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Abstract

Stereo matching algorithms that leverage end-to-end convolutional neural networks
have recently demonstrated notable advancements in performance. However, a
common issue is their susceptibility to domain shifts, hindering their ability in gen-
eralizing to diverse, unseen realistic domains. We argue that existing stereo match-
ing networks overlook the importance of extracting semantically and structurally
meaningful features. To address this gap, we propose an effective hierarchical
object-aware dual-level contrastive learning (HODC) framework for domain gener-
alized stereo matching. Our framework guides the model in extracting features that
support semantically and structurally driven matching by segmenting objects at
different scales and enhances correspondence between intra- and inter-scale regions
from the left feature map to the right using dual-level contrastive loss. HODC can
be integrated with existing stereo matching models in the training stage, requiring
no modifications to the architecture. Remarkably, using only synthetic datasets for
training, HODC achieves state-of-the-art generalization performance with various
existing stereo matching network architectures, across multiple realistic datasets.

1 Introduction

Stereo matching aims to find horizontal pixel-wise displacement, i.e.disparity, between a rectified
stereo image pair to recover depth for applications including autonomous driving, robotics, and
augmented reality. In recent years, deep learning based stereo matching networks have achieved
state-of-the-art performance in multiple benchmarks [12, 28, 32, 33], benefiting from the expressive
power of deep feature representations.

A typical stereo matching pipeline [3, 13, 51, 34] includes four stages: feature extraction, cost volume
generation, cost aggregation, and disparity regression, which is usually trained in an end-to-end way,
supervised by ground-truth disparity. As collecting dense annotations of disparity for real-world
datasets is often costly, large-scale synthetic datasets (e.g., SceneFlow [27]) are widely adopted to
train stereo matching networks. This however often leads to failures while generalizing to unseen
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Figure 1: Qualitative domain generalization results of PSMNet [3] baseline and HODC-PSMNet
(Ours). The latter is trained with our proposed hierarchical object-aware contrastive loss. Both models
are trained only on the synthetic SceneFlow [27] dataset and evaluated directly on realistic datasets
KITTI-2015 [28] and Middlebury [32].

realistic domains (see the third column in Fig. 1 for example), as stereo matching networks will over-
rely on superficial cues (e.g.local chromatic attributes like color distribution, illumination, texture,
etc.) within synthetic data for disparity estimation.

Recently, several works [7, 49, 31, 4, 48, 34, 35, 16] have attempted to address the synthetic-to-real
generalization gap for stereo matching networks. In order to mitigate over-reliance on the short-cut
features, they either add additional regularization to enforce the feature consistency between left and
right views [49], original images and adversarial perturbations [7], augmented transformations [4], or
introduce specially designed network architectures to enlarge the reception field and extract robust
structural and geometric representations [48, 34, 35, 16]. Though these approaches have shown
promising results in their generalization ability, they do not exploit semantic structure directly as they
depend mainly on pixel-wise loss to optimize disparity predictions.

We claim that semantic structure serves as an important cue to assist correspondence matching,
especially in ambiguous areas like textureless regions and edge boundaries. For example, the disparity
estimation for road and street signs in the first row, and motorcycle wheels in the second row in Fig. 1
are intuitively erroneous, as they violate the semantic consistency prior wherein disparity should have
similar distribution within a local region on the same object. It is however non-trivial to incorporate
semantic information to guide the stereo matching effectively. Early efforts [44, 36] have explored
the semantic and structural information by introducing sub-networks for semantic segmentation [44]
or edge detection [36] in a multi-task learning manner. However, multi-task joint feature learning
couples the two different tasks superficially and cannot incorporate semantic structure to directly
guide stereo matching at the ambiguous areas [26].

In this paper, we propose a novel method to effectively enhance semantically and structurally driven
matching to boost the synthetic-to-real generalization capability of stereo matching networks. Inspired
by the recent success of contrastive learning in learning distinctive visual representations [14, 5, 6, 39,
40, 49, 22, 38, 1, 10, 30, 15, 17, 50, 8], we introduce hierarchical object-aware dual-level contrastive
learning (HODC) to incorporate the semantic guidance into the stereo matching process. Given the
left and right images with object index and ground-truth disparity, we first segment the object index
map at different scales to obtain hierarchical object-aware regional representations. Then, guided by
the ground-truth disparity, we establish accurate correspondences between the representations of the
stereo pair. Using dual-level contrastive learning, we enhance both intra- and inter-scale matching
of the hierarchical object-aware regional representations from the left image to the right. Building
correspondence between these representations enables us to introduce semantically and structurally
driven matching in an explicit and effective manner. As illustrated in Fig. 2, the proposed method can
be easily plugged into different existing stereo matching pipelines without requiring modifications to
their architectures. Extensive evaluations show that the proposed method can substantially improve
the synthetic-to-real generalization ability of different stereo matching networks across most stereo
matching benchmarks and outperforms existing domain generalized methods by a large margin.

In summary, our main contribution is threefold:

• We demonstrate that semantically and structurally driven matching is crucial for the domain
generalization ability of stereo matching networks. To achieve this, we propose a novel
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hierarchical segmentation scheme on objects, enabling the extraction of hierarchical object-
aware representations in a flexible manner.

• We effectively enhance the matching between hierarchical object-aware representations from
the left image to the right image by introducing intra- and inter-scale dual-level contrastive
loss, enabling semantically and structurally driven matching both locally and globally.

• Extensive experiments conducted on four widely used realistic stereo matching datasets
using multiple network architectures underscore the effectiveness and intrinsic generality
of HODC in finding semantically and structurally driven matching for generalizable stereo
matching networks.

