
Under review as a conference paper at ICLR 2023

CURRICULUM-INSPIRED TRAINING FOR SELECTIVE
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of training neural network models for selective classifi-
cation, where the models have the reject option to abstain from predicting certain
examples as needed. Recent advances in curriculum learning have demonstrated
the benefit of leveraging the example difficulty scores in training deep neural net-
works for typical classification settings. Example difficulty scores are even more
important in selective classification as a lower prediction error rate can be achieved
by rejecting hard examples and accepting easy ones. In this paper, we propose a
curriculum-inspired method to train selective neural network models by leverag-
ing example difficulty scores. Our method tailors the curriculum idea to selective
neural network training by calibrating the ratio of easy and hard examples in each
mini-batch, and exploiting difficulty ordering at the mini-batch level. Our exper-
imental results demonstrate that our method outperforms both the state-of-the-art
and alternative methods using vanilla curriculum techniques for training selective
neural network models.

1 INTRODUCTION

In selective classification, the goal is to design a predictive model that is allowed to abstain from
making a prediction whenever it is not sufficiently confident. A model with this reject option is called
a selective model. In other words, a selective model will reject certain examples as appropriate,
and provide predictions only for accepted examples. In many real-life scenarios1, such as medical
diagnosis, robotics and self-driving cars (Kompa et al., 2021), selective models are used to minimize
the risk of wrong predictions on the hard examples by abstaining from providing any predictions and
possibly seeking human intervention.

In this paper, we focus on selective neural network models, which are essentially neural network
models with the reject option. These models have been shown to achieve impressive results (Geif-
man & El-Yaniv, 2019; 2017; Liu et al., 2019). Specifically, Geifman & El-Yaniv (2019) proposed
a neural network model, SELECTIVENET, that allows end-to-end optimization of selective models.
SELECTIVENET contains a main body block followed by three heads: one for minimizing the error
rate among the accepted examples, one for selecting the examples for acceptance or rejection, and
one for the auxiliary task of minimizing the error rate on all examples. These three heads are illus-
trated later in Figure 1. The final goal of this model is to minimize the error rate among the accepted
examples while satisfying a coverage constraint in terms of the least percentage of examples that
need to be accepted. The coverage constraint is imposed to avoid the trivial solution of rejecting all
examples to get a 0% error rate. Ideally, the model should reject hard examples and accept easy ones
to lower its overall error rate. While it is clear that difficulty scores are helpful, they are typically un-
known in most settings. Therefore, to leverage difficulty scores we must overcome two challenges:
(1) how to obtain the difficulty scores as accurately as possible and (2) how to best utilize them in a
selective neural network model.

Recent curriculum learning techniques have investigated how to use example difficulty scores to
improve neural network models’ performance (Hacohen & Weinshall, 2019; Wu et al., 2020). To
the best of our knowledge, these techniques only consider the typical classification setting where
the error rate on all examples should be minimized. Curriculum learning techniques often use a

1These are further elaborated in Section A.1 in the appendix.

1



Under review as a conference paper at ICLR 2023

scoring function to estimate the difficulty scores. There are different approaches to constructing
a scoring function from a reference model, such as (1) confidence score (Hacohen & Weinshall,
2019), (2) learned epoch/iteration (Wu et al., 2020), and (3) estimated c-score (Jiang et al., 2020).
Prior work has shown that these scoring functions are highly correlated with one another and lead
to similar performance (Wu et al., 2020). Existing curriculum learning techniques use the estimated
difficulty scores only to decide the order of examples being exposed to the model during the training
process. Typically, they expose easy examples to the model during the early phase of the training
process, and gradually transition to the hard examples as the training progresses. In this paper,
we consider selective classification, which has a more relaxed goal: minimize the error rate on the
accepted examples for a given coverage constraint. Difficulty scores are even more useful in selective
classification, because the selection of accepted examples has a direct impact on the model’s final
performance (i.e., a lower error rate can be achieved by rejecting hard examples and accepting easy
ones). This inspires us to design a new method for training selective neural network models.

Contributions. In this paper, we propose a new method for training selective neural network models
inspired by curriculum learning. Our curriculum-inspired method has two benefits. First, existing
training methods ignore the coverage constraint when constructing the mini-batch for each iteration,
which we show will introduce misguiding noise to the training progress of selective neural network
models. Taking advantage of the estimated difficulty scores, our method calibrates the ratio of easy
and hard examples in each mini-batch to match the desirable value due to the coverage constraint.
Second, our method also adopts the curriculum idea of increasing difficulty levels gradually over
the training process, which has been demonstrated to improve neural network training (Hacohen &
Weinshall, 2019; Wang et al., 2021). However, instead of relying on existing vanilla curriculum
techniques that exploit difficulty ordering at the example level, our method is tailored to selective
neural network training by exploiting difficulty ordering at the mini-batch level. We will show that
this change is necessary because of the need to match coverage constraint as just explained.

To summarize, we make the following contributions:

1. To the best of our knowledge, we are the first to investigate the benefits of leveraging
example difficulty scores to improve selective neural network model training.

2. We design a new curriculum-inspired method with two benefits for training selective neural
networks: (a) calibrating the ratio of easy and hard examples in each mini-batch, which has
been ignored by existing methods (Section 4.1); (b) adopting a curriculum idea which is
tailored to selective neural network training by exploiting difficulty ordering at the mini-
batch level (Section 4.2).

3. We conduct extensive experiments demonstrating that our method improves the converged
error rate (up to 13% lower) of selective neural network models compared to the state-of-
the-art (Section 5.2). We also show that our method is better than alternative designs using
vanilla techniques from existing curriculum learning literature (Section 5.3).

