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Abstract

Examining logical inconsistencies among mul-001
tiple statements—such as collections of sen-002
tences or question-answer pairs—is a cru-003
cial challenge in machine learning, particu-004
larly for ensuring the safety and reliability005
of models. Traditional methods that rely on006
pairwise comparisons often fail to capture in-007
consistencies that only emerge when more008
than two statements are evaluated collectively.009
To address this gap, we introduce the task010
of set-consistency verification, an extension011
of natural language inference (NLI) that as-012
sesses the logical coherence of entire sets013
rather than isolated pairs. Building on this014
task, we present the Set-Consistency Energy015
Network (SC-Energy), a novel model that em-016
ploys a contrastive loss framework to learn017
the compatibility among a collection of state-018
ments. Our approach not only efficiently veri-019
fies inconsistencies and pinpoints the specific020
statements responsible for logical contradic-021
tions, but also significantly outperforms ex-022
isting methods—including prompting-based023
LLM models. Furthermore, we release two new024
datasets: Set-LConVQA and Set-SNLI for set-025
consistency verification task.026

1 Introduction027

In machine learning (ML), examining whether mul-028

tiple statements exhibit logical consistency is a cru-029

cial challenge, especially when evaluating mod-030

els for their safe usage. Examples from document031

summarization and question answering provide in-032

tuitive reason for such evaluations. When a large033

language model (LLM) generates a summary of a034

document, inconsistencies may arise between the035

original document and the summary. Similarly, in036

question-answering tasks, ML models do not in-037

herently guarantee consistent responses to seman-038

tically related questions. Consider the following039

question-answering example from (Tandon et al.,040

2019). If a model answers “Yes” to the question041

“Does CO2 increase the population of polar bears?”, 042

it should not also answer “Yes” to the contradic- 043

tory question “Does CO2 decrease the population 044

of polar bears?”. Logical consistency among these 045

pairs, and more broadly within a set, is required for 046

reliability and underscores the need for effective 047

inconsistency detection methods. 048

Few studies have addressed related problems, 049

particularly in the domain of factual inconsistency 050

detection. These studies primarily focus on iden- 051

tifying factual discrepancies between a document 052

and its summary. However, detecting logical in- 053

consistencies among multiple statements remains 054

limited with these methods. 055

First, some studies do not incorporate a holistic 056

view of consistency across multiple statements. For 057

example, (Xu et al., 2024; Wang et al., 2020; Fab- 058

bri et al., 2022) generate questions based on sum- 059

maries and then obtain answers from the original 060

document and summaries simultaneously, assess- 061

ing consistency between them. However, arbitrary 062

question generations do not guarantee the detec- 063

tion of all subtle logical inconsistencies, making 064

it challenging to capture a comprehensive view of 065

consistency for multiple statements. 066

Second, even approaches that aim for a holistic 067

view face limitations when verifying consistency 068

among multiple statements. (Yang et al., 2024; 069

Falke et al., 2019) evaluate factual consistency 070

based on (NLI), typically by comparing the en- 071

tailment score for all combinations of pairs of sen- 072

tences (or chunk of sentences) present in a doc- 073

ument and its summary. Although this pairwise 074

comparing method considers all sentences in a doc- 075

ument, it has inherent shortcomings as following: 076

• Limited Scope of Inconsistency Detection: 077

Existing Method can only detect inconsisten- 078

cies when two statements directly conflict each 079

other. In other words, logical inconsistencies that 080

emerge only when multiple statements are con- 081
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sidered collectively may go undetected. For ex-082

ample, consider the following three statements:083

• "Either the train arrives at 8 AM or it ar-084

rives at 9 AM." (p or q)085

• "The train does not arrive at 8 AM." (¬p)086

• "The train does not arrive at 9 AM." (¬q)087

While no two statements contradict each other,088

an inconsistency becomes evident when all three089

are considered together.090

• Combinatorial Complexity: In large text cor-091

pora such as articles, combinatorial complexity092

of pairwise comparisons across all statements093

incur heavy computational costs.094

• Overly Sensitive Classification: When examin-095

ing inconsistencies in exhaustive pairwise com-096

parisons, if even one of them detects an inconsis-097

tency, the entire document is deemed inconsis-098

tent in a naive way. As the number of statements099

increases, the probability of detecting at least100

one inconsistency also increases, rendering pair-101

wise classifications impractical for a larger set.102

To overcome these limitations, we propose the103

Set-Consistency Energy Network (SC-Energy),104

an approach that detects the logical inconsisten-105

cies across the entire statements within a set. SC-106

Energy treats a collection of natural language state-107

ments - sentences or input-output pairs - as a set108

and employs a contrastive loss framework to learn109

the compatibility among them. Unlike traditional110

research related to energy networks taht process111

single inputs (Belanger and McCallum, 2016; Le-112

Cun et al., 2006; Tu et al., 2019; Lee et al., 2022) ,113

SC-Energy is designed to capture the compatibility114

across multiple data points. Even with a relatively115

compact architecture such as RoBERTa-base (Liu,116

2019), out model significantly outperforms LLMs117

such as GPT-4o (Achiam et al., 2023) in effectively118

detecting inconsistencies.119

Our key contributions are as follows:120

• We introduce the task of set-consistency verifica-121

tion, which extends natural language inference122

beyond pairwise comparisons to assess the logi-123

cal coherence of multiple statements. We show124

that LLMs lack such verification capability and125

highlight the importance of the task.126

• We release two refactored datasets, Set-127

LConVQA and Set-SNLI, for set-consistency128

verification and locate tasks to facilitate further 129

research in this area. 130

• We show that learning an energy space capable 131

of distinguishing subtle differences in consis- 132

tency across entire sets of statements, rather than 133

binary classification of an isolated set, is cru- 134

cial. This contrast is particularly highlighted in 135

the Locate task, which requires pinpointing the 136

specific statements responsible for logical con- 137

tradictions. 138

2 Related Works 139

Factual Inconsistency Detection Several stud- 140

ies have focused on identifying factual discrepan- 141

cies in summarization tasks. In particular, research 142

such as (Luo et al., 2023; Xu et al., 2024; Yang 143

et al., 2024; Fabbri et al., 2022; Laban et al., 2022) 144

has examined methods to detect inconsistencies 145

between a document and its summary. These ap- 146

proaches typically involve decomposing the text 147

into smaller units, generating common questions to 148

compare source context and summary, or perform- 149

ing pairwise entailment-score comparisons for all 150

combinations of individual sentences (or, chunk of 151

sentences) from document and summary. 152

Structured Energy Networks Several studies 153

have explored energy-based models for structured 154

prediction tasks. Belanger and McCallum (2016) 155

introduced Structured Prediction Energy Networks 156

(SPENs), which use energy functions to model de- 157

pendencies between output components in struc- 158

tured tasks (Belanger and McCallum, 2016). Tu et 159

al. (2019) enhanced the joint training of inference 160

networks and SPENs with a compound objective, 161

leading to more effective optimization (Tu et al., 162

2019). Lee et al. (2022) proposed SEAL, a frame- 163

work where an energy network is used as a loss 164

function to guide the training of a separate neural 165

network (Lee et al., 2022). 166

A characteristic feature of these studies is that 167

they perform contrastive learning over points in 168

the (X × Y) space to train the energy network. 169

Our work expands this concept by learning the 170

energy surface in the (X × Y)∗ space—i.e., over 171

arbitrary number of input-output pairs (as discussed 172

in Section 3). 173

3 Set-Consistency Energy Networks 174

3.1 Definitions 175

Several definitions are listed as follows. 176
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Data Consistency
Set-LConVQA

Example
Set-SNLI
Example

Consistent Set (SC)
{("question": "what color is desk?", "answer": "brown"),
("question": "is desk brown?", "answer": "yes"),
("question": "is desk pink?", "answer": "no")}

{"If a couple walk hand in hand down a street,
then a couple is walking together.", (p→ q)
"No couple is walking together.", (¬q)
"No couple walks hand in hand down a street." (¬p)}

Inconsistent Set (SI )
{("question": "what color is desk?", "answer": "brown"),
("question": "is desk brown?", "answer": "yes"),
("question": "is desk pink?", "answer": "yes")}

{"If a couple walk hand in hand down a street,
then a couple is walking together.", (p→ q)
"No couple is walking together.", (¬q)
"Either a couple walk hand in hand down a street,
or a couple is walking together."(p ∨ q)}

Table 1: Examples of consistent (SC) and inconsistent (SI ) sets from the Set-LConVQA and Set-SNLI datasets.
The bolded portions indicate the different statements that distinguish the consistent set from the inconsistent set.
The gray-colored propositional symbols explain the logical relationship in sentences. In the Set-LConVQA example,
inconsistency is explicitly evident in the QA pairs (e.g., conflicting answers about the desk’s color), whereas
the Set-SNLI example illustrates more subtle logical discrepancies among sentences as it emerges from nuanced
differences in phrasing and logical entailment rather than explicit factual contradictions.

