
demographic and clinical subgroups.
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