
Decomposed Prompt Decision Transformer for
Efficient Unseen Task Generalization

Hongling Zheng1 Li Shen2† Yong Luo1† Tongliang Liu3 Jialie Shen4 Dacheng Tao5
1Wuhan University 2Shenzhen Campus of Sun Yat-sen University 3The University of Sydney

4City, University of London 5Nanyang Technological University
{hlzheng, luoyong}@whu.edu.cn {mathshenli, jialie, dacheng.tao}@gmail.com

tongliang.liu@sydney.edu.au

Abstract

Multi-task offline reinforcement learning aims to develop a unified policy for di-
verse tasks without requiring real-time interaction with the environment. Recent
work explores sequence modeling, leveraging the scalability of the transformer
architecture as a foundation for multi-task learning. Given the variations in task
content and complexity, formulating policies becomes a challenging endeavor, re-
quiring careful parameter sharing and adept management of conflicting gradients to
extract rich cross-task knowledge from multiple tasks and transfer it to unseen tasks.
In this paper, we propose the Decomposed Prompt Decision Transformer (DPDT)
that adopts a two-stage paradigm to efficiently learn prompts for unseen tasks in a
parameter-efficient manner. We incorporate parameters from pre-trained language
models (PLMs) to initialize DPDT, thereby providing rich prior knowledge encoded
in language models. During the decomposed prompt tuning phase, we learn both
cross-task and task-specific prompts on training tasks to achieve prompt decompo-
sition. In the test time adaptation phase, the cross-task prompt, serving as a good
initialization, were further optimized on unseen tasks through test time adaptation,
enhancing the model’s performance on these tasks. Empirical evaluation on a series
of Meta-RL benchmarks demonstrates the superiority of our approach. The project
is available at https://github.com/ruthless-man/DPDT.

1 Introduction

The purpose of offline reinforcement learning (Offline RL) [1] is to develop a reward-maximizing
RL strategy using offline data. This approach is of highly valuable in real-world scenarios where
online data collection is expensive, time-consuming, or impractical. Existing offline RL algorithms
typically perform well in single task but often struggle for multiple tasks with similar conditions and
objectives, as they lack the ability to separate common knowledge from conflicting task gradients.
In contrast, humans can leverage knowledge from existing tasks to excel in new ones, which has
led to increasing research interest in multi-task reinforcement learning (MTRL) [2, 3, 4]. The goal
of MTRL is to develop a universal strategy applicable to tasks with certain similarities, thereby
enhancing adaptability and performance in multi-task environments.

Decision transformer (DT) [5] and Prompt-DT [6] introduce the transformer architecture to the field
of RL, demonstrating the powerful data modeling capability of sequence offline RL. Additionally,
they provide possibilities for integrating advancements [7] from language modeling into MTRL
methodologies. Prompt-tuning DT [8] uses a gradient-free method to introduce prompts, retaining
context-specific information and catering to specific preferences. These existing sequence-based
offline RL methods are primarily trained and tested on the same task or perform fine-tuning using a

†Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/ruthless-man/DPDT

small portion of labeled test data [9]. As a result, these algorithms often perform poorly when faced
with testing tasks that are unseen and unlabeled in a Meta-RL setting [10].

Leveraging MTRL to extract general knowledge offers a promising approach for facilitating cross-
task knowledge transfer in Meta-RL scenarios. However, as the number of tasks increases, gradient
conflicts become more pronounced, hindering MTRL performance due to unregulated parameter
sharing. Additionally, while transformer architectures can capture extensive relationships in offline
sequential data, their data-hungry nature means that insufficient training data for RL tasks significantly
diminishes model performance. A feasible solution might be to enhance the model’s prior knowledge.

To remedy these drawbacks, we propose a prompt-based MTRL method named Decomposed Prompt
Decision Transformer (DPDT), inspired by some works in natural language processing where knowl-
edge transfer in multi-task learning scenarios is achieved through prompting strategies [11, 12].
We first employ pre-trained parameters from GPT to initialize a DPDT architecture. Incorporating
the parameters of PLMs is motivated by several studies in RL [13, 14, 15]. Leveraging the rich
prior knowledge encoded in Pre-trained Language Models (PLMs) effectively addresses the data
hunger challenge of transformer architectures, providing ample semantic information for reinforce-
ment learning tasks. Then, we design a two-stage training and testing framework for DPDT. (1)
Decomposed prompt tuning phase: At this stage, we use prompt decomposition to avoid gradient
conflicts between different tasks and to extract common knowledge. Specifically, we decompose
the task prompt for each task into a cross-task prompt and a task-specific prompt. The cross-task
prompt remains consistent across all training tasks, while the task-specific prompt is tailored to each
task’s unique characteristics. By isolating the cross-task prompt from the task-specific prompts, the
model ensures that updates related to general knowledge do not conflict with those related to specific
tasks. Compared to [12], our structured decomposition enables more regulated and harmonious
parameter updates, thereby enhancing parameter efficiency and facilitating the extraction of general
knowledge more effectively. (2) Test time adaptation phase: The cross-task prompt, serving as
a strong initialization, is further optimized on unlabeled unseen tasks by incorporating the Test
Time Adaptation (TTA) [16] to our model. TTA dynamically adjusts the cross-task prompts during
the testing phase based on task characteristics, enhancing the model’s adaptability to unseen tasks
features.

Our DPDT has been empirically validated in the Meta-RL setting, and the results demonstrate its
superiority compared with many recent and competitive counterparts [5, 6, 17]. Furthermore, we
conducted ablation experiments covering aspects such as prompt length, scalability, and model
variants to establish the superiority of the model. The main contributions of this work are as follows:

• We reconsider the problem of knowledge extraction in MTRL and propose the method of
Decomposed Prompt Decision Transformer.

• We propose a two-stage paradigm, which includes decomposing the task prompts for training
tasks into cross-task prompts and task-specific prompts, and aligning the cross-task prompts
in unlabeled unseen tasks.

• We demonstrate the effectiveness of DPDT through intensive experiments on a broad
spectrum of benchmarks, highlighting its competitive performance in Meta-RL scenarios.

2 Related works

In this section, we summarize the most related works as two-fold: offline RL and multitask RL.

Offline RL. In contrast to traditional RL methods [18, 19], offline RL focuses on training models and
performing trial-and-error using offline data without environmental interaction to arrive at appropriate
strategies. These methods primarily address the issue of out-of-distribution (OOD) through strategies
such as constraining the learning policies [20] or bounding the overestimated policy values [21]. The
integration of transformer architecture in sequence modeling has emerged as a prominent approach
for addressing offline RL tasks [22, 23], further demonstrating the advantages of data-driven policy
learning. Decision Transformer (DT) [5] involves encapsulating rewards, states, and actions into
triples and training them using autoregressive supervision on offline data. Owing to the transformer’s
proficiency in capturing and fitting long time series features, it has achieved remarkable results
in various offline RL tasks. HDT [17] generalizes new tasks by designing an adaptation module
initialized by a hypernetwork. To alleviate the tuning burden while preserving performance, prompt
tuning [24, 25] in NLP focuses on optimizing only the input parameters while keeping the majority

2

of the PLMs parameters frozen. However, integrating prompt tuning into RL field poses a challenge,
as RL prompts lack semantic information and are challenging to optimize. While Prompt-DT [6]
selects pre-defined expert trajectories combined with inputs to guide model training, it primarily
relies on the quality of these trajectories for improvement, rather than enhancing prompts directly. On
the other hand, Prompt-tuning DT [8] stands out for introducing prompt-tuning techniques using a
gradient-free approach, with the goal of preserving environment-specific details and accommodating
specific preferences.