2 Related Work

2.1 Learning Based Stereo Matching Networks

In the past decade, deep learning has made remarkable strides in computer vision. In stereo matching,
Zbontar et al.first introduced convolutional neural networks (CNNs) to extract features and compute
matching cost [46]. Mayer et al.proposed the first end-to-end correlation-based stereo matching
network DispNetC [27]. SegStereo [44] and EdgeStereo [36] incorporated semantic and edge
information to resolve ambiguities in stereo matching.

More recently, several end-to-end stereo matching architectures have emerged. GCNet [19] concate-
nated left and right features directly to form a 4D cost volume and exploit 3D CNNs to aggregate
matching costs. PSMNet [3] proposed the spatial pyramid pooling module and stacked hourglass 3D
CNNs to incorporate global context information. GwcNet [13] constructed cost volume with both
group-wise correlation and concatenation. Differentiable semi-global aggregation [47, 48], attention
mechanism [41, 43], transformers [23] and iterative disparity range pruning [11, 37, 34, 35, 16] were
also adopted in stereo matching pipeline for better generalization ability, efficiency and accuracy.
RAFT-Stereo [24], CREStereo [21], IGEV [42] and DLNR [52] estimated disparity by iterative
refinement using recurrent neural networks.

2.2 Domain Generalized Stereo Matching

In recent years, there is increasing attention towards developing stereo matching networks with domain
generalization capabilities, particularly focusing synthetic-to-real generalization [48, 34, 24, 42, 16].
DSMNet [48] proposed the domain normalization layer and the trainable non-local graph-based filter
to capture robust structural and geometric representations. CFNet [34] introduced a cascaded and
fused multi-scale cost volume for robust stereo matching. Jing et al.proposed an uncertainty-guided
adaptive correlation module to robustly adapt stereo matching for different scenarios [16].

Another line of research aims to improve synthetic-to-real generalization for existing stereo matching
networks directly. MS-Net [2] suggested using traditional feature descriptors to build domain-
invariant matching space for stereo matching. GraftNet [25] leveraged robust broad-spectrum
features pre-trained on ImageNet and a feature adaptor to improve the generalization ability. FC-
Stereo [49] used a stereo contrastive loss and stereo selective whitening loss to encourage stereo
feature consistency across different domains. ITSA [7] utilized an information-theoretic approach to
avoid short-cut learning in stereo matching. HVT [4] proposed hierarchical visual transformations
to learn shortcut-invariant robust representation from synthetic images. Our work falls within this
category.

2.3 Contrastive Learning

Contrastive learning trains visual representations by pulling features of positive pairs (i.e., features
represent the same instance, same class, or with the same defined attribute) closer and pushing negative
pairs further apart. Unsupervised contrastive learning paradigms like SimCLR [5] and MOCO [14, 6]
have demonstrated the potential of learned features in generalizing to various downstream tasks.
Recent works in computer vision have extended contrastive learning paradigm to dense vision
tasks [39, 40] in a supervised [20, 38], semi-supervised [1], or weakly-supervised manner [10, 8].
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Figure 2: Overall illustration of the proposed hierarchical object-aware dual-level contrastive
learning (HODC) framework. An example of hierarchical segmentation of a car within the input
image is demonstrated, alongside with the illustration of inter- and intra-scale positive and negative
pairs for dual-level contrastive learning.

Inspired by Zhang et al. [49] that used stereo contrastive loss to enhance feature consistency between
left-right views, we further propose hierarchical dual-level contrastive learning to establish semantic
and structural correspondence for generalizable stereo matching.

3 Method

3.1 Preliminaries

Given a rectified RGB stereo image pair Xl,r ∈ R3×H×W , stereo matching predicts horizontal
displacement D ∈ RH×W for every pixel in the left image Xl. A typical stereo matching pipeline
FΘ(·, ·) can be written as:

D̂l = FΘ

(
Xl,Xr

)
= Gψ

(
C
(
fθ
(
Xl

)
, fθ
(
Xr

)))
, (1)

where fθ denotes parameterized feature extraction network, C denotes cost volume construction
typically via concatenation [19, 3], correlation [27, 24] or both [13, 34], and Gψ denotes parameterized
cost aggregation network and disparity regression with the soft-argmin operation [19].

Our work aims to tackle the synthetic-to-real generalization problem for stereo matching networks,
where only a synthetic training dataset D is available. Here, D consists of stereo image pairs
{X(i)

l,r ∈ R3×H×W }|D|i=1 and corresponding disparity maps {D(i)
l,r ∈ RH×W }|D|i=1. The realistic test

data is strictly inaccessible during training. Additionally, we denote the object index map of D as
{I(i)
l,r ∈ NH×W }|D|i=1, with each entry denoting the instance ID of the corresponding pixel.

3.2 Overall Pipeline

As illustrated in Fig. 2, our method operates on the left and right feature maps fl,r = fθ(Xl,r)
extracted by the feature extraction convolutional network fθ(·) within the stereo matching pipeline.
Our objective is to enhance fθ(·) in order to extract more effective feature maps that allow semantically
and structurally driven matching for domain generalizable stereo matching.
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Existing stereo matching methods primarily focus on establishing pixel-wise correspondence from the
left image to the right, which is prone to learning short-cut features based on appearance cues [7, 4],
as they do not exhibit intrinsic knowledge such as semantic structure directly. Intuitively, enhancing
semantic and structural awareness can be achieved by finding matching between corresponding
object-aware regions (i.e., object parts) in left-right images. These regions could vary in scale but
should embody certain semantic meanings (i.e., much larger than a pixel), and possess a moderate size
to guide stereo matching as the ambiguities of stereo matching typically occur within a certain local
area. This approach promotes semantic awareness in models, allowing regions to interact directly at
different scales to explore structural information. It is supported by prior works which demonstrate
that incorporating higher-level knowledge [44, 36] and promoting global awareness [3, 34] are crucial
for improving the performance of stereo matching networks.

