
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAUSAL REPRESENTATION LEARNING FROM MULTI-
MODAL MEDICAL OBSERVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Prevalent in biological applications (e.g., human phenotype measurements), multi-
modal datasets can provide valuable insights into the underlying biological mech-
anisms. However, current machine learning models designed to analyze such
datasets still lack interpretability and theoretical guarantees, which are essential
to biological applications. Recent advances in causal representation learning have
shown promise in uncovering the interpretable latent causal variables with formal
theoretical certificates. Unfortunately, existing works for multimodal distributions
either rely on restrictive parametric assumptions or provide rather coarse identi-
fication results, limiting their applicability to biological research which favors a
detailed understanding of the mechanisms.
In this work, we aim to develop flexible identification conditions for multimodal
data and principled methods to facilitate the understanding of biological datasets.
Theoretically, we consider a flexible nonparametric latent distribution (c.f., para-
metric assumptions in prior work) permitting causal relationships across poten-
tially different modalities. We establish identifiability guarantees for each latent
component, extending the subspace identification results from prior work. Our key
theoretical ingredient is the structural sparsity of the causal connections among
distinct modalities, which, as we will discuss, is natural for a large collection of
biological systems. Empirically, we propose a practical framework to instantiate
our theoretical insights. We demonstrate the effectiveness of our approach through
extensive experiments on both numerical and synthetic datasets. Results on a real-
world human phenotype dataset are consistent with established medical research,
validating our theoretical and methodological framework.

1 INTRODUCTION

Multimodal datasets provide rich and comprehensive insights into complex biological systems, hold-
ing potential in providing a deeper understanding of biological mechanisms. For example, the hu-
man phenotype dataset (Levine et al., 2024) includes measurements from multiple modalities, such
as anthropometrics, sleep monitoring, and genetics. Proper analysis of such data can potentially
uncover the underlying mechanisms that drive phenotypic diversity and disease susceptibility, such
as the discovery of novel molecular markers and the development of predictive models for disease.
Recent advances in large-scale models have made it possible to exploit large biological datasets
for various tasks such as protein structure prediction (Jumper et al., 2021; Lin et al., 2023), gene-
disease association identification (Diaz Gonzalez et al., 2023; Zagirova et al., 2023), and novel drug
candidate discovery (Pal et al., 2023; Zheng et al., 2024b).

Despite the impressive performance of these models, their trustworthiness remains a matter of de-
bate (Zheng et al., 2023). A major concern is the lack of interpretability, which poses serious chal-
lenges in biological research, limiting the safe and ethical application of these models. For example,
in clinical decision-making (Hager et al., 2024), if the model recommends a specific treatment plan
for a patient based on genomic data, clinicians need to understand the rationale behind the model’s
recommendation. Without such transparency, it is difficult to trust the model’s results and integrate
these systems into critical decision-making processes. While many explainable models have been
developed for multimodal datasets (Tang et al., 2023), this aspect is still largely under-explored.

Fortunately, recent advances in causal representation learning (CRL) (Schölkopf et al., 2021) have
shown promise in identifying latent causal structures from raw observations, which is well-suited
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for biological applications. For example, a plethora of CRL works (Hyvarinen et al., 2019; Khe-
makhem et al., 2020a; Zhang et al., 2024b; Buchholz et al., 2024; von Kügelgen et al., 2023; Zhang
et al., 2024a; Li et al., 2024; Ahuja et al., 2023) can naturally utilize the temporal information or
domain indices in fMRI data for identifying the latent causal model. Recently, a line of CRL works
has arisen to investigate multimodal distributions (Yao et al., 2023; Morioka & Hyvarinen, 2023;
2024; Daunhawer et al., 2023; Sturma et al., 2023; Gresele et al., 2020). Leveraging the shared
information over modalities, these works have developed identifiability guarantees for latent vari-
ables despite potentially complex nonlinear causal relations (Yao et al., 2023; Morioka & Hyvarinen,
2024; Daunhawer et al., 2023). Nevertheless, some aspects of these works are still limited. For in-
stance, Von Kügelgen et al. (2021); Daunhawer et al. (2023); Yao et al. (2023) only identify latent
subspaces that are directly shared by multiple modalities. However, in practice, many informative
latent variables may influence the multiple modalities indirectly through intermediate latent vari-
ables. Moreover, such subspace identifiability loses track of the intricate causal influences among
individual causal components, resulting in a limited view of the latent mechanism. Morioka & Hy-
varinen (2024); Gresele et al. (2020); Morioka & Hyvarinen (2023) relies on specific forms of latent
variable distributions (e.g., independence or exponential family). These constraints restrict their
applicability for biological datasets that involve complex interactions among latent factors.

Figure 1: Multimodal data with
causal latent variables.

In this work, we aim to develop identification theory with
multimodal biological datasets in mind, and design principled
and interpretable models to facilitate analyzing such datasets.
We assume that observations x(m) in any modality m are gen-
erated by a specific set of latent components {z(m)

i }i and per-
mit flexible causal relations among latent components from
potentially distinct modalities z

(m)
i → z

(n)
j for m ̸= n,

i ̸= j (Figure 1). Theoretically, we provide identifiability
guarantees for each latent component z(m)

i , thus generalizing
the subspace identification results in Yao et al. (2023); Daun-
hawer et al. (2023) while avoiding independence or paramet-
ric assumptions on the latent distribution p({z(m)}m) as in
Morioka & Hyvarinen (2023; 2024); Gresele et al. (2020). In
particular, we first show that any latent subspace z(m) can be
identified as long as z(m) exerts sufficient influences on other
modalities, which is weaker than assuming z(m) is directly

shared over multiple modalities as in Daunhawer et al. (2023); Yao et al. (2023). Based on this sub-
space identification, we leverage the sparsity of the causal connections among modalities to further
identify each latent component {z(m)

i }i. This notion of causal sparsity has been explored in recent
work (Lachapelle et al., 2023; Xu et al., 2024; Zheng et al., 2022) in other causal identification
settings and has been shown realistic in many biological systems (Busiello et al., 2017; Milo et al.,
2002; Babu et al., 2004; West et al., 2002; Banavar et al., 1999) as we will discuss in Section 4.

Empirically, we develop a theoretically grounded estimation framework to recover the latent com-
ponents in each modality. Our model implements our theoretical conditions (in particular, condi-
tional independence and sparsity constraints) on top of normalizing flows (Huang et al., 2018; Dinh
et al., 2016) and variational auto-encoders (VAE) (Kingma & Welling, 2013). Extensive experi-
ments on both numerical and synthetic datasets demonstrate its effectiveness. Most notably, our
framework enables the discovery of latent causal variables that reflect complex biological interac-
tions and analyze potential causal mechanisms between different modalities, which are important for
clinical decision-making. The evaluation results on a real-world human phenotype dataset provide
novel insights into relationships between modalities, and the discovered causal relationships align
with findings from medical research, highlighting our contributions to the biological domain.

2 RELATED WORK

Machine learning (ML) models for biology. For biological applications, ML models are de-
signed to extract informative representations to facilitate downstream tasks, including DNA se-
quence modeling (Zhou et al., 2024; Nguyen et al., 2023; Dalla-Torre et al., 2023), protein structure
prediction (Jumper et al., 2021; Lin et al., 2023), and disease detection (Zhou et al., 2023; Jang et al.,
2024). While sequence modeling of DNA, RNA, and proteins has been well developed, thanks to
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the success of large language models (LLMs) (Celaj et al., 2023; Shulgina et al., 2024; Nguyen
et al., 2024; Li et al., 2023; Chen et al., 2023; Lin et al., 2023), this approach focuses on a sin-
gle modality, thus constraining its applicability to multi-model datasets, which is often the case for
biological measures. Although some efforts have been made toward integrating multi-modal biolog-
ical data (Garau-Luis et al., 2024; Pei et al., 2024; Taylor et al., 2022), these approaches often lack
theoretical guarantees, limiting the trustworthiness of the model output. In this paper, we leverage
causal principles to develop theoretically-sound ML models for multi-modal biological data, toward
providing reliable and interpretable insights into the underlying biological structure.

CRL and multimodality. CRL aims to discover the high-level causal variables from low-level
observations, regarded as a combined field of machine learning and causality (Schölkopf et al.,
2021). The methods of CRL with identifiability conditions can be categorized according to the
additional assumed structures, including functional constraints (Xu et al., 2024; Zheng et al., 2022;
Zheng & Zhang, 2023; Buchholz et al., 2022), interventional/multi-distribution (Hyvarinen et al.,
2019; Khemakhem et al., 2020a; Zhang et al., 2024b; Kong et al., 2023; Buchholz et al., 2024; von
Kügelgen et al., 2023; Zhang et al., 2024a; Li et al., 2024; Varici et al., 2023; Ahuja et al., 2023;
Jiang & Aragam, 2023; Brehmer et al., 2022; Lachapelle et al., 2024), and of our particular interest,
multimodality (Yao et al., 2023; Morioka & Hyvarinen, 2023; 2024; Daunhawer et al., 2023; Sturma
et al., 2023; Gresele et al., 2020). For clarity, in Table 1, we summarize representative works in the
multimodality category and compare them with our work.

Empirical CRL for multimodal applications. Unlike aforementioned works that pay significant
attention to identifiability, a line of CRL works instead focuses more on the practical applications in
various fields, without considering theoretical identifiability. Mao et al. (2022) assume independent
latent variables and propose a two-module amortized variational algorithm to learn representations
from medical images and other biological data. Zheng et al. (2024a) develop a contrastive learning-
based approach to extract modality-specific and modality-invariant representations from time-series
tabular data and language text data for root cause analysis. Rawls et al. (2021) leverage behav-
ioral and psychiatric phenotyping and high-resolution neuroimaging data from Human Connectome
Project (Van Essen et al., 2013) and run existing Greedy Fast Causal Inference (Ogarrio et al., 2016)
to analyze the causal relations for alcohol use disorder. Differently, we provide formal identification
theory and further bake the derived insights into our estimation model.