2 RELATED WORK

Selective classification. Prior work on selective classification primarily focuses on adding the reject
option to classical learning algorithms such as SVM (Fumera & Roli, 2002), nearest neighbors (Hell-
man, 1970), boosting (Cortes et al., 2016) and online learning methods (Cortes et al., 2018). In
particular, (Geifman & El-Yaniv, 2017) applies selective classification techniques in the context of
deep neural networks (DNNs). They show how to construct a selective classifier given a trained
neural network model. They decide whether or not to reject each example based on a confidence
score. They rely on two techniques for extracting confidence scores from a neural network model:
Softmax Response (SR), and Monte-Carlo dropout (MC-dropout). SR is the maximal activation in
the softmax layer for a classification model, which is used as the confidence score. MC-dropout es-
timates the confidence score based on the statistics of numerous forward passes through the network
with the dropout applied. Unfortunately, MC-dropout requires hundreds of forward passes for each
example, incurring a massive computational overhead. More recently, Geifman & El-Yaniv (2019)
proposes a selective neural network that jointly learns a predictive function and a selection function.
This model is trained end-to-end, resulting in a selective model that is optimized over the covered
domain. They show empirically that this selective neural network outperforms previous methods
based on SR or MC-dropout. In addition, inspired by portfolio theory, Liu et al. (2019) propose a

2



Under review as a conference paper at ICLR 2023

new loss function for selective classification based on the doubling rate of gambling. Self-adaptive
training (Huang et al., 2020) that calibrates training process by model predictions can also be ap-
plied to selective classification. In Gangrade et al. (2021), the selective classification is formulated
into optimising a collection of class-wise decoupled one-sided empirical risks. However, none of
the prior work in selective classification has exploited estimated difficulty scores as in curriculum
learning, which is what we propose for the first time in this paper.

Curriculum learning. Inspired by how human students are gradually introduced to concepts with
increasing complexity, curriculum learning techniques train neural networks by feeding easier ex-
amples earlier in the training process and gradually transitioning to more difficult examples. There
is a huge surge of interests in applying curriculum learning to different domains in recent years,
e.g., image classification (Guo et al., 2018), machine translation (Platanios et al., 2019), language
model pre-training (Li et al., 2021), healthcare prediction (El-Bouri et al., 2020) and graph learn-
ing (Gong et al., 2019). Despite the differences among domains, these techniques follow a general
pattern where a sequence of training criteria are presented to the model over T training steps and
the training criteria affect how examples are selected at each step (Wang et al., 2021; Soviany et al.,
2022). Typically, example selection works in the following way: the mini-batch at each iteration is
uniformly sampled from a working subset, which starts with a few easiest examples, and is being
appended with harder and harder examples after every several epochs until all the training examples
are added. Our curriculum-inspired method is also based on the above example selection strategy.
Note that anti-curriculum method uses the opposite strategy by starting from the hardest examples
and transitioning to easier examples. We do not consider the anti-curriculum strategy because it has
been shown to have worse performance than normal curriculum strategy in recent studies (Wu et al.,
2020; Hacohen & Weinshall, 2019). Similarly, another type of strategies for example selection that
is different from curriculum learning is example weighting (Shrivastava et al., 2016; Katharopoulos
& Fleuret, 2018). However, some studies (Wang et al., 2021; Soviany et al., 2022) have shown that
example weighting methods are more prone to noise and outliers in the datasets, because they tend
to select the hardest examples which might actually be noise and outliers. In this paper, we focus on
curriculum learning due to its suitability for handling complex real-world scenarios where selective
classification is usually applied.

3 BACKGROUND

In this section we describe the problem formulation for selective classification, the selective neural
network model and a baseline method for training it.

3.1 SELECTIVE CLASSIFICATION PROBLEM FORMULATION

Here, we consider the multi-class classification setting. Let X be the input feature space, Y the label
space and P (X ,Y) a distribution over X × Y . A predictive model is a function f : X → Y . Given
a loss function l : Y × Y → R+, the risk of the model f is EP (X ,Y)[l(f(x), y)]. In the classical
supervised learning, the goal is to find the model f such that the model risk is minimized.

In this paper, we consider the selective model which is a pair of functions (f, g) where f : X → Y
is the predictive model, and g : X → {0, 1} is a selection function. The selection function is used
to decide whether each example x is accepted or not:

(f, g)(x) =

{
f(x), if g(x) = 1;
ABSTAIN, if g(x) = 0.

(1)

Thus, the selective model rejects (i.e., abstains from) an example x iff g(x) = 0. Note that a
soft selection function g : X → [0, 1] can also be considered, from which decisions are taken
probabilistically or deterministically using a threshold. The selective risk of (f, g) is

R(f, g) =
EP [l(f(x), y)g(x)]

EP [g(x)]
. (2)

The coverage ϕ(g) is defined as EP [g(x)], i.e., the ratio of the number of accepted examples among
all examples. Clearly, there is a trade-off between risk and coverage. In other words, a lower risk
could be achieved by sacrificing the coverage. The entire performance of a selective model can be

3



Under review as a conference paper at ICLR 2023

measured via its risk-coverage curve (El-Yaniv et al., 2010). As with Geifman & El-Yaniv (2019),
we adopt the goal of finding the model (f, g) such as its selective risk is minimized given a target
coverage c.

