
UPS: Efficiently Building Foundation Models for PDE Solving
via Cross-Modal Adaptation

Junhong Shen 1 Tanya Marwah 1 Ameet Talwalkar 1

Abstract
We present Unified PDE Solvers (UPS), a data-
and compute-efficient approach to developing uni-
fied neural operators for diverse families of spa-
tiotemporal PDEs from various domains, dimen-
sions, and resolutions. UPS embeds different
PDEs into a shared representation space and pro-
cesses them using a FNO-transformer architecture.
Rather than training the network from scratch,
which is data-demanding and computationally ex-
pensive, we warm-start the transformer from pre-
trained LLMs and perform explicit alignment to
reduce the modality gap while improving data
and compute efficiency. The cross-modal UPS
achieves state-of-the-art results on a wide range
of 1D and 2D PDE families from PDEBench, out-
performing existing unified models using 4 times
less data and 26 times less compute. Meanwhile,
it is capable of few-shot transfer to unseen PDE
families and coefficients.

1. Introduction
Partial Differential Equations (PDEs) play a pivotal role in
modeling and understanding real-world phenomena, such
as fluid dynamics and heat transfer. Although there exists
a rich body of classical PDE solvers (Boyd, 2001; LeV-
eque, 2007; Moukalled et al., 2016) that are effective and
mathematically proven, these solvers often incur substantial
computational costs when used in practice, as they need
to be re-run every time a coefficient or boundary condi-
tion changes. This motivates the development of neural
operators (Li et al., 2020a; Chen & Chen, 1995; Lu et al.,
2019), which use neural networks to approximate a solu-
tion map for a PDE family and can generalize to different
initial/boundary conditions or coefficients. While existing
neural operators (Lippe et al., 2023; Hao et al., 2023a; Mar-
wah et al., 2023) have demonstrated strong performance on
various practical benchmarks (Takamoto et al., 2022; Gupta

1Carnegie Mellon University. Correspondence to: Junhong
Shen <junhongs@andrew.cmu.edu>.

Appearing in ICML 2024 AI for Science Workshop.

Figure 1: Effectiveness-efficiency trade-off. We plot the normal-
ized error averaged across 7 different PDE families in PDEBench
vs. the estimated compute for single-family models (FNO, ORCA)
and unified models (MPP-B, DPOT-M, UPS-B). Compute is esti-
mated by log10 (Num GPUs × Num Train Steps). UPS achieves
the lowest error at the lowest cost among all unified models, strik-
ing a balance between effectiveness and efficiency. Beyond com-
pute, UPS also uses 4x less data than existing unified models. See
Table 1 for detailed results and Appendix A for plot details.

& Brandstetter, 2022), most of them are designed to work
with a single PDE family. Training a separate model for
each PDE family remains costly.

Several recent works, such as Subramanian et al. (2023),
MPP (McCabe et al., 2023), and DPOT1 (Hao et al., 2024),
have taken initial steps towards developing foundation mod-
els for PDE solving, learning unified operators that transfer
across PDE families. These models are pretrained from
scratch using extensive amounts of data and compute. For
example, MPP is trained with over 80,000 PDE trajectories
on 8 NVIDIA H100 GPUs for 200,000 steps. Despite the de-
velopment costs, the resulting models are limited in general-
ization ability—all existing unified models focus on pretrain-
ing with 2D PDEs. Finally, as these models are developed
using only PDE trajectories, they do not leverage meta in-
formation that could help distinguish between various PDE
families, such as the name of the family and the coefficients.

We present Unified PDE Solvers (UPS), which learns
unified neural operators for complex time-dependent PDEs
with improved efficiency and generalization ability. Unlike
existing efforts that train models from scratch, we propose
a novel method to adapt pretrained Large Language Models
(LLMs) to PDE solving. This is inspired by the line of
work that repurposes LLMs for scientific domains like

1This work was done at the same time as ours.

1

Figure 2: To adapt pretrained LLMs for PDE solving, UPS first transforms PDE of different dimensions, channels, and resolutions into
a unified representation (left panel). Then, the data is processed with a unified architecture that integrates FNO layers, PDE metadata,
and LLMs (right panel). The architecture is trained in two stages. In stage 1, we pretrain the embedding network using a joint loss that
simultaneously optimizes (i) the distribution similarity between PDE features and text embeddings to align the modalities, and (ii) the
prediction performance of extracted PDE features. In stage 2, we fine-tune the entire model on a dataset that combines multiple families
of spatiotemporal PDEs with varying domain dimensions, initial/boundary conditions, and coefficients.

mathematics (Lewkowycz et al., 2022), computational
biology (Shen et al., 2023; Vinod et al., 2023; Joachimiak
et al., 2023), and chemistry (Bran et al., 2023; Shen et al.,
2024). These works not only show how LLMs utilize both
text and non-text information to solve scientific problems
and transfer effectively to unseen tasks, but also provide
strong evidence that the general-purpose pretraining and
inductive biases of LLMs could substantially reduce the
sample complexity needed for adaptation.

Concretely, UPS adapts pretrained LLMs to time-evolution
operators that map the current state of a PDE to its future
state for general spatiotemporal PDEs (see Section 3 Equa-
tion 1 for definition) using two key designs:

1. We propose a unified data representation scheme to
align PDEs with varying dimensions and physical quan-
tities into the same feature space (Figure 2). Given the
space and time discretization u = {ut(x)}Tt=0, where
x ∈ Rd is the spatial variable and ut(x) is the state
variable, UPS homogenizes ut(x) from diverse PDEs
into a shared “superspace” RN×ndmax , where dmax is
the maximum dimension of x among all PDEs consid-
ered, N is the superset of the physical quantities, and n
is the resolution. This framework of embedding lower-
dimensional PDEs in a higher dimension enables UPS to
model cross-dimensional PDEs simultaneously and dis-
tinguishes us from all existing unified operators, which
do not consider low dimensional PDEs in 1D.

2. We employ a unified network architecture to predict
ut+1(x) based on ut(x). To leverage pretrained LLMs,
we design a three-way architecture that consists of (i)
a FNO (Li et al., 2020a) based embedding network to
convert PDE data into resolution-invariant, sequential
features; (ii) an LLM body to process the PDE features
and the text embeddings of the PDE metadata; and (iii)

a prediction network to generate the final output (Fig-
ure 2). Inspired by previous cross-modality adaptation
work (Shen et al., 2023), we employ a two-stage align-
then-refine process for model training. However, we
improve the align stage by using a joint loss that adds
feature extraction on top of alignment to pretrain the
embedding network. We improve the refine stage by
fine-tuning on a collection of PDE tasks rather than a
single task. Our enhanced workflow outperforms naive
transfer and previous cross-modal approaches, reducing
both the data and compute needed for training.

By design, UPS can handle diverse PDE families, data di-
mensions, channels, and resolutions. More crucially, by
warm-starting with pretrained LLM weights and applying
explicit alignment, UPS strikes a balance between effective-
ness and efficiency (Figure 1)—it achieves state-of-the-art
performance across 9 datasets from PDEBench (Takamoto
et al., 2022) (7 in-distribution, 2 out-of-distribution), us-
ing about 20,000 training data, a single A6000, 60,000
train steps, and under 100 GPU hours. This means that we
achieve better results than existing unified models using 4
times less data and 26 times less compute.

Beyond prediction accuracy, we confirm that UPS pre-
serves key properties of neural operators, such as grid- and
resolution-invariance. We also show that UPS is compatible
with a variety of LLM backbones, including RoBERTa (Liu
et al., 2019), T5 (Raffel et al., 2020), and CLIP (Radford
et al., 2021), and demonstrates better performance when
scaled to larger backbones. We believe that the model-
agnostic design of UPS offers a systematic approach to har-
nessing the advancements in LLMs for PDE solving, and it
takes a further step towards building generalized foundation
models for more complex physical systems efficiently.