A statement (s) refers to an individual unit of177

information, such as a sentence / sentences in a178

news article or a QA-pair in a question-answering179

dataset.180

Set (S) refers to a collection of statements. The181

size of a set S, denoted as |S|, represents the num-182

ber of statements within S. In this paper, we con-183

sider only finite sets.184

If there exists a subset S̃ ⊆ S with |S̃| ≥ 2 such185

that the statements in S̃ are logically inconsistent,186

then S is called an inconsistent set. Otherwise, S187

is referred to as a consistent set.188

3.2 Notations189

A statement s can be either a standalone sentence190

or a pair (x, y) (e.g., a QA-pair). We now present191

the notations for both cases.192

Standalone Sentence Formulation: Let S de-193

note the space of standalone sentences. In this for-194

mulation, the SC-Energy is defined as195

Eθ : S∗ → R,196

which is a parameterized function that takes an ar-197

bitrary number of sentences as input and produces198

a real-valued energy score. Note that, the asterisk199

(∗) indicates that the function accepts a sequence200

(or set) of sentences drawn from S—that is, an201

arbitrary number of sentences can be provided as202

input.203

QA-Pair Formulation: Let X and Y denote204

the input and output spaces, respectively. For state-205

ments represented as QA-pairs, the SC-Energy is206

defined as207

Eθ : (X × Y)∗ → R.208

In this setting, the network processes an arbitrary 209

number of (x, y) pairs and outputs a real-valued 210

energy score. 211

For simplicity, we denote a consistent set as SC 212

and an inconsistent set as SI . When constructing 213

new sets by merging different sets, we concatenate 214

their indices to indicate their composition. For in- 215

stance, the union of two distinct consistent sets is 216

denoted as SCC . We consider the union of different 217

consistent sets to remain consistent—thus, SCC is 218

essentially a consistent set and could be regarded 219

as SC . However, for more fine-grained analysis, 220

rather than simplifying it with SC , we explicitly 221

denote the data generation process and label such 222

set as SCC in our experiments. 223

3.3 Training SC-Energy 224

The function Eθ is trained to assign lower energy 225

values to consistent sets and higher energy values to 226

inconsistent sets. Given a consistent set SC and an 227

inconsistent set SI , the loss function LE is defined 228

as: 229

LE(SC , SI) = [Eθ(SC)− Eθ(SI) + α]+ , 230

where [·]+ = max(·, 0) and α is a hyperparameter. 231

In Section 3.3.1, we discuss the methods for 232

constructing SC and SI ; detailed procedures for 233

each dataset are provided in Section 4. In Section 234

3.3.2, we introduce the training methodology for 235

SC-Energy using SC and SI . 236

3.3.1 Construction of SC and SI 237

We first introduce construction of SC and SC 238

based on QA-pair setting. Given a consistent set 239

3



SC = {(x1, y1), (x2, y2), . . . , (xn, yn)}, we con-240

struct an inconsistent set SI such that it preserves241

the overall semantic content and form of SC while242

introducing logical inconsistencies. The simplest243

example is to modify one output yi in a QA-pair244

by replacing it with y∗i , thereby yielding SI =245

{(x1, y1), . . . , (xi, y∗i ), . . . , (xn, yn)}. In this con-246

struction, SI remains similar to SC in terms of247

semantics and structure, yet the altered element in-248

duces a logical inconsistency. In the context of a249

set of sentences, a similar strategy can be adopted250

by prompting an LLM to regenerate some of the251

sentences in SC to produce SI .252

These constructions can be carried out using253

purely rule-based methods (e.g., Set-LConVQA)254

or through a combination of rule-based techniques255

and LLM-generated modifications (e.g., Set-SNLI),256

which will be introduced in section 4 in detail.257

3.3.2 Fine-grained Training of SC-Energy258

We derive eight contrastive signals to train Eθ, cap-259

turing varying levels of logical consistency. Each260

of these eight contrasts contributes a loss term that261

guides the model to assign lower energy to more262

consistent sets and higher energy to more inconsis-263

tent ones. The loss function for SC-Energy incor-264

porates the LE values from all eight contrasts:265

1. Basic Contrast:266

• (SC vs. SI ): A direct comparison between267

a consistent set and an inconsistent set.268

2. Union-Based Contrasts: By forming unions,269

we generate an additional consistent set SCC270

and two extra inconsistent sets SCI and SII .271

This yields five additional comparisons:272

• (SC vs. SCI ), (SC vs. SII ), (SCC vs. SI ),273

(SCC vs. SCI ), (SCC vs. SII ).274

3. Inconsistency Degree Contrasts275

• (SCI vs. SI ): In SCI , we regard the pres-276

ence of additional neutral (or consistent) el-277

ements alongside inconsistent ones makes278

it less contradictory overall than the fully279

inconsistent SI . Thus, we regard SCI to be280

more consistent (i.e., of lower inconsistency281

degree) than SI .282

• (SI vs. SII ): Here, SII is formed by uniting283

multiple inconsistent sets, thereby amplify-284

ing the overall contradiction. Consequently,285

we treat SII to have higher degree of incon-286

sistency than SI .287

3.4 Inference and Thresholding 288

Since Eθ is a real-valued function, a predefined 289

threshold is used to determine set consistency. A 290

set is classified as consistent if its energy score is 291

below the threshold and inconsistent otherwise. 292

293

Detailed information on the training procedure 294

using the eight contrasts, the conversion of a set S 295

into the input for SC-Energy, and the selection of 296

the threshold can be found in appendix A. 297

4 Datasets 298

To evaluate the proposed task of set-consistency 299

verification, we introduce two new datasets: Set- 300

LConVQA and Set-SNLI. Set-LConVQA is de- 301

rived from the existing LConVQA dataset (Ray 302

et al., 2019), and Set-SNLI is constructed by mod- 303

ifying the SNLI dataset (Bowman et al., 2015). 304

Both datasets are designed to group multiple in- 305

stances into logically consistent or inconsistent 306

sets, thereby enabling systematic evaluation of set- 307

consistency verification. 308

We provide four types of data splits for both 309

datasets: training, validation1, validation2, and test 310

sets. The validation1, validation2, and test sets con- 311

tain 200 consistent and 200 inconsistent sets each. 312

The training sets contain 6,754 and 6,225 consis- 313

tent and inconsistent sets for Set-LConVQA and 314

Set-SNLI, respectively. Below, we describe each 315

dataset in detail. 316

4.1 Set-LConVQA 317

Set-LConVQA is designed to assess whether a 318

given set of question-answer (QA) pairs is mutually 319

consistent or inconsistent. The original LConVQA 320

dataset is a Visual Question Answering (VQA) 321

dataset automatically generated from the Visual 322

Genome scene graph by extracting object, attribute, 323

and relation information to create logically con- 324

sistent / inconsistent QA pairs. Set-LConVQA re- 325

moves the image dependency and focuses purely 326

on the textual QA pairs. 327

An example from the dataset is shown in Ta- 328

ble 1. A key characteristic of Set-LConVQA is that 329

in each inconsistent set SI , there exists a specific 330

pair of QA pairs, denoted as si and sj , such that 331

the size-2 set {si, sj} is inconsistent. This property 332

distinguishes Set-LConVQA from the Set-SNLI 333

dataset, which is introduced in Section 4.2. More- 334

over, through manual verification, we confirmed 335

that in all test instances where the set size is at 336
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least four, there is exactly one element in SI whose337