Multitask RL. Multi-Task Reinforcement Learning (MTRL) [26, 27, 28] aims to address multiple
similar reinforcement learning tasks using a unified model. A straightforward approach involves
developing a task-conditional multi-task model, akin to those utilized in goal-conditional RL [29] and
visual-language grounding [30]. While this method has demonstrated success in certain scenarios, it
often encounters challenges stemming from negative interference among tasks. PaCo [31] delves
into a compositional structure within the parameter space, distinguishing between task-agnostic and
task-specific components. This approach significantly enhances the efficiency and robustness of the
MTRL process, leading to more effective training outcomes. Building upon the MTRL paradigm,
multi-task prompt [32] aims to acquire transferable, cross-task prompts from multiple tasks, guiding
outputs for unseen downstream tasks. Several studies have approached multi-task prompt design
from the perspective of prompt decomposition, yielding notable results across various tasks [33, 34].

The most relevant work to ours is Prompt-DT [6], which utilizes carefully selected prompts for
Meta-RL tasks training. Our approach differs in (1) employing trainable prompt decomposition to
avoid gradient conflicts among multiple tasks, (2) further optimizing general prompts with TTA
without using any test data labels, and (3) extending the model architecture by incorporating PLMs
for initialization. To the best of our knowledge, we are the first to implement multi-task prompt
tuning based on PLMs parameters in the reinforcement learning domain.

3 Preliminary

In this section, we provide several concepts and terminologies that will be used in this work.

3.1 Prompt Decision Transformer

Prompt-DT [6] examines the beneficial effects of incorporating trajectory prompts on the DT [5]
in few-shot scenarios. Specifically, the form of trajectory prompts is the same as that of training
trajectories, consisting of triplets made up of state s∗, action a∗, and return-to-go r̂∗. However, these
trajectory prompts are significantly shorter than the training trajectories. During training, for each
task i, the trajectory prompt τ∗i,K∗ is concatenated with the corresponding training trajectory τi,K to
form τ inputi =

(
τ∗i,K∗ , τi,K

)
, which is then inputted into the model f for training. The concrete form

of τ∗i,K∗ and τi,K are as follows:

τ⋆i,K∗ = (r̂⋆1 , s
⋆
1, a

⋆
1, . . . , r̂

⋆
K⋆ , s⋆K⋆ , a⋆K⋆) , τi,K = (r̂1, s1, a1, . . . , r̂K , sK , aK) (1)

where K∗ represents the number of environment steps stored in the prompt, and K is the nearest steps
of the training trajectory. The prediction head associated with the state token s is designed to predict
the corresponding action a. It is noteworthy that during training, the model does not predict the
actions of the trajectory prompts. The loss function is formulated as follows: ai,m denotes the actual
action at the m-th timestep of the i-th task, while τi,m−1 encompasses all data up to and including
the (m− 1)th timestep in the training trajectory of the ith task.

Lm = Eτ input
i ∼Ti

[
1

K

K∑
m=1

(
ai,m − f(τ⋆i,K⋆ , τi,m−1)

)2]
(2)

3.2 Test-Time Adaptation

Test time adaptation (TTA) [16] aims to minimize the gap between training data and testing data
distribution during the testing phase. Test-time prompt tuning (TPT) [35] leverages the extensive
knowledge in transformer architecture to enhance its generalization capabilities in zero-shot scenarios.

3

cross-task prompt 𝑷𝒄

…

ො𝒓 𝒔 𝒂

Offline calculation of mean and variance for training samples

P
re-tra

in
ed

 G
P

T
 B

lo
ck

s

𝑷
𝐜

… …

……

…

𝑳𝒂𝒍𝒊𝒈𝒏

……

……

……

……

……

P
re-tra

in
ed

 G
P

T
 B

lo
ck

s

ො𝒓
𝒕

𝒔
𝒕

𝒂
𝒕

…

𝒂
𝒕

…

……

P
re-tra

in
ed

 G
P

T
 B

lo
ck

s

𝒂
𝒕

…

……

……

……

……

……

Pre-trained GPT Blocks

Embedding Layer

Linear Layer

ො𝒓 𝒔 𝒂 task prompt 𝑷𝒌
∗

𝒕 − 𝑲 + 𝟏 𝒕 − 𝑲 + 𝟏 𝒕 − 𝑲 + 𝟏

. . .
𝒕 𝒕 𝒕

𝒂∗ 𝒂 𝒂

𝟏𝟐 ×

𝒕 − 𝑲 + 𝟏 𝒕

task specific prompt 𝑷𝒌

𝒗𝒌 𝒖𝒌teacher prompt 𝑷𝒌
𝒕𝒆𝒂𝒄𝒉𝒆𝒓

Distillation

P
re-tra

in
ed

 G
P

T
 B

lo
ck

s

𝒂
∗

𝒂
∗

Decomposed Prompt Tuning Test Time Adaptation

𝒂
∗

𝒂
𝒕

𝒂
∗

𝒂
𝒕

ො𝒓
𝒕

𝒔
𝒕

𝒂
𝒕

Figure 1: The architecture diagram of DPDT. For simplicity and clarity, the figure only displays the
decomposition and integration process during training on a single task. Snowflake icons represent
the frozen parts of the model that are not subject to training updates, while flame icons indicate
components of the model that remain trainable. Left: Decomposed Prompt Tuning. The prompt
decomposition is trained on the entire dataset with the assistance of the teacher prompt pteacherk . p∗k
is then combined with the training samples that include K steps, inputted into DPDT, and outputs the
corresponding action a. Right: Test Time Adaptation. When test samples are fed into the model,
we calculate the mean and variance of all samples at each layer and compute the loss by comparing
them with the mean and variance of the corresponding layer from the training samples. The losses
from all layers are summed to obtain the alignment loss, denoted as Lalign.

During the inference phase, multiple randomly augmented views are created from the provided testing
sample Xtest. Predictions with entropy below a specified threshold are retained, while other views
are filtered out using a confidence selection criterion. The average entropy of the filtered predictions
is then used to unsupervisedly update the prompts p. Some methods [36, 37, 38], considering the data
instability caused by augmentation techniques, use alignment of feature values in attention layers or
feedforward layers to achieve test-time adaptation. Our method falls into this category.

4 Decomposed Prompt Decision Transformer

In this section, we provide a comprehensive description of the proposed DPDT. Task prompts and
training data are combined to calculate the loss through action prediction, which is then used to
optimize the cross-task and task-specific prompts in a backward pass. Once optimized, the cross-task
prompts serve as a good initialization for use in unseen tasks during test-time adaptation. The objective
of decomposed prompt tuning is to learn cross-task prompts and task-specific prompts through prompt
decomposition. Test-time adaptation provides an alignment approach for the cross-task prompts.
Below, we will describe each module of DPDT in detail.

