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ABSTRACT

Relativistic heavy-ion collisions provide a window into quark–gluon plasma for-
mation, but extracting parameters such as the energy loss mechanism, strong cou-
pling, αs, and virtuality scale, Q0, has traditionally required costly Bayesian in-
ference. We introduce JetBench, a benchmark for multi-parameter classification
of heavy-ion events using the ANONYMIZED dataset. Each event is encoded as
a 32 × 32 jet image with three targets: energy loss module, αs, and Q0. We sys-
tematically evaluate CNNs (EfficientNetV2, ConvNeXt V2), Transformers (ViT-
CoMer, Swin V2), and state space models (Mamba) under unified training. Re-
sults show saturated performance on energy loss (∼100%), strong accuracy on αs

(∼95%), and up to 78% on Q0, with ViT-CoMer achieving the best joint accuracy
(74.5%). Loss-weight ablations reveal trade-offs between tasks, with Q0 empha-
sis improving recall at modest cost to αs. Probability calibration confirms errors
follow physics continuity (e.g., αs = 0.2/0.3, Q0 = 2.0/2.5). These findings
establish JetBench as a scalable complement to Bayesian approaches. Code and
preprocessing scripts are available at ANONYMIZED url.

1 INTRODUCTION

Relativistic heavy-ion collisions provide a unique window into the study of the quark–gluon plasma
(QGP), a state of matter believed to have existed microseconds after the Big Bang. These high-
energy nuclear collisions, studied at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory and the Large Hadron Collider (LHC) at CERN, create extreme conditions
under which quarks and gluons deconfine, enabling direct investigation of QGP properties Putschke
et al. (2019); Kumar et al. (2020); Tachibana et al. (2024). A schematic overview of the collision
stages and QGP evolution is provided in the Appendix A, Fig. 7 to illustrate how the final-state
particle distributions measured at detectors emerge from the underlying medium dynamics.

Figure 1: Evolution of averaged jet-event histograms for representative parameter settings. Each
row shows the progressive aggregation of Pb–Pb collision events into averaged 2D histograms in
(η, ϕ) space, with increasing sample counts (n = 1, 2, 4, . . . , 256, 500). Top: αs = 0.2, Q0 = 1.0,
MATTER module. Bottom: αs = 0.4, Q0 = 2.5, MATTER–LBT module.

A crucial observable in these collisions is the jet — a collimated spray of high-energy particles pro-
duced in hard scatterings. As these partons propagate through the QGP medium, they lose energy via
multiple scattering and gluon radiation, a phenomenon known as jet quenching. Studying jets and
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their modifications in the QGP allows physicists to probe the medium’s properties and extract key
parameters that govern parton–medium interactions. Figure 1 illustrates the evolution of averaged
jet-event histograms in (η, ϕ) space for representative parameter settings, highlighting how individ-
ual sparse events converge into stable jet profiles as more events are aggregated. This representation
corresponds to the detector-level final state of the schematic collision process (see Appendix A,
Fig. 7) and forms the effective input to our ML-based parameter classification.

Building on this physics background, our ANONYMIZED dataset encodes each individual jet event
as a 32 × 32 image in the pseudorapidity–azimuth (η, ϕ) plane. Each pixel stores the normalized
transverse momentum (pT ) content of all final-state particles falling into that bin, computed as the
average summed pT over the particles in the cell and scaled by a global normalization constant. This
representation transforms sparse detector-level information into a dense image format compatible
with standard vision architectures. Figure 2 shows representative examples of such jet-event images,
spanning values of the strong coupling constant αs, the virtuality separation scale Q0, and different
energy loss modules (MATTER or MATTER–LBT). These sparse images form the basis for our
machine learning benchmark.

0 =
 0

.2

Q  = 1.0 : MATTER Q  = 1.5 : MATTER-LBT Q  = 2.0 : MATTER-LBT Q  = 2.5 : MATTER-LBT

0 =
 0

.3

0

0 =
 0

.4

0 0 0

10 6 10 5 10 4 10 3 10 2

pT : pseudorapidity
: azimuthal angle

pT: transverse momentum

Figure 2: Representative grid of Pb–Pb collision events from the ANONYMIZED dataset. Columns
vary by αs ∈ {0.2, 0.3, 0.4}, rows by Q0 ∈ {1.0, 1.5, 2.0, 2.5}, and are labeled by the energy loss
module (MATTER or MATTER–LBT). Each image is a 32 × 32 histogram in (η, ϕ) space, where
the pixel intensity corresponds to the normalized sum of transverse momentum pT of all particles
falling into that bin.

Modeling jet evolution requires complex multi-stage simulation frameworks such as
JETSCAPE Putschke et al. (2019); Kumar et al. (2020), which couple parton transport
modules (MATTER, LBT) with medium evolution. These simulations are controlled by key
hyperparameters—notably αs and Q0—that must be tuned to match experimental data. Bayesian
parameter estimation has been the gold standard Bernhard et al. (2016), but is computationally
expensive, often requiring tens of thousands of full simulations. This has motivated use of deep
learning as a scalable alternative, and recent work shows promise in emulating hydrodynam-
ics Stewart & Putschke (2025) and anomaly detection in jet events ANONYMIZED (2025).