Based on this intuition, it is imperative to generate object-aware regions on the feature map with
flexibility in scale, and enhance the matching between them to effectively establish semantic and
structural correspondence. The pipeline of HODC consists of the following steps:

(1) In Sec. 3.3, we propose a segmentation scheme on object index to flexibly generate object-aware
regions. We segment the original object index map I using rectangular grids with adjustable height
H/Nh and width W/Nw to obtain sub-object level region index map I(Nh,Nw) at any desired scale.
Leveraging the sub-object level region index map and the extracted feature maps, we generate object-
aware regional representations for both left and right views by aggregating pixel representations.

(2) In Sec. 3.4, instead of directly finding correspondence of regional representations, we first warp the
left feature map fl to the right using inverse warping guided by the ground-truth disparity of the right
image Dr to obtain fl→r. Utilizing fl→r, fr and region index map I(Nh,Nw), we construct positive
and negative pairs to represent correspondence. Adjusting the segmentation scale (Nh, Nw) enables
us to build positive and negative pairs with multi-scale, facilitating hierarchical correspondence.
Furthermore, we not only establish correspondence within representations of the same scale, but also
inter-scale correspondence to enhance global feature awareness.

(3) In Sec. 3.5, we introduce intra- and inter-scale contrastive loss Lintra,Linter using intra- and
inter-scale positive and negative pairs along with the origin smooth L1 loss LsmoothL1

, to optimize
the stereo matching network end-to-end.

3.3 Hierarchical Object-Aware Regional Representations

Object Index

Region 
Index

Regional
Rep.Grid Map Aggregate

ℋ4,4

ℋ8,8

𝐆𝐆4,4

𝐆𝐆8,8
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⋯

Figure 3: Illustration of generating regional representations for
HODC with the feature map f and object index map I under scale
(4, 4) and (8, 8). Different color on the image denotes pixels with
different indexes, and regional representations are generated by
aggregating the features of pixels with the same region index.

Given an arbitrary feature map
f ∈ RC×H×W and its corre-
sponding object index map I ∈
NH×W , we can derive object-
aware regional representations
by computing the mean represen-
tation of pixels with the same re-
gion index, where region index
denotes the segmentation result
at sub-object level.

To obtain such region index map,
we need to further perform seg-
mentation on the given object in-
dex map. We describe the seg-
mentation scheme by its scale,
which can be defined by a tuple
(Nh, Nw). The sub-object level
region index INh,Nw ∈ NH×W
under scale (Nh, Nw) can be de-
rived by the following steps:

1) We partition the feature map into Nh × Nw rectangular grids of size H
Nh
× W

Nw
by dividing

it horizontally and vertically, numbering these grids from 1 to Nh × Nw. 2) We then index the
pixels in each grid to their corresponding grid number and denote the new grid map as GNh,Nw ∈
{1, 2, . . . , Nh ×Nw}H×W . 3) Using I and GNh,Nw

, we determine the region index INh,Nw
at scale
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(Nh, Nw) according to the following rule: pixels are assigned the same region index if and only if
they belong to both the same object and the same grid (as illustrated in Fig. 3).

With the derived region index map INh,Nw
and the extracted feature map f , we employ mean

aggregation A(·, ·) to obtain object-aware regional representationsHNh,Nw
:

HNh,Nw
= A(f , INh,Nw

) =

H(i)

∣∣∣∣∣∣∣ H(i) =

∑
(x,y) : INh,Nw (x,y)=i

f(x, y)∑
(x,y)

1[INh,Nw(x, y) = i]

 . (2)

By adjusting Nh and Nw, we can flexibly control the segmentation scale, thereby obtaining hierar-
chical object-aware regional representations with different scales.

3.4 Intra- and Inter-Scale Positive and Negative Pairs

Inverse Warping and Non-Matching Region Removal. To build positive and negative pairs, we
first establish accurate correspondence for every pixel. We perform inverse warping to align the
reference (left) feature map fl with the target (right) fr feature map using ground truth disparity of
the target image:

fl→r = InvWarp(fl,Dr). (3)

Next, we remove the non-matching pixels in the right image by left-right geometric consistency
check [49], applying the reprojection error constraint and exclude them in calculating regional
representations in Eq. 2. Non-matching pixels are those that appear in the target image but have no
corresponding pixels in the reference image due to occlusion. The reprojection error R for the right
image is defined as the pixel difference obtained when performing inverse warping from right to left,
and then from left to right. If the reprojection error exceeds a threshold δ, the pixel is considered
to be occluded [49]. Note that by performing inverse warping and removing non-matching regions,
we expect to find correspondence of all pixels that appear in both left and right views, which also
indicates that the direction of warping will not influence the result.

Intra-Scale Pairs. With the given scale (Nh, Nw), along with the warped reference feature fl→r
and target feature fr, we obtain object-aware regional representation for both reference image
HlNh,Nw

= A(fl→r, INh,Nw) and target imageHrNh,Nw
= A(fr, INh,Nw) using Eq. 2. By choosing

Q = HlNh,Nw
as the anchor (query) set and K = HrNh,Nw

as the key set, the intra-scale positive
sample Pintra and negative samples Nintra for the i-th element in Q can be defined as:

Pintra(Q(i)) = K(i),Nintra(Q(i)) = {K(j)|j 6= i}. (4)

Inter-Scale Pairs. The inter-scale pairs are further introduced to enhance global awareness of local
representations by pulling local representation towards the corresponding region with a larger scale
and away from other regions. To ensure stability during the learning process and prevent collapse, we
operate in a hierarchical manner where local representations only interact with regions whose scale
is within a factor K = 4. Regarding (Nh, Nw) as the global scale, the local scale can be written as
((Nh × k), (Nw × k)), where k ≤ K is the inter-scale factor. For instance, when the global scale is
set to (Nh, Nw) = (2, 4) with an inter-scale factor k = 2, the corresponding local scale is (4, 8).