removal renders the set consistent. Therefore, in338

addition to set-consistency verification, we can uti-339

lize Set-LConVQA for an additional task (see Sec-340

tion 5.2) to show the usefulness of SC-Energy. Fur-341

ther details regarding the Set-LConVQA dataset342

are provided in Appendix B.343

4.2 Set-SNLI344

Set-SNLI dataset can be used to evaluate the abil-345

ity to determine whether a set of natural language346

sentences is logically consistent. Unlike traditional347

Natural Language Inference (NLI) tasks that as-348

sess relationships between a single premise and a349

hypothesis, Set-SNLI requires reasoning over mul-350

tiple sentences to capture more complex logical351

interactions.352

For example, consider the three sentences: “Ei-353

ther the train arrives at 8 AM or it arrives at 9354

AM.”, “The train does not arrive at 8 AM.”, “The355

train does not arrive at 9 AM.”. No two sentences356

contradict each other when examined pairwise, but357

collectively they introduce a contradiction. Since358

the ordering of sentences is irrelevant in this task,359

traditional entailment relationships in NLI cannot360

be determined. Instead, sets are classified as ei-361

ther consistent or inconsistent, with inconsistency362

implying that not all sentences in the set can simul-363

taneously be true.364

Inspired by (Nakamura et al., 2023), we con-365

struct Set-SNLI by transforming SNLI sentence366

pairs into multi-sentence sets using predefined log-367

ical rules. Examples are presented in Table 1, and368

detailed construction steps are provided in Ap-369

pendix C.370

In contrast to Set-LConVQA, which guarantees371

that for each inconsistent set SI there always exists372

a size-2 subset S̃ ⊂ S that is inconsistent, this373

property is not assured in the Set-SNLI dataset.374

In Set-SNLI, some inconsistent sets exhibit this375

property while others do not.376

Set-SNLI is more challenging than Set-377

LConVQA because the inconsistencies in Set-378

SNLI tend to be more subtle and require holis-379

tic reasoning over multiple sentences. While Set-380

LConVQA usually presents explicit factual contra-381

dictions (e.g., conflicting answers about a desk’s382

color), the logical discrepancies in Set-SNLI arise383

from nuanced differences in phrasing and entail-384

ment among sentences, making it harder to detect385

inconsistencies.386

5 Experiments 387

This section presents the experimental results of 388

set-consistency verification and downstream task, 389

demonstrating that SC-Energy outperforms other 390

baselines. For performance comparison, the base- 391

lines are evaluated along two axes: Model Archi- 392

tecture and Verification Strategy. 393

Model Architecture: This axis categorizes the 394

baseline models based on their output represen- 395

tations and training objectives. In particular, the 396

differences lie in the output format: LLM-based 397

models output natural language, binary classifiers 398

output a 2-dimensional vector, and energy-based 399

models output a single real-valued score. These 400

models can be divided into three types: 401

1. LLM-based: Utilizes a pre-trained, frozen 402

large language model to assess set consistency 403

via prompt-based querying. We employed the 404

GPT-4o model from OpenAI1, with Chain-of- 405

Thought prompting (Wei et al., 2022). 406

2. Binary Classifier (2-dim vector): A conven- 407

tional classification model with an output di- 408

mension corresponding to the number of la- 409

bels (consistent/inconsistent), trained using a 410

cross-entropy loss function. 411

3. Energy-based (Real-valued): Following 412

energy-based model’s principle, this model 413

produces a continuous real-valued output, 414

trained such that consistent sets yield lower 415

scores and inconsistent sets yield higher 416

scores. Training is performed using a con- 417

trastive loss. 418

Verification strategy: This axis defines how con- 419

sistency is evaluated within a set: 420

1. Element-wise Verification: Similar to (Yang 421

et al., 2024; Falke et al., 2019), this strategy 422

evaluates logical inconsistency by comparing 423

all possible pairs of statements within a set. 424

For a set S of size |S| = N , this requires 425
N(N−1)

2 pairwise comparisons, where each 426

pair is assessed for 1:1 consistency. 427

2. Set-level Verification: Directly inputs the en- 428

tire set into the model, reducing computational 429

overhead and capturing inconsistencies that 430

may be overlooked by pairwise comparisons. 431

1https://openai.com/
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To clarify, our SC-Energy model employs432

a energy-based (real-valued) model architecture433

along with a set-level verification strategy. The434

training and evaluation procedures vary slightly435

depending on the model architecture and verifica-436

tion strategy used. For detailed information on the437

prompts and experimental methods, please refer to438

Appendix D.1.1.439

5.1 Set-Consistency Verification440

Set-consistency verification determines whether a441

given set S is logically consistent or inconsistent.442

Beyond evaluating individual sets such as SC and443

SI , the consistency assessment extends to unions444

of multiple sets. To evaluate set-consistency verifi-445

cation performance, we generate diverse types of446

sets to assess the model’s ability to generalize to447

previously unseen set configurations. The evalua-448

tion data includes not only SC and SI but also sets449

constructed by merging two, three, or four different450

sets, thereby generating up to 14 possible dataset451

combinations with different labels (for example,452

SC , SI , SCC , · · · , SIIII ).453

Table 2(a) presents the Macro-F1 score results454

for set consistency-verification tasks across vari-455

ous model architectures and verification strategies.456

The average and standard deviation for 5 times457

of different seeds are provided. Since both the bi-458

nary classifier and energy-based architectures are459

data-driven, the specific training datasets used for460

each model are indicated by check marks ( ) in461

the Training Data column. For example, if both462

Set-LConVQA and Set-SNLI are checked, it im-463

plies that the model was trained on both datasets464

simultaneously.465

Regarding the verification strategies, the set-466

level verification strategy consistently outperforms467

the element-wise strategy across all model architec-468

tures, highlighting the importance of providing the469

entire set as input for verifying logical inconsisten-470

cies. Note that, the element-wise verification strat-471

egy tends to predict a set as inconsistent with high472

probability. In fact, when the model uniformly clas-473

sifies all sets as either consistent or inconsistent, the474

corresponding Macro-F1 scores are only 0.222 and475

0.416, respectively. These results suggest that the476

element-wise strategy does not achieve sufficiently477

high performance in set consistency-verification.478

As mentioned earlier, in a element-wise verifi-479

cation approach, if any element-wise verification480

identifies an inconsistency, the entire document is481

theoretically deemed inconsistent. This raises the482

question: to what extent should a certain level of in- 483

consistency be tolerated (even if this is not the ideal 484

approach) in order to achieve optimal performance 485

in set-consistency verification? Further details on 486

this matter can be found in appendix D.1.2. 487

For models in set-level verification strategy, the 488

binary-classifier model architecture exhibits per- 489

formance comparable to the energy-based model 490

SC-Energy. However, because SC-Energy learns 491

fine-grained consistency across multiple sets, it per- 492

forms well on a broader range of tasks beyond set- 493

consistency verification. For further details, please 494

refer to Section 5.2. 495

5.2 Locating Inconsistent Statements 496

Verification
Strategy

Model
Architecture

Training Data Test Data
Set-

LConVQA
Set-

SNLI
Set-

LConVQA
Set-

SNLI

Element-wise

LLM - - 0.566 0.493

Binary
Classifier

0.577±0.096 0.475±0.055

0.434±0.040 0.490±0.016

0.607±0.104 0.556±0.022

Energy-Based
0.697±0.097 0.523±0.032

0.413±0.017 0.563±0.034

0.440±0.003 0.534±0.027

Set-level

LLM - - 0.926 0.710

Binary
Classifier

0.985±0.005 0.474±0.048

0.533±0.050 0.973±0.010

0.913±0.099 0.967±0.011

Energy-Based
(SC-Energy)

0.987±0.005 0.432±0.023

0.508±0.063 0.981±0.008

0.969±0.018 0.941±0.023

(a) Macro-F1 scores for set-consistency verification

Model EM Precision Recall F1

LLM 0.734 0.846 0.985 0.875

Binary Classifier 0.784±0.142 0.880±0.102 0.993±0.001 0.910±0.079

Energy-based
(SC-Energy)

0.923±0.059 0.957±0.043 0.981±0.015 0.961±0.035

(b) Locate Task Performance

Table 2: (a) Macro-F1 scores for set-consistency verifi-
cation across different verification strategies and model
architectures, and (b) performance evaluation for the
Locate task in identifying inconsistent QA pairs. The
best performance is highlighted in bold. For both veri-
fication (a) and Locate (b), SC-Energy shows the best
performance for all of datasets. SC-Energy is superior
at Locate (b) task thanks to learning fine-grained degrees
of inconsistencies across diverse sets. Particularly, note
that LLMs display poor performance at Set-SNLI, indi-
cating the need for separate training of set verification.
For both (a) and (b), average and standard deviation for
five different seed pairs are provided.