Given a labeled set S = {(xi, yi)}mi=1, there are empirical counterparts for the selective risk and
coverage. The empirical selective risk is

r̂(f, g|S) =
1
m

∑m
i=1 l(f(xi), yi)g(xi)

ϕ̂(g|S)
, (3)

and the empirical coverage is

ϕ̂(g|S) = 1

m

m∑
i=1

g(xi). (4)

3.2 SELECTIVE NEURAL NETWORK MODEL

In this paper, we focus on the neural network model SELECTIVENET from Geifman & El-Yaniv
(2019) because of its impressive empirical performance. SELECTIVENET optimizes both f and g in
a single neural network model. The main body block can be any type of architecture that is typically
used for solving the problem at hand. For example, convolutional neural networks or residual neural
networks are typically used for image classification (Krizhevsky et al., 2012; He et al., 2016), and
transformer networks are typically used for natural language understanding (Devlin et al., 2018).
SELECTIVENET has three output heads for prediction f , selection g and auxiliary prediction h,
respectively. The prediction head f and selection head g are the two functions previously defined
defined in Section 3.1. The auxiliary head h handles a prediction task with the goal of exposing
the main body block to all training examples throughout the training process. As with Geifman &
El-Yaniv (2019), the auxiliary head h uses the same prediction task assigned to f in this paper. We
only need h during training by adding its loss function (defined later in Equation 6) to the main
selective classification loss (Equation 5). Given a training set S = {xi, yi}mi=1 and a target coverage
c, the selective training objective for the heads f and g is

L(f,g) = r̂(f, g) + λmax(0, c− ϕ̂(g|S))2 (5)

where λ is a hyper-parameter. The standard loss function is used for auxiliary head h:

Lh =
1

m

m∑
i=1

l(h(xi), yi). (6)

Thus, the overall training objective is

L = αL(f,g) + (1− α)Lh, (7)

where α is a hyper-parameter controlling the relative importance of the above two losses. A stochas-
tic gradient descent (SGD)-type optimization method is used to minimize the above objective (Geif-
man & El-Yaniv, 2019), which is an iterative process. At each iteration, a mini-batch of examples
are picked from the entire training set, which are used to compute the gradient to update the model
parameters. We treat this training method as our baseline, and propose a new method inspired by
curriculum learning in the next section.

It is worth noting that, regardless of the value of the target coverage c, all examples participate
and are accounted for in minimizing our training objective (Equation 7). This is because the
selection head g (used to decide whether an example should be accepted or not) is trained over
all examples. Furthermore, the auxiliary head is optimized over all examples as it has shown to
improve the main body block training (Geifman & El-Yaniv, 2019). Once the training is completed,
the auxiliary head is no longer needed. We keep the prediction head f and selection head g together
with the main body block, and use them for selective classification according to Equation 1.

4 CURRICULUM-INSPIRED TRAINING METHOD

Inspired by curriculum learning, we propose a new method for training the selective neural network
model. Our method is presented in Algorithm 1. The key idea here is to (1) construct mini-batches

4



Under review as a conference paper at ICLR 2023

by calibrating the ratio of easy and hard examples, and (2) exploit the difficulty ordering at the mini-
batch level, i.e., control the order in which the mini-batches are exposed by gradually narrowing the
difficulty gap between easy and hard examples within each mini-batch. These steps are discussed in
Sections 4.1 and 4.2, respectively. In Section 4.3, we discuss our approach to estimate the example
difficulty scores.

4.1 MINI-BATCH CONSTRUCTION

Algorithm 1 Curriculum-inspired method for training selective
neural network.

1: Input: training set S, target coverage c, mini-batch size b,
pacing function p and scoring function q

2: Output: sequence of mini-batches [B1, B2, · · · ]
3: Sort S according to q in ascending order //easier examples

are before the harder examples
4: result← []
5: for i← 1 to T do //T is the total number of iterations
6: size← p(i);
7: sizeE ← ⌈p(i) ∗ c⌉; //the size of easy active set SE

8: sizeH ← size−sizeE ; //the size of hard active set SH

9: SE = S[: sizeE ]; //select the first sizeE examples
from the ordered training set S

10: SH = S[−sizeH :]; //select the last sizeH examples
from ordered training set S)

11: BE ← uniformly sample ⌈b ∗ c⌉ examples from SE ;
12: BH ← uniformly sample b−⌈b ∗ c⌉ examples from SH ;
13: Bi = BE

⋃
BH ; //form the mini-batch for the i-th

iteration
14: append Bi to result;
15: end for
16: Return: result

Since we are using a stochas-
tic gradient descent (SGD)-type
optimization method to train the
selective neural network model,
we need to construct a mini-
batch of examples to be exposed
at each iteration. We can show2

that, when the mini-batch has
the proportion of easy examples
different from the target cov-
erage, as a result of minimiz-
ing the loss during the training,
even an already perfect selection
function tends to move to the di-
rection where mistakes will be
made (i.e., reject easy exam-
ples or accept hard examples).
Therefore, a mini-batch which
has the proportion of easy ex-
amples different from the target
coverage will misguide the se-
lection function regarding which
examples should be accepted or
rejected, which further affects
the prediction head’s learning
progress. Fortunately, we can leverage the estimated difficulty scores to alleviate this issue. Specif-
ically, we partition all the training examples into an easy set and a hard set according to their es-
timated scores. Assume the mini-batch size is b, the total number of iterations is T and the total
number of training examples is m. The easy set contains m ∗ c examples with the lowest difficulty
scores, whereas the hard set contains the rest of the examples. We construct the mini-batch by se-
lecting ⌈b ∗ c⌉ examples from the easy set, called BE , and b − ⌈b ∗ c⌉ examples from the hard set,
called BH , as shown in Lines 11 and 12 of Algorithm 1. The union of BE and BH becomes the
mini-batch Bi for the i-th iteration (Algorithm 1 Line 13). Here, we use the ⌈·⌉ operator because
b ∗ c may not be an integer. By calibrating the ratio of easy and hard examples in each mini-batch in
the above manner, we can ensure that the proportion of easy examples is roughly c.

4.2 MINI-BATCH ORDERING

Curriculum learning techniques suggest exposing easy examples to the model early on in the training
process, and gradually transitioning to hard examples. We still adopt the curriculum idea, but we ar-
gue that in a selective neural network context, curriculum should be designed at the batch level. We
cannot expose examples exactly the same way that curriculum learning does because our mini-batch
should include both easy and hard examples with their ratio appropriately calibrated to meet the cov-
erage constraint, as explained earlier in subsection 4.1. We therefore need to generalize curriculum
learning to impose the ordering at the mini-batch level, i.e., by exposing easy mini-batches to the
model early in the training process. The key intuition is as follow. We consider a mini-batch easy
for the model (especially its selection head) if its constituent easy examples are clearly separate
from its constituent hard examples in terms of their difficulty scores. Similarly, we consider a
mini-batch hard if its constituent easy examples are close to its constituent hard examples in terms of

2Detailed explanations are included in Section A.2 in the appendix.