Similarly, we construct the anchor (query) set by aggregating local representations: Q =
Hl(Nh×k),(Nw×k) = A(fl→r, I(Nh×k),(Nw×k)). The inter-scale positive sample and negative samples
of scale ((Nh × k), (Nw × k)) are the corresponding and non-corresponding regions at the global
scale of (Nh, Nw), respectively, which can be obtained by the following rule:

K = Ĥr(Nh×k),(Nw×k) = A(f̂r, I(Nh×k),(Nw×k)), (5)

Pkinter(Q(i)) = K(i),N k
inter(Q(i)) = {K(j)|j 6= i}, (6)

where f̂r ∈ RC×H×W denotes the regional representation (under the global scale (Nh, Nw)) that
each pixel lies in:

f̂r = A−1(HrNh,Nw
, INh,Nw

). (7)
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In Eq. 7, A−1(H, INh,Nw) denotes inverse mapping from the aggregated regional representationsH
to the feature map where each pixel’s value is the representation of its corresponding region.

Hard Negative Selection. Previous studies [18, 20, 38] have demonstrated that hard negatives that are
similar to the anchor, can contribute more to the discriminating power of the learned representations,
thereby reducing local ambiguities in stereo matching. Inspired by this, we select the top 10% most
similar negatives in Ninter and Nintra to calculate the contrastive loss.

Remark. It’s important to note that we do not use memory banks or asymmetric structural design [14,
49] to obtain positive or negative pairs. Instead, all positive and negative pairs are calculated within
the same batch. This is due to the effectiveness of using hierarchical regional representations for
finding semantically and structurally driven matching.

3.5 Hierarchical Dual-Level Contrast and Learning Objectives

We perform hierarchical contrastive learning by employing queries and keys at different scales. Given
scale (Nh, Nw) and the inter-scale factor k, the intra-scale contrastive loss Lintra and inter-scale
contrastive loss Linter can be written as:

L(Nh,Nw),k
intra = L

(
HlNh,Nw

,Pintra,Nintra
)
+ L

(
Hl(Nh×k,Nw×k),Pintra,Nintra

)
, (8)

L(Nh,Nw),k
inter = L

(
Hl(Nh×k),(Nw×k),P

k
inter,N k

inter

)
. (9)

To enable building more flexible representations, we do not enforce Nh = Nw, but instead impose
weaker constraint (i.e., Nh, Nw ∈ {2i|i ∈ N}) to stabilize the training process. Additionally, we
set the maximum scale as M to reduce the computational cost, ensuring that Nh × Nw ≤ M .
Considering inter-scale factor k ≤ K as mentioned in Sec. 3.4, the dual-level hierarchical contrastive
learning objectives can be formulated as:

Lcontrastive =
Nh×Nw≤M∑

Nh,Nw∈{2i|i∈N}

k≤K∑
k∈N∗

(
L(Nh,Nw),k
intra + L(Nh,Nw),k

inter

)
. (10)

We utilize the widely adopted InfoNCE [29] loss to conduct intra- and inter-scale contrastive learning:

L(H,P,N ) =
1

|H|
∑
z∈H
− log

exp(z · P(z)/τ)
exp(z · P(z)/τ) +

∑
z−∈N (z) exp(z · z−/τ)

, (11)

where τ = 0.05 denotes the temperature parameter. Together with the widely adopted smooth-L1
loss [3] LsmoothL1

, the overall learning objective is:

Loverall = LsmoothL1
+ λ · Lcontrastive, (12)

where λ balances the weight between the smooth-L1 loss and contrastive loss.

4 Experiments

4.1 Experiment Settings

We select four stereo matching networks with different architectures as baselines to validate the
performance of HODC, including two widely studied models (PSMNet [3] and GwcNet [13]), a
robust method with cascaded and fused cost volume (CFNet [34]) and a recently proposed iterative-
based state-of-the-art method (IGEV [42]). We integrate HODC directly during their training stage
and test their generalization performance on realistic datasets.

We train all models with synthetic dataset SceneFlow [27] and evaluate their generalization per-
formance on the training set of four realistic datasets: KITTI-2012 [12], KITTI-2015 [28], Mid-
dlebury [32] and ETH3D [33]. We use the object index map provided by the SceneFlow dataset,
which can also be collected by using a pre-trained segmentation model (more discussion in Sec. 4.4).
Following previous works [7, 49], we evaluate the performance of our model using the D1 metric,
which calculates the percentage of outliers in the reference image with different pixel threshold
ρ. The threshold is set to 3px for KITTI-2012 and KITTI-2015, 2px for Middlebury, and 1px for
ETH3D, as suggested by dataset providers and previous works.
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Table 1: Overall generalization performance comparison with previous works.