General multimodal learning. In a general ML context, multimodal learning involves learning a
representation from multimodal data (e.g., text, image, audio) towards specific tasks (Manzoor et al.,
2023; Zhang et al., 2020). Among these representation learning methods for weakly supervised data,
contrastive learning (Daunhawer et al., 2023; Wang et al., 2022; Peng et al., 2022; Radford et al.,
2021; Khosla et al., 2020; Oord et al., 2018) stands out for its effectiveness, scalability, and robust-
ness, with a prominent example being CLIP (Radford et al., 2021). In contrast with these works,
our work focuses on discovering the causal relationships among the learned underlying factors over
multiple modalities, with the goal of generating novel insights into the biological system.

Table 1: Related work on multi-modal causal representation learning. This table considers whether
more than two modalities can be handled, whether the latent-variable distribution is nonparametric, whether
the mixing function can be nonlinear, and whether the identifiability is component-wise.

Related work > 2 Modalities Nonparametric Prior Nonlinear Mixing Component-wise Iden.

Von Kügelgen et al. (2021) × ✓ ✓ ×
Daunhawer et al. (2023) × ✓ ✓ ×
Morioka & Hyvarinen (2024) ✓ × ✓ ✓
Yao et al. (2023) ✓ ✓ ✓ ×
Ours ✓ ✓ ✓ ✓

3 LATENT MULTIMODAL CAUSAL MODELS

Real-world biological datasets are often curated with multiple modalities, each characterizing a dis-
tinct yet interrelated aspect of the subject. For instance, human phenotype datasets (Levine et al.,
2024) consist of tabular data, time series, images, and text capturing distinct biological measure-
ments including anthropometrics, sleep monitoring, and genetics. Understanding the latent factors
behind each modality and their interplay can provide valuable insights into underlying biological
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mechanisms, which in turn facilitates the advancement of medical technologies. With this goal in
mind, we formalize such multimodal data-generating processes as follows.

x(1) x(2) x(3)

η(1) η(2) η(3)

z
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1 z

(1)
2 z
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1 z
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Figure 2: Illustrative examples
of the hypothesis space under-
lying the biology system.

Data-generating processes. Let x := [x(1), . . . ,x(M)] be a set of observations/measurements
from M modalities, where x(m) ∈ Rd(x(m)) represents the observation from modality m with
dimensionality d(x(m)). Let z = [z(1), . . . , z(M)] be the set of causally related latent variables
underlying M modalities. Specifically, the data generation process (Figure 2) can be formulated as

z
(m)
i := g

z
(m)
i

(Pa(z(m)
i ), ϵ

(m)
i ), (latent causal relations) (1)

x(m) := gx(m)(z(m),η(m)), (generating functions) (2)

where we denote the parents of a variable with Pa(·). Since we allow for causal relations within
each modality and across multiple modalities, Pa(·) potentially returns latent variables across mul-
tiple modalities. The differentiable function gz encodes the latent causal directed acyclic graph
connecting latent components and its Jacobian matrix Jgz can be permuted into a strictly triangular
matrix. We use ϵmi to denote the exogenous variable for z(m)

i and exogenous variables are mutually
independent. We use η(m) to denote domain-specific information independent of other components.

Example. In healthcare, a chest X-ray x(m) may reflect latent factors such as lung functions, heart
sizes, and bone structures, represented by z(m). These latent variables can causally influence those
in other modalities z(n) such as demographic factors like age and sex which may be reflected in
heart rhythm and electrical conduction in an ECG represented by x(n).

Goal. As outlined previously, we aim to learn the latent variables underlying each modality
and their causal relations. Formally, for two specifications θ := {gx(m) , gz(m) , p(ϵ(m))}Mm=1 and
θ̂ := {ĝx(m) , ĝz(m) , p̂(ϵ(m))}Mm=1 of the data-generating process Eq. (1) and Eq. (2) that fit the
marginal distribution p(x), we would like to show that, given the same x value, each latent compo-
nent ẑ(m)

i is equivalent to its counterpart z(m)
i up to an invertible map h

(m)
i , i.e., ẑ(m)

i = h
(m)
i (z

(m)
i ).

This component-wise identifiability disentangles latent components (e.g., gene types, nutrient levels)
from the measurements x and preserves their original information. Once component-wise identifia-
bility is achieved, one can readily apply classical causal learning algorithms (e.g., PC (Spirtes et al.,
2001)) to identified components ẑ

(m)
i to infer the graphical structures. One can choose structural

learning algorithms suitable to the assumed graph class (e.g., potentially non-DAGs) and this step
is orthogonal to our contribution. These structures characterize the interactions among all latent
components across modalities as we desire for the biological applications.

4 IDENTIFICATION THEORY

As motivated in Section 3, we address the component-wise identifiability of latent components z(m)
i .

Remarks on the problem. Identification for multimodal distributions often leverages the struc-
ture among available modalities. However, component-wise identification, especially in the general
nonparametric setting, is challenging. Daunhawer et al. (2023); Von Kügelgen et al. (2021); Yao
et al. (2023) require certain information redundancy: the information of the latent variables should
be fully shared and preserved by at least two modalities’ observations – that is, we can express z(m)

as functions of x(m1) and x(m2) individually. Moreover, the identification can only be achieved
up to subspaces (i.e., groups of latent components) determined by the sharing pattern. However,
often the latent components may not be fully shared by multiple modalities. For example, in health
monitoring, while sleep patterns do not directly reveal genetic predispositions, genetic factors can
influence sleep disorders. In that case, the subspace identification can fall short of providing de-
tailed interpretations of biological systems and the mechanisms encoded in the graphical structures
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over individual causal components. For work that achieves component-wise identifiability, Morioka
& Hyvarinen (2023; 2024) assume that the latent distribution p({z(m)}Mm=1) follows an exponen-
tial family form with additive causal influences from multiple parents, which may be restrictive in
general cases. For instance, in brain imaging studies, fMRI data and EEG data capture different
neural activities, and the interactions between brain regions are often highly nonlinear. Clearly, for
general multimodal distributions (Figure 2), we cannot access the information redundancy assumed
in Daunhawer et al. (2023); Von Kügelgen et al. (2021); Yao et al. (2023) and the nicely-behaved
latent causal models in parametric assumptions (Morioka & Hyvarinen, 2023; 2024).

Our high-level approach. We decompose the problem into two stages: we first identify latent
subspaces z(m) (Section 4.1) and further disentangle identified subspaces into components z

(m)
i

(Section 4.2). For the subspace identification, we only assume the information of subspace z(m) is
preserved in its corresponding observation x(m) and exerts sufficient influence on other modalities’
observations x(−m), thus weakening the redundancy assumption in prior work (Daunhawer et al.,
2023; Yao et al., 2023). For the component-wise identification, we leverage a natural notion of struc-
tural sparsity in the literature (Zheng et al., 2022; Lachapelle et al., 2024) – the dependency among
all the modalities should be explained with a minimal number of causal edges among latent sub-
spaces {z(m)}Mm=1. This enables us to further disentangle each subspace into components, without
resorting to parametric assumptions (Morioka & Hyvarinen, 2023; 2024).

Notations. We adopt the notation d(·) and I(·) to indicate the dimensionality and the component
indices of the argument, respectively. We use −m to indicate the complement of the modality m and
bracketed (m) in superscripts and subscripts to index modality m directly. We denote sub-matrices
[·]R,C where R and C are index sets. Under this notation, setting R (or C) as : indicates all indices
along that dimension.

4.1 IDENTIFYING LATENT SUBSPACES

As previously discussed, we now provide the subspace identifiability. Formally, we would like to
show that the estimated latent subspace ẑ(m) for any modality m and its true counterpart z(m) are
equivalent up to an invertible map h(m)(·), i.e., ẑ(m) = h(m)(z(m)).

Given the data-generating process Eq. (2), the task amounts to removing modality-specific informa-
tion η(m) from the observation data x(m) while retaining the latent variables z(m) causally related
with other modalities. In light of this, we express the relations between latent variables z(m) and the
observation of its own modality x(m) and other modalities x(−m) as Eq. (3).

x(m) = gx(m)(z(m),η(m)), x(−m) = g̃x(−m)(z(m), η̃(−m)), (3)

where η̃(−m) denotes all the information necessary to generate the complement group x(−m) beyond
z(m). Consequently, η̃(−m) may admit causal/statistic relationships with z(m).1 We denote the joint
map of gx(m) and g̃x(−m) as g̃(m) : (z(m),η(m), η̃(−m)) 7→ x.

Condition 4.1 (Subspace Identifiability Conditions).

A1 [Smoothness & Invertibility]: The generating functions gx(m) and g̃(m) are smooth and have
smooth inverse functions.

A2 [Linear Independence]: The generating function g̃x(−m) is smooth and its Jacobian columns
corresponding to z(m) (i.e., [Jg̃

x(−m)
]:,I(z(m))) are linearly independent almost anywhere.

Discussion on the conditions. Condition 4.1-A1 requires that the latent variables z(m) infor-
mation is preserved in its observation x(m), so that the identification of latent variables is well-
defined (Hyvarinen et al., 2019; Khemakhem et al., 2020a; Von Kügelgen et al., 2021; Kong et al.,
2023; Yao et al., 2023; Daunhawer et al., 2023). Since this holds for any modality m, the observa-
tions x(−m) should collectively preserve the information of other modality z(−m). Condition 4.1-A2

1We use ·̃ to differentiate η̃(−m) from a collection of modality-specific variables η defined in Eq. (2).
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formalizes the notation of a minimal connectivity over modalities: z(m) should also exert sufficient
influence over other modalities z(−m), so that the other modality observations x(−m) could be infor-
mative to identify z(m). This condition excludes degenerate scenarios in which the causal influences
among modalities are nearly negligible and is equivalent to local invertibility of z(m) strictly weaker
than the global invertibility assumption in prior work (Daunhawer et al., 2023; Von Kügelgen et al.,
2021; Yao et al., 2023) (e.g., y = x2 is locally invertible but not globally so), as discussed earlier.