5



Under review as a conference paper at ICLR 2023

their difficulty scores. We propose to expose easy mini-batches to the model early in the training and
gradually transition to hard mini-batches. This enables us to gradually narrow down the difficulty
gap between easy and hard examples. Similar to other curriculum learning techniques (Hacohen
& Weinshall, 2019), we also need to provide two functions as the input to our curriculum-inspired
method: a pacing function p and a scoring function q. A pacing function p is used to control the
curriculum pace, i.e., the speed at which we transition from easy to hard mini-batches. A scoring
function q is used to indicate how hard each example is (i.e., estimated difficulty score), which will
be explained in the next subsection.

Specifically, the pacing function p will output an integer p(i) for each iteration i, which we then use
to decide how many examples to consider via uniform sampling when constructing the i-th mini-
batch (Algorithm 1 Line 6). In this paper, we use the fixed exponential pacing function from Haco-
hen & Weinshall (2019) because of its good performance in practice. At the i-th iteration, instead of
picking the p(i) easiest examples from the training set, we choose ⌈p(i) ∗ c⌉ easiest examples as the
easy active set, called SE , and p(i) − ⌈p(i) ∗ c⌉ hardest examples as the hard active set, called SH

(Algorithm 1 Line 9 and Line 10). Then, we uniformly sample ⌈b ∗ c⌉ examples from SE , called
BE , and uniformly sample b−⌈b ∗ c⌉ examples from SH , called BH (Algorithm 1 Line 11 and Line
12). The union of BE and BH becomes the mini-batch Bi for the i-th iteration (Algorithm 1 Line
13). The entire process is also illustrated in Figure 1.

4.3 DIFFICULTY SCORE ESTIMATION

Mini-
batch Main Body

Prediction

Se
le

ct
io

n

Auxiliary

!(#,%)

!'

()

(*

Sampling

Sampling

+)

+*

Tr
ai

ni
ng

 E
xa

m
pl

es
 O

rd
er

ed
 b

y 
Di

ffi
cu

lty
 S

co
re

s

Figure 1: Diagram of our curriculum-inspired method for
training the selective neural network model. The training
examples are ordered by their difficulty scores as shown in
the left-most box. Hard examples are at the top (red color)
and easy examples are at the bottom (green color). At each
iteration, the mini-batch is constructed by sampling from
both the hard part and the easy part, with their ratio appro-
priately calibrated. As training process goes, we gradually
narrow the difficulty gap between easy and hard examples,
indicated by the boundaries of the easy and hard parts mov-
ing towards each other in the diagram.

We use the following approach
for getting the scoring function q,
which outputs a scalar value q(x)
for each example x as its esti-
mated difficulty score. First, we
train the same model using uni-
formly sampled mini-batches (i.e.,
vanilla method), and run each ex-
ample through it to get the activa-
tion levels of its main body output
as its condensed representation. We
then run an outlier detection algo-
rithm, Minimum Covariance Deter-
minant (MCD) (Rousseeuw, 1984),
to compute the Mahalanobis distance
for each example with respect to all
examples that belong to the same
class with this example. The idea be-
hind MCD is to find a subset of exam-
ples whose empirical covariance has
the smallest determinant, hence re-
sulting in the tightest representation
of the overall dataset, which may oth-
erwise be quite noisy and have out-
liers. This subset of examples is then
used to compute the center location
µ and covariance Σ. For any example x, its Mahalanobis distance is computed as d(x) =
(x−µ)TΣ−1(x−µ). The larger the Mahalanobis distance d(x), the noisier the example x. We thus
treat d(x) as the scoring function output q(x) for example x, i.e., q(x) = d(x),∀x.

In practice, the overhead of this new approach for difficulty score estimation should not become a
concern. Firstly, the model using uniform sampling (i.e., without rejection) needs much less itera-
tions to get an estimation of difficulty scores than the model with rejection. In all of our experiments,
we use half of the iterations compared to training the model with rejection. Secondly, we run the
MCD separately for the examples belonging to each class. The number of examples in each class
is typically small enough for running MCD (e.g., 5k for CIFAR10, 7k for SVHN and 500 for CI-
FARI100). Both factors limit the overhead of our approach. What’s more, the overhead of getting
difficulty score estimation can be greatly reduced by simply using an exiting approach based on

6



Under review as a conference paper at ICLR 2023

Table 1: Results of moderate-sized CNN model on CIFAR10. Testing classification error rates (in
%) are shown for different target coverage rates. The relative improvement of error rates of our
method w.r.t. SelectiveNet is shown at the last column.

Coverage Error Rate Impr.Our Method SelectiveNet
0.95 7.32± 0.05 7.57± 0.1 3.30%
0.9 5.63± 0.04 6.07± 0.1 7.25%
0.85 4.30± 0.04 4.53± 0.08 5.08%
0.8 3.02± 0.02 3.47± 0.07 12.97%
0.75 2.16± 0.04 2.45± 0.07 11.84%
0.7 1.47± 0.02 1.67± 0.08 11.98%

Table 2: Results of moderate-sized CNN model on CIFAR100. Testing classification error rates
(in %) are shown for different target coverage rates. The relative improvement is shown at the last
column.