2

2. Related Work
Recent years has seen a variety of neural-network-
based methods for approximating PDE solutions. Hy-
brid solvers (Hsieh et al., 2019; Bar-Sinai et al., 2019;
Kochkov et al., 2021) apply classical solvers like finite el-
ement/volumn methods (LeVeque, 2007; Moukalled et al.,
2016) to a low-resolution grid and use neural networks to
predict the correction terms. Others directly approximate
the PDE solutions with neural networks (Sirignano, 2017;
Raissi et al., 2019; Khoo et al., 2021; Shen et al., 2022),
using variational losses (Yu et al., 2018) or physical con-
straints defined by the PDE (Raissi et al., 2019; Bruna et al.,
2024). Being mostly equation-specific, these methods can
solve one PDE at a time. The learned models do not apply
to other PDEs in the same family, let alone other families.

A more general approach involves learning neural opera-
tors (Lu et al., 2019; Li et al., 2020a;b) which approximate
an infinite-dimensional operator between two functional
spaces. For time-dependent PDEs, a neural operator maps
the current state of a PDE to the next state, with quanti-
ties like initial conditions provided as input. Neural opera-
tors can be implemented using any architecture. For exam-
ple, Fourier neural operator (FNO) (Li et al., 2020a) uses
convolution-based integral kernels evaluated in the Fourier
space. Other works also use transformer models (Cao, 2021;
Li et al., 2022; Hao et al., 2023a) or U-Net (Lippe et al.,
2023). Learning neural operators enables solving an entire
family of PDE and they can easily adapt to new parameteri-
zations of a PDE without fine-tuning. However, the learned
operators cannot extend to different PDE families.

To facilitate operator transfer across PDE families, two re-
cent works develop large pretrained models for multiple
physical systems: Subramanian et al. (2023) train FNOs on
steady-state linear PDEs with periodic boundary conditions;
McCabe et al. (2023) design a new transformer architecture
based on the axial attention (Ho et al., 2020) and train it
using various 2D non-linear, time-dependent PDEs. While
these methods show that a unified operator can outperform
single-family operators, they are limited in two aspects.
First, existing unified methods consider mainly 2D PDEs for
pretraining and evaluation. In contrast, UPS leverages a uni-
fied representation scheme to tackle both 1D and 2D PDEs.
This method can be also extended to any d-dimensional sys-
tems in theory. Second, existing methods pretrain large mod-
els from scratch and necessitate extensive GPU resources
and pretraining data, which can be prohibitive to collect
for high-dimensional complex PDEs. However, by adapt-
ing from pretrained LLMs and closing the modality gap
between text and PDE efficiently, UPS achieves competitive
results using 4x less data and 26x less compute.

Beyond the aforementioned works, DPOT (Hao et al., 2024)
was developed concurrently with our work and presents an

auto-regressive denoising strategy for pretraining. While
DPOT has shown better transferability to unseen PDE tasks
than MPP, it shares the same limitations of focusing on 2D
problems for pretraining and requiring large amount of data
and compute (8 A800 GPUs for 500,000 steps).

A final work that is related to ours is ORCA (Shen et al.,
2023), which proposes a general workflow for adapting
pretrained language/vision transformers to non-text/vision
inputs. While ORCA uses PDEBench in its evaluation, it is
not tailored to PDE solving and requires adapting a separate
model for every dataset. The resulting models are not grid-
or resolution-invariant, which are key properties of neural
operators and achieved by UPS. Moreover, by learning from
multiple PDEs and sharing knowledge across families, UPS
obtains significantly better empirical results than ORCA.

3. Methodology
Our goal is to train unified neural operators for spatiotem-
poral PDEs with varying domain dimensions, coefficients,
initial and boundary conditions. These PDEs could model
a range quantities that evolve over time, from scalars (e.g.,
pressure, density) to vectors (e.g., velocity). To achieve this,
we propose UPS, which consists of a unified way to rep-
resent the PDE and a LLM-based network to model them.

3.1. Unified Data Representation
We model PDEs that follow the general form:

du(t,x)

dt
= L

(
u(t,x),

∂u(t,x)

∂x
,
∂u(t,x)

∂x2
, · · ·

)
u(0,x) = u0(x) B (u(t,y)) = 0

(1)

where x ∈ Ω ⊂ Rd is the spatial variable, u : [0, T]×Ω →
Rdu is a time-varying function defined over the domain Ω
for finite time T . Here, L is a (possibly non-linear) operator
which acts on u and multiple partial derivatives of u w.r.t
the spatial variable x. u0(x) : Ω → Rdu denotes PDE’s
initial condition, and the operator B defines the boundary
condition where y ∈ ∂Ω is a point on domain’s boundary.
PDE families in this form include Navier-Stokes equations,
Reaction-Diffusion equations, Burgers equations, and many
others that describe phenomena like fluid dynamics and heat
flow over time. They also constitute most PDE benchmarks
in the field of machine learning (Takamoto et al., 2022; Tu
et al., 2022; Roberts et al., 2021).

Consider a set of S spatiotemporal PDEs {us}Ss=1. Here,
each us = {us

t (x)}
Ts
t=1 is solution to a PDE of the form

defined in Equation 1 such that for all t ∈ [Ts], we have
us
t (x) ∈ Rds

u and x ∈ Ωs ⊂ Rds

. For each ut
s, we as-

sume that we have an n-point discretization of the functions
{us

t}
Ts
t=1 at points W s

n = {xs
1, x

s
2, · · · , xs

n}, where each
xs
i ∈ Rds

. That is, for each PDE s ∈ S and t ∈ Ts, we
have the realization of the function us

t on a grid with each

3

dimension divided into n parts. We assume that n is con-
stant across PDE families. Denote the set of N physical
quantities considered for each PDE as V = {v1, v2, · · · vN}.
Our goal is to learn an operator Gθ which, for a given PDE
s, predicts the state of the PDE at time t + 1 based on its
state at time t ∈ [Ts], i.e., us

t+1(x) = Gθ(u
s
t (x)). We thus

need a unified representation for the inputs so a model can
handle different quantities at once.

Unifying Dimension Let d = maxs∈S ds. We want to
represent all datasets in Rd. Thus, for PDEs with ds < d,
the final d− ds coordinates of xs

i ∈ W s
n are set to zero. In

this work, we mainly consider PDEs defined over one- and
two-dimensional domains, i.e., ds ∈ {1, 2} ∀s ∈ S. Hence,
for PDEs with ds = 1, the point x ∈ Ωs is represented as
(x, 0). Note that our methodology to unify the total number
of dimensions in the PDE is general and can be adapted to
PDEs defined in higher-dimensional domains as well. In
the following, we will denote us

t (x) as the value of the the
function us

t on all the points in W s
n, unless stated otherwise.

Unifying Physical Quantities We consider a fixed set
V = {v1, v2, · · · vN} of N physical quantities and train our
model on the quantities that belong to V for each PDE. The
quantities we consider in this paper are velocity (in both x
and y directions), pressure, and density, and they are the
superset of all quantities for the PDE families we evaluate.
This leads to N = 4. If a dataset does not use a particular
quantity, the entire dimension corresponding to it is set to 0.

With the above procedure, we lift every PDE to a unified
space so us ∈ RTs×N×nd ∀s ∈ S. To obtain the datasets
for forward prediction, we generate input-output pairs via
autoregressive teacher-forcing: for each time step t ∈ [Ts],
we use us

t to predict us
t+1, yielding Ts − 1 pairs of data

from a single trajectory. We append the coordinates of each
xs
i ∈ W s

n to the input and maintain an output mask to mask
out the zero-padded dimensions when computing the loss.