To showcase the diverse applications of the mod- 497

els trained in Section 5.1, we introduce an addi- 498

tional task of Locate which evaluate the ability to 499
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detect inconsistent statements within a set. We uti-500

lize Set-LConVQA dataset for the Locate task. As501

mentioned in Section 4.1, through manual verifi-502

cation, we confirmed that in all sets in test data503

where the set size is at least four, there is exactly504

one element in SI whose removal renders the set505

consistent. For the Locate task, we evaluate and506

merge only those SC and SI sets that have a size507

of 4 or larger.508

Similarly to the approach described in Sec-509

tion 5.1, for evaluation we use not only SC and510

SI but also sets constructed by merging two, three,511

or four different sets. This results in up to 14 possi-512

ble dataset combinations with different labels (for513

example, SC , SI , SCC , · · · , SIIII ).514

The Locate task leverages the model trained in515

Section 5.1 without any additional task-specific516

training. For details on how the Locate task is per-517

formed using the LLM-based, binary classifier, and518

energy-based model architectures, please refer to519

Appendix D.3.1.520

We measure performance using EM (Exact521

Match), Precision, Recall, and F1-score. For in-522

stance, in the case of SIIII , an exact match is523

achieved only when all four inconsistent QA-pairs524

contained in the four inconsistent sets are correctly525

identified. Table 2(b) shows the performance re-526

garding the Locate task. Average and standard de-527

viation is provided for each model (with different528

seeds) in table 2(a). As shown in Table 2(b), SC-529

Energy significantly outperforms LLM-based meth-530

ods. Furthermore, SC-Energy also outperforms the531

set-level comparison & binary classifier architec-532

ture model. This is a particularly impressive result533

given that Table 2(a) shows only a marginal per-534

formance difference in set-consistency verification.535

SC-Energy learns fine-grained contrastive repre-536

sentations across multiple datasets, enabling it to537

capture the varying degrees of inconsistency within538

each set. This capability underlies its strong perfor-539

mance in accurately locating inconsistencies.540

6 Ablation Study541

6.1 Effect of Contrast Granularity542

In Section 3.3.2, we introduced eight contrastive543

signals for training SC-Energy. To evaluate their544

impact, we conducted an ablation study with545

three training regimes, as illustrated in Figure 1:546

Left Panel: The model is trained solely with547

the basic contrast LE(SC , SI). This limited con-548

trast approach yields lower classifying perfor-549

Source Target (#Data)
Test Data

Set-
LConVQA

Set-
SNLI

Set-
LConVQA

Set-SNLI (100) 0.938±0.025 0.666±0.008

Set-SNLI (200) 0.942±0.056 0.727±0.007

Set-
SNLI

Set-LConVQA (100) 0.872±0.026 0.979±0.004

Set-LConVQA (200) 0.914±0.043 0.960±0.002

Table 3: Macro-F1 scores, with five random seed runs,
for transferring the SC-Energy toward different domain.
The table demonstrates the model’s ability to retain
performance on its original dataset while effectively
generalizing to new domains with small amount of fine-
tuning data.

mance. Middle Panel: The model is trained 550

with six contrasts—LE(SC , SI), LE(SC , SCI), 551

LE(SC , SII), LE(SCC , SI), LE(SCC , SCI), and 552

LE(SCC , SII)—which compare sets with consis- 553

tent labels against those with inconsistent labels, 554

but do not capture variations within the inconsis- 555

tent sets. Right Panel: In addition to the six con- 556

trasts of middle panel, it also incorporates the two 557

inconsistency degree contrasts LE(SCI , SI) and 558

LE(SI , SII). The eight contrasts training regime 559

enables the model to capture the order of inconsis- 560

tencies. Our criteria for ordering inconsistencies 561

are threefold: the primary criterion, which deems 562

sets containing more inconsistent pairs as more 563

inconsistent; the secondary criterion, which mod- 564

erates the overall inconsistency when consistent 565

pairs dominate (i.e., the energy values remain in- 566

termediate rather than extreme); and the tertiary 567

criterion, which asserts that even among consistent 568

sets, the union of multiple consistent sets yields 569

a more moderate consistency due to the inclusion 570

of many neutral relationships, resulting in higher 571

energy values compared to a pure SC . 572

6.2 Fine-Tuning Efficiency 573

Table 3 shows the Macro-F1 scores of set- 574

consistency verification task when fine-tuning the 575

SC-Energy with a small amount of additional data 576

from a different domain. Average and standard devi- 577

ation for five different seed pairs are provided. The 578

model retains strong performance on its original 579

dataset while effectively adapting to new domains 580

with minimal data. Refer to the appendix D.2 for 581

experimental details. 582

6.3 Verifying Inconsistencies in LLM Outputs 583

Our SC-Energy can serve as a consistency evaluator 584

that can be integrated with black-box LLMs to 585

7



consistent

inconsistent
consistent inconsistent consistent inconsistent consistent inconsistent

Figure 1: Box plots of energy values for various set types under different training regimes. Left: Training of
SC-Energy just contrasting SC vs. SI . Middle: Training with six contrastive signals (contrasting all comparing
sets with consistent vs. inconsistent labels), which does not capture the inconsistency degrees within inconsistent
sets well. Right: Training with all eight contrastive signals, including the additional inconsistency degree contrasts,
enables the model to distinguish sets more clearly—assigning higher energy to sets with a greater inclusion of
inconsistent pairs (primary criterion) while moderating the energy for sets with a higher proportion of consistent
pairs (secondary criterion). The set types are arranged from top to bottom in order of increasing inconsistency. Note
that the more fine-grained contrastive signals are added, the energy levels more faithfully our intuition.

detect their inconsistent behaviors. While LLMs586

excel at various NLP tasks, they frequently produce587

outputs that are not logically coherent. For instance,588

an LLM might answer “yes” to “Does CO2 increase589

the population of polar bears?’ yet fail to provide590

a complementary response to “Does CO2 decrease591

the population of polar bears?”.592

To expose such inconsistencies, (Asai and Ha-593

jishirzi, 2020) proposed a data augmentation tech-594

nique for the WIQA dataset (Tandon et al., 2019)595

that substitutes keywords with antonyms (e.g.,596

“more” with “less”) to create question pairs with597

opposite expected answers. We evaluate the con-598

sistency of LLM on this augmented WIQA dataset599

to constrcut WIQA set consistency, a new set-600

consistency dataset based on LLM answer gener-601

ation. In our construction, the LLM is queried in-602

dependently for each related question to yield a set603

of question–prediction pairs whose logical coher-604

ence is then assessed in a rule-based manner. Our605

data collection with GPT-4o shows that it is 51.1%606

consistent.607

In order to validate the SC-Energy’s efficacy as608

a general consistency evaluator, we compare SC-609

Energy’s accuracy on WIQA set consistency data610

along with the Self-Check mechanism where LLM611

evaluates the consistency of its own response set.612

As shown in Table 4, the consistency detection ac-613

curacy increases from 59.9% with the self-check614

to 68.7% when using SC-Energy. These results615

demonstrate that SC-Energy effectively identifies616

and flags inconsistent outputs, thereby function-617

ing as a robust consistency evaluator when com-618

bined with existing LLMs. Detailed descriptions 619

of the evaluation methodology—including prompt 620

design, the self-check process—are provided in 621

appendix D.4. 622

WIQA set consistency Self-Check SC-Energy (Ours)

Consistent (51.1%) 79.6 81.9
Inconsistent (48.9%) 39.2 54.8

Total Accuracy 59.9 68.7

Table 4: The table reports the accuracy of the set con-
sistency verification (%) on the WIQA set consistency
dataset.

7 Conclusion 623

In this paper, we introduced the Set-Consistency 624

Energy Network (SC-Energy), a novel approach for 625

verifying logical inconsistencies across multiple 626

statements. 627

Through extensive experiments on Set- 628

LConVQA and Set-SNLI, we demonstrated that 629

our energy-based framework significantly outper- 630

forms baseline methods, including LLM-based 631

approaches and traditional classification models. 632

The results show that our model excels in set- 633

consistency verification and locating inconsistent 634

statements within a set. Additionally, we explored 635

its applicability as an consistency evaluator for 636

verifying inconsistencies in LLM-generated 637

outputs, showcasing its potential for real-world 638

deployment. 639

8



8 Limitations and Potential Risks640

Our approach processes entire sets in a single pass,641

which, while enabling holistic consistency assess-642

ment, poses challenges when dealing with longer643

sets that may exceed the maximum token limit644

of current language models. Additionally, our two645

datasets Set-LConVQA, Set-SNLI are generated646

using a combination of rule-based methods and647

LLM-based transformations. Incorporating more648

diverse and representative data generation crite-649

ria could enable further advancements in this task.650

Moreover, evaluating the generalization capabili-651

ties of our approach across different domains re-652

mains an important direction for future research.653

Other potential risks include a sensitivity to noise654

and edge cases present in real-world data. Address-655

ing these issues will be critical for scaling the pro-656

posed method to broader applications.657
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A Details of SC-Energy 765

This section covers the topic of detail information on the training procedure using the eight contrasts, the 766

conversion of a set S into the input for SC-Energy, and the selection of the threshold. 767