In our prior work ANONYMIZED (2025), we introduced ANONYMIZED, a benchmark dataset
of 10.8M jet-event images, and demonstrated feasibility of classifying the energy loss module with
CNNs. However, that study was limited to a single parameter. Here, we extend the problem to
multi-parameter classification, jointly predicting αs, Q0, and the energy loss module from event
images. We benchmark modern vision architectures across paradigms—CNNs (EfficientNetV2,
ConvNeXt V2), Vision Transformers (ViT-CoMer, Swin V2), and state space models (Mamba). Our
results show that Vision Transformers achieve the strongest overall performance, particularly on αs
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and Q0 classification. Importantly, we go beyond accuracy: by analyzing the averaged probability
distributions predicted by the models. We show that results are consistent with physics expectations,
confirming that deep learning captures meaningful structure in heavy-ion collision data.

Key Contributions. (1) Extending the ANONYMIZED dataset analysis to multi-parameter clas-
sification, predicting αs, Q0, and the energy loss module simultaneously. (2) Benchmarking state-
of-the-art vision backbones—CNNs (EfficientNetV2, ConvNeXt V2), Vision Transformers (ViT-
CoMer, Swin V2), and state space models (Mamba)—on scientific imagery of heavy-ion collisions.
(3) Proposing a moment-based aggregation framework for representing jet events. We employ the
first moment (mean pT per (η, ϕ) bin) to build stable image profiles from sparse events, showing that
this preserves key physics characteristics. (4) Introducing a physics-informed evaluation using pre-
dicted probability distributions, demonstrating that models not only achieve high accuracy but also
align with theoretical expectations from QCD-based energy loss. (5) Establishing ANONYMIZED
as a vision benchmark that bridges computer vision and nuclear physics, positioning deep learning
as a scalable complement to Bayesian analysis and continuing the trend of deep learning in ultra-
relativistic heavy-ion collisions Stewart & Putschke (2025).

2 RELATED WORK

Physics-Informed Machine Learning in Heavy-Ion Collisions. Relativistic heavy-ion collisions
generate extreme conditions where jets interact with the quark–gluon plasma (QGP), producing
complex signatures that depend on parameters such as the energy loss module, strong coupling
constant, αs, and virtuality separation scale, Q0 Putschke et al. (2019); Kumar et al. (2020). Tradi-
tionally, Bayesian analysis has been the primary tool for parameter extraction Bernhard et al. (2016);
Ehlers et al. (2022); Kumar et al. (2023); Tachibana et al. (2024), and continues to evolve with re-
cent advances in calibration metrics Fan et al. (2024), multi-system modeling Mankolli (2024), and
updated suppression analyses Ehlers et al. (2025). Although powerful, Bayesian inference remains
computationally expensive, often requiring tens of thousands of simulations.

Recent physics studies underscore the complexity of jet-medium interactions. New results have
examined photon-triggered jets Sirimanna et al. (2025b;a), hard jet substructure in multistage ap-
proaches Tachibana et al. (2024; 2025), hadronic reinteractions Roch et al. (2025), and in-medium
hadronization Sengupta et al. (2025). These works highlight the richness of the QGP dynamics but
also reinforce the need for scalable data-driven methods. Machine learning has begun to fill this gap:
Stewart and Putschke Stewart & Putschke (2025) introduced Fourier Neural Operators to accelerate
hydrodynamic evolution, pointing toward ML as a viable complement to Bayesian pipelines. Our
work follows this trajectory by applying state-of-the-art vision models directly to jet-event images
produced with JETSCAPE Putschke et al. (2019).

Efficient CNN Architectures. Despite the rise of sequence models, convolutional neural net-
works remain strong baselines, particularly for low-resolution images. EfficientNetV2 Tan & Le
(2021) and ConvNeXt V2 Woo et al. (2023) represent the latest generation of CNNs, incorporating
Transformer-inspired design elements such as depth scaling and improved normalization. Their ef-
ficiency and robustness make them well-suited for 32× 32 jet-event images, allowing us to evaluate
the gains of more complex architectures against competitive CNN baselines.

Vision Transformers. Vision Transformers (ViTs) have redefined image classification by modeling
long-range dependencies Dosovitskiy et al. (2020). However, their lack of locality modeling has
motivated hybrid approaches. ViT-CoMer Xia et al. (2024) introduces convolutional multiscale
feature interactions into ViT backbones, enhancing local-global feature fusion. Hierarchical designs
such as Swin Transformer V2 Liu et al. (2022) further improve efficiency via windowed attention
and multiscale feature maps. These models are well aligned with jet-event images, which combine
sparse localized deposits with broader global patterns.

State Space Models and Mamba. State space models present a recent alternative to self-attention
for sequence learning. Mamba Gu & Dao (2023) leverages selective state spaces for linear-time
modeling of long-range dependencies. Vision Mamba (Vim) Zhu et al. (2024) adapts this to vision
tasks, demonstrating that state-space dynamics can replace attention while maintaining high perfor-
mance. For jet-event classification, where localized fluctuations coexist with global structures, these
models offer a computationally efficient and expressive solution.
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Table 1: Model zoo summary for backbones evaluated on the ANONYMIZED dataset. We report
the number of parameters, floating point operations (FLOPs), and average training time per model.

Model Params (M) FLOPs (G) Time (h)

EfficientNet V2 4.02 0.009 99.3
ConvNeXt V2 27.83 0.091 72.3
ViT-CoMer 5.53 1.080 96.5
Swin Transformer V2 27.50 0.090 73.5
Mamba 98.61 19.190 269.5

Summary and Motivation. Previous work on ANONYMIZED ANONYMIZED (2025) focused
on binary classification of the energy loss module using VGG16 and point-based models. In con-
trast, we conduct the first systematic benchmark of modern CNNs, Vision Transformers, and state
space models for multi-parameter classification, predicting (E,αs, Q0) jointly. By bridging recent
advances in vision architectures with updated physics research on jet-medium dynamics, our study
positions ANONYMIZED as both a vision benchmark and a scalable alternative to Bayesian analy-
sis for parameter extraction in heavy-ion collisions.