Coverage Error Rate Impr.Our Method SelectiveNet
0.95 30.63± 0.06 31.13± 0.22 1.61%
0.9 28.95± 0.08 29.05± 0.14 0.35%
0.85 27.07± 0.08 27.32± 0.09 0.92%
0.8 25.00± 0.05 25.39± 0.07 1.54%
0.75 23.16± 0.03 23.67± 0.05 2.15%
0.7 21.28± 0.02 21.97± 0.03 3.14%

off-the-shelf pre-trained models (e.g., Inception in our ablation study in Section 5.3). Equipped
with either approach for getting difficulty score estimation, our method can outperform the baseline.
However, our new difficulty estimation approach leads to better empirical performance. We think
this is because MCD offers the robustness needed for handling complex datasets (which might be
noisy with outliers).

5 EXPERIMENTS

In this section, we evaluate our proposed method and compare it against a state-of-the-art method
for training selective neural network models. Similar to Geifman & El-Yaniv (2019), we also report
both the testing classification error rates (which is the same as selective risk values when using 0-1
loss) as well as the relative improvements of the error rates. In summary, our experiments show the
following 3: (1) our method achieves a lower error rate (up to 10% lower) than the state-of-the-art
for the same target coverage rate for a variety of different main body network architectures and
datasets (section 5.2); (2) our method is better than other alternative designs using difficulty scores
or example selection from existing curriculum learning literature (section 5.3).

5.1 SETUP

Datasets. Similar to prior work, we use the following three datasets: CIFAR10 (Krizhevsky et al.,
2009), CIFAR100 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011) in our experiments.

Baseline method and architectures. We compare our method against SELECTIVENET (Geifman
& El-Yaniv, 2019), which is considered the state-of-the-art. We vary the target coverage rate c with
6 different values: 0.95, 0.9, 0.85, 0.8, 0.75, 0.7. We use two different neural network architectures
for the main body of our selective neural network model: moderate-sized convolutional network ar-
chitecture (Hacohen & Weinshall, 2019) and VGG-16 architecture (Simonyan & Zisserman, 2014).
Details about these architectures can be found in the appendix.

3In the appendix, we also show that (i) our method has a faster convergence speed (up to 50% faster) than
the state-of-the-art (section A.5), and (ii) our method can reduce the coverage violation (i.e., the difference
between target coverage and empirical coverage) by more than 10% (section A.6)

7



Under review as a conference paper at ICLR 2023

Table 3: Results of moderate-sized CNN model on SVHN. Testing classification error rates (in %)
are shown for different target coverage rates. The relative improvement is shown at the last column.

Coverage Error Rate Impr.Our Method SelectiveNet
0.95 1.91± 0.03 2.08± 0.02 8.17%
0.9 1.03± 0.04 1.12± 0.06 8.04%
0.85 0.63± 0.02 0.66± 0.01 4.55%
0.8 0.49± 0.03 0.51± 0.02 3.92%
0.75 0.41± 0.01 0.42± 0.03 2.38%
0.7 0.35± 0.01 0.39± 0.01 10.26%

Table 4: Results of VGG model on CIFAR100. Testing classification error rates (in %) are shown
for different target coverage rates. The relative improvement is shown at the last column.

Coverage Error Rate Impr.Our Method SelectiveNet
0.95 28.41± 0.07 28.92± 0.09 1.76%
0.9 25.67± 0.04 25.78± 0.02 0.43%
0.85 22.94± 0.02 23.56± 0.08 2.63%
0.8 21.40± 0.03 21.99± 0.02 2.68%
0.75 18.25± 0.01 18.91± 0.08 3.49%
0.7 16.09± 0.02 16.32± 0.01 1.41%

Training details. We follow the settings from Geifman & El-Yaniv (2019) whenever possible. We
train each model for 300 epochs, with an initial learning rate of 0.1 which is reduced by half every 25
epochs. The model is optimized using stochastic gradient descent (SGD) with momentum 0.9 and
weight decay 5e − 4. All experiments are repeated 3 times similar to SELECTIVENET. We report
both the average value and standard deviation (following ±). The classification error rate that we
report in our experiments is the percentage of incorrectly predicted examples among all the accepted
examples, by evaluating the selective model on the hold-out test sets. Note that classification error
rate is the same as empirical selective risk value when using the 0-1 loss. All experiments are run
using NVIDIA V100 GPUs.

Post-training calibration. We report the calibrated selective error rate as the metric for comparing
against the baseline for each target coverage value. To get the calibrated selective error, we estimate
an appropriate threshold τ for selection head output values on a validation set, and use the following
calibrated rule for our predictions:

(f, g)(x) =

{
f(x), if g(x) ≥ τ ;
ABSTAIN, otherwise .

(8)

This calibration process is used to correct for the difference between the post-training empirical
coverage ϕ̂ and the target coverage c. Specifically, given a validation set V , we set τ to be the
100(1− c) percentile of the distribution of g(xi), xi ∈ V .

5.2 SELECTIVE CLASSIFICATION RESULTS

Moderate-sized CNN. As with Hacohen & Weinshall (2019), we conduct experiments using
moderate-sized convolutional neural networks (CNN) on all three datasets CIFAR10, CIFAR100
and SVHN. The corresponding results are shown in Table 1, Table 2, and Table 3. It can be seen
that, as the target coverage rate becomes smaller, the error rate is lower for both our method and
the baseline. This behavior is expected because, in general, any selective model should be able to
trade-off coverage for error rate, i.e., lower the error by reducing coverage. However, achieving
lower error becomes more challenging when the target coverage is smaller because the model needs
to figure out which additional examples should be further rejected.

Overall, our method outperforms the baseline by achieving lower selective error rates for each target
coverage rate (corresponding to each row in the above mentioned tables). Our method consistently

8



Under review as a conference paper at ICLR 2023

Table 5: Ablation study with moderate-sized CNN on CIFAR10. Testing classification error rates (in %) are
shown below.