A.1 Training Procedure Using the Eight Contrasts 768

In Section 3.3.2, we demonstrated that by appropriately merging SC and SI , we can extend the set and 769

train SC-Energy using eight distinct contrast methods. During training, the entire training dataset is treated 770

as if it contains all eight types of contrast pairs (e.g., (SC , SI), (SC , SCI), (SC , SII), etc.). Whenever a 771

sample corresponding to a specific contrast type is drawn from the dataset, its loss LE(·, ·) is computed 772

based on that contrast. 773

A.2 Conversion of S into the Input for SC-Energy 774

For a set S = {s1, s2, · · · , sn} composed of individual sentences, the input to SC-Energy is formed by 775

concatenating all sentences si and prepending a CLS token at the beginning. For example, consider a set 776

S from the Set-SNLI dataset defined as: 777

S = {“Either the train arrives at 8 AM or it arrives at 9 AM.”, 778

“The train does not arrive at 8 AM.”, 779

“The train does not arrive at 9 AM.”} 780

In the case of the RoBERTa-base model, the CLS token is represented as <s>, so the input for set S is: 781

<s> Either the train arrives at 8 AM or it arrives at 9 AM. 782

The train does not arrive at 8 AM. The train does not arrive at 9 AM. 783

In contrast, for a set S = {(xi, yi)}ni=1 composed of QA pairs, we concatenate each xi and yi using the 784

delimiter “The answer is”. After concatenating all the QA pairs, we prepend a CLS token at the beginning. 785

For example, consider a set S from the Set-LConvqa dataset defined as: 786

S = {(“what color is desk?”, “brown”), (“is desk brown?”, “yes”)} 787

With RoBERTa-base, where the CLS token is <s>, the input for set S becomes: 788

<s> what color is desk? The answer is brown. is desk brown? The answer is yes. 789

When converting a set S into the input for SC-Energy, all elements of S are shuffled before being fed 790

into the model. 791

A.3 Selection of Threshold 792

The dataset is split into training data, validation1 data, validation2 data, and test data. At the end of each 793

training epoch, the threshold is updated using validation1 data. A set is classified as consistent if its energy 794

value is below the threshold; otherwise, it is classified as inconsistent. The threshold is determined by 795

maximizing macro classification accuracy across validation1 data consisting of up to two combined sets: 796

SC , and SCC as consistent sets, while SI , SCI , and SII are labeled as inconsistent. Finally, validation2 797

data is used for hyperparameter tuning. 798

B Set-LConVQA Dataset 799

The Set-LConVQA dataset is derived from the original LConVQA (Ray et al., 2019) dataset which is 800

publicly available2, where for each image, both consistent and inconsistent sets of QA pairs are generated. 801

For example, a consistent set is represented as follows: 802

2https://arijitray1993.github.io/ConVQA/
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"consistent": [803

[804

{"question": "what color is desk?", "answer": "brown"},805

{"question": "is desk brown?", "answer": "yes"},806

{"question": "is desk pink?", "answer": "no"}807

]808

]809

In contrast, an inconsistent set is always composed of exactly two QA pairs, as in this example:810

"inconsistent": [811

[812

{"question": "what color is desk?", "answer": "brown"},813

{"question": "is desk brown?", "answer": "no"}814

],815

[816

{"question": "what color is desk?", "answer": "brown"},817

{"question": "is desk pink?", "answer": "yes"}818

]819

]820

Our rule-based validation of the LConVQA dataset revealed two key observations:821

1. For every consistent set derived from a given image, there exists at least one inconsistent set such that822

all questions that appear in that inconsistent set are also present in the corresponding consistent set.823

2. In the inconsistent sets, one answer differs from the answer in the consistent set for the corresponding824

question.825

In other words, an inconsistent set can be constructed from a consistent set by altering the answer of a826

single QA pair while keeping all the questions unchanged. Formally, given a consistent set827

SC = {(q1, a1), (q2, a2), . . . , (qn, an)},828

an inconsistent set can be obtained as829

SI = {(q1, a1), . . . , (qi, a∗i ), . . . , (qn, an)},830

where a∗i differs from ai. Notably, the generated inconsistent set SI encompasses the inconsistent sets831

originally present in the LConVQA dataset. As defined in Section 3.1, a set S is deemed inconsistent if832

there exists a subset S̃ ⊆ S with |S̃| ≥ 2 such that the statements in S̃ are logically contradictory. Hence,833

by our definition, SI qualifies as an inconsistent set. On average, each set contains 3.43 QA pairs, with a834

maximum of six.835

Because the element-wise verification strategy described in Section 5 is trained on sets of size 2,836

we can construct a dedicated element-wise training dataset from the generated Set-LConVQA dataset.837

Specifically, the inconsistent sets SI in the original LConVQA dataset (which are of size 2) can be directly838

used for element-wise verification. Similarly, since every inconsistent set derived from a consistent set SC839

involves altering only the answer while keeping all questions identical, the corresponding QA pairs can be840

extracted to form the element-wise consistent set for training with the element-wise strategy.841

C Set-SNLI dataset842

C.1 Dataset Creation843

Inspired by previous work (Nakamura et al., 2023), we construct the Set-SNLI dataset by transforming844

existing pairwise SNLI datasets3 according to predefined rules. The generation process consists of the845

following steps:846

3SNLI dataset is publicly available, https://nlp.stanford.edu/projects/snli/. This dataset takes Creative Commons Attribution-
ShareAlike 4.0 International License, allowing remix, transform, and build upon the material for any purpose.
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1. Generating Negations: Using a large language model (LLM), we generate negated versions of the 847

premises and hypotheses in the original dataset. The prompt used for negation generation is included in 848

the appendix C.3. 849

2. Constructing Sentence Sets: One or two pairs of premises and hypotheses, along with their negations, 850

are combined according to predefined rules. 851

The rules applied vary based on the label of the original premise-hypothesis relationship and the number 852

of seed pairs used. Detailed rules are outlined in the appendix C.4. Some rules employ first-order logic 853

inference to guarantee entailment between sentences, while others guarantee contradiction. Additional 854

techniques involve leveraging sentence equivalence or combining previously generated sets to create 855

larger sentence groups. 856

Sentences connected with conjunctions (AND) are always split so that each element in a set remains 857

an atomic sentence. The definition of "atomic" may vary, but structures involving disjunctions (OR) 858

or conditionals (if-then) are allowed. However, AND operations are disallowed to prevent arbitrary 859

manipulation of set sizes by linking sentences with AND. Although the above dataset creation process 860

can be applied to any single sentence based conventional NLI datasets, for our implementation, we derive 861

our dataset from the test set of SNLI dataset. 862

C.2 Dataset Structure 863

Each data instance consists of the following: a set of two or more sentences, a label, i.e., either consistent or 864

inconsistent, difficulty annotation, and set size. The difficulty annotation is categorized as either "medium" 865

or "easy". The "easy" category is assigned only to contradictory sets that include a sentence and its 866

direct negation, which we consider trivial to identify as contradictory. On average, each set contains 3.48 867

sentences, with a maximum of five. 868

C.3 Negation generation prompt 869

In order to create negated versions of premises and hypotheses, we instruct an LLM (in our case, gpt4o- 870

mini) with the prompt provided in the Table 5 871

C.4 Dataset creation rules 872

In this section, we provide rules used to create a set-based NLI dataset from a conventional pair-wise 873

SNLI dataset. For convenience, we divide the section in terms of the number and label of seed pair(s)(in 874

other words, the original premise-hypothesis pair in SNLI dataset) we use to create each set. For tables 6, 875

7, 8, 9, the singleton rules are motivated by (Nakamura et al., 2023), and we generated additional rules 876

from them (represented by the union mark ∪). 877

C.4.1 Rules for deriving sets from a single entailment seed pair 878

Please refer to Table 6. 879

C.4.2 Rules for deriving sets from a single contradiction seed pair 880

Please refer to Table 7. 881

C.4.3 Rules for deriving sets from a single neutral seed pair 882

Please refer to Table 8. 883

C.4.4 Rules for deriving sets from two entailment seed pairs 884

Please refer to Table 9. 885

C.4.5 Rules for Deriving Sets for Element-Wise Verification Strategy 886

Since the element-wise verification strategy (discussed in Section 5) is trained on sets of size 2, we 887

construct a dedicated element-wise dataset using the generated Set-SNLI dataset. 888