3 METHODOLOGY

3.1 DATASET DESCRIPTION

We utilize a curated subset of the ANONYMIZED dataset introduced in ANONYMIZED (2025),
focusing on 12 balanced combinations of physics parameters for structured multi-parameter classi-
fication. The dataset contains event images generated from Pb–Pb heavy-ion collision simulations
using the JETSCAPE framework Putschke et al. (2019); Kumar et al. (2020). Each event is repre-
sented as a 32 × 32 pixel image encoding the transverse momentum (pT ) distribution of particles
within the azimuthal–pseudorapidity (ϕ, η) plane.

Each event is annotated with three key physics parameters: (1) the energy loss module, E, (2) the
strong coupling constant, αs, and (3) the virtuality separation scale, Q0. The formulation of these
parameters within JETSCAPE simulations, including how αs controls parton–medium interaction
strength and how Q0 sets the boundary between vacuum-like and medium-induced radiation, is de-
tailed in our previous dataset paper ANONYMIZED (2025). Intuitively, αs governs the strength of
QCD interactions in the quark–gluon plasma, while Q0 determines the scale at which jets transition
from perturbative showers to medium-modified cascades. Formally, the dataset can be expressed as

D = {(xi, yi) | xi ∈ R32×32, yi = (Ei, αs,i, Q0,i)}, (1)

where the label space is
E ∈ {MATTER,MATTER-LBT},
αs ∈ {0.2, 0.3, 0.4},
Q0 ∈ {1.0, 1.5, 2.0, 2.5}.

(2)

Briefly, when Q0 = 1.0, the module is always MATTER, yielding three (E,αs, Q0) combina-
tions. For Q0 ∈ {1.5, 2.0, 2.5}, the module is always MATTER–LBT, paired with the three αs

values, yielding nine additional combinations. Each combination contributes 600K event images
(total 7.2M). This balanced construction induces a uniform label prior over the 12 valid 3-tuples,

P (E,αs, Q0) =
1
12 , ∀ (E,αs, Q0) ∈ Y, (3)

ensuring fair training and unbiased evaluation.

3.2 PROBLEM FORMULATION

Our goal is to train multi-output classifiers that jointly predict all three physics parameters from a
given event image. Formally, given an input image x ∈ R32×32, the model outputs (y1, y2, y3),
where y1 indicates E (binary), y2 indicates αs (three-class), and y3 indicates Q0 (four-class). The
training objective is a composite loss function:

Ltotal = λELbinary(y1, ŷ1) + λαs
Lmulti(y2, ŷ2) + λQ0

Lmulti(y3, ŷ3), (4)
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where λi are task weights and ŷi are the model predictions.

We evaluate a set of task-weighting schemes (λE, λαs
, λQ0

), defined in the Appendix D, Table 4 and
referenced throughout our ablations.

Task-Weighting Schemes. Beyond the balanced baseline (1, 1, 1), we design a small set of inter-
pretable schemes (S1–S10) to probe cross-task trade-offs. Because Q0 is the hardest head (4-way)
and empirically drives most errors, several schemes tilt toward Q0 (S2–S5, S9–S10). We also in-
clude mild/strong emphasis on αs (S6–S7) and a modest “energy bump” (S8). The exact definitions
of all schemes are provided in Appendix D, Table 4, and are referenced throughout our ablation
tables (Section 4).

3.3 MOMENTUM-BASED AGGREGATION FOR STABLE JET PROFILES

Individual jet events are inherently sparse: most (η, ϕ) bins contain no particles, while a few bins
carry large pT deposits ANONYMIZED (2025). This sparsity makes single-event images noisy and
unstable for learning. To address this, we introduce the Virtual Image Aggregation Algorithm, which
constructs stable jet profiles by combining multiple events with identical ground-truth labels into a
single representative image.

Our procedure is motivated by statistical moments of the transverse momentum distribution. For
event ek and pixel (i, j), let p(m,k)

T denote the transverse momentum of particle m in that cell, and
N

(k)
ij the particle count. The rth raw moment is defined as:

m(k)
r (i, j) =


1

N
(k)
ij

∑
m∈cell(i,j)

(
p
(m,k)
T

)r
, N

(k)
ij > 0

0, N
(k)
ij = 0,

(5)

and the aggregated moment profile across n events is:

m̄r(i, j) =
1

n

n∑
k=1

m(k)
r (i, j), I

(r)
ij =

m̄r(i, j)

maxi,j m̄r(i, j)
. (6)

In this work, we employ the first moment (r = 1), corresponding to the mean pT per (η, ϕ) bin.
The resulting image I(1) ∈ [0, 1]32×32 encodes the normalized mean-pT field, which is both sta-
ble and physics-informed. In preliminary experiments, training on single-event images (n = 1)
proved too noisy and failed to converge to meaningful results. We therefore constructed aggregated
datasets with n ∈ {100, 500, 1000} events per image. Among these, n = 500 yielded the most
stable convergence across backbones by balancing noise reduction with sufficient sample diversity
and was adopted as the default setting for all reported experiments. Figure 1 illustrates how ag-
gregation transforms sparse single events into reproducible jet profiles as the sample count grows
(n = 1, 2, 4, . . . , 500). A large-scale visualization across all parameter combinations is provided
in the Appendix C, Fig. 8. A detailed pseudocode implementation of this aggregation procedure is
provided in Appendix B, Algorithm 1 for reproducibility.