3.2. Unified Architecture
Transformer models have demonstrated success in various
domains like natural language (e.g., Touvron et al., 2023),
vision (e.g., Dosovitskiy et al., 2021), and audio process-
ing (e.g., Lu et al., 2023). In this work, we explore the po-
tential of transformers for PDE solving. We break down the
UPS architecture into 3 parts: an embedding network that
transforms the unified representation into sequence features;
the model body, consisting of the pretrained LLM layers;
and a predictor that generates the prediction (Figure 2).

FNO Embedding Network The embedding network plays
two roles. First, it projects the PDE us

t (x) into the LLM’s
sequential embedding space Rl×e, where l denotes the se-
quence length of the embedded features and e denotes the
LLM’s hidden dimension. Second, it should extract key
features of the PDE input to enable subsequent transformer

layers to make predictions. Therefore, we design a PDE-
specific embedding network with FNO layers for feature
extraction, a linear layer for dimensionality matching, and a
concatenation operator for adding metadata (Figure 2).

We use FNO due to its strong empirical performance (Li
et al., 2020a; Takamoto et al., 2022) and its ability to extract
resolution-invariant features. As we consider maximum two-
dimensional PDEs in this work, we use a series of 2D FNO
layers with l channels to obtain PDE features in Rl×nd

.
Then, to map the FNO output to the LLM’s embedding
dimension, we apply a pointwise convolution with input
channel nd, output channel e, kernel size 1, stride 1. This
yields the desired sequential features hPDE ∈ Rl×e.

Since UPS is intended to handle diverse data from vari-
ous generating sources, we leverage the PDE’s metadata
in addition to the input dynamics. The motivation is that
LLMs can use the textual information to better understand
the context and characteristics of different PDEs. To im-
plement this, we specify the metadata in the form “[PDE
family][coefficients]” which is embedded into
sequential features hmeta using the LLM’s tokenizer and
text embedding layer. We then concatenate the meta features
and the PDE features to get hmix := [hmeta, hPDE]. Finally,
we apply positional encoding and layer norm to hmix. This
will be the input to the subsequent transformer layers.

In Section 5.3, we perform various ablation studies on the
embedding network. We investigate the effect different hy-
perparameters, such as the channel dimension l in FNO, and
show that incorporating metadata improves both prediction
performance and generalization ability of UPS.

Utilizing Pretrained LLMs The main body of a UPS
model consists of pretrained transformer layers from an
LLM. Thus, we pass hmix to the pretrained transformer
layers, which produce the hidden states ĥ ∈ Rl×e. Since
there is no causal structure in the spatial dimensions of a
PDE, we do not apply autoregressive masking to hmix and
allow the embedded features to attend to each other.

Our design provides flexibility for using different LLMs as
the model body. We show experiment results with multiple
LLMs in Section 5.3. While different LLMs have different
performance, they are competitive with existing baselines.
We also show that adapting from pretrained weights outper-
forms training the same architecture from scratch, so UPS
is especially useful for low-data regimes.

Linear Predictor Finally, we define a prediction head
to transform the hidden state of the LLM body ĥ to the
predicted next step of the input ûs

t+1(x) ∈ RN×nd

(we
predict all the physical quantities in the set V). This is
achieved by averaging over the sequence dimension of ĥ to
get shape Re, applying a linear layer to map it to RNnd

, and
reshaping the results to obtain the final prediction ûs

t+1(x).

4

4. Full Workflow and Training
We train UPS in two stages. In the first stage, we train
the embedding network to align hmix with the LLM’s em-
bedding space. This is because LLMs are trained for the
text modality, which has distinct characteristics and features
from physical processes like fluid dynamics and heat flow.
Stage 1 reduces the modality gap to prevent the distortion
of pretrained weights. Next, we fine-tune the entire model
on a dataset of multiple families of spatiotemporal PDEs.

Stage 1: Embedding Pretraining Intuitively, there is a
modality gap between text data used to train general-purpose
LLMs and PDEs. Previous work has also shown that directly
fine-tuning pretrained LLMs on non-text inputs can result in
suboptimal performance (Lu et al., 2022). To address this,
Shen et al. (2023) introduced ORCA, which performs distri-
bution matching before fine-tuning to enable cross-modal
adaptation. That is, given a randomly initialized embedding
network, we first pretrain it to minimize the distribution
distance between the embedding network’s output—in our
case hmix—and the text embeddings of a external reference
NLP dataset, which we denote as hLM. This process makes
the cross-modal distribution resemble the text distribution
that the LLM is pretrained on.

We propose several PDE-specific improvements to the align-
ment process. First, unlike ORCA which uses an optimal
transport (OT) based metric for measuring the distribution
distance, we use the maximum mean discrepancy (MMD)
distance for UPS. This is because the OT-based metric re-
quires discrete class labels to compute, making it unsuitable
for PDEs. In contrast, MMD acts directly on the features
hmix and is more computationally efficient. Thus, we define

Lalign = ∥µDhmix
− µDhLM

∥L2

= EDhmix
[k(a, a′)]− 2EDhmix

,DhLM
[k(a, b)]

− EDhLM
[k(b, b′)]

(2)

where k(a, a′) = exp(∥a − a′∥2/2) denotes the Gaussian
kernel; Dhmix

and DhLM
denote the distributions of the PDE

embeddings hmix and the reference text embeddings hLM.

Second, to improve the feature extraction ability of the
embedding network in the context of our downstream task,
we introduce a task loss for PDE forward prediction, i.e.,
the normalized root mean squared (nRMSE) loss between
the prediction ûs

t+1(x) and the ground truth us
t+1(x):

Ltask =
1

S

S∑
s=0

1

Ts

Ts−1∑
t=0

∥us
t+1(x)− ûs

t+1(x)∥2
∥us

t+1(x)∥2
(3)

Thus, the final objective for pretraining the embedding net-
work is the joint loss Lemb = Lalign + Ltask. We show in
Section 5.3 that both objectives are essential to the overall
performance of UPS.

Stage 2: Multi-Task Fine-Tuning In contrast to most ex-
isting neural PDE solvers, which train a separate model for
each dataset, UPS is trained using one large dataset consist-
ing of PDE data from multiple generating sources (all of S).
Hence, after learning the embedding network, we fine-tune
the entire model (the embedding network, the LLM body,
and the linear predictor) using Ltask defined in Equation 3.
We evaluate the performance of UPS in Section 5.1 and find
it outperforms existing single-dataset neural operators. We
also show that UPS generalizes to unseen PDE families and
coefficients (Section 5.2)—the zero-shot and few-shot adap-
tation performance is competitive with models specifically
trained on the entire target dataset.

5. Experiments
Data We train and evaluate our method using PDEBench
(Takamoto et al., 2022). For training, we combine 7 datasets
from different PDE families: Burgers Equation (1D), Ad-
vection (1D), Diffusion-Sportion (1D), Shallow-Water (2D),
compressible Navier-Stokes (1D and 2D), and incompress-
ible Navier-Stokes (2D). We explicitly hold out 1D and 2D
Diffusion-Reaction to evaluate the generalization ability of
UPS. The dataset details can be found in Appendix B. We
use the scale-independent normalized root mean squared
error (nRMSE) as the evaluation metric, defined as follows:

nRMSE =
1

Stest

Stest∑
s=1

∥us(x)− ûs(x)∥2
∥us(x)∥2

(4)

We preprocess all PDEs by normalizing each dataset along
the channel dimension to ensure the scale of us

t (x) is similar.
The model’s prediction is denormalized to compute nRMSE.

Baselines We compare against two sets of baselines: (i)
single-family models trained on individual PDE datasets,
including the widely used U-Net (Ronneberger et al., 2015),
FNO (Li et al., 2020b), the improved version FFNO (Tran
et al., 2023), the transformer-based GNOT (Hao et al.,
2023b) and OFormer (Li et al., 2023), as well as the
cross-modal ORCA (Shen et al., 2023); (ii) unified models
trained on multiple datasets, including MPP (McCabe
et al., 2023), DPOT (Hao et al., 2024), and a unified FNO
trained using data transformed by our unified representation
scheme. We note that MPP and DPOT focus on 2D PDEs
and are pretrained on 2D Navier-Stokes, Shallow-Water,
and Diffusion-Reaction from PDEBench. Subramanian
et al. (2023) is not included as a baseline because its models
are pretrained on different PDE families (e.g., Poisson’s
and Helmholtz equations) not present in PDEBench.