4.1 Decomposed Prompt Tuning

Initialization. Given that Transformers are data-intensive and require pre-training on substantial
datasets to achieve satisfactory performance, integrating PLMs from the same architectural family into
offline RL is a natural progression. Some existing work has already explored this avenue [13, 39, 40].
Taking inspiration from this, we employ GPT2-SMALL [41] to initialize our DPDT and maintain
these parameters frozen throughout training. It is worth noting that, incorporating PLMs into RL is
not predicated on the direct applicability of language data to RL tasks. Instead, the advantage lies in
leveraging the deep, nuanced representations acquired by PLMs from a variety of datasets. These
representations encode a broad spectrum of patterns, relationships, and contexts that can transcend
purely linguistic tasks. This taps into the reasoning and few-shot capabilities of language models,
addressing challenging scenarios like data scarcity and sparse rewards.

4

Prompt Decomposition. Given a set of training tasks S = {S1, S2, . . . , Sn}, our objective is
to learn a general prompt Pc that encapsulates common knowledge shared across all tasks in S
and can efficiently adapt to unseen tasks. Extracting general task information from tasks with
different distributions is often challenging, as gradient conflicts between tasks can lead to suboptimal
convergence of information. We adopt prompt decomposition approach to address this issue. As
shown in Figure 1, let Pc ∈ Rl×s and Pk ∈ Rl×s. The task prompt P ∗

k for the k-th task is obtained by
taking the element-wise product of Pc and Pk. The goal of prompt decomposition is to enable efficient
knowledge sharing across S, while still allowing each task to maintain its own parameters to encode
task-specific knowledge. The Pc aims to acquire general knowledge from S, while the task-specific
prompt Pk allows task k to retain its unique knowledge. The task prompts parameterization of the
k-th training task is expressed as:

P ∗
k = Pc ◦ Pk = Pc ◦ (vk ⊗ uk). (3)

Algorithm 1 Decomposed Prompt Tuning
Input: Training task set S, Offline datasetsDM, Batch size M , Learning
rate α, training iterations N , teacher task prompts pteacherk .
Initialize: Initialize a 12-layer, 12-head DPDTM using GPT2-SMALL,
randomly initialize cross-task prompts Pc and low-rank vectors vk, uk.

for t = 1 to N do
for k in S do

Select a trajectory τ that contains M samples in task k.
Calculate P ∗

k by Equation 3.
Calculate LMSE and Ldis according to Equations 4 and 5.
Computed loss function by Equation 6.
θ ← θ − α∇θLTotal.

end for
end for

In the specific implementation
process, inspired by LORA [42],
we further decompose each task-
specific prompt into two low-
rank vectors vk ∈ Rl×r and
uk ∈ Rl×s using a low-rank
method. We obtain Pk through
vector multiplication. Here l rep-
resents the prompt length, r rep-
resents the hidden layer dimen-
sion, and s represents the prompt
dimension. The hyperparameter
r is a manually specified low-
rank parameter. Its introduction
is crucial for designing prompts
for all tasks in the dataset, significantly maintaining model superiority while reducing computational
load. We use standard normal distribution to initialize Pc, uk and vk. Given the DPDT M, the mean
squared loss between the model’s predicted actions and the true actions is calculated as:

LMSE = (a−M (P ⋆
k , τ))

2 (4)

Prompt distillation. Due to the lack of explicit constraints, directly implementing prompt decom-
position on the multitask dataset S may lead to an overlap in the information learned by Pc and Pk,
potentially undermining their ability to capture distinct intended details. We employed knowledge
distillation techniques to compel the cross-task and task-specific prompts to learn their respective
information. We obtained teacher task prompts pteacherk for each task k by using traditional prompt-
tuning methods individually. During training, the mean squared error is calculated directly between
pteacherk and p⋆k:

Ldis =
∑
k∈|S|

|pteacherk − p⋆k|2 (5)

The total loss function for training task prompts for obtaining a cross-task prompt to be transferred to
the target side is then:

LTotal = LMSE + λLdis (6)

where λ is a weight to balance the impact of distillation loss terms. In our experiments, we set λ to
0.5. The overall summary of the multitask training algorithm is presented in Algorithm 1.

4.2 Test Time Adaptation

During the test time adaptation (TTA) phase, we address distribution bias by aligning the distribution
of unlabeled test samples with the training samples. For each test task t in the test task set T , we
randomly select a subset X of unlabeled test samples, combine them with the cross-task prompts Pc

and input them into the model.

Here, we introduce the data collection method for X . The model’s testing phase usually occurs
in a simulated environment where we predefine our expected reward values r̂. The environment

5

provides the initial state s of the environment, consistent with the settings during inference in prompt
DT methods. However, unlike in training tasks where ground-truth labels exist, for action a1, we
assign a value sampled randomly from the action space (which is typically consistent between
training and testing tasks). We feed this sequence of Markov chains into the environment, obtaining
rewards and the next environment states iteratively, assigning a randomly sampled value to action
a2 in subsequent iterations. This process is repeated |X| times, resulting in data of the form
(r̂0, s0, a0, r̂1, s1, a1, . . . , r̂|N |, s|N |, a|N |).

In each layer of the model, we calculate the alignment loss based on the means and variances of the
training and test samples. Our goal is to update the Pc for the given test task through this alignment
loss. For each test task t, we denote the distribution of the test samples as T and the distribution of
the training samples as D. Specifically, we calculate the aligned token mean and variance via:

µl(T) =
1

|X|

|X|∑
i=1

Hl,i, σ2
l (T) =

1

|X|

|X|∑
i=1

[Hl,i − µl(T)]
2 (7)

Algorithm 2 Test Time Adaptation
Input: Test samples set X , Cross-task prompts Pc, µl(D),
σ2
l (D), The number of layers L.
1: for l = 1 to L do
2: for i in X do
3: Calculate Hl,i obtained by inputting the concate-

nation of Pc and i into DPDT.
4: end for
5: end for
6: for l = 1 to L do
7: Compute µl(T) and σ2

l (T) by Equation 7.
8: end for
9: Compute token distribution alignment loss by Equation 8.

10: Optimize Lalign to update Pc.

Here, Hl,i represents the state of the ith

sample at the lth hidden layer, while µl(T)
and σ2

l (T) denote the mean and variance of
all test samples at the lth hidden layer, re-
spectively. Similarly, for each hidden layer
of the model, we pre-calculate the statisti-
cal measures of mean µl(D) and variance
σ2
l (D) of the training samples, which are

uniformly sampled across all tasks in the
training set, in an offline setting to reduce
parallel computing costs, since both train-
ing samples and labels are accessible. The
formula for calculating the alignment loss
function is as follows:

Lalign =
1

L

L∑
l=1

(
∥µl(T)− µl(D)∥1 + ∥σ2

l (T)− σ2
l (D)∥1

)
. (8)

The test time adaptation phase process is illustrated in Algorithm 2.