3.4 MODEL ARCHITECTURES

We explore three families of state-of-the-art models: Efficient CNNs: EfficientNetV2 Tan & Le
(2021) and ConvNeXt V2 Woo et al. (2023) serve as optimized convolutional baselines, well suited
for 32×32 event images. Vision Transformers: ViT-CoMer Xia et al. (2024) and Swin Transformer
V2 Liu et al. (2022) represent attention-based designs, capturing both local and global collision
patterns. State Space Models: Mamba Gu & Dao (2023) and Vision Mamba Zhu et al. (2024)
explore efficient alternatives to self-attention for long-range dependency modeling.

Initialization and Input Resizing. When training backbones, we consider multiple initialization
strategies. Unless otherwise noted, models are trained from scratch with standard Gaussian initial-
ization. For architectures providing a native 32× 32 backbone variant (e.g., “Tiny”), we adopt it to
reduce the interpolation overhead. Otherwise, input images are bilinearly upsampled from 32 × 32
to 224×224 before entering the backbone. The notation in Table 2 (e.g., “Tiny, Gaussian”) indicates
the combination of backbone size and initialization scheme used.
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Table 2: Per-task performance of different backbones on the ANONYMIZED dataset. We report
Accuracy and Macro-F1 for each physics parameter: Energy loss module, αs, and Q0. All experi-
ments use RLRP scheduler.

Model LR Batch Size Energy Loss αs Q0 Acctotal (%)
Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

EfficientNetV2 10−2 32 100.00 100.00 94.72 94.71 70.21 68.79 64.93
ConvNeXt V2 (Tiny, Gaussian) 10−4 32 100.00 100.00 93.54 93.53 74.10 73.59 67.64
ViT-CoMer (Tiny, Gaussian) 10−4 32 100.00 100.00 95.83 95.83 78.19 77.57 74.50
Swin Transformer V2 10−4 32 99.79 99.72 88.19 88.10 63.06 61.96 51.39
Mamba (No Init) 10−4 16 100.00 100.00 93.89 93.90 75.21 74.98 69.10
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Figure 3: Confusion matrices for the best-performing models on each task. Energy loss classification
is nearly perfect with no off-diagonal errors. For αs, mistakes are limited to adjacent classes (0.2↔
0.3, 0.3↔ 0.4), while for Q0, confusion concentrates between 2.0 and 2.5. These structured errors
indicate that misclassifications follow expected physics continuity rather than random noise.

4 EXPERIMENTS

We empirically measure the performance of state-of-the-art vision backbones on the
ANONYMIZED dataset, following the training and evaluation protocol in Section 3. The exper-
iments are designed to (i) establish baseline performance across model families, (ii) quantify the
effect of loss weighting and optimization choices, and (iii) provide physics-informed analysis of
prediction behavior.

Training and Evaluation Protocol. All models are trained on NVIDIA V100/A100 GPUs
(16 GB, 1 CPU core) using the Adam optimizer with early stopping. We sweep learning rates
{10−1, 10−2, 10−3, 10−4} and batch sizes {16, 32, 64, 128, 256, 512}, reporting the best configu-
ration by validation loss. Unless noted, we use the RLRP scheduler (mode=max, factor=0.5, pa-
tience=4), with early stopping after three learning-rate reductions. The composite loss applies Bi-
nary Cross-Entropy (BCE) for E and Categorical Cross-Entropy (CCE) for αs and Q0 with task
weights (λenergy, λαs , λQ0). Evaluation includes per-task Accuracy, Macro-F1, Precision/Recall,
and joint accuracy (exact match on (E,αs, Q0)); confusion matrices analyze errors. Initializa-
tion choices (None, Gaussian, Tiny backbone) are detailed in Appendix E. All models use identical
splits, normalization, and aggregation for fairness, with runtime statistics reported under consistent
hardware.

4.1 BASELINES

We benchmark three families of models representing distinct inductive biases: CNNs: Efficient-
NetV2 and ConvNeXt V2, serving as convolutional baselines optimized for low-resolution inputs.
Vision Transformers: ViT-CoMer and Swin Transformer V2, providing global context modeling
through self-attention. State Space Models: Mamba, exploring linear-time sequence modeling for
jet event representations.

A summary of model sizes, floating point operations (FLOPs), and average training time is provided
in Table 1, highlighting efficiency trade-offs across architectures.
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Table 3: Loss weight ablation for the composite objective. All experiments use the same
RLRP scheduler, learning rate, and batch size mentioned in Table 2. We vary the task weights
(λenergy, λαs , λQ0) (see Table 4 in the Appendix) and report per-task Macro-F1 as well as Acctotal.