Within a given set, a pair of propositions that exhibit a logically inconsistent relationship can be selected 889

when the single entailment pair (as described in Table 6) satisfies one of the following conditions between 890

p and h: 891
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Instruction

Premise: An older man wearing a salon drape getting a haircut.
Hypothesis: A man gets a haircut.
Negation of Hypothesis: No man gets a haircut.
Negation of Premise: No older man wearing a salon drape is getting a haircut.
Premise: A man with glasses sitting at a restaurant staring at something that is not shown.
Hypothesis: A man at a restaurant.
Negation of Hypothesis: No man at a restaurant.
Negation of Premise: No man with glasses sitting at a restaurant staring at something that is not shown.
Premise: The school is having a special event in order to show the American culture on how other cultures are dealt with in parties.
Hypothesis: A school is hosting an event.
Negation of Hypothesis: No school is not hosting an event.
Negation of Premise: The school is not having a special event to show the American culture or how other cultures are dealt with in parties.
Premise: High fashion ladies wait outside a tram beside a crowd of people in the city.
Hypothesis: Women are waiting by a tram.
Negation of Hypothesis: No women are waiting by a tram.
Negation of Premise: No high fashion ladies wait outside a tram beside a crowd of people in the city.
Premise: People waiting to get on a train or just getting off.
Hypothesis: There are people waiting on a train.
Negation of Hypothesis: There are no people waiting on a train.
Negation of Premise: No people are waiting to get on a train or just getting off.
Premise: A couple play in the tide with their young son.
Hypothesis: The family is outside.
Negation of Hypothesis: The family is not outside.
Negation of Premise: A couple does not play in the tide with their young son.
{More examples omitted }

Take a closer look at these tricky cases; ’A’ or ’An’ needs to change to ’No’ even if the sentence does not start with the subject, and also when two clauses exist in a single sentence.
Premise: Under a blue sky with white clouds, a child reaches up to touch the propeller of a plane standing parked on a field of grass.
Hypothesis: A child is reaching to touch the propeller of a plane.
Negation of Hypothesis: Under a blue sky with white clouds, no child reaches up to touch the propeller of a plane standing parked on a field of grass.
Negation of Premise: No child is reaching to touch the propeller of a plane
Premise: A man in a green shirt is singing karaoke while a young woman with long brownish hair stands by and listens.
Hypothesis: A man is singing a song.
Negation of Hypothesis: No man is singing a song.
Negation of Premise: No man in a green shirt is singing karaoke while no young woman with long browish hair stands by and listens.

When a sentence starts with subjects specified with ’the’ or ’this’, verb should be negated rather than the subject.
Premise: A woman with a green headscarf blue shirt and a very big grin.
Hypothesis: The woman is very happy.
Negation of Hypothesis: The woman is not very happy.
Negation of Premise: No woman with a green headscarf blue shirt and a very big grin.
Premise: The man walks among the large trees.
Hypothesis: The man walks among trees.
Negation of Hypothesis: The man does not walk among trees.
Negation of Premise: The man does not walk among the large trees.

Please note that given a compound sentence connecting two or more clauses with an ’and’ or a comma, each of the clauses need to be negated, connected by an ’or’.
Premise: Four people are near a body of water, two people walk on a sidewalk.
Hypothesis: There are people outdoors.
Negation of Hypothesis: There are no people outdoors
Negation of Premise: No four people are near a body of water or no two people walk on a sidewalk.

Construct Negation of Hypothesis and Negation of Premise by following the examples above.
Given the condtion that Premise entails Hypothesis, Negation of Premise needs to entail Negation of Hypothesis.

Table 5: Instruction used to create negation of premise and hypothesis of the original NLI dataset. The few shot
examples in the first part of the instruction are taken from Nakamura et al., 2023.

1. p, ¬p892

2. h, ¬h893

3. p, ¬h894

4. p ∨ h, ¬h895

For each single entailment seed pair (p, h), an inconsistent set SI can be created by applying the above896

rules. Conversely, for constructing a consistent set SC , any size-2 subset extracted from a consistent set897

qualifies as a consistent set, according to the definition provided in Section 3.1.898

D Experiment899

D.1 Set-Consistency Verification900

In this section, we present further detailed experimental results related to set-consistency verification.901
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No. Rule Description Set Size Label Difficulty
1 {p1 → h1,¬h1 → ¬p1} Transportation 2 Consistent Medium
2 {p1 → h1,¬p1 ∨ h1} Material Implication 2 Consistent Medium
3 {p1 → h1, h1} Split Hypothesis of Rule 2 (1) 2 Consistent Medium
4 {p1 → h1,¬p1} Split Hypothesis of Rule 2 (2) 2 Consistent Medium
5 {p1 → h1, p1, h1} Modus Ponens 3 Consistent Medium
6 {p1 → h1,¬h1,¬p1} Modus Tollens 3 Consistent Medium
7 {p1 ∨ h1,¬h1, p1} Disjunctive Syllogism (1) 3 Consistent Medium
8 {p1 ∨ h1,¬p1, h1} Disjunctive Syllogism (2) 3 Consistent Medium
9 {p1 → h1,¬h1 → ¬p1,¬p1 ∨ h1} Rule 1 ∪ 2 3 Consistent Medium
10 {p1 → h1,¬h1 → ¬p1, h1} Rule 1 ∪ 3 3 Consistent Medium
11 {p1 → h1,¬h1 → ¬p1,¬p1} Rule 1 ∪ 4 3 Consistent Medium
12 {p1 → h1,¬p1 ∨ h1, h1} Rule 2 ∪ 3 3 Consistent Medium
13 {p1 → h1,¬p1 ∨ h1,¬p1} Rule 2 ∪ 4 3 Consistent Medium
14 {p1 → h1,¬p1, h1} Rule 3 ∪ 4 3 Consistent Medium
15 {p1 → h1,¬h1 → ¬p1, p1, h1} Rule 1 ∪ 5 4 Consistent Medium
16 {p1 → h1,¬h1 → ¬p1,¬p1,¬h1} Rule 1 ∪ 6 4 Consistent Medium
17 {p1 → h1,¬p1 ∨ h1, p1, h1} Rule 2 ∪ 5 4 Consistent Medium
18 {p1 → h1,¬p1 ∨ h1,¬p1,¬h1} Rule 2 ∪ 6 4 Consistent Medium
19 {p1 → h1,¬p1 ∨ h1,¬h1 → ¬p1, h1} Rule 1 ∪ 2 ∪ 3 4 Consistent Medium
20 {p1 → h1,¬p1 ∨ h1,¬h1 → ¬p1,¬p1} Rule 1 ∪ 2 ∪ 4 4 Consistent Medium
21 {p1 → h1,¬h1 → ¬p1,¬p1, h1} Rule 1 ∪ 3 ∪ 4 4 Consistent Medium
22 {p1 → h1,¬p1 ∨ h1,¬p1, h1} Rule 2 ∪ 3 ∪ 4 4 Consistent Medium
23 {p1 → h1,¬p1 ∨ h1,¬h1 → ¬p1, p1, h1} Rule 1 ∪ 2 ∪ 5 5 Consistent Medium
24 {p1 → h1,¬p1 ∨ h1,¬h1 → ¬p1,¬p1,¬h1} Rule 1 ∪ 2 ∪ 6 5 Consistent Medium
25 {p1 → h1,¬p1 ∨ h1,¬h1 → ¬p1,¬p1, h1} Rule 1 ∪ 2 ∪ 3 ∪ 4 5 Consistent Medium
26 {p1,¬h1} Negate Hypothesis (1) 2 Inconsistent Medium
27 {p1,¬h1, p1 → h1} Negate Hypothesis (2) 3 Inconsistent Medium
28 {p1 ∨ h1,¬p1,¬h1} Negate Hypothesis of Rule 7 3 Inconsistent Medium
29 {p1 ∨ h1, p1 → h1,¬h1} Implicit Negate Hypothesis of Rule 7 3 Inconsistent Medium
30 {p1 → h1,¬h1,¬p1, p1} Rule 6 ∪ Rule 26 4 Inconsistent Easy
31 {p1 → h1,¬h1,¬p1, h1} Rule 6 ∪ Rule 3 4 Inconsistent Easy
32 {p1 → h1, p1, h1,¬p1} Rule 5 ∪ Rule 4 4 Inconsistent Easy
33 {p1 → h1, p1, h1,¬h1} Rule 5 ∪ Rule 26 4 Inconsistent Easy
34 {p1 → h1,¬h1 → ¬p1, p1,¬h1} Rule 1 ∪ Rule 26 4 Inconsistent Medium
35 {p1 → h1,¬p1 ∨ h1, p1,¬h1} Rule 2 ∪ Rule 26 4 Inconsistent Medium
36 {p1 → h1,¬h1,¬p1, p1, h1} Rule 6 ∪ Rule 5 5 Inconsistent Easy

Table 6: List of rules used to create sets from a single entailment seed pair. The seed pair is comprised of a premise
and a hypothesis, i.e., {p1, h1}, that are in entailment relationship p1 → h2.