Theorem 4.2 (Subspace Identifiability). Let θ := {gx(m) , g̃z(−m) , p(ϵ(m)), p(ϵ̃(−m))}Mm=1 and
θ̂ := {ĝx(m) , ˆ̃gz(−m) , p(ϵ̂(m)), p(ˆ̃ϵ(−m))}Mm=1 be two specifications of the data-generating process
in Eq. (3). Suppose that they generate identical observational distributions (i.e., p(x) = p̂(x)), θ
satisfies Condition 4.1, and θ̂ satisfies Condition 4.1-A1. The latent subspace ẑ(m) for any group m
and its counterpart z(m) are equivalent up to an invertible map h(m)(·), i.e., ẑ(m) = h(m)(z(m)).

Interpretation and proof sketch. Theorem 4.2 states that one can disentangle the modality-
specific information η(m) and the latent variables z(m) contained in the observation x(m) (which
is a mixture of both). To attain this, we leverage the fact that η(m) doesn’t have influence over other
modalities x(−m) whereas z(m) has a nontrivial influence over x(−m) as characterized in Condi-
tion 4.3-A2. This crucial distinction gives sufficient footprints to disentangle these two subspaces
for each modality, yielding the intended result.

4.2 IDENTIFYING LATENT COMPONENTS

Figure 3:
Sparse A.

Proceeding from the subspace identifiability (Theorem 4.2), we now further dis-
entangle each subspace into individual components z

(m)
i as defined in Section 3.

As foreshadowed, our key condition entails the sparsity of the graphical struc-
tures among modalities. Such dependency structures are captured in the generating
function gz defined component-wise in Eq. (1), in particular its partial derivatives.
We now introduce Condition 4.3 that facilitates component-wise identification.

Additional notations. We denote latent components in modality m that are par-
ents (resp. children) to latent components in other modalities as upstream vari-
ables U (m) (resp. downstream variables D(m)). We denote the nonzero matrix
entries’ indices with Supp(·). We use (m) and (−m) in matrix subscripts to in-
dex dimensions of modality m and all modalities other than m respectively. We

denote the collection of partial derivatives among all latent components ∂z
(m)
i

∂z
(n)
j

as a matrix function

G(z, ϵ) ∈ Rd(z)×d(z). We denote the sub-matrix consisting of matrix A ∈ Rd1×d2 ’ rows with more
than one non-zero entries as Overlap(A) := AS,: where S := {i ∈ [d1] : ∥Ai,:∥0 > 1}. We adopt
diag(·) to denote matrices consisting of equally-sized square matrices on its diagonal. Further, for
any A ∈ Rd1×d2 , define d∗(A) := max{|R| : R ⊂ [d1], rank ([Overlap(A)]R,:) < d2}.

Condition 4.3 (Component Identifiability Conditions). Over the domain of (z, ϵ), for any modality
m, C(m) ⊂ U (m) with

∣∣C(m
∣∣ > 1 , R(m) ⊂ D(m) with

∣∣R(m
∣∣ > 2 , and T = diag(T1, . . . ,TM−1)

with invertible Ti ∈ Rd(z(i))×d(z(i)), we have∣∣∣∣∣∣
⋃

j∈I(C(m))

Supp([TG](−m),j)

∣∣∣∣∣∣− d∗
(
[TG](−m),I(C(m))

)
> max

j∈I(C(m))

∥∥∥[G](−m),j

∥∥∥
0
;

∣∣∣∣∣∣
⋃

j∈I(R(m))

Supp(([GT−1]j,(−m))
⊤)

∣∣∣∣∣∣− d∗
(
([GT−1]I(R(m)),(−m))

⊤
)
> max

j∈I(R(m))

∥∥∥[G]j,(−m)

∥∥∥
0
.

(4)

Discussion on the conditions. Overall, Condition 4.3 necessitates sparse causal connections
among different modalities {z(m)}Mm=1. This allows each component z(m)

i to connect to other
modalities’ components z

(n)
j (m ̸= n) in an ideally distinct manner, leaving a causal footprint

for identification. G denotes the graphical connectivity in the model θ and T denotes po-
tential mixings of latent variables in the model θ̂. Thus, sub-matrices [TG](−m),I(C(m)) and
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([GT−1]I(R(m)),(−m))
⊤ represent the cross-modality connectivity between modality m and other

modalities −m in the model θ̂. Condition 4.3 effectively imposes a sparsity constraint on these
edges. Since all involved components z

(m)
i are latent, causal directions are unknown. Moreover,

any subset of variables on both sides of the causal edges could potentially be entangled. We in-
troduce upstream variables U (m) and downstream variables D(m) to indicate the causal directions
(note that U (m) ∩D(m) could be nonempty) and utilize T to account for potential entanglements in
other modalities when we look at modality m. We employ d∗ to characterize the maximal amount
of sparsity due to accidentally canceled out nonzero entries if a subset of C(m) or R(m) are en-
tangled. Thus, Eq. (4) intuitively indicates that any entanglement would lead to a denser Jacobian
matrix Ĝ than its counterpart G, rendering sparsity a faithful signal for entanglement (more intu-
ition in Appendix C.2). We give one simple example for sparse A in Figure 3. The availability of
multiple modalities greatly enhances the feasibility of such sparsity conditions, especially with a
large number of modalities, because the entanglement is limited within a single modality (thanks to
Theorem 4.1) and all other modalities can be leveraged to provide space for sparse connections.

Sparsity conditions have been embraced by the causal representation learning commu-
nity (Lachapelle et al., 2024; Moran et al., 2022; Fumero et al., 2023; Xu et al., 2024). Especially
related to our work is Zheng et al. (2022). As discussed above, we are obliged to deal with causal
structures among all latent variables. In contrast, Zheng et al. (2022) assume the sparsity of the
causal connections between the latent variables and the observed variables – the directions (from the
latent to the observed variables) are given and the children are directly observed. Further, we pro-
pose an exact characterization of the potential cancellation dimensions d∗, leading to a tight bound
in Eq. (4). Notably, sparse properties manifest in biological systems of our interest, including gene-
regulatory networks (Milo et al., 2002; Babu et al., 2004; Nacher & Akutsu, 2013; Liu et al., 2011),
metabolic systems (West et al., 2002; Banavar et al., 1999), and other living systems (Busiello et al.,
2017), evidencing the plausibility of Condition 4.3 for biological applications.

Theorem 4.4 (Component-wise Identifiability). Let θ := ({gx(m) , gz(m) , p(ϵ(m))}Mm=1) and θ̂ :=
({ĝx(m) , ĝz(m) , p̂(ϵ(m))}Mm=1) be two specifications of the data-generating process in Eq. (1) and
Eq. (2). Suppose that they generate identical observational distributions (i.e., p(x) = p̂(x)) and θ

satisfies Condition 4.1 and Condition 4.3. If θ̂ satisfies the following condition:∑
m ̸=n∈[M ]

∥∥[Jĝz ](m),(n)

∥∥
0
≤

∑
m̸=n∈[M ]

∥∥[Jgz ](m),(n)

∥∥
0
, (5)

each component z(m)
i and its counterpart ẑ(m)

π(i) are equivalent up to an invertible map h(·), i.e.,

ẑ
(m)
π(i) = h(z

(m)
i ) under a permutation π over [d(z(m))].

Interpretation and proof sketch. The key idea of Theorem 4.4 is that for sparse causal graphs (as
characterized in Condition 4.3), the mixing of latent components in any modality would introduce
unnecessary causal edges connecting the other latent subspaces. We give a simple example to aid
intuition: for a true causal graph z

(1)
1 → z

(2)
1 and z

(1)
2 → z

(2)
2 , suppose that ẑ(1)1 is a nontrivial

mixture of z(1)1 and z
(1)
2 and other estimates are correctly identified, i.e., [ẑ(1)1 , ẑ

(1)
2 , ẑ

(2)
1 , ẑ

(2)
2 ] =

[h(z
(1)
1 , z

(1)
2 ), z

(1)
2 , z

(2)
1 , z

(2)
2 ]. As a consequence of the mixing, the estimated causal graph would

include an additional edge ẑ
(1)
1 → ẑ

(2)
2 , forbidden by the sparsity constraint in Eq. (??).

Implications. In the context of biological applications, Theorem 4.4 indicates that under proper
constraints, each component ẑ(m)

i in our estimation uniquely captures the information of an intrinsic
biological factor behind the medical measurements (e.g., genetic predisposition). Therefore, the
learned representation enjoys strong interpretability under theoretical guarantees, which is often
lacking in existing biological models as noted in Section 2. Theorem 4.2 and Theorem 4.4 offer
insights for practical model design, which we employ in our architecture in Section 5.

Generality of our framework. Theorem 4.2 and Theorem 4.4 can be straightforwardly extended
to identify causal models with directly shared latent variables as those in Yao et al. (2023); Daun-
hawer et al. (2023); Von Kügelgen et al. (2021), thus strictly more general than prior work. In
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particular, we can identify such shared latent variables block-wise through incorporating contrastive
learning objectives into Theorem 4.1 (Yao et al., 2023; Daunhawer et al., 2023; Von Kügelgen et al.,
2021). Therefore, we can treat such blocks of shared latent variables as separate modalities and
directly apply Theorem 4.4 to attain the component-wise identifiability.

5 ESTIMATION MODEL ARCHITECTURES

Given identifiability results, we further propose an estimation framework that enforces the proposed
assumptions as constraints to identify the latent variables in each modality, as shown in Figure 4.

Figure 4: Estimation framework. Given multi-
modal observations (x(1), . . . ,x(M)), the latent vari-
ables and exogenous variables in modality m are in-
ferred as ẑ(m) and η̂(m) by individual encoders. The
observations are then reconstructed with correspond-
ing decoders as x̂(m). We enforce independence
conditions by minimizing the KL divergence term
KL

(
[{η̂(m)}Mm=1, {ϵ̂i}

dz
i=1];N (0, I)

)
. We enforce the

sparsity constraint by minimizing the L1 norm in the
inferred adjacency matrix Â.