Coverage Our Method SelectiveNet Inception Vanilla-Selection
0.9 5.63± 0.04 6.07± 0.1 5.87± 0.05 5.98± 0.04
0.8 3.02± 0.02 3.47± 0.07 3.14± 0.05 3.35± 0.04
0.7 1.47± 0.02 1.67± 0.08 1.59± 0.02 1.66± 0.03

improves upon the baseline across all three datasets. These improvements are even higher for CI-
FAR10 and SVHN (up to 10%), especially when the target coverage is small. This demonstrates
that our method is very effective at trading off the coverage for even lower error rate.

VGG. We also conduct experiments using the VGG-16 model (Simonyan & Zisserman, 2014) on
the CIFAR100 dataset, because of VGG-16’s strong prediction ability which is desired for the CI-
FAR100 dataset. VGG is a larger image recognition model with more layers. As shown in Table 5,
our method still outperform the baseline SELECTIVENET consistently across all different target cov-
erage rates. This verifies that our method can be applied to different backbone models. It is worth
noting that, compared with the moderate-sized CNN on CIFAR100 shown in Table 2, the error rate
for either method is smaller smaller in Table 5 for the same coverage rate. This is expected because
VGG model is larger in size (more layers). In addition, the average improvement from Table 2 is
1.61% while the average improvement from Table 5 is 2.07%. This implies that our method can
achieve an even greater improvement with larger models.

5.3 ABLATION STUDY

We conduct ablation study to validate our design decisions by comparing our method against two
variations of it. Note that our method is composed of two components: (1) estimating the difficulty
scores, and (2) selecting examples for each mini-batch during training. To show that both compo-
nents play an important role in the overall success of our method, we implement two variants, each
using one component from existing work. Inception is a variant of our method using the pre-trained
inception model for difficulty estimation (i.e., transfer scoring function in Hacohen & Weinshall
(2019)). Vanilla-Selection is another variant of our method using the vanilla method of selecting
examples for each mini-batch that is typically used in existing curriculum literature. Different from
our method which considers ordering at the mini-batch level, existing curriculum learning litera-
ture typically consider ordering at the example level while selecting examples for each mini-batch.
Specifically, they construct the mini-batch by uniformly sampling from a working subset, which
starts with a few easiest examples, and is being appended with harder and harder examples after ev-
ery several epochs until all the training examples are added (Wang et al., 2021; Soviany et al., 2022).
We adopt this strategy in Vanilla-Selection which can be viewed as applying the vanilla curriculum
learning (e.g., Algorithm 1 from Hacohen & Weinshall (2019)) to selective classification domain.

As reported in Table 5, both variants have higher error rates than our method, validating that both
components are integral to and contribute to our method’s impressive performance. Especially, ap-
plying the vanilla curriculum learning to the selective classification domain as in Vanilla-Selection
is not as good as our method which has a specially tailored curriculum learning strategy. In addi-
tion, even though our method involves an overhead of model training in order to get the difficulty
score estimation, this overhead is paid only once even if the coverage needs to change. Inception
is the variant without this overhead since the off-the-self pre-trained inception model can be readily
obtained online. If one does not wish to pay the upfront overhead of our method, these results imply
that even Inception outperforms the baseline.

6 CONCLUSION

In this paper, we proposed a curriculum-inspired method to train selective neural network mod-
els by leveraging difficulty scores. Our method calibrates the ratio of easy and hard examples in
each mini-batch to match what is best desired by the training objective. We generalize curriculum
learning by utilizing difficulty scores to reorder mini-batches rather than simply reorder examples.
Extensive experiments show the superior performance of our method compared to state-of-the-art
SELECTIVENET.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Boosting with abstention. Advances in Neural
Information Processing Systems, 29:1660–1668, 2016.

Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, and Scott Yang. Online learning
with abstention. In international conference on machine learning, pp. 1059–1067. PMLR, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Rasheed El-Bouri, David Eyre, Peter Watkinson, Tingting Zhu, and David Clifton. Student-teacher
curriculum learning via reinforcement learning: predicting hospital inpatient admission location.
In International Conference on Machine Learning, pp. 2848–2857. PMLR, 2020.

Ran El-Yaniv et al. On the foundations of noise-free selective classification. Journal of Machine
Learning Research, 11(5), 2010.

Giorgio Fumera and Fabio Roli. Support vector machines with embedded reject option. In Interna-
tional Workshop on Support Vector Machines, pp. 68–82. Springer, 2002.

Aditya Gangrade, Anil Kag, and Venkatesh Saligrama. Selective classification via one-sided predic-
tion. In International Conference on Artificial Intelligence and Statistics, pp. 2179–2187. PMLR,
2021.

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. arXiv preprint
arXiv:1705.08500, 2017.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject
option. In International Conference on Machine Learning, pp. 2151–2159. PMLR, 2019.

Chen Gong, Jian Yang, and Dacheng Tao. Multi-modal curriculum learning over graphs. ACM
Transactions on Intelligent Systems and Technology (TIST), 10(4):1–25, 2019.

Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R Scott, and
Dinglong Huang. Curriculumnet: Weakly supervised learning from large-scale web images. In
Proceedings of the European conference on computer vision (ECCV), pp. 135–150, 2018.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep net-
works. In International Conference on Machine Learning, pp. 2535–2544. PMLR, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Martin E Hellman. The nearest neighbor classification rule with a reject option. IEEE Transactions
on Systems Science and Cybernetics, 6(3):179–185, 1970.

Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical risk
minimization. Advances in neural information processing systems, 33:19365–19376, 2020.

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Exploring the memorization-
generalization continuum in deep learning. 2020.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, pp. 2525–2534. PMLR,
2018.

Benjamin Kompa, Jasper Snoek, and Andrew L Beam. Second opinion needed: communicating
uncertainty in medical machine learning. NPJ Digital Medicine, 4(1):1–6, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

10



Under review as a conference paper at ICLR 2023

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Conglong Li, Minjia Zhang, and Yuxiong He. Curriculum learning: A regularization method for
efficient and stable billion-scale gpt model pre-training. arXiv preprint arXiv:2108.06084, 2021.