Baseline Method KITTI Middlebury ETH3D Venue
2015 2012 Half Quarter

STTR [23] 6.7 8.7 15.5 9.7 17.2 ICCV’2021
DSMNet [48] 6.5 6.2 13.8 8.1 6.2 ECCV’2020
FC-GANet [49] 5.3 4.6 10.2 7.8 5.8 CVPR’2022
PCWNet [35] 5.6 4.2 15.8 - 5.2 ECCV’2022
CREStereo++ [16] 5.2 4.7 - - 4.4 ICCV’2023

PSMNet

PSMNet [3] 16.3 15.1 26.9 20.0 23.8 CVPR’2018
MS-PSMNet [2] 13.9 7.8 19.9 10.8 16.8 3DV’2020
FC-PSMNet [49] 5.8 5.3 15.1 9.3 9.5 CVPR’2022
ITSA-PSMNet [7] 5.8 5.2 12.7 9.6 9.8 CVPR’2022
Graft-PSMNet [25] 4.8 4.3 9.7 - 7.7 CVPR’2022
HVT-PSMNet [4] 4.9 4.3 10.2 - 6.9 CVPR’2023
HODC-PSMNet 4.7 3.9 9.3 7.0 5.4 Ours

GwcNet

GwcNet [13] 22.7 20.2 34.2 18.1 30.1 CVPR’2019
FC-GwcNet [49] 5.4 5.0 11.2 8.2 8.0 CVPR’2022
ITSA-GwcNet [7] 5.4 4.9 11.4 9.3 7.1 CVPR’2022
HVT-GwcNet [4] 5.0 3.9 10.3 - 5.9 CVPR’2023
HODC-GwcNet 4.9 3.9 8.4 5.8 4.3 Ours

CFNet

CFNet [34] 5.8 4.7 15.3 9.8 5.8 CVPR’2021
ITSA-CFNet [7] 4.7 4.2 10.4 8.5 5.1 CVPR’2022
HVT-CFNet [4] 4.9 4.0 10.2 - 4.5 CVPR’2023
HODC-CFNet 4.8 3.8 9.5 7.5 4.2 Ours

IGEV IGEV [42] 5.6 5.1 7.1 6.2 3.6 CVPR’2023
HODC-IGEV 4.5 3.8 7.0 5.2 2.7 Ours

For comparison, we include recently proposed domain generalization approaches for stereo matching
networks (MS-Net [2], FCStereo [49], ITSA [7], GraftNet [25] and HVT [4]) as well as other robust
architectures [23, 48, 35, 16].

4.2 Overall Generalization Performance Comparison

As shown in Tab. 1, after integrating HODC, the synthetic-to-real generalization performance of all
baselines substantially increases by a visible margin. Compared to other generalization methods, our
approach achieves the highest generalization performance in almost every setting (except for ITSA-
CFNet on KITTI-2015), which demonstrates the effectiveness of HODC. HODC is also compatible
with CFNet [34] using specially designed robust architecture and IGEV [42] with iterative refinement.

Notably, the generalization performance of older baselines (PSMNet, GwcNet) is comparable with or
even outperforms current SOTA methods training with HODC. This demonstrates the importance of
extracting semantically and structurally aware features to improve generalization for stereo matching.

4.3 Semantically and Structurally Driven Matching

In this section, we validate the semantically and structurally driven attributes of HODC through
visualizations on the realistic Middlebury [32] and ETH3D [33] datasets. As discussed in Sec. 3.2,
we select a small area in the reference image and calculate its representation to perform the query,
ensuring that HODC is capable of performing accurate matching to guide the stereo matching network.
We measure the similarity between this representation and the pixel representations in the target
image. As shown in Fig. 4, PSMNet [3] exhibits ambiguity in matching by superficial chromatic
features, resulting in high feature similarity in continuous local areas. FC-PSMNet [49] also lacks the
ability to identify semantical and structural elements, showing high feature similarity in non-matching
regions. Conversely, our approach accurately identifies matched regions, with limited ambiguities
mainly observed in vertical areas that are not the matching candidates for stereo matching.
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Left Image PSMNet FC-PSMNet HODC-PSMNet (Ours)

Figure 4: Qualitative result of semantically and structurally driven matching on realistic Middle-
bury [32] and ETH3D [33] datasets. The first column shows the query region, which is marked red
and highlighted with green box. The remaining columns show the region on the target image that has
cosine similarity larger than the threshold α = 0.9 with different methods.

Table 2: Cosine similarity comparison of positive and negative pairs on SceneFlow [27] test set.

Method Scale Intra-Scale Inter-Scale
Pos ↑ Neg ↓ 10% Hard ↓ 5% Hard ↓ Pos ↑ Neg ↓ 10% Hard ↓ 5% Hard ↓

PSMNet [3]
4× 4 0.96 0.47 0.85 0.88 0.86 0.47 0.84 0.87
8× 8 0.95 0.45 0.84 0.87 0.85 0.45 0.83 0.86

16× 16 0.95 0.43 0.83 0.87 0.83 0.41 0.80 0.84

FC-PSMNet [49]
4× 4 0.99 0.88 0.97 0.98 0.97 0.88 0.97 0.98
8× 8 0.99 0.87 0.97 0.98 0.97 0.87 0.97 0.97

16× 16 0.99 0.86 0.97 0.97 0.97 0.85 0.96 0.97

HODC-PSMNet (Ours)
4× 4 0.95 0.27 0.66 0.71 0.78 0.26 0.64 0.70
8× 8 0.95 0.24 0.62 0.68 0.78 0.24 0.61 0.67

16× 16 0.94 0.22 0.60 0.65 0.78 0.21 0.58 0.62

We further provide deeper insights into feature similarity using SceneFlow [27] test set (randomly
select 500 image pairs) with dense annotations. We compare the feature cosine similarity of PSM-
Net [3], FC-PSMNet [49] and HODC-PSMNet between matching intra- and inter-scale regions at
different scales. Additionally, we include the cosine similarity of the top 5% and 10% hardest negative
paris. Zhang et al. [49] suggest that feature consistency between matching pixels is consistent with
the model’s generalization performance. However, referring to Tab. 2, we find that dissimilarity
between negatives that can provide more discriminative power plays a more important role in the
model’s generalization ability, which is neglected in previous works. Using the HODC framework,
the hardest negatives at both intra- and inter-scale can also be effectively distinguished.