5 Experiment

In this section, we present an extensive evaluation of our proposed DPDT using widely recognized
benchmarks. Additionally, we conduct empirical ablation studies to dissect and understand the
individual contributions of the core components of our methodology.

5.1 Environments and Baselines

Environments. To ensure a fair comparison with existing multi-task offline reinforcement learn-
ing algorithms, we conducted verification of DPDT using the MuJoCo [43] and MetaWorld [30]
benchmarks, which serve as standard tasks in the domain of sequence offline RL, offering sufficient
diversity and representing common challenges in classical RL, such as sparse rewards, complex state
spaces, and precise control of robotic systems. Our experiments on the Cheetah-dir, Cheetah-vel, and
Ant-dir environments in the MuJoCo benchmark meticulously adhere to the datasets and method-
ologies outlined in Prompt-DT. These tasks penalize agents for using excessive control signals. In
the MetaWorld benchmark, we used the ML10, ML45, MT10 and MT50 environments for Meta-
RL. A detailed description of the datasets and the division of training and test tasks is provided in
Appendix A.

Baselines. We compared DPDT to the following offline RL baselines: (1) Multi-task Behaviour
Cloning (MT-BC) [44]: MT-BC optimizes multi-task learning by exclusively simulating trajectories
from the original dataset, dispensing with the need for prompts and reward-to-go tokens. This
approach emphasizes the utilization of intrinsic task-specific information, adopting a behavior cloning

6

Table 1: Results for Meta-RL control tasks (zero-shot scenarios). The best mean accumulated returns
are highlighted in bold. For each prompt-needing environment, prompts of length K=30 are utilized.
Each experiment was run three times to ensure stability and reproducibility of the results. We report
the average returns and standard deviations for these three runs (the higher, the better).

MT-BC [44] MT-ORL [5] Soft-Prompt [45] HDT [17] Prompt-DT [6] DPDT-WP DPDT

Trainable Params 125.5M 125.5M 3.94M 12.94M 125.5M 1.42M 1.42M

Percentage 100% 100% 3% 10.31% 100% 1.14% 1.14%

Cheetah-dir -24.71±12.04 -86.92±15.51 -4.21±5.51 -45.32±13.22 -7.92±2.97 11.73±12.8 50.32±11.47

Cheetah-vel -201.66±30.27 -148.24±22.18 -171.23±20.58 -162.75±20.50 -192.38±11.80 -143.14±21.40 -139.88±19.65

Ant-dir 131.89±12.96 109.21±9.66 119.45±14.2 115.43±10.22 123.46±10.70 101.49±17.74 121.84±8.01

MW ML10 256.77±11.93 343.16±9.40 246.42±24.60 292.14±8.21 317.31±14.98 204.88±28.96 371.01±9.41

MW ML45 287.37±11.38 266.744±25.81 91.97±14.11 274.88±19.74 294.55±8.71 300.71±15.74 347.21±11.52

MW MT 10 547.83±11.04 1064.58±21.70 201.23±7.11 964.57±15.34 1087.54±17.09 1015.91±0.74 1317.52±8.22

MW MT 50 582.80±13.48 929.74±22.81 400.71±26.40 820.45±27.19 994.63±5.99 1131.01±1.17 1559.94±2.49

Average 225.76 354.04 130.62 309.79 373.88 374.66 518.28

strategy to streamline the learning process. (2) Multi-Task Decision Transformer (MT-ORL) [5]:
We train a decision transformer to learn multiple tasks from the training set. To construct the
MT-DT, we exclude prompt augmentation present in DPDT, while retaining the rest of the training
process identical to that of DPDT. (3) Soft-Prompt [45]: Soft-prompt is trained using a universal
prompt across all tasks. (4) Hyper-decision transformer (HDT) [17]: HDT efficiently adapts DT
to new tasks by augmenting them with an adaptation module, whose parameters are initialized by
a hyper-network, enabling quick and efficient adaptation with minimal data. (5) Prompt-DT [6]:
Prompt-DT builds on DT, leveraging trajectory prompts and reward-to-go for multi-task learning and
generalization to unseen tasks.

Implementation details. All experiments were carried out on a server with 8 NVIDIA 3090 GPUs,
each with 24GB of memory, using PyTorch [46] and Hugging Face Transformers libraries [47]. The
experimental hyperparameter configurations are shown in Appendix B. The computer resources
utilized by all methods are shown in Table 12.

5.2 Main Results and Analysis

Zero-shot Generalization. In Table 1, we compare the zero-shot generalization ability of DPDT
and the baselines to investigate the overall performance of DPDT. For evaluation, we use the average
episode cumulative returns in the test task set as the evaluation metric. Additionally, we introduce a
variant of DPDT that does not use GPT-SMALL parameters for initialization, referred to as DPDT-
WP (DPDT-Without Pretrained). Soft prompts adapt to tasks in a parameter-efficient way. However,
training a universal prompt across multiple tasks suffers from significant gradient interference, as
demonstrated by the experimental results. The prompt-DT performs well in few-shot scenarios due
to its utilization of test data for fine-tuning. However, in downstream tasks where data is scarce,
the prompt fails to provide sufficient task-specific guidance to the model, resulting in suboptimal
performance. Importantly, our proposed DPDT exhibits significant performance improvements over
fine-tuning and prompt-based methods. This vividly demonstrates the distinct advantages offered by
our innovative multitask training techniques. It is worth noting that without initialization with PLM,
the performance of DPDT-WP is inferior to most methods. We believe this is mainly due to the model
lacking sufficient prior knowledge for effective multi-task prompt tuning, resulting in suboptimal
performance of DPDT. In Figure 2, we illustrate the accumulated returns curves of DPDT and other
baselines across the Cheetah-vel, MW ML45, and MW MT50 environments. Additional curves
for other environments can be found in Figure 4. We also conducted experiments on Soft-Prompt
and Prompt-DT combined with TTA (shown in Figure 11). Soft-Prompt-TTA showed performance
improvements across all tasks, whereas Prompt-DT-TTA experienced performance declines in some
tasks. The main reason for this is that Prompt-DT relies on high-quality trajectory data for prompts
during testing, and applying TTA on unlabeled data may have adversely affected prompt optimization.

Few-shot Generalization. We explored the performance of DPDT in few-shot scenarios and further
investigated whether the prompt decomposition mechanism successfully isolated general knowledge.
In this scenario, DPDT does not use TTA to align cross-task prompts Pc. Instead, Pc is fine-tuned

7

Table 2: Results for Meta-RL control tasks (few-shot scenarios). The best mean accumulated returns
are highlighted in bold. For each prompt-needing environment, prompts of length K=30 are utilized.
Each experiment was run three times to ensure stability and reproducibility of the results. We report
the average returns and standard deviations for these three runs (the higher, the better).