Ziyin Liu, Zhikang Wang, Paul Pu Liang, Russ R Salakhutdinov, Louis-Philippe Morency, and
Masahito Ueda. Deep gamblers: Learning to abstain with portfolio theory. Advances in Neural
Information Processing Systems, 32:10623–10633, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and Tom M
Mitchell. Competence-based curriculum learning for neural machine translation. arXiv preprint
arXiv:1903.09848, 2019.

Peter J Rousseeuw. Least median of squares regression. Journal of the American statistical associ-
ation, 79(388):871–880, 1984.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 761–769, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, pp. 1–40, 2022.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work? arXiv preprint
arXiv:2012.03107, 2020.

A APPENDIX

A.1 SCENARIOS WHERE SELECTIVE CLASSIFICATION IS NEEDED

In a nutshell, selective classification is needed in settings where prediction error of the model can
cause critical consequences (e.g., in medical diagnosis or self-driving cars). In these settings, we
would like the model to proactively indicate when it’s not confident in its prediction, so that human
intervention is triggered.

Medical diagnosis. In medical diagnosis, we can train a machine learning model to predict if
a patient has a tumor based on the MRI image. When the model is not confident enough, we can
ask an oncologist, and even call upon an urgent meeting of multiple oncologists across different
hospitals for a group consultation (Kompa et al., 2021).

Self-driving cars. In self-driving cars, we can train a machine learning model to detect the traffic
light, which will help the self-driving car to decide what to do at cross-roads. However, when the
model is not confident enough (e.g., traffic light is not clear due to rain or obstruction), the human
driver should be alerted and take control of the car.

A.2 DETAILED EXPLANATIONS ABOUT TARGET COVERAGE MATCH

We elaborate on why it’s ideal to match the proportion of easy examples in each mini-batch with the
target coverage as briefly mentioned in Section 4.1. We start by showing that the empirical coverage
ϕ̂ will converge to the target coverage c. Then we show that a mini-batch in which the proportion

11



Under review as a conference paper at ICLR 2023

of easy examples is the same as the target coverage is ideal. Therefore, a mini-batch which has the
proportion of easy examples different from the target coverage will misguide the selection function
regarding which examples should be accepted or rejected, which further affects the prediction head’s
learning progress.

Empirical coverage converges to target coverage. As a result of minimizing Equation 5, the
empirical coverage ϕ̂ will converge to the target coverage c. Without being too technically rigorous,
we demonstrate this by showing that, whether or not the empirical coverage ϕ̂ is larger than target
coverage c, the loss L(f,g) (i.e., left hand side of Equation 5) will become smaller if empirical
coverage is moved closer to target coverage.

• When the empirical coverage is larger than the target coverage, the second term of Equa-
tion 5 becomes 0. Note that the first term r̂ is the average loss of accepted examples. By
simply rejecting the example with the highest loss (i.e., decreasing the empirical coverage),
the first term r̂ will become smaller while keeping the second term still 0. Therefore, when
the empirical coverage is larger than the target coverage, decreasing the empirical coverage
will make the loss L(f,g) smaller.

• When the empirical coverage is smaller than the target coverage, the second term is a
positive value. As long as the hyperparameter λ is large enough to make the second term
dominant, the loss L(f,g) will become smaller by increasing the empirical coverage. As
suggested in Geifman & El-Yaniv (2019), the hyperparameter λ is chosen to be a large
value 32 in our experiments. Therefore, when the empirical coverage is smaller than the
target coverage, increasing the empirical coverage will make the loss L(f,g) smaller.

Mini-batch should ideally match target coverage. We now show that a mini-batch in which
the proportion of easy examples is the same as the target coverage is ideal. We demonstrate it by
showing that, when the mini-batch has the proportion of easy examples different from the target
coverage, as a result of minimizing the loss during the training, even an already perfect selection
function tends to move to the direction where mistakes will be made (i.e., reject easy examples
or accept hard examples). Note that, by an already perfect selection function, we mean that the
selection function accepts or rejects examples based on the ground truth (i.e., reject hard examples
or accept easy examples).

• When the proportion of easy examples in the mini-batch is larger than the target coverage,
a perfect selection function gives the empirical coverage on this mini-batch that is larger
than target coverage. As we have just discussed above, when the empirical coverage is
larger than the target coverage, decreasing the empirical coverage will make the loss L(f,g)

smaller. It implies that the selection function tends to reject more examples, which are
actually accepted by a perfect selection function.

• When the proportion of easy examples in the mini-batch is smaller than the target coverage,
a perfect selection function gives the empirical coverage on this mini-batch that is smaller
than target coverage. As we have just discussed above, when the empirical coverage is
smaller than the target coverage, increasing the empirical coverage will make the lossL(f,g)

smaller. It implies that the selection function tends to accept more examples, which are
actually rejected by a perfect selection function.

A.3 MORE DETAILS ABOUT EXPERIMENTAL SETUP

The moderate-sized convolutional network architecture contains 8 convolutional layers with
32, 32, 64, 64, 128, 128, 256, 256 filters respectively. The filter size is 3 × 3 for the first 6 layers
and 2 × 2 for the last 2 layers. There is a 2 × 2 max-pooling layer and a dropout layer with rate
0.25 after every two layers. Following the convolutional layers, there is a fully-connected layer with
512 units and a dropout layer with rate 0.25. At last, another fully connected layer is used to match
the number of classes in the dataset. We omit the detailed layer-by-layer description of VGG-16 as
it is described in Simonyan & Zisserman (2014). In addition, the prediction head f and auxiliary
head h are fully-connected softmax layers, and the selection head g is a fully-connected hidden layer
with 513 neurons, followed by batch normalization, ReLU activation and another fully connected
layer to one output neuron with a sigmoid activation. These architectures have been used in the