Encoder and decoder. Each modality x(m) is given as an input to the corresponding encoder and
outputs the estimated latent ẑ(m) and exogenous variables η̂(m). They are then concatenated and
passed to the corresponding decoder to reconstruct the observations as x̂(m). The reconstruction
loss is calculated using the mean squared error (MSE) as LRecon =

∑M
m=1 ||x(m) − x̂(m)||22.

Conditional independence constraints. We enforce the conditional independence condition
x(m) ⊥⊥ x(n) | z(m) and the independence condition on η(m) ⊥⊥ z(m) by enforcing independence
among components in γ = [{η̂(m)}Mm=1, {ϵ̂i}

dz
i=1]. Such equivalence is shown in Proposition B.1

and B.2, and proofs are provided in Appendix B. Specifically, we minimize the KL divergence loss
between the posterior and a Gaussian prior distribution: LInd = KL(p(γ)||N (0, I)).

Proposition 5.1. [Conditional Independence Condition] Denote x(m) and x(n) are two different
multimodal observations. z(m) ⊂ z are the set of block-identify latent variables, and η(m) ⊂ η are
exogenous variables in modality m. We have x(m) ⊥⊥ x(n) | z(m) ⇐⇒ η(m) ⊥⊥ η(n).

Proposition 5.2. [Independent Noise Condition] Denote z and η as the block-identified latent vari-
ables and exogenous variables across all modalities. ϵ’s are the causally-related noise terms. We
have η ⊥⊥ z ⇐⇒ η ⊥⊥ ϵ.

Sparsity regularization. We use normalization flow (Dinh et al., 2016; Huang et al., 2018) to
estimate the exogenous variables ϵ in Eq. (1) and implement the causal relations through a learnable
adjacency matrix Â. The binary values in Â represent the causal generation process between latent
variables, e.g. Âi,j = 1 indicates ẑj is the parent of ẑi, while Âi,j = 0 means ẑj dose not contribute
to the generation of ẑi. For each component ẑi, we select its parents Pa(ẑi) based on the adjacency
matrix, and apply the flow transformation from Pa(ẑi) to ϵ̂i.

To encourage sparsity among the latent variables ẑ, we introduce a regularization term on the learned
adjacency matrix. Based on the sparsity assumption, the optimal causal graph should be the minimal
one that still allows the model to accurately match the ground truth generative distribution. To
achieve this, we reduce the dependencies between different components of ẑ by adding a L1 penalty
on the adjacency matrix, s.t., LSp = ||Â||1.

Optimization. The model parameters are optimized using the combination objective:

L = αIndLInd + αSpLSp + αReconLRecon. (6)
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6 EXPERIMENT RESULTS

To evaluate the efficacy of our proposed method, we conduct extensive experiments on (1) numeri-
cal, (2) synthetic and (3) real-world datasets. In terms of the baselines, we compare our method with:
(1) BetaVAE (Higgins et al., 2017), which does not consider causal relationships in the latent space.
(2) CausalVAE (Yang et al., 2020), which considers the causally related latent variables with a sin-
gle modality. (3) Multimodal contrastive learning (MCL) (Daunhawer et al., 2023), which recovers
the latent factors from multimodality through contrastive learning. Throughout the experiments, we
consider the following evaluation metrics: (1) Mean Correlation Coefficient (MCC) measures how
well the estimated latent variables match the true ones, with an MCC of 1 indicating perfect identifi-
ability up to permutation and invertible transformations. (2) R2 measures the proportion of variance
in the ground truth latent that is explained by the estimated latent, with a value of 1 indicating per-
fect reconstruction. (3) Structural Hamming Distance (SHD) quantifies the difference between the
estimated and true causal skeletons, where a lower SHD indicates better recovery.

(a) Causal comparison between esti-
mated and true graphs (SHD=0).

(b) Comparison of identifiability
result under different cases.

(c) Identifiability result under
different sparsity ratios.

Figure 5: Numerical experiment results. (a) Successful recovery of the inter-modal causal graph.
(b) Baseline comparisons in different cases. (c) Sparsity ablation result.

6.1 NUMERICAL DATASET

Setup. In the numerical simulations, we consider three cases with different numbers of modali-
ties and inter-modal causal relations. Case 1: 15-dimensional observations across two modalities,
each with two latent and one exogenous variable. Case 2: 20-dimensional observations across two
modalities, each with three latent and one exogenous variable. Case 3: 15-dimensional observations
across four modalities, each with two latent and one exogenous variable. The nonparametric mixing
function is simulated by a random MLP with LeakyReLU units, and the inter-modal latent variables
are sparse causally related. The detailed data generation process is provided in Appendix D.1.

Results and ablation. Figure 5 shows the identifiability results in different cases, where the high
MCC indicates the successful recovery of the latent variables. The inter-modal causal relations
are successfully recovered (SHD=0) and the comparison result in case 1 is shown in Figure 5(a).
The comparisons with the baselines are shown in Figure 5(b) (MCL is not applicable in case 3
due to the two modality limitation). CausalVAE requires additional supervision signals to establish
identifiability, and MCL assumes content invariance and can only block identify latent variables.
In general, these baselines neither account for the multimodal setting nor for the modality-specific
latent variables, and therefore do not recover the latent variables.

As an ablation study, we further show the consequences of violating the sparsity assumptions to
validate our theorem. Based on case 1, we create four types of datasets with different sparsity ratios
and report the MCC in each scenario in Figure 5(c). The sparsity ratio represents the proportion of
existing causal links to all possible causal links between modality-specific latent variables. A value
of 0 indicates that the latent variables between modalities are fully connected, while higher values
correspond to sparser connections. The result shows that identifiability can be better achieved with
a higher sparsity ratio, and our framework outperforms other baselines in all scenarios.

6.2 SYNTHETIC DATASET: VARIANT MNIST

Setup. We use the colored MNIST (Arjovsky et al., 2019) and fashion MNIST (Xiao et al., 2017)
as two modalities of image observations derived from variants of the MNIST dataset (LeCun, 1998).
The two latent variables for colored MNIST are the class label (cause) and the image color (effect),
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while for fashion MNIST, they are the class label (cause) and the image rotation angle (effect).
The class labels from the colored MNIST serve as the cause for the class labels in the fashion
MNIST in a non-deterministic manner. More data descriptions are provided in Appendix D.2.

Table 2: The results of MNIST dataset.
MCL BetaVAE CausalVAE Ours

R2 0.48 ± 0.01 0.22 ± 0.00 0.02 ± 0.01 0.89 ± 0.05

MCC 0.82 ± 0.02 0.03 ± 0.00 0.14 ± 0.01 0.87 ± 0.02

Results. Table 2 presents the identifiability compar-
ison results, where the highest MCC and R2 indi-
cate the strong performance of our method. BetaVAE
does not account for latent variables, and CausalVAE,
which requires additional supervision, fails to recover
the latent variables effectively.

6.3 REAL-WORLD DATASET: HUMAN PHENOTYPE

The human phenotype dataset (Shilo et al., 2021) is a large-scale, longitudinal collection of pheno-
typic profiles from a diverse global population. It includes comprehensive human health data and
provides a comprehensive view of health and disease drivers. The dataset contains various types
of participant information, categorized into tabular, time series, and image data. Specifically, it in-
cludes health information across 30 modalities, such as blood tests, anthropometry, fundus imaging,
etc. Detailed data descriptions can be found in Appendix D.3.

Figure 6: Causal analysis results across different modalities, including hand grip, medical condi-
tions, sleep, and anthropometries. We ran the causal algorithm on all variables but reported only the
causal relations that have direct connections to the estimated latent variables for clarity.

In this work, we focus on the fundus imaging dataset for both right and left eyes (FRight and FLeft)
and the sleep monitoring dataset (Sleep) to estimate the latent factors underlying each modality. To
validate our result, we applied the PC algorithm (Spirtes et al., 2001) to discover causal relationships
between the estimated latent variables (Z1, Z2, Z3) and other four additional tabular modalities (A,
B, C, D), providing an implicit evaluation on the effectiveness. The result with direct causal relations
is shown in Figure 6, with variables from the same modality sharing the same color and different
modalities in distinct colors.

A key finding is that the causal relationships discovered are consistent with findings from medical
research. For example, Sleep 1 shows a direct causal relationship with Oxygen saturation, suggesting
that sleep conditions may influence blood oxygen levels. This observation is consistent with previous
studies (Wali et al., 2020). In addition, the fundus-related latent variables FRight 1 and FLeft 1 have
a direct causal relationship with Age, suggesting that aging plays an important role in changes in
retinal health (Ege et al., 2002; Einbock et al., 2005). Interestingly, the fundus image of the right
eye has a direct causal relationship with the grip strength of the left hand, as recently demonstrated
in biological research (Bikbov et al., 2023; Qiu et al., 2020).

7 CONCLUSION AND LIMITATIONS

In this work, we develop a theoretically grounded framework for recovering latent causal variables
from multi-modal observations. Extensive experimental results on synthetic and real-world datasets
demonstrate the practical effectiveness of our approach. Limitations: Empirically, our framework
assumes prior knowledge of the number of latent variables in each modality, which may be unreal-
istic in real-world scenarios. Additionally, a detailed evaluation against the quantitative benchmarks
used in biological models remains an area for future exploration.
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Baccus, and Chris Ré. Hyenadna: Long-range genomic sequence modeling at single nucleotide
resolution, 2023. URL https://arxiv.org/abs/2306.15794.

13

https://arxiv.org/abs/2306.15794


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Eric Nguyen, Michael Poli, Matthew G Durrant, Armin W Thomas, Brian Kang, Jeremy Sullivan,
Madelena Y Ng, Ashley Lewis, Aman Patel, Aaron Lou, et al. Sequence modeling and design
from molecular to genome scale with evo. BioRxiv, pp. 2024–02, 2024.