Implementation Details As noted in Section 3, UPS is
compatible with any pretrained LLM. We present our main
results using RoBERTa (Liu et al., 2019) and study other
backbones in ablation studies (Table 4). We set the embed-
ding FNO channel l to 32. Since the resolution of the 2D

5

Table 1: nRMSEs (lower is better) for in-distribution PDEBench families, with baseline results taken from Takamoto et al. (2022); Shen
et al. (2023); McCabe et al. (2023); Hao et al. (2024). ‘-’ means that the result is not available. On all datasets, UPS with RoBERTa-Base
(UPS-B) achieves the lowest nRMSEs among all smaller models and UPS with RoBERTa-Large (UPS-L) achieves the lowest nRMSEs
among all large models. Numbers are bolded for each model size group.

Params Advection Burgers Diffusion-Sorption Navier-Stokes Shallow-Water Navier-Stokes Incomp Navier-Stokes
(sorted) 1D 1D 1D 1D 2D 2D 2D

Single-Family
FNO 466K 0.011 0.042 0.0017 0.068 0.0044 0.36 0.0942
GNOT 1.8M - - - - 0.0068 0.0373 -
OFormer 1.9M - - - - 0.0072 0.0521 -
U-Net 7.7M 0.67 0.34 0.15 0.72 0.083 5.1 0.1903
ORCA 125M 0.0098 0.12 0.0016 0.062 0.006 0.3549 0.1529
Unified (Small)
Unified FNO 466K 0.013 0.0501 0.0041 0.0101 0.0033 0.152 0.1064
MPP-B 116M - - - - 0.0024 0.0281 -
DPOT-M 122M - - - - 0.0029 0.0177 -
UPS-B (Ours) 149M 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
Unified (Large)
UPS-L (Ours) 387M 0.0022 0.0373 0.0009 0.0045 0.0015 0.015 0.0924
MPP-L 409M - - - - 0.0022 0.0208 -
DPOT-L 500M - - - - 0.0023 0.0158 -

datasets in PDEBench is 128, we set the model resolution
n to 128. All of our experiments can be run on a single
NVIDIA A6000 GPU. See Appendix C for training details.
Code is available in the supplementary material.

5.1. State-of-the-Art Results on PDEBench
We first study the in-distribution performance of UPS, i.e.,
we evaluate UPS on the test splits of the datasets that are
used to train UPS, which consists of PDEs that share the
same boundary conditions and coefficients with the training
samples, but have different initial conditions. The results
are shown in Table 1. In general, UPS with RoBERTa ranks
first on all 7 datasets and improves the state-of-the-art by
an order of magnitude on many 1D datasets. We analyze
the results in more details below.

Compare with Single-Family Operators We outperform
all single-family models like FNO and ORCA, which train a
different model for every PDE family. This shows the bene-
fits of learning a unified neural operator rather than multiple
ones, and our model is capable of extracting universal rules
when learning to model multiple PDE equations.

Compare with Unified Operators We note that existing
unified models like MPP and DPOT do not pretrain or evalu-
ate on 1D problems due to the limitation of their data repre-
sentation. In contrast, UPS embeds low-dimensional PDEs
in high-dimensional spaces and model all PDEs uniformly
despite the dimensionality difference, achieving state-of-
the-art results on all 1D datasets in PDEBench. As for the
2D problems considered, UPS with RoBERTa-Base out-
performs MPP-B and DPOT-M, which have similar model
sizes. UPS with RoBERTa-Large outperforms MPP-L and
DPOT-L. We emphasize that UPS is trained on significantly
fewer trajectories per PDE family (<5K) compared to the
baselines. Besides, UPS can be run on a single A6000 for
less time while achieving good performance. This shows

the data and compute benefits of adapting pretrained LLMs.

Since MPP and DPOT focus on 2D problems and use a
different set of pretraining datasets from ours, we train a
2D-only UPS on all 2D datasets in PDEBench to provide a
more direct comparison. The results are shown in Appendix
Table 7. Notably, while 2D UPS is still trained with less
data (since the other methods use additional datasets like
PDEArena (Gupta & Brandstetter, 2022)), our method ranks
first on 4 of 8 datasets, outperforming DPOT on 5 of 8
datasets and outperforming MPP on 3 of 4 datasets.

Recall also that we train a 2D unified FNO using the datasets
processed by our dimension unification scheme. The unified
FNO does not always outperform single-family FNOs, es-
pecially on 1D tasks, possibly because the relatively simple
architecture might not be able to extract shared information
across PDE families and leverage it to improve performance.
UPS outperforms unified FNO on all datasets, showing the
efficacy of our LLM-based architecture.

Scaling Up LLM Backbones To study the scaling behavior
of our method, we adapt from both RoBERTa-Base (149M
parameters) and RoBERTa-Large (387M parameters) and
report the results in Table 1. The first observation is that
the two versions of UPS all outperform baselines of similar
sizes, achieving both effectiveness and efficiency. Besides,
UPS-Large generally outperforms UPS-Base, which shows
that scaling up the backbone can yield better results.

In addition to prediction errors in Table 1, we visualize
the UPS outputs in Appendix E and show that it is able to
capture key features of different PDE families.

5.2. Generalizing to Unseen PDEs with Data Efficiency

In this section, we investigate the generalization (out-of-
distribution) performance of UPS in three settings: (i) un-
seen PDE families, (ii) PDEs belonging to the training fami-

6

lies but with different coefficients, (iii) PDEs with higher-
resolution grids. Unless otherwise specified, UPS-B is used.

Unseen PDE Families As mentioned earlier, we hold out
the Diffusion-Reaction equations from developing UPS. We
first directly evaluate UPS on these two tasks and report the
zero-shot transfer performance. Then, we study few-shot
transfer by randomly sampling k ∈ {10, 100} trajectories
from the training sets of the held-out tasks and use them
to fine-tune UPS. Lastly, we report the fine-tuning results
with the full training dataset. The results are shown in Ta-
ble 2. As the number of adaptation samples increases, the
prediction error decreases. Notably, the 100-shot result
of UPS on 1D datasets is better than the baselines trained
on 9,000 data. That is, we use 90x less data to match the
performance of single-family operators. This makes UPS
useful for low-resource PDE problems where data collection
is costly and training models from scratch is challenging.
On 2D Diffusion-Reaction, we are slightly worse than pre-
trained MPP (0.0292) and DPOT (0.0106) since this dataset
is considered as in-distrubution for MPP and DPOT.

Unseen Coefficients UPS also generalizes to PDEs in
the same families as the training data but with different
coefficients. We verify this by adapting UPS to Burgers
Equation with ν = 1.0 (the model is trained on ν = 0.001).
The last column in Table 2 shows that while our zero-shot
performance is already competitive, the performance after
further adaptation outperforms all considered baselines.

Unseen Resolutions Zero-shot resolution refers to training
the model on a lower resolution of the input data and eval-
uating them directly on a higher resolution. PDE solvers
with this ability are better equipped to handle real-world
scenarios where input data may vary in resolution due to
practical constraints or sensor-based limitations. Recall
that UPS is trained with n-point discretization W s

n, and
we set n = 128 because most 2D datasets in PDEBench
has resolution 128. Now, we evaluate the performance of
UPS for n ∈ {256, 512, 1024}, increasing the resolution
of the input PDE. This is achieved by downsampling the
higher-resolution inputs to make them compatible with UPS
and then upsampling the output prediction to the desired
resolution. We do not fine-tune the model at all.