Model Loss Weights Energy Loss αs Q0 Acctotal (%)
λenergy λαs λQ0 Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

EfficientNetV2 0.6 1.6 0.8 100.0 100.0 95.5 95.5 78.5 78.7 74.0
ConvNeXt V2 0.4 0.6 2.0 100.0 100.0 93.8 93.7 75.3 75.1 69.1
ViT-CoMer 0.8 0.8 1.4 100.0 100.0 96.2 96.2 76.7 76.9 72.9
Swin Transformer V2 0.8 1.2 1.0 100.0 100.0 89.6 89.6 67.7 67.6 57.3
Mamba 0.6 0.8 1.6 100.0 100.0 94.4 94.5 74.7 75.0 69.1
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Figure 4: Average predicted probabilities per true bin for αs (left) and Q0 (right). Predictions are
sharply peaked at the correct class, with probability mass leaking smoothly into neighboring bins.
This structured calibration confirms that model uncertainties align with the expected continuity of
QCD parameters, rather than arising from random noise.

4.2 ABLATIONS

To probe the robustness of our findings, we conduct controlled ablations:

Learning schedule. We compared fixed learning rate, step decay, cosine annealing, and
ReduceLROnPlateau (RLRP). RLRP consistently provided the most stable convergence and
highest accuracy across all backbones, so we report only RLRP results in Tables 2 and 3.

Learning rate and batch size. Grid search over LR × BS combinations, with the best setting per
model reported in Table 2.

Loss weighting. We sweep over the task-weighting schemes (S1–S10, defined in Appendix D,
Table 4) to probe how different emphasis on Q0, αs, or Energy affect performance (Table 3).

5 RESULTS AND DISCUSSION

We now present results of JetBench, the multi-parameter classification using the ANONYMIZED
dataset. Evaluation metrics serve both as computer vision benchmarks and physics consistency
checks, as model errors align with known QGP dynamics.

Overall Performance. Table 2 reports the best per-task Accuracy and Macro-F1 for each backbone
under the RLRP scheduler, using standard task weights (1, 1, 1). Energy loss classification is satu-
rated (≈ 100%) across all families, while αs and Q0 remain more challenging. The strongest joint
accuracy is achieved by ViT-CoMer (74.5%). Mamba (69.1%) and ConvNeXt (67.6%) follow as
competitive mid-tier performers, while EfficientNetV2 lags behind at 64.9%, and Swin Transformer
underperforms at 51.4%.

Precision and Recall follow the same overall trends as Accuracy and F1: Q0 consistently exhibits
lower recall relative to precision, indicating that models tend to under-predict high-Q0 bins. This
systematic bias reflects the intrinsic difficulty of distinguishing high-Q0 regimes rather than random
misclassification noise; full Precision/Recall tables are provided in Appendix F (Tables 5).

Loss Weighting Effects. Table 3 summarizes ablations over task weights (λenergy, λαs
, λQ0

)
(schemes S1–S10; see Table 4 in the Appendix D for definitions). Emphasizing Q0 (S2–S5) consis-
tently raises its Macro-F1 by up to 4 points but induces a small drop in αs, reflecting the inherent
trade-off structure of the multi-task objective. Conversely, αs-strong weighting (S7) maximizes
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AccE F1E Acc s F1 s AccQ0 F1Q0 Acctotal

ViT
EfficientNet

Mamba
ConvNeXt

Swin

100.0 100.0 95.8 95.8 78.2 77.6 74.5
100.0 100.0 95.5 95.5 78.5 78.7 74.0
100.0 100.0 94.4 94.5 74.7 75.0 69.1
100.0 100.0 93.8 93.7 75.3 75.1 69.1
100.0 100.0 89.6 89.6 67.7 67.6 57.3

Figure 5: Heatmap of per-model metrics across tasks. Values show Accuracy and Macro-F1 for E,
αs, Q0, and joint accuracy.

joint accuracy (74.0% with EfficientNetV2), while Q0-mid emphasis (S3) achieves the most bal-
anced trade-off across tasks.

ViT-CoMer also benefits from Q0-mild weighting (S2), and Swin Transformer improves modestly
under αs-mild weighting (S6), though both follow the same trend. Detailed Precision/Recall val-
ues, provided in Appendix F, Table 6, confirm this pattern: stronger Q0 weights improve recall on
difficult bins at the expense of slight precision loss on αs. Overall, loss re-weighting provides a
mechanism to target harder heads, but the optimal scheme depends on whether the goal is maximiz-
ing joint accuracy or prioritizing Q0 fidelity.

Backbone Comparisons. Figure 5 consolidates per-model performance across all tasks, reporting
Accuracy and Macro-F1 for Energy loss, αs, Q0, and joint accuracy. All models saturate the binary
energy-loss task (∼ 100%), while αs and especially Q0 remain more challenging.

Among backbones, ViT-CoMer achieves the strongest joint accuracy (74.5%) in the baseline setting
(S1), while EfficientNetV2 reaches a comparable peak (74.0%) under αs-strong weighting (S7).
ConvNeXt V2 improves to 69.1% joint accuracy with Q0-max emphasis (S5), and Mamba reaches
69.1% under Q0-mid emphasis (S3). Swin Transformer V2 shows consistent underperformance,
though it gains modestly from αs-mild weighting (S6), rising from 51.4% to 57.3%.

Overall, Vision Transformers (ViT-CoMer) and Efficient CNNs (EfficientNetV2) deliver the
strongest results, with ConvNeXt and Mamba competitive at mid-tier performance when task
weights are tuned. Loss weighting generally improves Q0 recall but does not alter the relative
ranking: ViT-CoMer and EfficientNetV2 lead, followed by ConvNeXt and Mamba, with Swin trail-
ing.