MT-ORL [5] Soft-Prompt [45] HDT [17] Prompt-DT [6] DPDT-WP DPDT DPDT-F

Trainable Params 125.5M 3.94 M 12.94 M 125.5M 1.42M 1.42M 125.5M

Percentage 100% 3% 10.31% 100% 1.14% 1.14% 100%

Cheetah-dir -46.22±3.44 940.24±1.08 875.23±4.24 934.78±5.33 946.81±17.24 955.17±8.03 1037.85±5.98

Cheetah-vel -146.64±2.12 -41.81±2.10 -63.81±6.30 -37.80±2.09 -48.07±1.85 -30.73±1.88 -29.85±9.46

Ant-dir 110.51±2.2 379.01±1.75 361.49±5.63 411.96±9.28 308.10±5.22 384.29 ±10.91 400.01±9.79

MW ML10 421.22±9.21 379.82 ±14.76 467.81±3.07 315.07±6.17 485.27±19.31 535.52±17.39 670.24±3.88

MW ML45 264.14±9.67 448.72±11.38 477.19±2.16 473.34 ±4.12 519.28 ±7.22 579.09±10.42 600.44±17.48

Average 120.60 421.204 423.56 419.47 442.27 484.66 535.74

0 250 500 750 1000 1250 1500
Training Iteration

450

400

350

300

250

200

150

Ep
iso

de
 R

et
ur

n

Cheetah-vel

0 250 500 750 1000 1250 1500
Training Iteration

50
0

50
100
150
200
250
300
350

Ep
iso

de
 R

et
ur

n
ML 45

0 250 500 750 1000 1250 1500
Training Iteration

0

250

500

750

1000

1250

1500

Ep
iso

de
 R

et
ur

n

MT 50
MT-BC MT-ORL Soft-Prompt HDT Prompt-DT MPDT-MP MPDT

Figure 2: Episodic accumulated returns in three tasks of MTBC, MT-ORL, Soft-Prompt, HDT,
Prompt-DT, DPDT-WP and DPDT. Each method is restricted to 1500 rounds of runs in each environ-
ment.

directly on a small number of labeled test samples through a self-supervised paradigm. Specifically,
we randomly selected only one trajectory from the test dataset for fine-tuning. Other methods adhered
to the same amount of fine-tuning data. Furthermore, in few-shot scenarios, we fully fine-tuned
DPDT on the complete training and testing data, denoted as DPDT-F. The performance of the
DPDT-F method represents the upper bound of all model performances in the current environment.
Table 2 shows that the DPDT method, even after fine-tuning, still significantly outperforms or
matches the baseline algorithms, demonstrating the effectiveness of prompt decomposition in few-
shot environments. Moreover, in some datasets, DPDT approaches the performance of fully fine-tuned
models on the test set using only 1.14% of the parameters, as observed in the cheetah-vel environment.
It is worth noting that in the Ant-dir environment, the performance of DPDT is slightly inferior to
that of Prompt-DT in both zero-shot and few-shot settings. We believe the primary reason for this is
the significant domain difference between the language model and environment.

5.3 Further Analysis

In the ablation studies, we conducted research on the components of DPDT as well as the impact of
prompt length and model parameters on convergence speed and performance.

Impact of model components. As shown in Table 3, the impact of prompt decomposition was
evaluated. Compared to the soft-prompt method in the unseen task settings (first row), substituting it
with decomposed prompts Pk and Pc without distillation (third row) resulted in performance improve-
ments across all three tasks. This ablation highlights the significance of the prompt decomposition
strategy in DPDT, demonstrating that the shared component adeptly captures the diverse cross-task
knowledge essential for enhancing target downstream tasks.

To evaluate the impact of prompt distillation, we trained a standard prompt shared across all training
tasks using the same training loss as DPDT. The teacher prompts for each task remained consistent in
DPDT. Compared to the basic baseline (first row), incorporating prompt distillation (second row)

8

Table 3: Ablation: The impact of prompt decomposition, prompt distillation and test time adaptation.

Decomposition Distillation TTA Cheetah-vel MW ML45 MW MT50
✗ ✗ ✗ -171.23 91.97 400.71
✗ " " -163.05 108.01 709.81
" ✗ " -160.10 273.99 1137.39
" " ✗ -167.80 149.21 824.07
" " " -139.88 347.21 1559.94

Table 4: Ablation: The impact of model size. The elements of the triplet represent, in order, the
number of transformer blocks, the count of attention heads, and the size of the hidden layers.

Model size Cheetah-vel Ant-dir MW ML45 MW MT50

(3,1,128) -164.88 129.34 288.14 749.18
(12,12,768) -139.88 121.84 347.21 1559.94
(24,16,768) -210.35 165.99 292.48 1527.34

resulted in a modest improvement in average performance across the three tasks. This emphasizes
that prompt distillation from separately trained source prompts is an effective strategy for acquiring
high-quality decomposable prompts.

To compare the impact of using TTA on model performance, we examined the results in the fourth
and fifth rows. We found that the use of TTA affects the model’s final performance. The reason is
intuitive: cross-task prompts provide a good initialization environment for TTA, but relying solely
on the general information from cross-task prompts is insufficient for the model to perform well
on unseen tasks. Incorporating TTA allows the model to adapt to the specific nuances of each task
during testing, resulting in substantial performance gains.

Impact of prompt length. We examined the influence of prompt length on the performance of
DPDT by investigating five distinct prompt lengths (3, 6, 30, 60, 90). Specifically, we explored the
effect of prompt length variation on the convergence behavior and generalization capability of the
model. It is widely recognized that prompt lengths that are excessively short may impede model
convergence, while prompt lengths that are overly long can result in slow convergence rates and
potential overfitting. Ablation experiments revealed that a prompt length of 30 is optimal. Further
increasing the prompt length to 60 or 90, however, results in minor performance fluctuations but
increases the convergence time. Therefore, we used a prompt length of 30 for all our experiments.

3 9 30 60 90
Prompt Length

800

600

400

200

0

200

400

Av
er

ag
e

Sc
or

es

Cheetah-vel
Ant-dir
MW ML45

Figure 3: Ablation: The effect of prompt
length on DPDT’s zero-shot generaliza-
tion ability.

Impact of model size. We explored the performance
of DPDT under three model size configurations. The
(3,1,128) configuration uses the pretrained model provided
in the original Prompt-DT [6] to initialize DPDT, while
the (24,16,768) configuration employs GPT-MIDDLE. Ta-
ble 4 shows that the size of the pretrained model param-
eters is correlated with the performance improvement of
DPDT. When the model size is expanded to a certain extent
(12,12,768), efficient parameter fine-tuning can extract ad-
equate prior knowledge for downstream tasks. However,
as the model complexity increases, such as when reaching
the size of GPT-MIDDLE, the model exhibits performance
improvement on some tasks (Ant-dir) but a decrease in per-
formance on others. This phenomenon can be attributed
to the significant gap between the size of the dataset and
the complexity of the model. Fine-tuning the model in such scenarios may encounter challenges in
appropriately converging for reinforcement learning tasks, potentially leading to overfitting.

Impact of data quality. The quality of data used for fine-tuning cross prompts does indeed affect the
final model performance. We conducted experiments focusing on data quality. In the Cheetah-vel
and ML45 environments, we differentiated the quality of datasets into expert, medium, random, and
mixed datasets. Each dataset consists of 200 time steps, which aligns with the setup for few-shot
scenarios relative to the size of the training set. As shown in Table 5, we found that models fine-tuned

9

using expert datasets perform the best, which aligns with our intuition. Additionally, the performance
of models fine-tuned on mixed datasets is close to that on expert datasets, suggesting implicitly that
the DPDT method can extract information from suboptimal datasets to ensure model performance.