As shown in Table 3, although the nRMSEs for the Advec-
tion Equation slightly increase compared to the nRMSE for
the training resolution, they still outperform all baselines in
Table 1. Since the numbers are similar across columns, UPS
generalizes to higher resolutions in a zero-shot manner.

5.3. Ablation Studies

We perform five sets of studies to ablate various design
decisions in UPS. S1-S4 demonstrate why adapting from
pretrained LLMs is beneficial, while S5 is related to the

Table 2: Zero- and few-shot transfer performance of UPS on
unseen PDE families and coefficients. Our few-shot results are
competitive with baselines trained with more data.

Unseen PDE Families Unseen Coeff
Samples Model 1D Diff-React 2D Diff-React Burgers ν = 1.0

UPS-B 0.0557 1.0593 0.0566
0 FNO 0.1839 1.2 1.0342

ORCA 0.1818 1.0812 1.6316
UPS-B 0.0107 0.3327 0.0134

10 FNO 0.1698 0.8193 0.67
ORCA 0.1004 0.5376 0.4829
UPS-B 0.0034 0.2508 0.0022

100 FNO 0.0037 0.1869 0.0123
ORCA 0.0051 0.1362 0.027
UPS-B 0.0003 0.041 0.0008

9K (Full) FNO 0.0014 0.12 0.0031
ORCA 0.0034 0.082 0.012

Table 3: UPS with resolution 128 has an nRMSE of 0.0033. We
directly test it on higher resolutions.

Test Resolution 256 512 1024

Advection nRMSE 0.0057 0.0064 0.0068

FNO embedding network.

S1: Pretrained LLMs vs. Training From Scratch Com-
pared to existing single-family models like FNO, UPS uses
a transformer-based architecture with more parameters and
reuses the pretrained LLM weights for the model body. To
show that our results are not solely attributed to the model
size and that cross-modal adaptation is important, we evalu-
ate the model’s performance when we train a transformer
model from scratch using the same PDE datasets without
doing anything more complicated. As shown in Table 4,
training from scratch results in much worse performance
than UPS, showing the benefits of adapting pretrained LLMs.

S2: Cross-Modal Alignment We also test the importance
of the two objectives used in stage 1, i.e., alignment loss with
MMD, and task loss with nRMSE. We study three settings:
(i) using only Lalign for stage 1 as in Shen et al. (2023); (ii)
using only Ltask for stage 1; and (iii) removing stage 1 from
our workflow entirely. As shown in Table 4, while removing
any objective reduces the performance across all datasets,
removing the task loss has a more significant negative effect.
Meanwhile, removing the entire stage of embedding pre-
training hurts prediction accuracy. This shows that simply
fine-tuning the LLM without considering the modality gap
or learning to extract PDE features is ineffective.

S3: Incorporating Text-Form Metadata UPS leverages
the PDE’s metadata by combining its text embeddings
with the learned PDE embeddings. To study whether in-
corporating metadata is helpful and identify an optimal
approach, we compare our workflow with two alterna-
tives: (i) we do not use metadata, so hmix := hPDE;
(ii) we use metadata, but instead of concatenating features

7

Table 4: Results for the ablation studies. For each set of experiments, only the specified settings are different; all the other hyperparameters
and training configurations are the same. Overall, the full UPS-B workflow (first row for every study) most effectively leverages the
pretrained knowledge of LLMs and obtains the best results.

Study No. Settings Advection Burgers Diff-Sorp Navier-Stokes Shallow-Water Navier-Stokes Incomp Navier-Stokes
1D 1D 1D 1D 2D 2D 2D

S1 Pretrained LLM 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
Training From Scratch 0.017 0.0546 0.0036 0.0159 0.0032 0.0461 0.1442

S2
Align and Task 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931

Task Only 0.0048 0.0389 0.0009 0.0065 0.002 0.0184 0.1046
Align Only 0.0039 0.043 0.0011 0.0063 0.0022 0.0187 0.1092

No Embedding Pretraining 0.0049 0.0436 0.0019 0.0072 0.0024 0.0197 0.1079

S3
Concatenation 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931

Cross-Attention 0.003 0.0420 0.0009 0.0065 0.0023 0.0189 0.1082
No Metadata 0.0122 0.0453 0.001 0.0091 0.0026 0.0238 0.1171

S4
RoBERTa-Base 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
Flan-T5-Base 0.0094 0.0404 0.0076 0.0098 0.0028 0.037 0.1166

CLIP-Base 0.0046 0.0321 0.0018 0.0063 0.0019 0.0151 0.0905

S5
l = 32 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
l = 20 0.0024 0.0423 0.0009 0.0068 0.0022 0.0157 0.1043
l = 8 0.0032 0.0429 0.0009 0.0071 0.0024 0.0195 0.1064

from two modalities, we apply a cross-attention mecha-
nism: hmix := softmax(QKT

√
e
)V , where Q = WQhPDE,

K = WKhmeta, and V = WV hmeta. The results are shown
in Table 4. UPS outperforms the non-metadata baseline,
demonstrating the effect of incorporating metadata as a
form of domain knowledge, which LLMs are able to under-
stand. The results also suggest that feature concatenation
is better than cross-modal attention, possibly because the
latter is harder to optimize. We leave studying the optimal
combination of metadata and PDE data as a future direction.

S4: Other LLMs/VLMs To study whether UPS applies
to other pretrained models, we further investigate Flan-
T5 (Chung et al., 2022) and the vision language model
CLIP (Radford et al., 2021). In particular, for CLIP, we use
its text model to encode the metadata and its vision model
to process the PDE data. The results are reported in Table 4.
Since these models are trained using the same datasets and
optimizer configuration as RoBERTa, the results are not
fully optimized. Nonetheless, their performance is competi-
tive with existing baselines, and CLIP further outperforms
RoBERTa on 3 tasks. This shows the compatibility of UPS
with diverse pretrained backbones. A future direction is to
study whether optimizing the training hyperparameters for
each pretrained model—especially VLMs like CLIP that are
trained for an additional vision modality—could improve
downstream performance.

S5: FNO Embedder & Target Sequence Length As dis-
cussed in Section 3, the channel l of the FNO layers in the
embedding network determines the sequence length of the
PDE features that will be fed into the transformer layers. To
study how this hyperparameter affects learning outcomes,
we vary l ∈ {8, 20, 32} and report the results in Table 4.
In general, increasing l improves the size and capacity of
the embedding network, as well as the expressivity of the
PDE features. This leads to lower prediction error. How-

ever, using too many parameters for the embedding network
may result in a trade-off between effectiveness and effi-
ciency. For instance, we also experimented with l = 64
(Appendix D.3) and find that the longer sequence length
leads to slight performance improvements but with much
higher computational costs. Thus, we opt for l = 32 in our
main experiments.

6. Conclusion and Future Work
In this paper, we present UPS, a method for adapting pre-
trained LLMs to unified time-evolution operators that pre-
dict the next state of a PDE from the current state. UPS ap-
plies to a diverse set of PDE families defined over one- and
two-dimensional domains, with varying initial conditions,
boundary conditions, coefficients, and resolutions. To train
UPS, we develop a two-stage cross-modal adaptation proto-
col that first pretrains a FNO-based embedding network and
aligns its hidden representations with the LLM’s embedding
space, and then fine-tunes the entire model on a dataset
containing diverse families of PDEs. Since UPS is adapted
from pretrained models, it requires fewer training samples
and compute than previous approaches for training unified
PDE solvers from scratch. We show that UPS achieves
state-of-the-art performance across multiple datasets from
PDEBench and is capable of zero- and few-shot transfer to
different PDE families, coefficients, and resolutions.

We identify several future directions based on our work.
First, we can validate our method on a broader range
of PDEs with higher-order temporal derivatives or three-
dimensional domains. Meanwhile, to seek a truly general
foundation model for PDE, we aim to extend the types of
tasks that UPS can solve. Currently, UPS is only applicable
to forward prediction. It is important to study inverse prob-
lems of parameter estimation for different PDEs as well.
For an impact statement, see Appendix F.