Learning Dynamics. Figure 6 illustrates convergence behavior. CNNs (e.g., ConvNeXt, Efficient-
NetV2) converge rapidly but plateau early. In particular, EfficientNetV2 briefly reaches ∼70–74%
joint accuracy, but its validation curves flatten quickly and early stopping is triggered after three
learning-rate reductions, limiting further gains. Given these unstable learning curves, Efficient-
NetV2’s reported accuracy should be interpreted with caution, as it reflects early saturation rather
than sustained optimization.

In contrast, ViT-CoMer continues to improve throughout training under the RLRP scheduler, ex-
hibiting smoother convergence and ultimately achieving the highest accuracy. Validation loss shows
oscillations even as validation accuracy rises, reflecting imbalanced gradients across heads: the
binary energy-loss task saturates, while the four-way Q0 head remains unstable. Nevertheless, ac-
curacy and Macro-F1 improve consistently, confirming that optimization progresses despite noisy
losses. This contrast highlights distinct dynamics: CNNs saturate quickly, whereas Transformers
retain capacity for sustained improvement. Additional curves for all backbones are provided in
Appendix G, Figure 9.

Structured Confusions and Calibration. Figure 3 shows task-level confusion matrices for the
best-performing ViT-CoMer model. Energy loss classification is essentially perfect, with no off-
diagonal errors. For αs, misclassifications are restricted to adjacent bins (0.2 ↔ 0.3, 0.3 ↔ 0.4),
reflecting the smoothness of the underlying coupling strength. For Q0, the main confusion occurs
between 2.0 and 2.5, consistent with reduced discriminative signal at higher virtuality scales.

Calibration trends are shown in Figure 4, which plots average predicted probabilities per true bin
for αs and Q0. Predictions are sharply peaked on the correct class, with probability mass smoothly
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Figure 6: Learning curves (training/validation accuracy and loss) for ViT-CoMer. Validation accu-
racy improves steadily under the RLRP scheduler, while validation loss fluctuates due to the more
difficult Q0 head. Despite noisy optimization signals, the model achieves smooth and stable accu-
racy gains.

leaking into neighboring bins. This behavior corroborates the confusion matrices: errors respect
the expected continuity structure of QCD parameters rather than appearing random. Together, these
results demonstrate that the models are not only accurate but also calibrated in a physics-consistent
manner, capturing the graded boundaries between adjacent parameter values.

Discussion. Key findings are: (1) Energy loss classification is saturated (∼100%), while αs

(95–96%) and Q0 (up to 78%) remain non-trivial; (2) Transformers, particularly ViT-CoMer,
achieve the best joint accuracy (∼74.5%), outperforming CNNs and Mamba by 5–7%, while Swin
lags behind; (3) Q0 consistently shows confusion between 2.0 and 2.5, reflecting limited discrimina-
tive signal in that regime; and (4) Loss re-weighting reveals clear trade-offs: stronger Q0 emphasis
improves its F1/recall but slightly reduces αs, while αs-strong weighting maximizes joint accuracy.

6 CONCLUSION AND FUTURE WORK

We present the first systematic study of multi-parameter classification of heavy-ion collisions with
the ANONYMIZED dataset. Benchmarking CNNs, Vision Transformers, and state-space models
shows the feasibility of jointly predicting the energy-loss module, αs, and Q0 from 32×32 jet im-
ages. CNNs (EfficientNetV2, ConvNeXtV2) provide strong baselines but plateau early, while Trans-
formers and Mamba variants better capture global context. ViT-CoMer with RLRP scheduling yields
the most stable and accurate results. Performance saturates for energy loss, αs remains moderately
difficult, and Q0 is hardest with errors concentrated between adjacent bins. Calibration analyses
further show model uncertainties align with QCD continuity, underscoring deep models as scalable
complements to Bayesian analysis.

Future Work. Promising directions include: (1) expanding the dataset to additional jet parame-
ters; (2) diffusion-based generative models as fast surrogates for JETSCAPE-like simulations; (3)
physics-informed architectures incorporating symmetries or conservation laws; (4) experimental
validation on RHIC/LHC detector data; (5) adaptive or uncertainty-based loss weighting; (6) multi-
moment jet representations beyond the first moment; and (7) richer evaluation metrics, including
calibration curves and uncertainty quantification.

Broader Impacts and Limitations. This study shows the potential of ML in heavy-ion physics
but remains limited by simulated data, hyperparameter sensitivity, and the compute cost of modern
backbones. While ViT-CoMer and EfficientNetV2 offer strong baselines, validation on experimen-
tal data is needed for transferability. Because each image aggregates 500 events and the dataset is
fully shuffled, run-to-run variance is statistically suppressed; small-scale trials further suggest low
variance. We therefore report single-seed results, with multi-seed robustness to be added in the
camera-ready version. Nonetheless, our results chart a scalable path toward physics-informed deep
learning, complementing Bayesian inference while underscoring the need for experimental valida-
tion.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. The ANONYMIZED dataset
and preprocessing pipeline are described in Section 3.3, with pseudocode for the virtual image ag-
gregation in Appendix B. Initialization strategies and training protocols, including hyperparameters
and learning schedules, are detailed in Section 4 and Appendix E. Complete ablation results, preci-
sion/recall metrics, and calibration analyses are reported in the Appendix. All backbone results are
reported from single-seed runs; because each image averages 500 events and the dataset is fully shuf-
fled, the variance across runs is expected to be low, and preliminary small-scale trials support this
observation. For completeness, multi-seed evaluations will be included in the camera-ready version.
To further support reproducibility, we release the full training and evaluation code as anonymized
supplementary material; upon acceptance, we will open-source this repository.
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APPENDIX

A RELATIVISTIC HEAVY-ION COLLISION SCHEMATIC

To complement the main text, we include a schematic overview of the stages of a relativistic heavy-
ion collision. While the ANONYMIZED dataset focuses on final-state particle distributions repre-
sented as 32× 32 images, this figure provides broader context by illustrating the physical processes
that lead to these detector-level patterns. It highlights how two ultra-relativistic nuclei collide, form a
short-lived quark–gluon plasma (QGP), and subsequently hadronize into final-state particles. These
final distributions are the basis of the images used in our classification benchmark (see Fig. 1 in the
main paper).