4.4 Segmentation Scale Analysis and Ablation Study

In this section, we conduct further analysis of HODC on PSMNet [3] and GwcNet [13]. First, we
investigate the effect of the segmentation scale by changing M in Eq. 10 (keeping K = 4 unchanged).
As shown in Tab. 3, the performance of our method remains stable with different M in a relatively
large interval. Notably, segmenting the object using fewer grids to perform contrastive learning on
a larger scale can improve the performance of stereo matching networks on certain datasets (e.g.,
KITTI-2012 and KITTI-2015), while other datasets or networks benefit from a larger M to enhance
performance. This can be attributed to larger M providing more accurate local matching with more
negative samples and finer representations, while smaller M derives features on larger scales.

Next, we perform an ablation study to examine the effectiveness of intra- and inter-scale contrastive
loss. Referring to Tab. 3, the performance of PSMNet and GwcNet decreases on all datasets without
using Lintra or Linter. Furthermore, we analyze the robustness of the proposed dual-level contrastive
learning with hierarchical representations when the object index map is inaccurate. We conduct
an extreme case evaluation by omitting the object prior and performing segmentation directly on
the entire image. Though a decline in performance is observed, the proposed method still achieves
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Table 3: Analysis of segmentation scale and ablation study of the proposed framework.

Network M Lintra Linter Object KT-15 KT-12 Mid-H Mid-Q ETH3D

PSMNet

32 X X X 4.6 4.0 9.8 7.4 4.9
64 X X X 4.6 3.8 9.5 7.4 5.8

128 X X X 4.7 3.9 9.3 7.0 5.4

128 × X X 4.9 4.0 9.7 7.2 5.7
128 X × X 4.9 4.1 9.9 7.9 5.9
128 X X × 4.9 4.2 10.6 8.1 6.6

GwcNet

32 X X X 4.8 3.8 8.9 5.4 5.0
64 X X X 4.8 3.8 8.6 5.7 4.4

128 X X X 4.9 3.9 8.4 5.8 4.3
128 × X X 5.0 4.1 9.0 6.1 5.4
128 X × X 5.1 4.2 9.2 6.2 5.2
128 X X × 5.3 4.1 10.3 6.7 5.7

considerable performance and outperforms some SOTA methods (e.g., FCStereo [49], ITSA [7]) by
establishing local and global correspondence with our dual-level contrastive loss.

5 Conclusion

We proposed a novel and effective hierarchical object-aware dual-level contrastive learning (HODC)
framework aimed at enhancing stereo matching networks’ ability to extract semantically and struc-
turally meaningful features and improve their generalization performance. Our approach leveraged a
flexible segmentation scheme on objects to obtain hierarchical object-aware representations, followed
by intra- and inter-scale contrastive learning guided by ground-truth disparity. Through extensive ex-
periments with visualization, we have demonstrated that our method facilitates networks in achieving
better generalization by enabling them to find semantically and structurally driven matches.
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Appendix

A Dataset

SceneFlow [27] is a large scale synthetic dataset consisting of three subsets: FlyingThings3D, Driving,
and Monkaa. In all, SceneFlow provides 35,454 training stereo image pairs and 4,370 testing image
pairs with a resolution of 960 × 540, with dense ground-truth disparity and object index. All our
models are trained on SceneFlow training set only.

We evaluate the generalization performance of our models on the training set of four realistic datasets:
KITTI-2012 [12], KITTI-2015 [28], Middlebury [32] and ETH3D [33]. KITTI-2012 [12] and
KITTI-2015 [28] contain 194 and 200 stereo pairs with sparse ground-truth disparity, respectively,
collected from driving cars using LiDAR. Middlebury [32] includes 15 high-resolution stereo
pairs with indoor scenes, and we use its half- and quarter-resolution versions in our experiments.
ETH3D [33] provides 27 grayscale image pairs collected from both indoor and outdoor scenes.

B Implementation

B.1 Implementation Details

Following [4, 49], we use instance and domain normalization [48] in the feature extraction network.
For HODC-PSMNet, we use the same architecture as FC-PSMNet [49]. For HODC-GwcNet and
HODC-CFNet, we replace all normalization layers with domain normalization as suggested in [4].
For HODC-IGEV, we follow their original implementation [42].

All models are implemented by Pytorch and trained with the Adam optimizer (β1 = 0.9, β2 = 0.999).
We train the models from scratch (except for IGEV which we follow their original implementation
using MobileNetV2 pretrained on ImageNet [9]) with a batch size of 8 for 45 epochs on Scene-
Flow [27]. The learning rate is set to 0.001, which decreases by half after epoch 15 and 30 (except
for IGEV which we follow their original implementation [42]). The input image are normalized
with the mean ([0.485, 0.456, 0.406]) and variation ([0.229, 0.224, 0.225]) of ImageNet [9]. The
maximum disparity D for training and evaluation is set to D = 192 for PSMNet, GwcNet, IGEV, and
D = 256 for CFNet. To fairly compare with previous methods [34, 4, 49], we employ asymmetric
augmentation [34] during data processing.

For all experiments, we set the reprojection error threshold to δ = 3 in Sec. 3.4 for occlusion removal
following [49], which is not a sensitive hyper-parameter as we use accurate ground-truth disparity
map to calculate reprojection error. The maximum segmentation scale mentioned in Sec. 3.5 is set
to M = 128, which is further discussed in Sec. 4.4. In practice, we do not calculate all possible
Nh, Nw and k in Eq. 10 within a single iteration, but randomly pick Nh, Nw and k that satisfy the
constraint in every iteration for efficiency. The contrastive loss weight λ decreases from 5.0 to 2.5
gradually from the first epoch to the last epoch for all models. Following recent SOTA methods (e.g.,
ITSA [7] and HVT [4]), we evaluate all pixels in the KITTI (and DrivingStereo [45]) datasets and
non-occluded pixels in Middlebury and ETH3D datasets where occlusion masks are available.