No. Rule Description Set Size Label Difficulty
1 {¬p1, h1} Negate Premise 2 Consistent Medium
2 {p1,¬h1} Negate Hypothesis 2 Consistent Medium
3 {p1 ∨ h1,¬h1, p1} Disjunctive Syllogism (1) 3 Consistent Medium
4 {p1 ∨ h1,¬p1, h1} Disjunctive Syllogism (2) 3 Consistent Medium
5 {p1 ∨ h1, p1, h1} Disjunction ∪ Seed Pair 3 Inconsistent Medium
6 {p1 ∨ h1,¬p1,¬h1} Negate Hypothesis of Rule 3 3 Inconsistent Medium

Table 7: List of rules used to create sets from a single contradiction seed pair. The seed pair consists of a premise
and a hypothesis, i.e. {p1, h1}, that are in a contradiction relationship p1 ∧ h2 → ⊥.

No. Rule Description Set Size Label Difficulty
1 {p1 ∨ h1,¬h1, p1} Disjunctive Syllogism 1 3 Consistent Medium
2 {p1 ∨ h1,¬p1, h1} Disjunctive Syllogism 2 3 Consistent Medium
3 {p1 ∨ h1,¬p1,¬h1} Negate Hypothesis of Rule 1 3 Inconsistent Medium

Table 8: List of rules used to create sets from a single neutral seed pair. The seed pair consists of a premise and a
hypothesis, i.e. {p1, h1}, that are in neutral relationship, i.e., |p1 ∧ h1| > 0 and p1 ̸→ h1 and h1 ̸→ p1.

No. Rule Description Set Size Label Difficulty
1 {p1 → h1, p2 → h2, p1 ∨ p2, h1 ∨ h2} Constructive Dilemma 4 Consistent Medium
2 {p1 → h1, p2 → h2,¬h1 ∨ ¬h2,¬p1 ∨ ¬p2} Destructive Dilemma 4 Consistent Medium
3 {p1 → h1, p2 → h2, p1 ∨ ¬h2, h1 ∨ ¬p2} Bidirectional Dilemma 4 Consistent Medium
4 {p1 → h1, p2 → h2, p1 ∨ p2,¬h1,¬h2} Negate Hypothesis of Constructive Dilemma 5 Inconsistent Medium
5 {p1 → h1, p2 → h2,¬h1 ∨ ¬h2, p1, p2} Negate Hypothesis of Destructive Dilemma 5 Inconsistent Medium
6 {p1 → h1, p2 → h2, p1 ∨ ¬h2,¬h1, p2} Negate Hypothesis of Bidirectional Dilemma 5 Inconsistent Medium

Table 9: List of rules used to create sets from two entailment seed pairs, {p1, h1} and {p2, h2}. Each seed pair is in
an entailment relationship, i.e. p1 → h1 and p2 → h2.
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Original Premise & Hypothesis

p: A couple walk hand in hand down a street.
h: A couple is walking together.
Original label: entailment

Resulting Sets

⇒ Applied rule: {p→ h,¬h,¬p} (Modus Tollens)
⇒ Set: {"If a couple walk hand in hand down a street, then a couple is walking together.",
"No couple is walking together.",
"No couple walks hand in hand down a street."}
⇒ Label: consistent

⇒ Applied rule: {p1 ∨ h1, p1 → h1,¬h1} (Implicit Negate Hypothesis of Disjunctive Syllogism)
⇒ Set: {"If a couple walk hand in hand down a street, then a couple is walking together.",
"No couple is walking together.",
"Either a couple walk hand in hand down a street, or a couple is walking together."}
⇒ Label: inconsistent

Table 10: Examples of generating Set-NLI data from a conventional SNLI dataset. The original premises and
hypotheses are sampled from the SNLI dataset. Note that Set-SNLI data is derived not only from premise-hypothesis
pairs with an entailment relationship but also from those labeled as contradiction or neutral. We create both consistent
and inconsistent sets from the seed pairs.

D.1.1 Experiment Setup Detail902

In this section, we discuss the experimental setups employed for each model architecture and verification903

strategy.904

LLM Model Architecture For the LLM-based model architecture, we employ chain-of-thought (CoT)905

based prompting to request a consistency classification for a given set. In the set-level verification strategy,906

the prompt is formulated as follows:907

Prompt:908

Tell me whether the following question-answer pairs are consistent or inconsistent.909

{Few-shot CoT examples (5-shot)}910

{Problem}911

Please think step by step: first, clearly articulate your thought process; then, provide your final912

consistency judgment by choosing either ‘consistent’ or ‘inconsistent’ after the ‘Consistency:’913

mark.914

For the element-wise verification strategy, the form of prompt and the number of few-shot CoT exam-915

ples remain identical. However, there are two key differences:916

1. When evaluating a set of size N , every possible pair of elements (i.e., N(N−1)
2 pairs) is compared917

for consistency. If even one pair is determined to be inconsistent, the entire set is classified as918

inconsistent.919

2. The few-shot CoT examples are constructed exclusively from sets consisting of two elements.920

Binary Classification Model Architecture In the set-level verification strategy, the model’s input is921

the entire set (for details on how to convert a set into the model’s input, please refer to Appendix A.2;922

although this model is not SC-Energy, the method for converting the set into the input is the same). The923

model outputs a 2-dimensional vector, where each component represents the score for either "consistent"924

or "inconsistent."925
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In the element-wise verification strategy, the process is similar; however, when evaluating a set of 926

size N , every possible pair of elements (i.e., N(N−1)
2 pairs) is compared for consistency. This amounts 927

to repeatedly assessing sets of size 2. If even one pair is determined to be inconsistent, the entire set is 928

classified as inconsistent. 929

Typically, when making predictions from a 2-dimensional vector, it is common to select the class 930

corresponding to the higher score. However, in our experiment setting, a threshold is also be learned for 931

the binary classification model. The output scores for "consistent" and "inconsistent" are passed through 932

a softmax function, and a threshold is learned on the "inconsistent" class score in the same manner as 933

described in Appendix A.3. This learned threshold is then used during inference. 934

For the binary classification model architecture, training is conducted using a cross-entropy loss 935

function. Under the set-level verification strategy, we treat SC and SCC as consistent label data and SI , 936

SCI , and SII as inconsistent label data. For the element-wise verification strategy, we used the training 937

data described in Appendices B and C. 938

Energy-Based Model Architecture For the energy-based model architecture using the set-level veri- 939

fication strategy, the model is implemented as SC-Energy. Details regarding the training and inference 940

procedures, as well as threshold selection, can be found in Appendix A. In the element-wise verification 941

strategy, the procedure is analogous to that of the binary classification model architecture: for a set of size 942

N , pairs of elements are extracted to form sets of size 2, and the consistency of each pair is evaluated. If 943

even one pair is determined to be inconsistent, the entire set is classified as inconsistent. 944

We used Adam optimizer (Diederik, 2014), RTX A6000 GPU4, and RoBETa-base (Liu, 2019) model 945

(125M) for all of trainings (for both binary classification and energy-based model architectures). We 946

used grid search to find learning rate, one oe 1, 1e− 1, · · · , 1e− 7. Learning rate of 1e− 6 is used for 947

the loss function of binary classifier models, and learning rate of 1e− 5 is used for the loss function of 948

energy-based models. The margin of 0.01 is used in LE(SC , SI) = [Eθ(SC)− Eθ(SI) + α]+ as α for 949

energy-based models. 950

For the energy-based model architecture, training is conducted using a margin-based loss function. The 951

training procedure of set-level verification strategy is described in 3.3.2. For the element-wise verification 952

strategy, we used the training data described in Appendices B and C. 953

D.1.2 Maximum Tolerance Rate for Element-wise Verification strategy 954

In a pairwise comparison approach, if any one-to-one pair comparison detects an inconsistency, the entire 955

document is theoretically classified as inconsistent. This raises the question: to what extent should a certain 956

level of inconsistency be tolerated (even if this is not the ideal approach) to achieve optimal performance 957

in set-consistency verification? 958

To investigate this, we define the Maximum Tolerance Rate (MTR). For a set S with |S| = N , there 959

are N(N−1)
2 possible pairwise comparisons. The MTR, denoted by p, represents the maximum allowable 960

proportion of inconsistent pairs such that the set S is still classified as consistent. Formally, if 961

number of predicted one-to-one pairs as inconsistent

total number of pairs (= N(N−1)
2 )