Figure 7: Schematic overview of relativistic heavy-ion collisions. Two heavy nuclei (e.g., Pb–Pb at
the LHC or Au–Au at RHIC) collide at ultra-relativistic energies, creating extreme temperature and
density conditions. The collision produces a quark–gluon plasma (QGP), which expands, cools, and
hadronizes into final-state particles. These particles are detected as jets and soft hadrons, forming
the inputs to the ANONYMIZED dataset ANONYMIZED (2025).

B VIRTUAL IMAGE AGGREGATION ALGORITHM

For reproducibility, we provide pseudocode for the proposed momentum-based aggregation method.
This algorithm groups raw event images with identical (αs, Q0,module) labels and averages them
into a single “virtual” profile, producing a CSV index of aggregated samples. This implementation
underlies the moment-based aggregation method described in Section 3.3.

C VISUALIZATION OF AGGREGATED EVENT SAMPLES

To illustrate the variability of the ANONYMIZED dataset, we visualize aggregated two-dimensional
histograms of Pb–Pb collision events in the pseudorapidity–azimuthal plane (η, ϕ), constructed us-
ing the momentum-based aggregation procedure introduced in Section 3.3. Figure 8 shows a 12×10
grid of averaged samples, where each row corresponds to a distinct combination of the energy loss
module (MATTER or MATTER–LBT), strong coupling constant αs ∈ {0.2, 0.3, 0.4}, and virtu-
ality separation scale Q0 ∈ {1.0, 1.5, 2.0, 2.5}. For each (αs, Q0, E) setting, ten representative
aggregated events are displayed. The color scale encodes normalized transverse momentum pT ,
highlighting the jet energy deposition pattern across different parameter regimes. This visualiza-
tion demonstrates the diversity of event structures across the design space. Differences in intensity
and spread of the distributions reflect the underlying parton energy loss mechanisms and medium
response. These aggregated samples provide intuition for the learning task: predicting the physics
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Algorithm 1 Virtual Image Aggregation for Dataset Construction

Require: Dataset root directory D with labeled event images as .npy files
Require: Label parser parse labels(dir)→ (e, α,Q0)
Require: Aggregation group size k
Ensure: Aggregated file-label CSV with Nagg entries

1: Initialize G ← ∅ ▷ Dictionary mapping label tuples to file paths
2: for all directory d ∈ os.listdir(D) do
3: label← parse labels(d)
4: for all file f ∈ os.listdir(d) such that f ends with ‘.npy‘ do
5: G[label].append(f)
6: end for
7: end for
8: Initialize empty list A for aggregated samples
9: id← 0

10: for all label ∈ keys(G) do
11: Shuffle G[label]
12: for i = 0 to |G[label]| − k step k do
13: group← G[label][i : i+ k]
14: agg id← “agg ” ∥zfill(id)
15: A.append((agg id, group, label))
16: id← id+ 1
17: end for
18: end for
19: Save A as a CSV file with columns: agg id, file paths, e, α, Q0

parameters (E,αs, Q0) directly from sparse event images is non-trivial, yet crucial for advancing
data-driven modeling in heavy-ion physics.

D TASK-WEIGHTING SCHEMES

In Section 3, we introduced the composite objective

Ltotal = λenergyLenergy + λαs
Lαs

+ λQ0
LQ0

.

To explore how emphasizing different heads influences performance, we designed a set of inter-
pretable weighting schemes. Each scheme is identified by a shorthand name (S1–S10), the triplet of
coefficients (λenergy, λαs

, λQ0
), and a short rationale.

Table 4: Loss-weighting schemes used in our ablations.

ID λenergy λαs λQ0
Description

S1 1.0 1.0 1.0 Balanced (equal weights)
S2 0.8 0.8 1.4 Q0 mild emphasis
S3 0.6 0.8 1.6 Q0 mid emphasis
S4 0.5 0.7 1.8 Q0 strong emphasis
S5 0.4 0.6 2.0 Q0 max emphasis
S6 0.8 1.2 1.0 αs mild emphasis
S7 0.6 1.6 0.8 αs strong emphasis
S8 1.2 0.9 0.9 Energy bump (binary head stress test)
S9 0.9 1.0 1.1 Q0 very mild emphasis
S10 0.7 1.0 1.3 Q0 + αs paired emphasis

These schemes provide structured ablation points that make it possible to compare trends across
backbones. The full sweep results for each scheme are reported in Table 3 of the main paper.

E INITIALIZATION STRATEGIES

We evaluated three initialization settings during backbone training:

2
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Figure 8: Grid of aggregated Pb–Pb collision events from the ANONYMIZED dataset. Each row
corresponds to a unique combination of energy loss module (MATTER or MATTER–LBT), strong
coupling constant αs ∈ {0.2, 0.3, 0.4}, and virtuality separation scale Q0 ∈ {1.0, 1.5, 2.0, 2.5}. For
each (E,αs, Q0) setting, ten representative aggregated event images are shown as 2D histograms in
the (η, ϕ) plane, with color intensity indicating normalized transverse momentum pT .