Juan Miguel Ogarrio, Peter Spirtes, and Joe Ramsey. A hybrid causal search algorithm for latent
variable models. In Conference on probabilistic graphical models, pp. 368–379. PMLR, 2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Soumen Pal, Manojit Bhattacharya, Md Aminul Islam, and Chiranjib Chakraborty. Chatgpt or llm in
next-generation drug discovery and development: pharmaceutical and biotechnology companies
can make use of the artificial intelligence-based device for a faster way of drug discovery and
development. International Journal of Surgery, 109(12):4382–4384, 2023.

Qizhi Pei, Lijun Wu, Kaiyuan Gao, Xiaozhuan Liang, Yin Fang, Jinhua Zhu, Shufang Xie, Tao Qin,
and Rui Yan. Biot5+: Towards generalized biological understanding with iupac integration and
multi-task tuning. arXiv preprint arXiv:2402.17810, 2024.

Xiaokang Peng, Yake Wei, Andong Deng, Dong Wang, and Di Hu. Balanced multimodal learning
via on-the-fly gradient modulation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8238–8247, 2022.
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A NOTATION AND TERMINOLOGY

We summarize the notations used throughout the paper in Table 3.

Index
m,n Group index, latent index
i, j Variable element index
dc Dimensionality of the shared latent variables
dmc Dimensionality of the shared latent variables in group m
dms Dimensionality of the group-specific latent variables in group m

Variable

x(m) Observations in each group
z(m) Latent variables in each group
x(m),x(−m) One specific observation in group m, and the rest of others
z(m), z(−m) One specific latent variables in group m, and the rest of others
x̂(m) Reconstructed observation in modality m
ẑi Estimated latent variables over zi
η Exogenous variables
ϵ Mutually independent noise term
Pa(zn) Set of direct cause nodes/parents of variable zn

Function and Hyperparameter

g
(m)
x Nonparametric mixing function in group m
gz Causal function among latent variables
p Distribution function (e.g., pzi is the distribution of zi.)
α Weights in the augmented ELBO objective

Table 3: List of notations.

B CONDITIONAL INDEPENDENCE

Here we provide the proofs for the constraints utilized in the estimation framework.
Proposition B.1. [Conditional Independence Condition] Denote x(m) and x(n) are two different
multimodal observations. z(m) ⊂ z are the set of block-identify latent variables, and η(m) ⊂ η are
exogenous variables in modality m. We have

x(m) ⊥⊥ x(n) | z(m) ⇐⇒ η(m) ⊥⊥ η(n). (7)

Proof. Given the data generation process in Eq. (2), the following assumptions hold true for any
m,n ∈ [M ]: (1) z(m) ⊥⊥ η(m); (2) z(m) ⊥⊥ η(n); (3) η(m) ⊥⊥ x(n).

Sufficient condition. Given LHS of Eq. (7), we have

p(x(m),x(n) | z(m)) = p(x(m) | z(m))p(x(n) | z(m)).

RHS
===⇒ p(x(m),x(n) | z(m)) =

p(x(m),x(n), z(m))

p(z(m))
=

p(η(m), η(n), z(m))

p(z(m))
|det

∂η(m)

∂x(m)
||det

∂η(n)

∂x(n)
|

= p(η(m), η(n) | z(m))|det
∂η(m)

∂x(m)
||det

∂η(n)

∂x(n)
|

LHS
===⇒ p(x(m) | z(m))p(x(n) | z(m)) =

p(x(m), z(m))

p(z(m))

p(x(n), z(m))

p(z(m))

=
p(η(m), z(m))

p(z(m))
|det

∂η(m)

∂x(m)
|p(η

(n), z(m))

p(z(m))
|det

∂η(n)

∂x(n)
|

= p(η(m) | z(m))p(η(n) | z(n))|det
∂η(m)

∂x(m)
||det

∂η(n)

∂x(n)
|
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Thus we have

p(η(m), η(n)|z(m)) = p(η(m)|z(m))p(η(n)|z(n)) ⇒ p(η(m), η(n)) = p(η(m))p(η(n)) ⇒ η(m) ⊥⊥ η(n)

Necessary condition. Given RHS of Eq. (7) and above conclusion, we have

p(x(m) | z(m)) = p(η(m))|det
∂η(m)

∂x(m)
|, p(x(n) | z(m)) = p(η(n))|det

∂η(n)

∂x(n)
|

Multiplication
==========⇒ p(x(m) | z(m))p(x(n) | z(m)) = p(η(m))p(η(n))|det

∂η(m)

∂x(m)
||det

∂η(n)

∂x(n)
|

= p(η(m), η(n))|det
∂η(m)

∂x(m)
||det

∂η(n)

∂x(n)
| = p(η(m), η(n), z(m))

p(z(m))
|det

∂η(m)

∂x(m)
||det

∂η(n)

∂x(n)
| = p(x(m),x(n), z(m))

p(z(m))

⇒ p(x(m) | z(m))p(x(n) | z(m)) = p(x(m),x(n) | z(m)) ⇒ x(m) ⊥⊥ x(n) | z(m)

(8)

Proposition B.2. [Independent Noise Condition] Denote z and η as the block-identified latent vari-
ables and exogenous variables across all modalities. ϵ’s are the causally-related noise terms. We
have

η ⊥⊥ z ⇐⇒ η ⊥⊥ ϵ. (9)

Proof. Given the causal function in Eq. (1), we have p(z) = p(ϵ)|det ∂ϵ∂z |.
Sufficient condition. Suppose (z, η) = h(ϵ, η) and η ⊥⊥ z, we have

p(z, η) = p(ϵ, η)|def
∂ϵ

∂z
| ⇒ p(z)p(η) = p(ϵ, η)|def

∂ϵ

∂z
| ⇒ p(ϵ)p(η)|det

∂ϵ

∂z
| = p(ϵ, η)|def

∂ϵ

∂z
|

⇒ p(ϵ)p(η) = p(ϵ, η) ⇒ η ⊥⊥ ϵ

(10)

Necessary condition. Suppose (z, η) = h(ϵ, η) and η ⊥⊥ ϵ, we have

p(z, η) = p(ϵ, η)|def
∂ϵ

∂z
| ⇒ p(z, η) = p(ϵ)|def

∂ϵ

∂z
|p(η) ⇒ p(z, η) = p(z)p(η) ⇒ η ⊥⊥ z

(11)

C IDENTIFIABILITY THEORY

C.1 PROOF FOR THEOREM 4.2

We present the proof for Theorem 4.2. For ease of reference, we duplicate Condition 4.1 and Theo-
rem 4.2 below.
Condition C.1 (Subspace Identifiability Conditions).

A1 [Smoothness & Invertibility]: The generating functions gx(m) and g̃(m) are smooth and have
smooth inverse functions.

A2 [Linear Independence]: The generating function g̃x(−m) is smooth and its Jacobian columns
corresponding to z(m) (i.e., [Jg̃

x(−m)
]:,I(z(m))) are linearly independent almost anywhere.

Theorem 4.2 (Subspace Identifiability). Let θ := {gx(m) , g̃z(−m) , p(ϵ(m)), p(ϵ̃(−m))}Mm=1 and
θ̂ := {ĝx(m) , ˆ̃gz(−m) , p(ϵ̂(m)), p(ˆ̃ϵ(−m))}Mm=1 be two specifications of the data-generating process
in Eq. (3). Suppose that they generate identical observational distributions (i.e., p(x) = p̂(x)), θ
satisfies Condition 4.1, and θ̂ satisfies Condition 4.1-A1. The latent subspace ẑ(m) for any group m
and its counterpart z(m) are equivalent up to an invertible map h(m)(·), i.e., ẑ(m) = h(m)(z(m)).
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Proof. Given the generating processes in Eq. (2) and Eq. (1), we can express any observed group
x(m) and its complement x(−m) := x \ x(m) as two views of the latent variables of group m:

x(m) := g(m)(z(m),η(m)), (12)

x(−m) := g(−m)(z(m), η̃(−m)), , (13)

where η(m) stands for exogenous variables for the group x(m) and η̃(−m) represents all the infor-
mation necessary to generate the complement group x(−m) beyond z(m).

Following the classic definition of identifiability, we define two specifications θ =

{gx(m) , gz(m) , p(ϵ(m))}Mm=1 and θ̂ := {ĝx(m) , ĝz(m) , p̂(ϵ(m))}Mm=1 that fit the observation distri-
bution p(x). To show the identifiability in terms of the functions in θ and θ̂, we show that given the
same x(m) value the identifiability between z(m) and ẑ(m).

Thus, the subspace identification is equivalent to show that for each group m, the estimated latent
variable ẑ(m) and the true counterpart are related via an invertible map h, i.e., ẑ(m) = h(z(m)).

Eq. (12) and the invertibility of the map (z,η(m), η̃(−m)) 7→ (x(m),x(−m)) (Condition 4.1-A1)
give rise to an invertible map h̃ : (ẑ(m), η̂(m), ˆ̃η(−m)) 7→ (z(m),ηm, η̃(−m)).

The matched observed distribution between the true and the estimated models for the generating
process Eq. (13) yields that

g(−m)(z(m), η̃(−m)) = ĝ(−m)(ẑ(m), ˆ̃η(−m)). (14)

Plugging in h̃ gives

ĝ(−m)(ẑ(m), ˆ̃η(−m)) = g(−m)

([
h̃
(
ẑ(m), η̂(m), ˆ̃η(−m)

)]
I(z(m)),I(η̃(−m))

)
. (15)

where we adopt I(·) to indicate the indices of its argument.

For any i ∈ [d(x(m))] and j ∈ [d(η̂(m))], we take partial derivative w.r.t. η̂
(m)
j on both sides of

Eq. (15):

∂[ĝ(−m)]i
∂[η̂(m)]j︸ ︷︷ ︸

=0

=
∂[g(−m)]i
∂[η̂(m)]j

. (16)

The left-hand side of Eq. (15) equals to zero because ĝ(−m) is not a function of η̂(m).