B.2 Features for HODC

It’s worth noting that the spatial size of the extracted feature map f̃ = fθ(X) may differ from the
original image size which may not align with the object index. In HODC, we choose the feature map
f̃ with a spatial size H

4 ×
W
4 in the feature extraction network, and upsample it to the desired size

using bilinear interpolation:

fl→r = Upsample(f̃l→r), fr = Upsample(f̃r). (a)

Additionally, we observe that feature maps used to construct correlation cost volume often possess a
relatively large channel dimension (e.g., C = 320 for GwcNet [13]), directly using them is inefficient.
Therefore, we also provide an alternative approach to use group-wise average value of f̃ , reducing
the channel dimension of the feature map to Ng for lower computational cost and memory usage,
where Ng denotes the number of groups. We formulate the entire procedure of mapping the raw

14



feature from the feature extraction network f̃ to the feature f used for HODC as:

fcorr(c, x, y) = Upsample(
1

C/Ng

(c+1)×C/Ng−1∑
i=c×C/Ng

f̃corr(i, x, y)), (b)

fcat = Upsample(f̃cat), (c)
f = fcorr‖fcat, (d)

where f̃corr and f̃cat denotes feature map to build correlation and concatenation cost volume in
the stereo matching pipeline, respectively, and ‖ denotes concatenation operation along the feature
dimension. If only correlation or concatenation is used for building cost volume, then f is directly
derived from Eq. b or Eq. c (i.e., Eq. d is omitted). In our experiment, we do not use group-wise mean
for HODC-PSMNet and HODC-IGEV. For HODC-GwcNet and HODC-CFNet, we set Ng = 40.

We further provide quantitative results on memory usage and computational cost. We use a single
Nvidia RTX 3090 graphics card (with 24 GiB memory) and the batch size is set to 2 for the experiment.
Referring to Tab. A, group-wise mean operation can effectively reduce memory consumption and
computational cost while the model can still achieve state-of-the-art performance.

Table A: Analysis on computational resources.

Method Ng Memory Usage Time
GwcNet [13] - 6.82 GiB ∼1.8s/iter

HODC-GwcNet 20 10.30 GiB ∼2.5s/iter
HODC-GwcNet 40 11.90 GiB ∼2.7s/iter
HODC-GwcNet 80 13.63 GiB ∼3.2s/iter

Remark. Operating at the spatial size of the original image (i.e., H ×W ) does not significantly
increase the computational cost or memory usage, as the size of the hierarchical representations
|HNh×Nw

| is determined and only determined by the region index map INh,Nw
, which can be

controlled by adjusting the segmentation scale (Nh, Nw), thus enabling us to calculate the similarity
between all representation pairs within a mini-batch. Moreover, experiments in Sec. 4.4 demonstrate
that the performance is not sensitive to the segmentation scale within a relatively large interval, with
competitive performance achieved using coarse-grained segmentation.

C Hyper-Parameter Analysis

In this section, we perform a more detailed hyper-parameter analysis on the weight λ of our proposed
dual-level contrastive loss and the proportion of the selected negative samples using PSMNet [3] and
GwcNet [13]. Other experiment settings follow Sec. B.1.

C.1 Analysis on Contrastive Loss Weight

Table B: Analysis on the relative weight of our proposed contrastive loss.

Network Rel. Weight KITTI Middlebury ETH3D
2015 2012 Half Quarter

HODC-PSMNet
1.0 4.7 3.9 9.8 7.2 5.0
2.0 4.5 3.8 9.5 7.3 5.4
3.0 4.6 4.0 9.3 7.0 6.0

HODC-GwcNet
1.0 4.9 3.8 8.5 5.3 4.8
2.0 4.8 3.8 9.2 5.7 4.6
3.0 4.8 3.8 8.5 6.0 5.1

The weight λ controls the trade-off between finding matchings of object-aware regions and accurate
pixel-level matching. As the weight of smooth-L1 loss is inconsistent across different baselines
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(e.g., there are 3 outputs in PSMNet, each with weight (1.0, 0.7, 0.5)), we use relative weight
for consistency (i.e., λ divided by the total weight of smooth-L1 loss). As shown in Tab. B, the
performance of both HODC-PSMNet and HODC-GwcNet on all datasets remain stable in a relatively
large interval (with λ varying from 1x to 3x). This demonstrates that the goal of semantically and
structurally driven matching aligns with stereo matching, and HODC does not require extensive
hyper-parameter tuning.

C.2 Analysis on Hard Negative Selection

Table C: Analysis on the proportion of selected hard negatives.

Network Negative Proportion KITTI Middlebury ETH3D
2015 2012 Half Quarter

HODC-PSMNet
10% 4.7 3.9 9.3 7.0 5.4
30% 4.7 3.9 9.5 7.1 4.7
50% 4.7 4.0 10.4 7.9 5.8

HODC-GwcNet
10% 4.9 3.9 8.4 5.8 4.3
30% 4.9 3.9 8.5 5.3 4.6
50% 4.9 3.9 8.5 5.8 4.7

Selecting an appropriate amount of negative samples in contrastive learning can make the training
procedure more effective and boost the performance [38]. We further investigate the impact of the
selection proportion of hard negatives. As shown in Tab. C, selecting 10% to 30% hardest negatives
can contribute to better performance, especially on Middlebury and ETH3D datasets.