Table 5: Ablation: The impact of data quality.

Cheetah-vel ML45

expert datasets -30.10 586.84
medium datasets -41.73 502.64
random datasets -935.66 37.91
mixed datasets -30.73 579.09

Impact of adaptation method. In addition to only
utilizing cross-task prompts Pc for TTA in zero-shot
scenarios, we also investigated (1) combining cross-
task prompts Pc with the average of all task-specific
prompts Pk from the training set for TTA, (2) freez-
ing the cross-task prompts Pc, we initialized a new
task-specific prompt combined with the cross-task
prompts for TTA and (3) randomly selecting one Pk

from a training task and combining it with Pc for TTA. However, we found that all of these initializa-
tion methods resulted in suboptimal outcomes, shown in Table 10.

Table 6: Ablation: The impact of learning rate in
prompt decomposition.

lrPc=1e-2 lrPc=1e-3 lrPc=1e-4

lrPk=1e-2 310.74 307.36 311.40
lrPk=1e-3 198.17 350.99 338.21
lrPk=1e-4 204.94 104.07 347.21

Impact of learning rate in prompt decompo-
sition. As shown in Table 6, we present ex-
perimental results on the ML45 dataset where
different learning rates were applied to Pc and
Pk in prompt decomposition. We observed opti-
mal performance when both had the same learn-
ing rate. We speculate that this occurs because,
over training iterations, both prompts converge
to their optimal values, and differing learning rates disrupt their joint convergence, leading to poorer
performance under similar runtime conditions.

Table 7: Ablation: The impact of
low-rank parameter r.

Cheetah-vel MW ML45

r=1 -139.88 347.21
r=4 -138.08 344.10
r=10 -135.51 350.33

Impact of low-rank parameter r. Table 7 presents the results
of our ablation experiments focusing on the low-rank parame-
ter r of prompt decomposition for Cheetah-vel and MW ML45.
DPDT is relatively insensitive to selecting hyperparameters,
a potential advantage of our work. As observed, the model’s
performance varies with different values of r. These findings
suggest that the performance of DPDT remains stable across
different values of r. This characteristic can be advantageous,
as it allows users to implement the model without extensive tuning, streamlining the deployment
process while still achieving competitive results across diverse tasks.

6 Conclusion, Limitation and Broader Impact
We have introduced a novel approach, the Decomposed Prompt Decision Transformer (DPDT),
aimed at efficient generalization to unseen tasks. Through the utilization of PLMs for parameter
initialization and the implementation of parameter-efficient multi-task prompt tuning techniques,
we have successfully extracted cross-task general knowledge and further fine-tuned it on previously
unseen tasks. Our experiments across various Meta-RL environments demonstrated the effectiveness
of our components, achieving superior performance with significantly fewer task-specific parameters
compared to fully fine-tuned methods. This approach offers a robust framework for future research to
further explore and optimize multi-task learning and generalization capabilities.

Limitation. Currently, our work primarily involves using large language models to initialize DPDT.
While we’ve utilized parameter-efficient techniques to fine-tune the model and mitigate inter-domain
variances, focusing on optimizing these differences could potentially enhance model performance.

Broader Impact. Overall, the application of PEFT methods based on PLMs can help users obtain
high-quality reinforcement learning decision models at minimal cost. However, this approach may
lead to the misuse of language models when users are unaware of the inter-domain differences,
potentially resulting in unforeseen negative outcomes in the RL decision-making process.

Acknowledgements

This work is supported by the STI 2030-Major Projects (No. 2021ZD0201405), the National
Natural Science Foundation of China (Grant No. U23A20318 and 62276195), the Fundamental

10

Research Funds for the Central Universities (No. 2042024kf0039), the Science and Technology
Major Project of Hubei Province under Grant 2024BAB046, and the Innovative Research Group
Project of Hubei Province under Grant 2024AFA017. Tongliang Liu is partially supported by
the following Australian Research Council projects: FT220100318, DP220102121, LP220100527,
LP220200949, IC190100031. Dr. Tao’s research is partially supported by NTU RSR and Start Up
Grants. The numerical calculations in this paper have been done on the supercomputing system in the
Supercomputing Center of Wuhan University.

References
[1] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:

Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[2] Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi Tomizuka. Efficient multi-task and
transfer reinforcement learning with parameter-compositional framework. IEEE Robotics and
Automation Letters, 2023.

[3] Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao,
and Xuelong Li. Diffusion model is an effective planner and data synthesizer for multi-task
reinforcement learning. Advances in neural information processing systems, 36, 2024.

[4] Shengchao Hu, Ziqing Fan, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao. Harmodt:
Harmony multi-task decision transformer for offline reinforcement learning. arXiv preprint
arXiv:2405.18080, 2024.

[5] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[6] Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In international
conference on machine learning, pages 24631–24645. PMLR, 2022.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Prompt-tuning decision transformer with
preference ranking. arXiv preprint arXiv:2305.09648, 2023.

[9] Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, and Dacheng Tao. On transforming reinforce-
ment learning with transformers: The development trajectory. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

[10] Suyoung Lee and Sae-Young Chung. Improving generalization in meta-rl with imaginary
tasks from latent dynamics mixture. Advances in Neural Information Processing Systems,
34:27222–27235, 2021.

[11] Akari Asai, Mohammadreza Salehi, Matthew E Peters, and Hannaneh Hajishirzi. Attentional
mixtures of soft prompt tuning for parameter-efficient multi-task knowledge sharing. arXiv
preprint arXiv:2205.11961, 3, 2022.

[12] Tu Thanh Vu, Daniel Matthew Cer, Noah Constant, Brian David Lester, and Rami Al-Rfou.
Frozen model adaptation through soft prompt transfer, January 18 2024. US Patent App.
17/863,840.

[13] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not
as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

[14] Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S Du, and Huazhe Xu. Unleashing the power of pre-
trained language models for offline reinforcement learning. arXiv preprint arXiv:2310.20587,
2023.

11

[15] Yao Wei, Yanchao Sun, Ruijie Zheng, Sai Vemprala, Rogerio Bonatti, Shuhang Chen, Ratnesh
Madaan, Zhongjie Ba, Ashish Kapoor, and Shuang Ma. Is imitation all you need? generalized
decision-making with dual-phase training. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 16221–16231, 2023.

[16] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 295–305, 2022.

[17] Mengdi Xu, Yuchen Lu, Yikang Shen, Shun Zhang, Ding Zhao, and Chuang Gan. Hyper-
decision transformer for efficient online policy adaptation. arXiv preprint arXiv:2304.08487,
2023.

[18] Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23,
2010.

[19] Hao-nan Wang, Ning Liu, Yi-yun Zhang, Da-wei Feng, Feng Huang, Dong-sheng Li, and
Yi-ming Zhang. Deep reinforcement learning: a survey. Frontiers of Information Technology &
Electronic Engineering, 21(12):1726–1744, 2020.