8

References
Bar-Sinai, Y., Hoyer, S., Hickey, J., and Brenner, M. P.

Learning data-driven discretizations for partial differen-
tial equations. Proceedings of the National Academy of
Sciences, 116(31):15344–15349, 2019.

Boyd, J. P. Chebyshev and Fourier spectral methods.
Courier Corporation, 2001.

Bran, A. M., Cox, S., White, A. D., and Schwaller, P. Chem-
crow: Augmenting large-language models with chemistry
tools. arXiv preprint arXiv:2304.05376, 2023.

Bruna, J., Peherstorfer, B., and Vanden-Eijnden, E. Neu-
ral galerkin schemes with active learning for high-
dimensional evolution equations. Journal of Computa-
tional Physics, 496:112588, 2024.

Cao, S. Choose a transformer: Fourier or galerkin. Ad-
vances in neural information processing systems, 34:
24924–24940, 2021.

Chen, T. and Chen, H. Universal approximation to nonlinear
operators by neural networks with arbitrary activation
functions and its application to dynamical systems. IEEE
Transactions on Neural Networks, 6(4):911–917, 1995.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S.,
Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson,
K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V.,
Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean,
J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J.
Scaling instruction-finetuned language models, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. International Conference on
Learning Representations, 2021.

Gupta, J. K. and Brandstetter, J. Towards multi-
spatiotemporal-scale generalized pde modeling. arXiv
preprint arXiv:2209.15616, 2022.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S.,
Cheng, Z., Song, J., and Zhu, J. Gnot: A general neu-
ral operator transformer for operator learning. In Inter-
national Conference on Machine Learning, pp. 12556–
12569. PMLR, 2023a.

Hao, Z., Ying, C., Wang, Z., Su, H., Dong, Y., Liu, S.,
Cheng, Z., Zhu, J., and Song, J. Gnot: A general neural
operator transformer for operator learning. arXiv preprint
arXiv:2302.14376, 2023b.

Hao, Z., Su, C., Liu, S., Berner, J., Ying, C., Su, H., Anand-
kumar, A., Song, J., and Zhu, J. Dpot: Auto-regressive
denoising operator transformer for large-scale pde pre-
training, 2024.

Ho, J., Kalchbrenner, N., Weissenborn, D., and Salimans, T.
Axial attention in multidimensional transformers. Inter-
national Conference on Learning Representations, 2020.

Hsieh, J.-T., Zhao, S., Eismann, S., Mirabella, L., and Er-
mon, S. Learning neural pde solvers with convergence
guarantees. arXiv preprint arXiv:1906.01200, 2019.

Joachimiak, M. P., Caufield, J. H., Harris, N. L., Kim, H.,
and Mungall, C. J. Gene set summarization using large
language models. ArXiv, 2023.

Khoo, Y., Lu, J., and Ying, L. Solving parametric pde prob-
lems with artificial neural networks. European Journal
of Applied Mathematics, 32(3):421–435, 2021.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

LeVeque, R. J. Finite difference methods for ordinary
and partial differential equations: steady-state and time-
dependent problems. SIAM, 2007.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. Advances in
Neural Information Processing Systems, 35:3843–3857,
2022.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020b.

Li, Z., Meidani, K., and Farimani, A. B. Transformer for
partial differential equations’ operator learning. arXiv
preprint arXiv:2205.13671, 2022.

Li, Z., Meidani, K., and Farimani, A. B. Transformer for
partial differential equations’ operator learning. Transac-
tions on Machine Learning Research, 2023. ISSN 2835-
8856. URL https://openreview.net/forum?
id=EPPqt3uERT.

9

https://openreview.net/forum?id=EPPqt3uERT
https://openreview.net/forum?id=EPPqt3uERT

Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E.,
and Brandstetter, J. Pde-refiner: Achieving accurate
long rollouts with neural pde solvers. arXiv preprint
arXiv:2308.05732, 2023.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Lu, J., Clark, C., Lee, S., Zhang, Z., Khosla, S., Marten,
R., Hoiem, D., and Kembhavi, A. Unified-io 2: Scal-
ing autoregressive multimodal models with vision, lan-
guage, audio, and action. ArXiv, abs/2312.17172,
2023. URL https://api.semanticscholar.
org/CorpusID:266573555.

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Frozen
pretrained transformers as universal computation engines.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 36(7):7628–7636, Jun. 2022.

Lu, L., Jin, P., and Karniadakis, G. E. Deeponet: Learning
nonlinear operators for identifying differential equations
based on the universal approximation theorem of opera-
tors. arXiv preprint arXiv:1910.03193, 2019.

Marwah, T., Pokle, A., Kolter, J. Z., Lipton, Z. C., Lu, J.,
and Risteski, A. Deep equilibrium based neural operators
for steady-state pdes. arXiv preprint arXiv:2312.00234,
2023.

McCabe, M., Blancard, B. R.-S., Parker, L. H., Ohana,
R., Cranmer, M., Bietti, A., Eickenberg, M., Golkar, S.,
Krawezik, G., Lanusse, F., et al. Multiple physics pre-
training for physical surrogate models. arXiv preprint
arXiv:2310.02994, 2023.

Moukalled, F., Mangani, L., Darwish, M., Moukalled, F.,
Mangani, L., and Darwish, M. The finite volume method.
Springer, 2016.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Roberts, N., Guo, S., Xu, C., Talwalkar, A., Lander, D.,
Tao, L., Cai, L., Niu, S., Heng, J., Qin, H., Deng, M.,
Hog, J., Pfefferle, A., Shivakumar, S. A., Krishnakumar,
A., Wang, Y., Sukthanker, R. S., Hutter, F., Hasanaj, E.,
Le, T.-D., Khodak, M., Nevmyvaka, Y., Rasul, K., Sala,
F., Schneider, A., Shen, J., and Sparks, E. R. Automl
decathlon: Diverse tasks, modern methods, and efficiency
at scale. In Neural Information Processing Systems,
2021. URL https://api.semanticscholar.
org/CorpusID:265536645.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
ArXiv, abs/1505.04597, 2015. URL https://api.
semanticscholar.org/CorpusID:3719281.

Sang, E. T. K. and Meulder, F. D. Introduction to the
conll-2003 shared task: Language-independent named
entity recognition. In Conference on Computational Nat-
ural Language Learning, 2003. URL https://api.
semanticscholar.org/CorpusID:2470716.

Shen, J., Khodak, M., and Talwalkar, A. Efficient archi-
tecture search for diverse tasks. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

Shen, J., Li, L., Dery, L. M., Staten, C., Khodak, M., Neubig,
G., and Talwalkar, A. Cross-modal fine-tuning: align
then refine. In Proceedings of the 40th International
Conference on Machine Learning, 2023.

Shen, J., Tenenholtz, N., Hall, J. B., Alvarez-Melis, D., and
Fusi, N. Tag-llm: Repurposing general-purpose llms for
specialized domains, 2024.

Sirignano, J and, K. S. A deep learning algorithm for solving
partial differential equations. ArXiv e-prints, 2017.

Subramanian, S., Harrington, P., Keutzer, K., Bhimji, W.,
Morozov, D., Mahoney, M., and Gholami, A. Towards
foundation models for scientific machine learning: Char-
acterizing scaling and transfer behavior. arXiv preprint
arXiv:2306.00258, 2023.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. Pdebench:
An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:
1596–1611, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Ham-
bro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave,
E., and Lample, G. Llama: Open and efficient
foundation language models. ArXiv, abs/2302.13971,
2023. URL https://api.semanticscholar.
org/CorpusID:257219404.