D Robustness to Broader Scenarios

In this section, we further evaluate the generalization performance of training stereo networks from
synthetic datasets using our approach on DrivingStereo [45] dataset. The dataset is collected on a
driving car with various weather conditions: sunny, cloudy, rainy, and foggy, with 500 image pairs
each, simulating complex real-world scenarios. We choose PSMNet [3] and GwcNet [13] as baselines,
and compare with recently developed domain generalization technique for stereo matching [7, 49, 4].
Following [4], we also include the results of officially released fine-tuned network (FT-PSMNet and
FT-GwcNet) on KITTI-2015 [28].

As shown in Tab. D, our method outperforms all baselines in most scenarios and achieves the best
overall performance. Notably, our method outperforms the fine-tuned models on KITTI-2015 without

Table D: Robustness comparison of different methods on the DrivingStereo [45] dataset collected
from diverse challenging realistic scenarios: Sunny, Cloudy, Rainy, and Foggy. We employ the D1
(3px) metric to evaluate generalization performance.

Method Sunny Cloudy Rainy Foggy Avg.
PSMNet [3] 62.5 60.1 60.5 68.6 62.9
FT-PSMNet [7] 4.0 2.9 11.5 6.5 6.2
FC-PSMNet [49] 4.9 4.3 7.2 6.2 5.7
ITSA-PSMNet [7] 4.8 3.2 9.4 6.3 5.9
HVT-PSMNet [4] 4.2 3.1 8.7 5.6 5.4
HODC-PSMNet (Ours) 3.3 3.0 7.8 4.2 4.6
GwcNet [13] 18.1 24.7 28.2 28.3 24.8
FT-GwcNet [7] 3.1 2.5 12.3 6.0 6.0
FC-GwcNet [49] 4.7 5.1 9.1 7.8 6.7
ITSA-GwcNet [7] 4.4 3.3 9.8 5.9 5.9
HVT-GwcNet [4] 3.4 3.5 8.6 5.6 5.3
HODC-GWCNet (Ours) 3.0 2.9 7.7 4.7 4.6
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exposure to realistic data, which further demonstrates the importance of semantically and structurally
aware attributes of the extracted features. Visualization results are shown in Fig. A.
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Figure A: Qualitative comparisons on the DrivingStereo [45] dataset under 4 different weather
conditions. The first column shows the left image and the corresponding ground-truth disparity map.
The rest columns show the error map and the predicted disparity map of PSMNet [3], HODC-PSMNet,
GwcNet [13] and HODC-GwcNet, respectively.

E Limitations

While our method seamlessly integrates into existing stereo matching networks and is compatible
with various architectures, direct integration overlooks the impact of network architectures on domain
generalized stereo matching. Further enhancing generalization performance may involve designing
network architecture that emphasizes semantically and structurally driven matching. As part of our
future endeavors, we will also focus on designing network architectures that align with the principles
established in our work.

F More Visualizations for Semantically and Structurally Driven Matching

In this section, we provide more visualizations to validate the semantically and structurally driven
attributes of our method using PSMNet [3] on the following realistic datasets: KITTI [12, 28],
Middlebury [32] and ETH3D [33]. PSMNet, FC-PSMNet [49] and HODC-PSMNet are selected for
comparison. Similar to Sec. 4.3, we measure the cosine similarity of the representations between
the selected region (marked red and highlighted with green box) in the reference image and every
pixel in the target image. Only pixels with cosine similarity larger than the threshold α are shown.
Referring to Fig. B, Fig. C and Fig. D, our method is capable of performing accurate semantically and
structurally driven regional matching as our approach accurately identifies matched regions compared
to the baselines.
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Left Image PSMNet FC-PSMNet HODC-PSMNet (Ours)

Figure B: Visualizations for semantically and structurally driven matching on the KITTI [12, 28]
dataset (better view in zoomed mode.)

Left Image PSMNet FC-PSMNet HODC-PSMNet (Ours)

Figure C: Visualizations for semantically and structurally driven matching on the Middlebury [32]
dataset (better view in zoomed mode.)

G More Qualitative Results

In this section, we provide more qualitative comparison between our method and the baselines
(PSMNet [3], GwcNet [13], IGEV [42]) on the following realistic datasets: KITTI [12, 28], Middle-
bury [32] and ETH3D [33]. (Referring to Fig. E, Fig. F and Fig. G.) Note that all models are trained
only on the synthetic SceneFlow [27] training set.
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Left Image PSMNet FC-PSMNet HODC-PSMNet (Ours)

Figure D: Visualizations for semantically and structurally driven matching on the ETH3D [33] dataset
(better view in zoomed mode.)

PSMNet GwcNet IGEV

Figure E: Qualitative comparisons on the KITTI [12, 28] dataset. The first column shows the left
image and the corresponding ground-truth disparity map. The rest columns compare the results of
the different stereo matching networks w/ and w/o using HODC. In each scene, the first row denotes
the baselines and the second row denotes the results with HODC.
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PSMNet GwcNet IGEV

Figure F: Qualitative comparisons on the Middlebury [32] dataset. The first column shows the left
image and the corresponding ground-truth disparity map. The rest columns compare the results of
the different stereo matching networks w/ and w/o using HODC. In each scene, the first row denotes
the baselines and the second row denotes the results with HODC.
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PSMNet GwcNet IGEV

Figure G: Qualitative comparisons on the ETH3D [33] dataset. The first column shows the left image
and the corresponding ground-truth disparity map. The rest columns compare the results of the
different stereo matching networks w/ and w/o using HODC. In each scene, the first row denotes the
baselines and the second row denotes the results with HODC.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are accurate.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Refer to Sec. E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Refer to Sec. 3 and Sec. B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Url for the project page: https://joshmiao.github.io/HODC/.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Refer to Sec. B.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to limitation of computational resources, and the reuslts are stable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Refer to Sec. B.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work has no evident societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models do not have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the assets are properly used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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