(i) None: training from scratch with framework default weight initialization. For fully connected
or convolutional layers, these are typically variance-preserving schemes such as Xavier Glorot &
Bengio (2010) or Kaiming He et al. (2015), designed so that the variance of activations remains
stable across layers:

Var[Wij ] =

{
2

nin+nout
, (Xavier)

2
nin

, (Kaiming ReLU),
(7)

where nin and nout are the input and output dimensions.

(ii) Gaussian: a custom scheme in which each weight matrix W of a linear or convolutional layer
is sampled i.i.d. from a zero-mean Gaussian:

Wij ∼ N (0, σ2), σ = 0.02, (8)

with all bias terms initialized to zero. This corresponds to the PyTorch routine:

W ← Normal(0, 0.02), b← 0, (9)
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Table 5: Per-task Precision and Recall for each backbone. Metrics are reported separately for Energy
loss, αs, and Q0. Accuracy and F1 are reported in the main paper (Table 2).

Model Energy Loss αs Q0

Prec (%) Rec (%) Prec (%) Rec (%) Prec (%) Rec (%)

EfficientNet V2 100.0 100.0 94.9 94.7 76.9 70.2
ConvNeXt V2 (Tiny, Gaussian) 100.0 100.0 93.5 93.5 73.4 74.1
ViT-CoMer (Tiny, Gaussian) 100.0 100.0 95.9 95.8 77.4 78.2
Swin Transformer V2 99.6 99.9 88.6 88.2 61.8 63.1
Mamba 100.0 100.0 93.9 93.9 75.1 75.2

Table 6: Per-task Precision and Recall for the loss weight ablation study. All experiments use the
same scheduler (RLRP), learning rate, and batch size as in Table 3. We vary the task weights
(λenergy, λαs , λQ0) (schemes S2–S7).

Model Loss Weights Energy Loss αs Q0

λenergy λαs
λQ0

Prec (%) Rec (%) Prec (%) Rec (%) Prec (%) Rec (%)

EfficientNet V2 0.6 1.6 0.8 100.0 100.0 95.8 95.5 79.7 78.5
ConvNeXt V2 0.4 0.6 2.0 100.0 100.0 93.8 93.8 75.2 75.3
ViT-CoMer 0.8 0.8 1.4 100.0 100.0 96.2 96.2 77.2 76.7
Swin Transformer V2 0.8 1.2 1.0 100.0 100.0 89.6 89.6 67.5 67.7
Mamba 0.6 0.8 1.6 100.0 100.0 94.5 94.4 75.9 74.7

applied layer-wise. Such initialization stabilizes gradients in the early epochs by bounding the vari-
ance of activations.

(iii) Tiny backbone: when available (e.g., ViT-Tiny), we trained the 32×32 variant directly to avoid
interpolation overhead. For models without native 32 × 32 support, input images were upsampled
to 224× 224 using bilinear interpolation:

I224(x, y) =
∑
i,j

I32(i, j)ϕ(x/7− i)ϕ(y/7− j), (10)

where ϕ(·) is the bilinear kernel.

These design choices are reflected in Table 2.

F ADDITIONAL METRICS: PRECISION AND RECALL

For completeness, we report per-task Precision and Recall values in addition to Accuracy and Macro-
F1. Table 5 presents results for all backbones, while Table 6 extends this analysis to the loss weight
ablation study. Across both backbones and weighting schemes, the results corroborate our main
findings: Precision and Recall follow the same trends as Accuracy and F1, with Q0 consistently
emerging as the most challenging head.

G LEARNING CURVES

To complement the main text (Section 5), we provide complete learning curves for all back-
bones. Each figure shows training and validation accuracy as a function of epochs under the
ReduceLROnPlateau scheduler. These curves illustrate convergence dynamics across archi-
tectures: CNNs converge quickly but plateau early, Transformers benefit from smoother training,
and Mamba exhibits slower yet steady convergence.

An additional observation is that EfficientNetV2 reaches a joint accuracy of∼74% but triggers early
stopping once validation accuracy plateaus, whereas ViT-CoMer continues to improve throughout
training. This highlights differences in optimization dynamics: CNNs can saturate rapidly, while
Transformers retain capacity for further gains with extended training.
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(a) Swin Transformer V2

0 10 20 30 40 50
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train Accuracy
Val Accuracy

Train Loss
Val Loss

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

(b) ConvNeXt V2
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(c) EfficientNet V2
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(d) Mamba

Figure 9: Learning curves (training/validation accuracy vs. epochs) for four backbones on
ANONYMIZED under ReduceLROnPlateau. CNNs (EfficientNetV2, ConvNeXt) converge
quickly but plateau earlier; ViT-CoMer shows smoother improvements; Mamba converges more
slowly yet steadily.

H USE OF LLMS

We used ChatGPT as a general-purpose assistive tool in limited parts of this work. Specifically,
ChatGPT was employed to:

• Polish writing, including improving clarity, conciseness, and readability of the manuscript.
• Reformat technical content, such as adjusting figure/table captions and ensuring consis-

tent referencing style.
• Assist with anonymization, helping to identify and rephrase text that could reveal author

identity.

ChatGPT was not involved in research ideation, dataset design, experimental setup, or analysis.
All scientific ideas, methods, experiments, and conclusions were developed independently by the
authors.
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