10

https://api.semanticscholar.org/CorpusID:266573555
https://api.semanticscholar.org/CorpusID:266573555
https://api.semanticscholar.org/CorpusID:265536645
https://api.semanticscholar.org/CorpusID:265536645
https://api.semanticscholar.org/CorpusID:3719281
https://api.semanticscholar.org/CorpusID:3719281
https://api.semanticscholar.org/CorpusID:2470716
https://api.semanticscholar.org/CorpusID:2470716
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404

Tran, A., Mathews, A., Xie, L., and Ong, C. S. Fac-
torized fourier neural operators. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=tmIiMPl4IPa.

Tu, R., Roberts, N., Khodak, M., Shen, J., Sala, F., and
Talwalkar, A. NAS-bench-360: Benchmarking neural ar-
chitecture search on diverse tasks. In Advances in Neural
Information Processing Systems (NeurIPS) Datasets and
Benchmarks Track, 2022.

Vinod, R., Chen, P.-Y., and Das, P. Reprogramming pre-
trained language models for protein sequence representa-
tion learning. arXiv preprint arXiv:2301.02120, 2023.

Yining, L., Yingfa, C., and Zhen, Z. Cfdbench: A large-
scale benchmark for machine learning methods in fluid
dynamics. 2023. URL https://arxiv.org/abs/
2310.05963.

Yu, B. et al. The deep ritz method: a deep learning-based nu-
merical algorithm for solving variational problems. Com-
munications in Mathematics and Statistics, 6(1):1–12,
2018.

11

https://openreview.net/forum?id=tmIiMPl4IPa
https://openreview.net/forum?id=tmIiMPl4IPa
https://arxiv.org/abs/2310.05963
https://arxiv.org/abs/2310.05963

Appendix

A. Explanation of Figure. 1
We use the results in Table 1 to generate the figure. For the y-axis, we first find out the maximum and minimum nRMSEs
achieved by all considered methods. Then, we normalize the error e for each method by taking e−min

max−min . The dots represent
the average values of the normalized errors across 7 PDE families from PDEBench. The error bars represent standard
deviation. The x-axis of the plot represents our estimation of computational costs: we compute the product of the number of
GPUs used and the number of training steps. We then take log10 to make the visualization clearer.

B. Datasets
As mentioned in Section 5, we train our models using the datasets provided in the PDEBench (Takamoto et al., 2022). The
time-dependent PDE families considered by our models are: Burgers Equation (1D), Diffusion-Sportion (1D), Shallow-
Water (2D), compressible Navier-Stokes (1D and 2D), incompressible Navier-Stokes (2D), and Diffusion-Reaction (1D
and 2D). For each s ∈ S, the number of points in the n-point discretization W s

n is 128, i.e, n = 128. For PDEs where the
PDEbench-provided grid has more than 128 points in each dimension, we sample 128 equispaced points.

In this section, we provide few key properties and considerations for the PDEs used in this paper. The initial conditions
u(0, x) for most of the datasets are sampled from a superposition of sinusoidal waves. The set of coefficients and number
of trajectories used per PDE are reported in Appendix Table 5. For full details on the data generation process and the
hyperparameters used to generate the PDE dataset, we refer the reader to Takamoto et al. (2022).

B.1. Burgers Equation (1D)

Burgers equation is commonly used to model the nonlinear dynamics of various fluid dynamics systems. Given the field
u(t, x) ∈ (0, 2]× (0, 1) → R the PDE is defined as follows:

∂tu(t, x) + ∂x
u2(t, x)

2
=

ν

π
∂xxu(t, x) (5)

Here ν is the diffusion coefficient or the viscosity of the liquid, and π is the density of the liquid.

B.2. Diffusion-Sorption Equation (1D)

Diffusion-Sorption is a nonlinear diffusive process slowed down by an external force that is dependent of the state variable u
R. This PDE is used to model groundwater contamination transport processes. The PDE is defined as the following:

∂tu(t, x) =
D

R(u)
∂xxu(t, x), (6)

where x ∈ (0, 1), t ∈ (0, 500], and D = 5 × 10−4. For more details on the initial conditions, boundary conditions and
the function R(u), we refer the reader to Takamoto et al. (2022). For our training, we use 4500 trajectories for this PDE
generated by varying the initial conditions.

B.3. Advection Equation (1D)

Given advection speed β, the advection equations are expressed as:
∂tu(t, x) + β∂xu(t, x) = 0

u(0, x) = u0(x)
(7)

where x ∈ (0, 1) and t ∈ (0, 2]. Various examples in this dataset are generated by sampling multiple initial conditions from
a super-position of sinusoidal waves as used in Takamoto et al. (2022).

12

B.4. Compressible Navier-Stokes (1D and 2D)

Given density ρ, velocity u, pressure p, internal energy of the system ϵ the compressible Navier-Stokes equations are defined
as follows.

∂tp+∇ · (ρu) = 0,

ρ (∂tu+ u · ∇u) = −∇p+ η∆u+
(
ξ +

η

3

)
∇ (∇ · u)

∂t

(
ϵ+ ρ

∥u∥22
2

)
+∇ ·

((
p+ ϵ+ ρ

u2

2

)
u− u · σ′

)
= 0

(8)

Here, x ∈ (−1, 1) for 1D Navier-Stokes and x ∈ (0, 1)2 for 2D Navier-Stokes, and t ∈ (0, 1). Compressible Navier-Stokes
stokes are used to model multiple real-world phenomena in aerodynamics and fluid dynamics.

B.5. Incompressible fluid Navier-Stokes (2D)

We define the equations for incompressible fluid Navier-Stokes where we impose the condition that the fluid is “incomm-
pressible.” That is, the equation follows the following condition:

∇ · u = 0 (9)

For density ρ and pressure p, the equations used to generate the data in Takamoto et al. (2022) are as follows:
ρ (∂tu+ u · ∇u) = −∇pu+ η∆u+ f (10)

where f is an external forcing function, and Dirichlet boundary conditions. Here x ∈ [0, 1]2 and the initial conditions u and
the forcing term f are sampled from two-dimensional Gaussian random fields. Please refer to Takamoto et al. (2022) for
more details on the data generation process.

B.6. Reaction Diffusion (1D and 2D)

Reaction Diffusion are diffusive processes with external force applied to the system that may or may not depend over the
field variable u. They are often used to model many thermodynamical systems.

1D reaction diffusion is defined as follows:
∂tu(t, x)− ν∂xxu(t, x) = ρu(t, x)(1− u(t, x)) (11)

for all x ∈ (0, 1) and t ∈ (0, 1].

For 2D reaction diffusion, let u(t, x) = [u1(t, x), u2(t, x)]. Then the equations are defined as:
∂tu1(t, x) = ν1∂x1x1

u1 + ν1∂x2x2
u1 + u1 − u3

1 − k − u2

∂tu1(t, x) = ν2∂x1x1
u2 + ν2∂x2x2

u2 + u1 − u2

(12)

where k = 5× 10−3 and ν1 and ν2 are diffusion coefficients. Here x1 ∈ (−1, 1) and x2 ∈ (−1, 1) and the initial conditions
are sampled from a Gaussian random field.

B.7. Shallow-Water Equations (2D)

These are derived from Navier-Stokes and are a framework for modelling free-surface flow problems. We denote by u1(x),
and u2(x) as the velocities in the horizontal and vertical directions and h as the height of the water and b defining the
spatially varying bathymetry (the measurement of the depth of water in oceans, rivers, or lakes). The shallow-water equations
are defined as follows:

∂th+ ∂x1
hu1 + ∂x2

hu2 = 0,

∂thu1 + ∂x1

(
u2
1h+

1

2
grh

2

)
= −grh∂x1

b,

∂thu2 + ∂x2

(
u2
2h+

1

2
grh

2

)
= −grh∂x2b,

(13)

where x ∈ [−2.5, 2.5]2 and gr is the gravitational acceleration.