Therefore, expanding the right-hand side of Eq. (15) gives:∑
k∈I(z(−m))∪I(η̃(−m))

∂[g(−m)]i

∂[h̃]k
· ∂[h̃]k
∂[η̂(m)]j

=
∑

k∈I(z(−m))

∂[g(−m)]i

∂[h̃]k
· ∂[h̃]k
∂[η̂(m)]j

= 0. (17)

The first equality in Eq. (17) is due to the fact that η̃(−m) is a function of x(−m) and varying η̂(m)

doesn’t vary x(−m) (η̂(m) is a function of x(m) thanks to the invertibility of ĝ(m)), i.e., ∂[η̃(−m)]k
∂[η̂(m)]j

=

0.

Condition 4.1-A2 implies that the matrix
(

∂[g(−m)]i
∂[h̃]k

)
i,k

has a full column rank. Therefore, its

null space contains only a zero vector, which, together with Eq. (17), implies that ∂[z(m)]k
∂[η̂(m)]j

= 0.

Consequently, given the generating process Eq. (12) and the invertibility of g(m) and ĝ(m) (Condi-
tion 4.1-A1), the estimated latent variable ẑ(m) and the true latent variable z(m) are related via an
invertible map, as desired.
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C.2 PROOF FOR THEOREM 4.4

We present the proof for Theorem 4.4. For ease of reference, we duplicate Condition 4.3 and Theo-
rem 4.4.
Condition C.2 (Component Identifiability Conditions). Over the domain of (z, ϵ), for any modality
m, C(m) ⊂ U (m) with

∣∣C(m
∣∣ > 1 , R(m) ⊂ D(m) with

∣∣R(m
∣∣ > 2 , and T = diag(T1, . . . ,TM−1)

with invertible Ti ∈ Rd(z(i))×d(z(i)), we have∣∣∣∣∣∣
⋃

j∈I(C(m))

Supp([TG](−m),j)

∣∣∣∣∣∣− d∗
(
[TG](−m),I(C(m))

)
> max

j∈I(C(m))

∥∥∥[G](−m),j

∥∥∥
0
;

∣∣∣∣∣∣
⋃

j∈I(R(m))

Supp(([GT−1]j,(−m))
⊤)

∣∣∣∣∣∣− d∗
(
([GT−1]I(R(m)),(−m))

⊤
)
> max

j∈I(R(m))

∥∥∥[G]j,(−m)

∥∥∥
0
.

(4)

Theorem 4.4 (Component-wise Identifiability). Let θ := ({gx(m) , gz(m) , p(ϵ(m))}Mm=1) and θ̂ :=
({ĝx(m) , ĝz(m) , p̂(ϵ(m))}Mm=1) be two specifications of the data-generating process in Eq. (1) and
Eq. (2). Suppose that they generate identical observational distributions (i.e., p(x) = p̂(x)) and θ

satisfies Condition 4.1 and Condition 4.3. If θ̂ satisfies the following condition:∑
m ̸=n∈[M ]

∥∥[Jĝz ](m),(n)

∥∥
0
≤

∑
m ̸=n∈[M ]

∥∥[Jgz ](m),(n)

∥∥
0
, (5)

each component z(m)
i and its counterpart ẑ(m)

π(i) are equivalent up to an invertible map h(·), i.e.,

ẑ
(m)
π(i) = h(z

(m)
i ) under a permutation π over [d(z(m))].

Condition 4.3 stipulates sparse cross-modality causal connections among latent components z. Un-
der this condition, when one latent component ẑ(m)

i is a function of two components ẑ(m)
j and ẑ

(m)
k

(when component-wise identification breaks), the cross-modality causal connections in G are guar-
anteed to be denser than those in Ĝ. Therefore, the sparsity control enforces us to select the sparest
estimated models, in which one latent component ẑ(m)

i is a function of a unique component z(m)
j ,

yielding the desired component-wise identifiability.

Proof. Given Theorem 4.2, Condition 4.1 implies that the estimated group-wise latent variable ẑ(m)

is related to the true variable z(m) through an invertible transformation h(m), i.e.,

ẑ(m) = h(m)(z(m)). (18)

It follows that the Jacobian matrix T ∂ẑ
∂z

can be arranged into a block-diagonal matrix, in which
diagonal block m corresponds to a Jacobian matrix T ∂ẑ(m)

∂z(m)

. Then, the goal is to prove that these

diagonal blocks are actually generalized permutation matrices, whose each column only contains
one nonzero entry.

We divide the proof into several steps for the sake of exposition. At step 1, we derive an equivalence
relation between the estimation model (ĝz, ĝx) and the true model (gz, gx). At step 2, we apply
Theorem 4.2 to the equivalence to characterize the relation between the true and the estimated graph
structure. At step 3 and 4, we leverage the sparsity condition (Condition 4.3) to reason about the
identifiability of each component z(m)

i for m ∈ [M ] and i ∈ [d(z(m))].

Step 1. The generating process in Eq. (1) and the subspace identification Eq. (18) imply

ĝz(ẑ, ϵ̂) = h ◦ gz(z, ϵ), (19)

where h is defined as the Cartesian product of individual h(m) functions.

Taking partial derivatives w.r.t, zi of both sides of Eq. (19) yields:[
G ∂ẑ

∂ẑ
T ∂ẑ

∂ϵ̂

] [T ∂ẑ
∂z

T ∂ϵ̂
∂z

]
= T ∂ẑ

∂z
G ∂z

∂z
. (20)
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Each T matrix is the Jacobian matrix consisting of the corresponding partial derivatives. We use
G ∂z

∂z
to denote the derivatives from the function gz which encodes the dependence structure among

z components. The same applies to G ∂ẑ
∂ẑ

. As discussed above, the matrix T ∂ẑ
∂z

has a block-diagonal

structure (after proper permutations) with block m corresponding to the Jacobian matrix of h(m).
Moreover, the matrix T ∂ẑ

∂ϵ̂
is strictly diagonal due to the generating function Eq. (1).

Step 2. In this step, we simplify Eq. (20) to derive the relation between the estimated graph struc-
tures and true graph structures encoded in G ∂ẑ

∂ẑ
and G ∂z

∂z
respectively.

First, we note that the T ∂ϵ̂
∂z

is also block-diagonal w.r.t. the groups. To see this, we compute the

partial derivatives therein as follows: ∂ϵ̂
(m)
i

∂z
(n)
j

=
∂ϵ̂

(m)
i

∂ ˆ̃z
(m)
i

∂ ˆ̃z
(m)
i

∂z
(n)
j

, where we denote that output of ĝz with

˜̂z in the derivative. Due to the equivalent relation z = z̃ (Eq. (1)), we have ∂ ˆ̃z
(m)
i

∂z
(n)
j

=
∂ẑ

(m)
i

∂z
(n)
j

which is

zero for distinct groups m ̸= n (Eq. (18)). It follows that

∂ϵ̂
(m)
i

∂z
(n)
j

= 0, m ̸= n. (21)

Therefore, we have shown that T ∂ϵ̂
∂z

is block-diagonal w.r.t. the groups.

This structure allows us to simplify Eq. (20) to directly characterize the relation between the two
graphical structures G ∂ẑ

∂ẑ
and G ∂z

∂z
. In particular, since T ∂ϵ̂

∂z
is block-diagonal and T ∂ẑ

∂ϵ̂
is diagonal,

the off-diagonal blocks on the left-hand side of Eq. (20) are determined by G ∂ẑ
∂ẑ
T ∂ẑ

∂z
. Therefore, it

follows from Eq. (20): [
G ∂ẑ

∂ẑ
T ∂ẑ

∂z

]
(m),(n)

=
[
T ∂ẑ

∂z
G ∂z

∂z

]
(m),(n)

, m ̸= n, (22)

where we adopt subscripts (m) to denote the block for group m.

On account of the block-diagonal structure of T ∂ẑ
∂z

, the left-hand side of Eq. (22) can be expressed
as follows: [

G ∂ẑ
∂ẑ
T ∂ẑ

∂z

]
(m),(n)

=
[
G ∂ẑ

∂ẑ

]
(m),:

[
T ∂ẑ

∂z

]
:,(n)

=
[
G ∂ẑ

∂ẑ

]
(m),(n)

[
T ∂ẑ

∂z

]
(n),(n)

. (23)

Analogously, the right-hand side of Eq. (22) can be expressed as:[
T ∂ẑ

∂z
G ∂z

∂z

]
(m),(n)

=
[
T ∂ẑ

∂z

]
(m),:

[
G ∂z

∂z

]
:,(n)

=
[
T ∂ẑ

∂z

]
(m),(m)

[
G ∂z

∂z

]
(m),(n)

. (24)

It follows from Eq. (22), Eq. (23), and Eq. (24) that[
G ∂ẑ

∂ẑ

]
(m),(n)

[
T ∂ẑ

∂z

]
(n),(n)

=
[
T ∂ẑ

∂z

]
(m),(m)

[
G ∂z

∂z

]
(m),(n)

=⇒[
G ∂ẑ

∂ẑ

]
(m),(n)

=
[
T ∂ẑ

∂z

]
(m),(m)

[
G ∂z

∂z

]
(m),(n)

[
T ∂z

∂ẑ

]
(n),(n)

. (25)

Eq. (25) relates the true off-diagonal (m ̸= n) structure
[
G ∂z

∂z

]
(m),(n)

and its estimated counterpart[
G ∂ẑ

∂ẑ

]
(m),(n)

.

Step 3. We now reason about the component-wise identifiability within each group through the
sparsity of the off-diagonal regions. Following Eq. (25) and the block-diagonal structures of T ∂ẑ

∂z

and T ∂z
∂ẑ

, we can express the functional influence from any group (m) to the other groups (−m) as[
G ∂ẑ

∂ẑ

]
(−m),m

=
[
T ∂ẑ

∂z

]
(−m),:

[
G ∂z

∂z

]
:,(m)

[
T ∂z

∂ẑ

]
(m),(m)

(26)

=
[
T ∂ẑ

∂z

]
(−m),(−m)

[
G ∂z

∂z

]
(−m),(m)

[
T ∂z

∂ẑ

]
(m),(m)

=
[
T ∂ẑ

∂z
G ∂z

∂z

]
(−m),(m)

[
T ∂z

∂ẑ

]
(m),(m)

. (27)
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We note that the matrix
[
T ∂z

∂ẑ

]
(m),(m)

is the Jacobian matrix of the inverse of the invertible map h(m)

defined in Eq. (18). Its invertibility implies that there exists a permutation σ : I(m) → I(m) over
group m’s component indices I(m) ⊂ [d(z)], such that for any i ∈ [d(z(m))], we have

[
T ∂z

∂ẑ

]
i,̂i

̸= 0

where î = σ(i).