[20] Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be
trained to be adaptive. In International Conference on Machine Learning, pages 7513–7530.
PMLR, 2022.

[21] Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 8753–8760, 2022.

[22] Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng
Tao. Q-value regularized transformer for offline reinforcement learning. arXiv preprint
arXiv:2405.17098, 2024.

[23] Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. Advances
in Neural Information Processing Systems, 36, 2024.

[24] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pages
709–727. Springer, 2022.

[25] Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon
Kim. Multitask prompt tuning enables parameter-efficient transfer learning. arXiv preprint
arXiv:2303.02861, 2023.

[26] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with
soft modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

[27] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pages 9767–9779.
PMLR, 2021.

[28] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Learning multi-agent communication
from graph modeling perspective. arXiv preprint arXiv:2405.08550, 2024.

[29] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive
learning as goal-conditioned reinforcement learning. Advances in Neural Information Process-
ing Systems, 35:35603–35620, 2022.

[30] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pages 1094–1100. PMLR, 2020.

[31] Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi Tomizuka. Paco: Parameter-
compositional multi-task reinforcement learning. Advances in Neural Information Processing
Systems, 35:21495–21507, 2022.

12

[32] Roei Herzig, Ofir Abramovich, Elad Ben Avraham, Assaf Arbelle, Leonid Karlinsky, Ariel
Shamir, Trevor Darrell, and Amir Globerson. Promptonomyvit: Multi-task prompt learning
improves video transformers using synthetic scene data. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 6803–6815, 2024.

[33] Tianxiang Sun, Zhengfu He, Qin Zhu, Xipeng Qiu, and Xuan-Jing Huang. Multitask pre-training
of modular prompt for chinese few-shot learning. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 11156–11172,
2023.

[34] Sheng Shen, Shijia Yang, Tianjun Zhang, Bohan Zhai, Joseph E Gonzalez, Kurt Keutzer, and
Trevor Darrell. Multitask vision-language prompt tuning. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 5656–5667, 2024.

[35] Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and
Chaowei Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models.
Advances in Neural Information Processing Systems, 35:14274–14289, 2022.

[36] Shuai Wang, Daoan Zhang, Zipei Yan, Jianguo Zhang, and Rui Li. Feature alignment and
uniformity for test time adaptation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 20050–20060, 2023.

[37] Sanghun Jung, Jungsoo Lee, Nanhee Kim, Amirreza Shaban, Byron Boots, and Jaegul Choo.
Cafa: Class-aware feature alignment for test-time adaptation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 19060–19071, 2023.

[38] Jameel Abdul Samadh, Mohammad Hanan Gani, Noor Hussein, Muhammad Uzair Khattak,
Muhammad Muzammal Naseer, Fahad Shahbaz Khan, and Salman H Khan. Align your prompts:
Test-time prompting with distribution alignment for zero-shot generalization. Advances in
Neural Information Processing Systems, 36, 2024.

[39] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[40] Yujin Tang, Wenhao Yu, Jie Tan, Heiga Zen, Aleksandra Faust, and Tatsuya Harada. Saytap:
Language to quadrupedal locomotion. arXiv preprint arXiv:2306.07580, 2023.

[41] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[42] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[43] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[44] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv
preprint arXiv:1805.01954, 2018.

[45] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[47] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

13

Appendix

The appendix is organized into several sections, each providing additional insights and details related
to different aspects of the main work.

A Detailed Environment 14

B Hyperparameters configuration 15

C Supplementary experiment 15

A Detailed Environment

• Cheetah-dir: There are two tasks in Cheetah-dir with goal directions as forward and
backward, respectively. The cheetah agent is rewarded with high velocity along the goal
direction. The training and testing set are equal, and both contain the two tasks.

• Cheetah-vel: There are 40 tasks in Cheetah-vel with different goal velocities. The target
velocities are uniformly sampled from the interval [0,3]. The agent is penalized with l2
errors to the target velocity. We hold out 5 tasks to construct the testing set and train with
the remaining 35 tasks.

• Ant-dir: There are 50 tasks in Ant-dir with different goal directions uniformly sampled
in 2D space. The 8-joints ant is rewarded with high velocity along the goal direction. We
sample 5 tasks for testing and leave the rest for training.

• Meta-World ML10: In Meta-World ML10, the task is to control a Sawyer robot’s end-
effector to reach a target position in 3D space. The agent directly controls the XYZ location
of the end-effector. Each task has a different goal position. We train in 10 tasks and test in
unseen 3 tasks.

• Meta-World ML45: In Meta-World ML45, each task has a different goal position. We train
in 45 tasks and test in unseen 5 tasks.

• Meta-World MT10: Meta-World MT10 comprises 10 distinct robot manipulation tasks
with shared dynamics for training and 3 unseen robot manipulation tasks for testing. These
tasks exhibit greater variability compared to standard meta-learning environments, posing
greater challenges for extracting generalizable knowledge.

• Meta-World MT50: The task design of Meta-World MT50 is similar to MT10, with the
key difference being an expansion of the training tasks to 45, while the number of unseen
test tasks remains at 5.

Adhering to the experimental setup of Prompt-DT, we illustrate the task distribution for both training
and testing sets in each dataset, as detailed in Table 13. Our experiments are meticulously crafted in
accordance with the specifications outlined in this table.

14

B Hyperparameters configuration

We show the hyperparameter of DPDT and other baslines in Table 8 and Table 9.

Table 8: Common Hyperparameters configuration of DPDT and DPDT-WP.
Hyperparameters Value

Pretraining model GPT2-small
K (length of context) 20
Prompt Length 30
training batch size for each task 16
number of evaluation episodes for each task 5
learning rate 1e-4
learning rate decay weight 1e-4
number of layers 12
number of attention heads 12
embedding dimension 768
activation ReLU
r 1

Table 9: Common Hyperparameters configuration of MT-BC,MT-DT, Soft-prompt, HDT and Prompt-
DT.

Hyperparameters Value

K (length of context P) 20
training batch size for each task 16
number of evaluation episodes for each task 5
learning rate 1e-4 (2e-5 for Prompt-DT)
learning rate decay weight 1e-4 (1e-5 for Prompt-DT)
number of layers 12
number of attention heads 12
embedding dimension 768
activation ReLU

C Supplementary experiment

Table 10: Ablation: The impact of adaptation method. (1) Combining cross-task prompts Pc with
the average of all task-specific prompts Pk from the training set for TTA, (2) freezing the cross-task
prompts Pc, we initialized a new task-specific prompt combined with the cross-task prompts for TTA
and (3) randomly selecting one Pk from a training task and combining it with Pc for TTA.

Method Cheetah-vel MW ML45 MW MT50

(1) -148.50 332.80 1482.75

(2) -171.75 320.30 1418.50

(3) -159.26 325.02 1079.82

DPDT -139.88 347.21 1559.94

15

Table 11: Results for Meta-RL control tasks (zero-shot scenarios).