≤ p, 962

then S is deemed consistent; otherwise, it is classified as inconsistent. Note that when MTR = 0, it 963

is theoretically the most appropriate decision rule (i.e., if even one one-to-one pair is predicted to be 964

inconsistent, the entire set S is classified as inconsistent). As the value of MTR increases, the likelihood 965

of classifying set S as consistent also increases. 966

Figure 2 shows the Macro-F1 score for the element-wise verification strategies across various MTR 967

values and set sizes. Left figures represents the Macro-F1 score for Set-LConVQA dataset, and Right 968

figures represents the Macro-F1 score for Set-SNLI dataset. Also, figures on the Top represents the 969

Macro-F1 score for binary classifier models, and figures on the Bottom represents the Macro-F1 score 970

for energy-based models. As the figure illustrates, there exists a point—approximately around 20% ∼ 971

4https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/proviz-print-nvidia-
rtx-a6000-datasheet-us-nvidia-1454980-r9-web%20(1).pdf
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40%—where the Macro-F1 score peaks as the MTR is varied. However, it is unsound to classify a set S972

as inconsistent only when an inconsistency of this proportion is detected.973

Figure 2: Figure shows the Macro-F1 score of set-consistency verification task across various MTR values and
set sizes. Left figures represents the Macro-F1 score for Set-LConVQA dataset, and Right figures represents the
Macro-F1 score for Set-SNLI dataset. Also, figures on the Top represents the Macro-F1 score for binary classifier
models, and figures on the Bottom represents the Macro-F1 score for energy-based models.

D.2 Fine-Tuning Efficiency974

This section details our fine-tuning experiments across different domain datasets. Specifically, when975

fine-tuning the SC-Energy model—originally trained on one dataset—using N samples from a different976

domain, we randomly select N samples from the original dataset and combine them with N samples from977

the target domain for each training epoch, resulting in a total of 2N training samples per epoch. An L2978

regularizer with a weight of 0.00001 was applied during fine-tuning.979

D.3 Locating Inconsistent Statements980

In this section, we discuss the experimental setup details and the experimental results pertaining to the981

Locate task.982

D.3.1 Experiment Setup Detail983

In this section, we describe how the Locate task is performed for different model architectures.984

LLM-based Model Architecture For the LLM-based model architecture, we use chain-of-thought985

(CoT) prompting. The prompt is as follows:986

Prompt:987

Find the question-answer pairs among the following that are logically inconsistent with the rest.988
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Specifically, identify the minimal collection of inconsistent pairs such that the remaining pairs 989

are logically consistent with one another. If there are no inconsistent pairs, return nothing. 990

{Few-shot CoT examples (5-shot)} 991

{Problem} 992

Think step by step, and respond with your answer containing the numbers of the inconsistent 993

pairs after the ‘[Inconsistent pairs]’ mark. 994

Binary Classifier / Energy-Based Model Architecture The binary classifier and energy-based model 995

architectures can determine the overall inconsistency of a given set S, but they do not directly locate 996

which specific QA pairs are responsible for the inconsistency. Therefore, we perform the set-consistency 997

verification repeatedly to identify the inconsistent QA pairs within S. In the energy-based model, lower 998

output scores indicate that a set is more consistent. Similarly, in the binary classifier, the score for the 999

"inconsistent" label (obtained after a softmax) is used such that lower scores indicate higher consistency. 1000

Below, we describe the procedure for performing the Locate task using a pseudocode algorithm. 1001

Algorithm 1 Locate Task for Binary Classifier / Energy-Based Models

1: Input: Set S = {s1, s2, . . . , sN} of QA pairs.
2: while True do
3: Compute the set-consistency verification result for S.
4: if S is classified as consistent then
5: Return: Terminate — no inconsistent pair detected.
6: else if S is classified as inconsistent and |S| = 2 then
7: Return: Terminate — set too small to isolate an inconsistent pair.
8: else
9: for each i = 1 to N do

10: Generate Si = S \ {si}.
11: Compute the energy value Eθ(Si) (or the corresponding inconsistent score).
12: end for
13: Let sj be the element whose removal yields the lowest energy value, i.e., j = argminiEθ(Si).
14: Output: Identify sj as the inconsistent QA pair.
15: Update S ← Sj .
16: end if
17: end while

In summary, for the binary classifier and energy-based model architectures, we repeatedly remove the 1002

QA pair whose exclusion minimizes the energy value (or inconsistent score) until the remaining set is 1003

classified as consistent. 1004

D.4 Detecting Inconsistencies in LLM Outputs 1005

In this section, we describe the data construction and prompt design procedures used for our experiments. 1006

D.4.1 Data Construction 1007

Data Collection: Following the data augmentation approach of (Asai and Hajishirzi, 2020), we augment 1008

the WIQA dataset (Tandon et al., 2019). An example of an augmented data instance is shown below: 1009

{ 1010

"paragraph": [ 1011

"Water from oceans, lakes, rivers, swamps, and plants turns into water vapor", 1012

"Water vapor forms droplets in clouds", 1013

"Water droplets in clouds become rain or snow and fall", 1014

"Some water goes into the ground", 1015

"Some water flows down streams into rivers and oceans", 1016
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""1017

],1018

"choices": [1019

{"label": "A", "text": "more"},1020

{"label": "B", "text": "less"},1021

{"label": "C", "text": "no effect"}1022

],1023

"qa_pairs": [1024

{1025

"question": "suppose there is less water on the ground happens, how will it1026

affect less rain will fall.",1027

"answer_label": "more",1028

"answer_label_as_choice": "A"1029

},1030

{1031

"question": "suppose there is more water on the ground happens, how will it1032

affect less rain will fall.",1033

"answer_label": "less",1034

"answer_label_as_choice": "B"1035

},1036

{1037

"question": "suppose more tadpoles develop in eggs happens, how will it affect1038

less rain will fall.",1039

"answer_label": "no_effect",1040

"answer_label_as_choice": "C"1041

},1042

1043

{ ... additional QA pairs ... }1044

]1045

}1046

Data Cleaning: Our primary objective is to verify whether an LLM provides consistent answers when1047

performing question-answering independently on related questions. To this end, we first group related1048

questions by:1049

• Grouping questions that share the same paragraph.1050

• Selecting questions whose lists of words differ by at most two words.1051

For example, a group of related QA pairs might include:1052

{1053

"question": "suppose there is more water on the ground happens, howwill it1054

affect a more intense water cycle.",1055

"answer_label": "more",1056

"answer_label_as_choice": "A"1057

},1058

{1059

"question": "suppose there is less water on the ground happens, how will it1060

affect a more intense water cycle.",1061

"answer_label": "less",1062

"answer_label_as_choice": "B"1063

},1064

{1065
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"question": "suppose there is more water on the ground happens, how will it 1066

affect a less intense water cycle.", 1067

"answer_label": "less", 1068

"answer_label_as_choice": "B" 1069

}, 1070

{ 1071

"question": "suppose there is less water on the ground happens, how will it 1072

affect a less intense water cycle.", 1073

"answer_label": "more", 1074

"answer_label_as_choice": "A" 1075

} 1076

If an LLM answers all these questions correctly, the corresponding QA pairs are consistent. However, 1077

consistency does not require perfect accuracy; in our augmented WIQA dataset, the answers follow one of 1078

three formats: more, less, or no effect. To facilitate automated consistency measurement, we discard 1079

QA pairs with the no effect answer and retain only those with more or less. In this setup, if an LLM 1080

answers all questions correctly or incorrectly, it is considered to have responded consistently. Only groups 1081

with at least two QA pairs are used in our experiments. 1082

D.4.2 Prompt Design 1083

Prompt for Question-Answering: The WIQA dataset provides a paragraph as context alongside each 1084

question. We use the following prompt to obtain the LLM’s prediction for each question: 1085

Prompt: Given the following paragraphs, please select the correct answer for the given question. 1086

Return only the answer. 1087

Paragraphs: {A collection of sentences} 1088

Choices: more, less 1089

Question: {question} 1090

Specifically, please carefully read the question. For example, assume the question is "suppose 1091

less water in the environment happens, how will it affect a less intense water cycle." If you 1092

believe that a decrease in water leads to a less intense water cycle, you should answer more 1093

because less water results in a "less" intense water cycle. 1094

Self-Check Mechanism: The self-check mechanism leverages the LLM’s own architecture to perform 1095

set-level verification. In this process, the LLM is prompted—using a zero-shot chain-of-thought (CoT) 1096

approach—to verify the consistency of the question–prediction pairs it generated. 1097
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