To show the component-wise identifiability, for any component î ∈ I(m), we would like to show
that

[
T ∂z

∂ẑ

]
i,̂i

is the only nonzero entry in the column
[
T ∂z

∂ẑ

]
(m),̂i

.

We denote components in modality m that have children in other modalities −m as upstream vari-
ables U (m), i.e.,

[
G ∂z

∂z

]
(−m),i(z)

̸= 0 for any z ∈ U (m), where we denote the index of the com-

ponent z with i(z) ∈ [d(z)]. Let C(m)
i be the largest subset of U (m) such that

[
T ∂z

∂ẑ

]
C

(m)
i ,̂i

is

component-wise nonzero and we would like to show that C(m)
i does not contain other components

than z
(m)
i .

We proceed by contradiction. Suppose that C(m)
i contains components other than z

(m)
i . For any

A ∈ Rd1×d2 , define d∗(A) := max{|R| : R ⊂ [d1], rank
(
[Overlap (A)]R,:

)
< |d2|}, where

d∗(A) is the maximal number of non-zero entries that can be canceled out by linearly combining its
columns. It follows from Equation (27) that∥∥∥∥[G ∂ẑ

∂ẑ

]
(−m),̂i

∥∥∥∥
0

=

∥∥∥∥[T ∂ẑ
∂z
G ∂z

∂z

]
(−m),(m)

[
T ∂z

∂ẑ

]
(m),̂i

∥∥∥∥
0

=

∥∥∥∥[T ∂ẑ
∂z
G ∂z

∂z

]
(−m),I(C

(m)
i )∪{i}

[
T ∂z

∂ẑ

]
I(C

(m)
i )∪{i},̂i

∥∥∥∥
0

≥

∣∣∣∣∣∣∣
⋃

j∈I(C
(m)
i )∪{i}

Supp
([

T ∂ẑ
∂z
G ∂z

∂z

]
(−m),j

)∣∣∣∣∣∣∣− d∗
([

T ∂ẑ
∂z
G ∂z

∂z

]
(−m),I(C

(m)
i )∪{i}

)
.

(28)

If i ∈ U (m), we have I(C
(m)
i ) ∪ {i} = I(C

(m)
i ) and

∣∣∣C(m)
i

∣∣∣ > 1. It would follow from Eq. 28 and
Condition 4.3 that∥∥∥∥[G ∂ẑ

∂ẑ

]
(−m),̂i

∥∥∥∥
0

≥

∣∣∣∣∣∣∣
⋃

j∈I(C
(m)
i )

Supp
([

T ∂ẑ
∂z
G ∂z

∂z

]
(−m),j

)∣∣∣∣∣∣∣− d∗
([

T ∂ẑ
∂z
G ∂z

∂z

]
(−m),I(C

(m)
i )

)
.

>︸︷︷︸
Condition 4.3

max
j∈I(C

(m)
i )

∥∥∥∥[G ∂z
∂z

]
(−m),j

∥∥∥∥
0

≥
∥∥∥∥[G ∂z

∂z

]
(−m),i

∥∥∥∥
0

.

(29)

If i ̸∈ U (m), the strict inequality in Eq. (29) holds true trivially, as
∣∣∣C(m)

i

∣∣∣ ≥ 1 and∥∥∥∥[G ∂z
∂z

]
(−m),i

∥∥∥∥
0

= 0 by definition.

Note that the above reasoning holds for all z(m)
i ∈ z(m) for all m ∈ [M ]. The strict inequality in

Eq. (29) implies that if any C
(m)
i contained components other than z

(m)
i , we would have∑

m ̸=n∈[M ]

∥∥∥∥[G ∂ẑ
∂ẑ

]
(m),(n)

∥∥∥∥
0

>
∑

m ̸=n∈[M ]

∥∥∥∥[G ∂z
∂z

]
(m),(n)

∥∥∥∥
0

, (30)

which would violate the sparsity constraint Eq. (35).
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Therefore, we have shown that C(m)
i cannot contain components other than z

(m)
i . We conclude the

element (i, î) is the unique nonzero element in column
[
T ∂z

∂ẑ

]
I(U(m)),̂i

. That is, the component ẑ(m)

î

cannot functionally influence components in U (m) other than z
(m)
i .

Analogously, define the set of downstream variables D(m) ⊆ z(m) that possess parents in other
groups

[
G ∂z

∂z

]
i(z),(−m)

̸= 0 for z ∈ D(m). The same argument yields that the component ẑ(m)

î

cannot be functionally influenced by components in D(m) other than {z(m)
i }.

Step 4. Suppose that ẑ
(m)

î
is a function of component z

(m)
j ∈ U (m) \ D(m) that influences

other groups but is not influenced by others (i.e., a source variable). That is, we have that
∂ẑ

(m)

î

∂z
(m)
j

(z
(m)
∗ ) ̸= 0 for some z

(m)
∗ . Without loss of generality, we suppose that

∂ẑ
(m)

î

∂z
(m)
j

(z
(m)
∗ ) > 0

for some z(m)
∗ . Due to the smoothness of h(m), there exists an open line segment ([z(m)

1 , . . . , z
(m)
j −

l, . . . , zd(z(m))], [z
(m)
1 , . . . , z

(m)
j + l, . . . , zd(z(m))]) for some l > 0, over which

∂ẑ
(m)

î

∂z
(m)
j

> 0 and thus

the map z
(m)
j 7→ ẑ

(m)

î
is monotonic and invertible over (z(m)

j − l, z
(m)
j + l). Therefore, there exists

a monotonic map ẑ
(m)

î
7→ z

(m)
j over the image of (z(m)

j − l, z
(m)
j + l). That is, we have the partial

derivative
∂z

(m)
j

∂ẑ
(m)

î

> 0. This is impossible because the component ẑ(m)

î
cannot functionally influence

components in U (m), as concluded in Step 3. This contradiction implies that ẑ(m)

î
cannot be a func-

tion of components U (m) \D(m) either. Overall, we have derived that ẑ(m)

î
cannot be a function of

components U (m) ∪ D(m) = z(m) \ {z(m)
i }. Therefore, we have a bijection ẑ

(m)

î
= h

(m)

î
(z

(m)
i ).

Since this holds for any group m and any component i, we have arrived at the desired conclusion.

C.3 EXTENDED THEOREM 4.2 AND ITS PROOF

We restate Theorem C.7 from Yao et al. (2023), which we invoke in our Theorem C.9. We drop
the entropy regularization term in Yao et al. (2023), since we assume the invertibility of estimated
functions ĝ(m) directly.

Definition C.3 (View-Specific Encoders). The view-specific encoders R := {rk : Xk → ZSk
}k∈V

consist of smooth functions mapping from the respective observation spaces to the view-specific
latent space, where the dimension of the kth latent space |Sk| is assumed known for all k ∈ V .

Definition C.4 (Selection). A selection ⊘ operates between two vectors a ∈ {0, 1}d , b ∈ Rd s.t.

a⊘ b := [bj : aj = 1, j ∈ [d]]

Definition C.5 (Content Selectors). The content selectors Φ := {ϕ(i, k)}Vi∈V,k∈Vi with ϕ(i,k) ∈
{0, 1}|d(z(m))| perform selection C.4 on the encoded information: for any subset Vi ⊂ [M ] and view
k ∈ Vi we have the selected representation: ϕ(i,m) ⊘ ẑ(m) with

∥∥ϕ(i,k)
∥∥
0
=

∥∥∥ϕ(i,k′)
∥∥∥
0

for all

Vi ∈ V, k, k′ ∈ Vi.

Definition C.6 (Information-Sharing Regularizer). The following regularizer penalizes the ℓ0-
norm ∥·∥0 of the content selectors Φ: Reg(Φ) := −

∑
Vi∈V

∑
k∈Vi

∥∥ϕ(i,k)
∥∥
0
.

Theorem C.7 (View-Specific Encoder for Identifiability (Yao et al., 2023)). Let R := {ĝ(m)}Mm=1
and Φ respectively be the generating functions and content selectors (Definition C.5) that solve the
following constrained optimization problem:

min Reg(Φ) subject to: R,Φ ∈ argmin Lalignment (R,Φ) , (31)
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where

Lalignment (R,Φ) =
∑
Vi∈V

∑
m1,m2∈Vi

k<k′

E
[∥∥∥ϕ(i,m1)⊘ [ĝ(m1)]−1(xk)− ϕ(i,m2)⊘ [ĝm2 ]−1(xm2

)
∥∥∥
2

]
(32)

Then for any subset of modalities Vi ⊂ [M ] and any modality m ∈ Vi , ϕ(i,m)⊘ [ĝ(m)]−1 identifies
the shared subspace z(∩m∈Vi

m).

Definition C.8 (Reconstruction Loss). The following loss penalizes the deviation of the estimate x̂
and its corresponding true counterpart x in ℓ2 Lrecons := Ex (x− x̂) .

Theorem C.9 (Generalized Subspace Identifiability). We estimate the generating process in Eq. (3)
with model {(ĝx(m) , ˆ̃gx(−m))}Mm=1 under additional terms in Eq. (31).

min Reg(Φ) subject to: R,Φ ∈ argmin Lalignment + Lgeneration. (33)

Under Condition 4.1, the estimated latent variable ẑ(m) for any group m and its true counterpart
z(m) are equivalent up to an invertible map h(m)(·), i.e., ẑ(m) = h(m)(z(m)).