Soft-Prompt-TTA [45] Prompt-DT-TTA [6] DPDT
Cheetah-dir 2.91±0.74 8.33±0.41 50.32±11.47

Cheetah-vel -160.51±10.13 -204.57±8.36 -139.88±19.65

Ant-dir 119.14±10.72 120.07±2.67 121.84±8.01

MW ML10 251.37±6.17 316.74±12.05 371.01±9.41

MW ML45 301.74±18.55 299.47±8.97 347.21±11.52

MW MT 10 541.99±10.46 1027.8015.58 1317.52±8.22

MW MT 50 519.78±20.97 1134.72±7.92 1559.94±2.49

Average 226.35 386.08 518.28

Table 12: Computer resources (memory, time of execution)

Method Batch Size (each) GPU usage Wall Time

MT-BC 16 10.4GB ≈ 5-6 hours

MT-ORL 16 10.4GB ≈ 1 day

Soft-Prompt 16 20.1GB ≈ 5 hours

HDT 16 40.8GB ≈ 2 hours

Prompt-DT 16 10.9GB ≈ 4 hours

DPDT-WP 16 20.5GB ≈ 2-3 hours

DPDT 16 20.5GB ≈ 2-3 hours

0 250 500 750 1000 1250 1500
Training Iteration

150

100

50

0

50

Ep
iso

de
 R

et
ur

n

Cheetah-dir

0 250 500 750 1000 1250 1500
Training Iteration

50

0

50

100

150

Ep
iso

de
 R

et
ur

n

Ant-dir

0 250 500 750 1000 1250 1500
Training Iteration

0

100

200

300

400

Ep
iso

de
 R

et
ur

n

ML 10

0 250 500 750 1000 1250 1500
Training Iteration

0

500

1000

Ep
iso

de
 R

et
ur

n

MT 10

MT-BC MT-ORL Soft-Prompt HDT Prompt-DT MPDT-MP MPDT

Figure 4: Episodic accumulated returns in four unseen tasks of MTBC, MT-ORL, Soft-Prompt,
HDT, Prompt-DT, DPDT-WP and DPDT. Each method is restricted to 1500 rounds of runs in each
environment.

16

Table 13: Training and testing task indexes when testing the generalization ability in unseen tasks.

Cheetah-dir

Training set of size 2 [0, 1]

Testing set of size 2 [0.1]

Cheetah-vel

Training set of size 35 [0− 1, 3− 6, 8− 14, 16− 22, 24− 25, 27− 39]

Testing set of size 5 [2, 7, 15, 23, 26]

Ant-dir

Training set of size 45 [0− 5, 7− 16, 18− 22, 24− 29, 31− 40, 42− 49]

Testing set of size 5 [6, 17, 23, 30, 41]

Meta-World ML10

Training set of size 10 [0, 9, 19, 29, 33, 36, 39, 40, 48, 49]

Testing set of size 3 [11, 24, 41]

Meta-World ML45

Training set of size 45 [0− 10, 12− 16, 18− 24, 26− 35, 37− 40, 42− 49]

Testing set of size 5 [11, 17, 25, 36, 41]

Meta-World MT10

Training set of size 10

["assembly-v2", "button-press-topdown-v2", "coffee-push-v2",

"dial-turn-v2", "disassemble-v2", "door-open-v2", "hand-insert-v2",

"drawer-open-v2","box-close-v2","push-wall-v2”]

Testing set of size 3 ["peg-unplug-side-v2","hammer-v2","handle-press-v2"]

Meta-World MT50

Training set of size 45

["basketball-v2", "bin-picking-v2", "button-press-topdown-v2",

"button-press-v2", "coffee-button-v2", "coffee-pull-v2",

"coffee-push-v2", "dial-turn-v2", "disassemble-v2",

"door-close-v2", "door-lock-v2", "door-open-v2",

"hand-insert-v2", "drawer-close-v2", "drawer-open-v2",

"faucet-close-v2", "handle-press-v2", "handle-pull-side-v2",

"handle-pull-v2", "lever-pull-v2","peg-insert-side-v2",

"pick-place-wall-v2", "pick-out-of-hole-v2", "reach-v2",

"push-back-v2", "push-v2", "pick-place-v2",

"plate-slide-v2", "plate-slide-back-v2", "plate-slide-back-side-v2",

"soccer-v2", "push-wall-v2", "shelf-place-v2",

"sweep-into-v2", "sweep-v2", "window-open-v2",

"window-close-v2","assembly-v2","button-press-topdown-wall-v2",

"hammer-v2","peg-unplug-side-v2", "reach-wall-v2",

"stick-push-v2", "stick-pull-v2", "box-close-v2"]

Testing set of size 5
["plate-slide-side-v2", "handle-press-side-v2", "buttonpress-wall-v2",

"door-unlock-v2", "faucet-open-v2"]

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce the scope of this paper in the abstract and the Introduction
section, and summarize the contribution in the Introduction section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We state the limitation in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: If you are including theoretical results, did you state the full set of assumptions of
all theoretical results, and did you include complete proofs of all theoretical results?
Answer: [NA]

18

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: If the contribution is a dataset or model, what steps did you take to make your
results reproducible or verifiable?

Answer: [Yes]

Justification: Yes, we provide a detailed experimental description in 5.1. All the datasets,
code, and model checkpoints are publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: If you ran experiments, did you include the code, data, and instructions needed to
reproduce the main experimental results (either in the supplemental material or as a URL)?

19

Answer: [Yes]
Justification: All the datasets, code, and model checkpoints are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: If you ran experiments, did you specify all the training details (e.g., data splits,
hyperparameters, how they were chosen)?
Answer: [Yes]
Justification: Both in main paper and Appendices A and B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide standard deviations in numerical form in Tables 1 and Tables 2.
Additionally, Figure 2 includes standard deviations represented as shaded areas.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information in Table 12.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Have you read the NeurIPS Code of Ethics https://neurips.cc/public/
EthicsGuidelines and ensured that your research conforms to it?

Answer: [Yes]

Justification: This paper does not involve human subjects, and we have not used any personal
data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: If appropriate for the scope and focus of your paper, did you discuss potential
negative societal impacts of your work?

Answer: [Yes]

Justification: We discuss the broader impact in Section 6

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Do you have safeguards in place for responsible release of models with a high
risk for misuse (e.g., pretrained language models)?

Answer: [NA]

Justification: The paper uses standard benchmark datasets and does not involve any high-risk
data or models. The pre-trained models and datasets are publicly available.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses
Question: If you are using existing assets (e.g., code, data, models), did you cite the creators
and respect the license and terms of use?

Answer: [Yes]

Justification: We use standard benchmark datasets, which are properly credited and have
open licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. Assets
Question: If you are releasing new assets, did you document them and provide these details
alongside the assets?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: If you used crowdsourcing or conducted research with human subjects, did you
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. IRB Approvals
Question: Did you describe any potential participant risks and obtain Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements of your
institution), if applicable?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Related works
	Preliminary
	Prompt Decision Transformer
	Test-Time Adaptation

	Decomposed Prompt Decision Transformer
	Decomposed Prompt Tuning
	Test Time Adaptation

	Experiment
	Environments and Baselines
	Main Results and Analysis
	Further Analysis

	Conclusion, Limitation and Broader Impact
	Detailed Environment
	Hyperparameters configuration
	Supplementary experiment