12



Under review as a conference paper at ICLR 2023

Table 6: Ablation study with moderate-sized CNN on CIFAR10. Testing error rates (in %) are shown below.
Coverage Our Method SelectiveNet Inception Vanilla-Selection
0.95 7.32± 0.05 7.57± 0.1 7.43± 0.07 7.51± 0.04
0.9 5.63± 0.04 6.07± 0.1 5.87± 0.05 5.98± 0.04
0.85 4.30± 0.04 4.53± 0.08 4.37± 0.03 4.42± 0.02
0.8 3.02± 0.02 3.47± 0.07 3.14± 0.05 3.35± 0.04
0.75 2.16± 0.04 2.45± 0.07 2.23± 0.04 2.38± 0.09
0.7 1.47± 0.02 1.67± 0.08 1.59± 0.02 1.66± 0.03

recent selective classification and curriculum learning papers (Geifman & El-Yaniv, 2019; Hacohen
& Weinshall, 2019; Wu et al., 2020).

A.4 MORE EXPERIMENTAL RESULTS

The complete results of ablation study are shown in Table 6.

40000 60000 80000 100000 120000
Number of Iterations

0.1

0.2

0.3

0.4

0.5

Te
st

in
g 

Lo
ss

SelectiveNet
Our Method

(a) CNN on CIFAR10 with c = 0.9

40000 60000 80000 100000 120000
Number of Iterations

0.1

0.2

0.3

0.4
Te

st
in

g 
Lo

ss

SelectiveNet
Our Method

(b) CNN on CIFAR10 with c = 0.8

40000 60000 80000 100000 120000
Number of Iterations

0.5

1.0

1.5

2.0

2.5

Te
st

in
g 

Lo
ss

SelectiveNet
Our Method

(c) VGG on CIFAR100 with c = 0.9

40000 60000 80000 100000 120000
Number of Iterations

0.5

1.0

1.5

2.0

2.5

Te
st

in
g 

Lo
ss

SelectiveNet
Our Method

(d) VGG on CIFAR100 with c = 0.8

Figure 2: Testing loss vs. the number of iterations for different models on different datasets. Our
method convergences faster by achieving a lower testing loss for the same number of iterations.

A.5 CONVERGENCE SPEED

It has been shown that curriculum learning can improve the convergence speed when training on
various classical neural network models (Hacohen & Weinshall, 2019; Li et al., 2021). In this
section, we investigate whether this applies to our method as well. We plot the curves of testing loss
versus the number of iterations under different settings in Figure 2. Specifically, Figures 2 (a) and
(b) correspond to training moderate-sized CNN on the CIFAR10 dataset with a target coverage of
c = 0.9 and c = 0.8, respectively, while Figures 2 (c) and (d) correspond to training VGG-16 on the
CIFAR100 dataset with a target coverage of c = 0.9 and c = 0.8, respectively. We can see that our
method has a better convergence rate than the baseline because our method achieves a lower testing
loss for the same number of training iterations than SELECTIVENET. To better understand how
faster our method’s converges, we also measure the number of iterations to reach the same testing
loss as summarized in Table 7. Specifically, the testing loss to reach is set as the lowest testing loss

13



Under review as a conference paper at ICLR 2023

Table 7: The number of iterations to reach the target loss for training moderate-sized CNN on the
CIFAR10 dataset. The target loss value is the lowest testing loss achieved by SELECTIVENET for
each coverage rate.

Coverage # of Iterations Impr.Our Method SelectiveNet
0.95 332k 694k 52%
0.9 73k 116k 37%
0.85 97k 459k 79%
0.8 74k 115k 36%
0.75 75k 109k 31%

Table 8: Coverage violation of moderate-sized CNN on CIFAR10. Empirical Coverage (in %) are
shown for different target coverage rates. Our method achieves smaller coverage violation (differ-
ence between target coverage and empirical coverage) than SELECTIVENET.

Coverage (in %) Our Method SelectiveNet Violation ReductionEmpirical Coverage Violation Empirical Coverage Violation
95 90.2± 0.1 4.8 90.0± 0.1 5.0 4%
90 84.7± 0.1 5.3 84.1± 0.2 5.9 10.2%
85 80.7± 0.2 4.3 80.2± 0.1 4.8 10.4%
80 76.6± 0.1 3.4 76.3± 0.2 3.7 8.1%
75 73.1± 0.1 1.9 72.7± 0.3 2.3 17.4%
70 69.3± 0.1 0.7 68.8± 0.1 1.2 41.7%

achieved by SELECTIVENET. It can be seen that our method can reduce the the number of iterations
by up to 80%. This demonstrates that our method is significantly faster than the baseline during
training.

A.6 COVERAGE VIOLATION

Our method leverages the difficulty scores to calibrate the ratio of the difficult and easy examples
in each mini-batch. This could effectively reduce the discrepancy between the target coverage and
empirical coverage (i.e., the coverage on the testing set before applying the calibration process as
described in Equation 8). We measure the empirical coverage and how much it differs from the target
coverage (i.e., violation) as summarized in Table 8. As expected, the empirical coverage achieved by
our method is closer to the target coverage, resulting in smaller violation compared to the baseline
(i.e., SELECTIVENET). The relative reduction of the violation achieved by our method is larger than
10% for most values of target coverage (i.e., 90%, 70%). Especially, when the target coverage is
small, i.e., 70%, the violation reduction is as high as 41.7%.

14


	Introduction
	Related Work
	Background
	Selective Classification Problem Formulation
	Selective Neural Network Model

	Curriculum-inspired Training Method
	Mini-batch Construction
	Mini-batch Ordering
	Difficulty Score Estimation

	Experiments
	Setup
	Selective Classification Results
	Ablation Study

	Conclusion
	Appendix
	Scenarios Where Selective Classification Is Needed
	Detailed Explanations about Target Coverage Match
	More Details about Experimental Setup
	More Experimental Results
	Convergence Speed
	Coverage Violation