13

B.8. Summary

The following table summarizes the coefficients of the datasets used to train and test our model (note that 1D/2D Diffusion-
Reaction only appear in the test set but not the training set). We also provide the number of training and test trajectories. We
generate the input-output pairs using autoregressive teacher-forcing.

Table 5: For each PDE family, we select one set of coefficients and use the data for training and testing UPS.

Dimension Dataset Coefficients Num Train Trajectories Num Test Trajectories Timesteps Resolution

1D

Advection β = 0.4 4500 1000 41 128
Burgers ν = 0.001 4500 1000 41 128

Diffusion-Reaction ν = 0.5, ρ = 1.0 4500 1000 21 128
Diffusion-Sorption - 4050 100 21 128

Compressible Navier-Stokes η = ζ = 0.1, rand periodic 4500 1000 21 128

2D
Shallow-Water - 405 10 101 128

Diffusion-Reaction - 405 10 101 128
Compressible Navier-Stokes M = η = ζ = 0.1, periodic 4500 1000 21 128

Incompressible Navier-Stokes M = 0.1, η = ζ = 1E − 8 4500 1000 21 128

C. Training Details
C.1. Hyperparameters

We use the following training hyperparameters for all of our experiments, unless otherwise specified. Due to time constraint,
we have not performed exhausitive hyperparameter search or tailor the hyperparameters to each experiment setting.

• Batch size: 32

• Gradient accumulation: 1

• Gradient clipping: -1

• Dropout: 0

• Optimizer: Adam

• Learning rate: 5E-5

• Weight decay: 1E-5

• Stage 1 epoch: 20

• Stage 2 epoch: 100

We use the CoNLL-2003 dataset (Sang & Meulder, 2003) as the reference dataset for alignment in stage 1.

C.2. Compute

We run all of our experiments on a single NVIDIA A6000. Below are the detailed model size, per epoch training time (in
seconds), and total training time (in hours). Note that we train the models for 100 epochs.

Table 6: Trainable parameters and training time for each LLM backbone.

RoBERTa-Base RoBERTa-Large Flan-T5-Base CLIP-Base

Num Params 149M 387M 176M 132M
Per Epoch (s) 3200 7600 3500 3000

Total (hrs) 88 211 97 83

14

D. Detailed Experiment Results
D.1. 2D-Only UPS

Table 7: Training UPS with all of the 2D datasets in PDEBench and compare with MPP and DPOT. Note that beyond
these PDEBench datasets, MPP is also pretrained on PDEArena (Gupta & Brandstetter, 2022) and DPOT is pretrained on
PDEArena (Gupta & Brandstetter, 2022) as well as CFDBench (Yining et al., 2023). Baseline results taken from Hao et al.
(2024). ‘-’ means that the result is not available.

Params PDEBench 2D Navier Stokes-(η, ζ) 2D Diff-React 2D Shallow-Water
(sorted within groups) 1,0.1 1,0.01 M1 0.1,0.1 0.1,0.01 M0.1

Small-
Sized

FNO 0.5M 0.098 0.096 0.097 0.360 0.170 0.265 0.12 0.0044
FFNO 1.3M 0.0212 0.052 0.0366 0.162 0.0452 0.104 0.0571 0.0116
GNOT 1.8M 0.0325 0.0420 0.0373 0.0228 0.0341 0.0285 0.0311 0.00678

Oformer 1.9M 0.0417 0.0625 0.0521 0.0254 0.0205 0.0229 0.0192 0.00717

Medium-
Sized

MPP-Ti 7M – – 0.0442 – – 0.0312 0.0168 0.0066
DPOT-Ti 7M 0.0173 0.0397 0.0285 0.0132 0.0220 0.0176 0.0321 0.00560
MPP-S 30M – – 0.0319 – – 0.0213 0.0112 .0024
DPOT-S 30M 0.0153 0.0337 0.0245 0.0119 0.0187 0.0153 0.0379 0.00657
DPOT-M 122M 0.0116 0.0238 0.0177 0.00866 0.0129 0.0108 0.0292 0.0029

UPS-B (Ours) 149M 0.0112 0.0605 0.0277 0.0085 0.0124 0.0211 0.0243 0.0018

Large-
Sized

UPS-L (Ours) 387M 0.0102 0.0596 0.024 0.0083 0.0102 0.0209 0.0236 0.0015
MPP-L 400M – – 0.0208 – – 0.0147 0.0098 0.00220
DPOT-L 500M 0.0100 0.0216 0.0158 0.00872 0.0115 0.0101 0.0232 0.00233
DPOT-H 1.03B 0.00961 0.0180 0.0138 0.00847 0.0105 0.00948 0.0191 0.00199

D.2. Few-Shot Adaptation

Compared to full fine-tuning of stage 2, we lower the learning rate when performing few-shot adaptation to prevent
catastrophic forgetting.

• Batch size: 32

• Gradient accumulation: 1

• Gradient clipping: -1

• Dropout: 0

• Optimizer: Adam

• Learning rate: 1E-5

• Weight decay: 1E-5

• Epoch: 100

The following table reports the time required for few-shot experiments. Note that for Burgers equation, we train the model
using ν = 0.001, but the results here are for ν = 1.0.

15

Table 8: Time for few-shot experiments. Our model outperforms most existing baselines on these tasks by using fewer than
500 samples and much shorter adaptation time.

Num Samples 1D Diffusion-Reaction 2D Diffusion-Reaction Burgers ν = 1.0
Per Epoch (s) Total (hrs) Per Epoch (s) Total (hrs) Per Epoch (s) Total (hrs)

10 2 0.05 12 0.33 3 0.08
50 10 0.28 48 1.33 10 0.28
100 23 0.64 112 3.11 40 1.11
500 112 3.11 512 14.22 96 2.67

D.3. Ablation on Longer Sequence Length

We studied the effect of embedding sequence length in Section 5.3 paragraph S5 of the main paper. The results show that
among l = {8, 20, 32}, larger l indeed leads to better performance. However, since LLMs can support sequence lengths
much longer than l = 32, we consider expanding the feature length (the number of “tokens”) used to represent PDE data.
See results below.

Advection Burgers Diffusion-Sorption Navier-Stokes Shallow-Water Navier-Stokes Incomp Navier-Stokes
1D 1D 1D 1D 2D 2D 2D

l = 32 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
l = 64 0.0034 0.038 0.0009 0.0054 0.0015 0.0162 0.0988

While l = 64 performs slightly better on some tasks, increasing the sequence length means that (i) the embedding network
is going to be larger (since l also corresponds to the width of the FNO layers), and (ii) the training time will increase as each
sequence is longer. Both increase the training cost. Hence, we want to select the l that achieves a balance between efficiency
and effectiveness. That’s why we use l = 32 for our main experiments.

16

E. Visualization
E.1. Burgers Equation

E.2. Diffusion-Sorption

17

E.3. 1D Navier Stokes

We show Vx, density, and pressure.

E.4. Shallow Water

18

E.5. 2D Navier Stokes

We show Vx, Vy , density, and pressure.

In the prediction for 2D compressible Navier-Stokes we see a few artifacts in our generation. Furthermore, for quantities like
pressure, our network often seems to generate an overly smoothened output. This could be because the 2D Navier-Stokes is
the only PDE in our dataset that requires us to model pressure, and therefore the network is biased towards predicting a
uniform value, which in our case is 0. We believe this can be avoided by adding more families of PDEs that model pressure,
and is a fertile ground for future work.

19

F. Broader Impact
This paper calls for ML community’s attention to take advantage of LLMs and apply them to a wider range of real-world
problems beyond the NLP domains. This moves towards truly democratizing machine learning in real life. In terms of
broader societal impact, our work can exert a positive influence as it contributes to reusing existing models and resources,
reducing the computational burden of developing new large-scale models on massive data. However, lowering the barrier
for applying LLMs to a wide range of tasks necessarily comes with the risk of misuse. Hence, it is imperative to develop
adaptation methods with better privacy, safety, and fairness guarantees.

20