Proof. We note that the latent model with shared latent variables across modalities can still be cast
into Equation (3) and satisfies Condition 4.1. As a consequence, Theorem 4.2 gives us the subspace
identification for each modality as in the disjoint case. Moreover, we can identify any blocks among
modalities thanks to Theorem C.7. This concludes the proof.

C.4 EXTENDED THEOREM 4.4 AND ITS PROOF

Additional notations and discussion. We slightly abuse the notation to denote both sets and vec-
tors with bold symbols z. Let z(m∩n) be the set of latent components shared by modality m and n,
i.e., z(m∩n) := z(m) ∩ z(n). Analogously, let z(m\n) be the set of latent components in modality m
that are not shared by n, i.e., z(m\n) := z(m) \ z(n).
The participation of multiple modalities requires a new definition of the shared blocks in z since the
sharing structure could be nested and various numbers of modalities could share one partition. We
partition the entire latent space z into disjoint blocks {z(b)}b∈B , whose components z have exactly
the same modality membership M(z) := {m ∈ [M ] : z ∈ z(m)}. We define the z(H(b)) as the
smallest (the least components) identified partition in z that contains z(b). In the two-modal case,
we have B = {(m∩n), (m\n), (n\m)} and z(H(m∩n)) = 1|z(m)|≤|z(n)|z

(m)+1|z(m)|>|z(n)|z
(n).

We denote z(b1) ≺ z(b2) if block z(b1) is shared by a strict subset of modalities that share z(b2),
i.e., M(z(b1)) ⊊ M(z(b2)). Therefore, we have either z(H(b)) = z(b) (it is identifiable itself) or
z(b) ≺ z(H(b)) \ z(b) (it forms an identifiable block with a more deeply shared block). We denote
former blocks as b+ ∈ B+ ⊂ B, i.e., z(H(b+)) = z(b

+), and the latter blocks as b− ∈ B− = B\B+.
In the two-modal case, we have z(m\n) ≺ z(m∩n) and z(n\m) ≺ z(m∩n), and B+ = {(m∩n)} and
B− = {(m \ n), (n \m)}.

We note that all shared blocks z(b
+) are identified, and thus their bijective indeterminacies are w.r.t,

themselves, i.e., z(b
+) 7→ ẑ(b

+), which implies the square shape of their indeterminacy matrices
[T ∂ẑ

∂z
](b+),(b+) (as both downstream and upstream variables on both sides of the true graph matrix,

e.g., Eq. (40)). In contrast, the unidentifiable blocks z(b
−) can potentially receive the influence from

all components in its modality z(H(b−)). However, they do not influence the complement block
z(H(b−))\z(b(−1)) in its modality, since z(b

−) ≺ z(H(b−))\z(b−). Consequently, their indeterminacy
matrices are [T ∂ẑ

∂z
](b−),(H(b−)) (as downstream variables at the right-side of the true graph matrix,

e.g., Eq. (43)) and [T ∂ẑ
∂z
](b−),(b−) (as upstream variables at the right-side of the true graph matrix,

e.g., Eq. (43)).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

The indeterminacy matrix T := Ton + Toff is not strictly block-diagonal anymore. The matrix

Ton contains all the on-diagonal square matrices Ton :=

Tb1
Tb2

· · ·
Tb|B|

, where each

Tb is an invertible matrix. The matrix Toff contains all the off-diagonal nonzero elements such

that Supp(Ton) ∩ Supp(Toff) = ∅ and T :=


T̃b1

T̃b2
· · ·

T̃b|B|

, where each T̃b is of shape

d(z(b))×d(zH(b) \z(b)). Rows of distinct blocks b1 and b2 are disjoint, but their columns might due
to the shared variables between their corresponding H(b1) and H(b2). We denote a set of blocks
E(b) whose memberships are not a subset of those of block b as: E(b) := B \ {b̃ ∈ B|z(b̃) ≺ z(b)}.

With these notations, we state the generalized component identification result in Theorem C.9.
Condition C.10 (Generalized Component Identifiability Conditions). Over the domain of (z, ϵ),
for any nonempty C(m) ⊂ b, nonempty R(m) ⊂ H(b) with b ∈ B, and T , sub-matrices
[TG]E(b),C(b) and

(
[GT−1

on ]R(b),E(b)

)⊤
satisfy:∣∣∣∣∣∣

⋃
j∈C(b)

Supp([TG]E(b),j)

∣∣∣∣∣∣− d∗
(
[TG]E(b),C(b)

)
> max

j∈C(b)

∥∥∥[G]E(b),j

∥∥∥
0
;

∣∣∣∣∣∣
⋃

j∈R(b)

Supp(
(
[GT−1

on ]j,E(b)

)⊤
)

∣∣∣∣∣∣− d∗
((

[GT−1
on ]R(b),E(b)

)⊤)
> max

j∈R(b)

∥∥∥[G]j,E(b)

∥∥∥
0
.

(34)

Theorem C.11 (Generalized Component-wise Identifiability). Let θ :=

({gx(m) , gz(m) , p(ϵ(m))}Mm=1) and θ̂ := ({ĝx(m) , ĝz(m) , p̂(ϵ(m))}Mm=1) be two specifications
of the data-generating process in Eq. (1) and Eq. (2). Suppose that they generate identical
observational distributions (i.e., p(x) = p̂(x)) and θ satisfies Condition 4.1 and Condition C.10. If
θ̂ satisfies the following condition:∑

m ̸=n∈[M ]

∥∥[Jĝz ](m),(n)

∥∥
0
≤

∑
m ̸=n∈[M ]

∥∥[Jgz ](m),(n)

∥∥
0
, (35)

each component z(m)
i and its counterpart ẑ(m)

π(i) are equivalent up to an invertible map h(·), i.e.,

ẑ
(m)
π(i) = h(z

(m)
i ) under a permutation π over [d(z(m))].

Proof. This proof closely follows that of Theorem 4.4. We illustrate the key discrepancies as fol-
lows.

We start with only two modalities z(m) and z(n) for simplicity and then move on to general cases.

The structure of the indeterminacy matrix T ∂ẑ
∂z

. Identical to Equation 20, we have the relation-
ship between Jacobian matrices: [

G ∂ẑ
∂ẑ

T ∂ẑ
∂ϵ̂

] [T ∂ẑ
∂z

T ∂ϵ̂
∂z

]
= T ∂ẑ

∂z
G ∂z

∂z
. (36)

The presence of the shared block z(m∩n) alters the indeterminacy matrix T ∂ẑ
∂z

– instead of the disjoint

diagonal-block shape, T ∂ẑ
∂z

, the columns belonging to the shared variables z(m,n) (shared between

two modalities) are possibly nonzero over rows belonging to z(m∩n). That is, the shared variables
z(m∩n) can still mix in the estimates of the two individual parts ẑ(m\n) and ẑ(n\m). However,
since we have identified the subspace of z(m∩n), its estimates would not contain information of the
individual blocks z(m\n) and z(n\m), rendering the blocks ∂ẑ(m∩n)

∂z(m\n) = 0 and ∂ẑ(m∩n)

∂z(n\m) = 0.
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The sparse connection among modalities. The reasoning in Step 2 in the proof of Theorem 4.4
implies that the structure of the matrix T ∂ϵ̂

∂z
is consistent with that of the matrix T ∂ẑ

∂z
. That is, they

have zero block matrices at the same positions. In particular, since the subspace identifiability in
Theorem C.9 implies that the estimated shared variable ẑ(m∩n) and the modality-specific variable
ẑ(n\m) are not influenced by that the other modality-specific variable z(m\n), the same applies to
the estimated exogenous variable ϵ̂(m∩n) and ϵ̂(m\n). This structure permits us to disregard and T ∂ẑ

∂ϵ

(an identity matrix) and T ∂ϵ̂
∂z

on the left-hand side of Eq. (36) when computing a sub-matrix of the
right-hand side product: [

G ∂ẑ
∂ẑ
T ∂ẑ

∂z

]
(n),(m\n)

=
[
T ∂ẑ

∂z
G ∂z

∂z

]
(n),(m\n)

. (37)

We further divide the block [(n), (m \ n)] into two blocks along their rows: [(m ∩ n), (m \ n)] and
[(n \m), (m \ n)] that represent the influence from z(m\n) to ẑ(m∩n) and ẑ(n\m), due to the matrix
structural disparity.

Expressing the block [(m ∩ n), (m \ n)] on the left-hand side of Eq. (37) gives:[
G ∂ẑ

∂ẑ
T ∂ẑ

∂z

]
(m∩n),(m\n)

=
[
G ∂ẑ

∂ẑ

]
(m∩n),:

[
T ∂ẑ

∂z

]
:,(m\n)

=
[
G ∂ẑ

∂ẑ

]
(m∩n),(m\n)

[
T ∂ẑ

∂z

]
(m\n),(m\n)

.

(38)

Analogously, this block on the right-hand side of Eq. (37) can be expressed as:[
T ∂ẑ

∂z
G ∂z

∂z

]
(m∩n),(m\n)

=
[
T ∂ẑ

∂z

]
(m∩n),:

[
G ∂z

∂z

]
:,(m\n)

=
[
T ∂ẑ

∂z

]
(m∩n),(m∩n)

[
G ∂z

∂z

]
(m∩n),(m\n)

.

(39)

Thus, we have the equality for the block [(m ∩ n), (m \ n)]:[
G ∂ẑ

∂ẑ

]
(m∩n),(m\n)

[
T ∂ẑ

∂z

]
(m\n),(m\n)

=
[
T ∂ẑ

∂z

]
(m∩n),(m∩n)

[
G ∂z

∂z

]
(m∩n),(m\n)

=⇒[
G ∂ẑ

∂ẑ

]
(m∩n),(m\n)

=
[
T ∂ẑ

∂z

]
(m∩n),(m∩n)

[
G ∂z

∂z

]
(m∩n),(m\n)

[
T ∂z

∂ẑ

]
(m\n),(m\n)

. (40)

This graphical relation is identical to that in Eq. (25). However, the relation for the block [(n \
m), (m \ n)] between two modality-specific parts varies, due to the potential mixing of the shared
part into these blocks, which may increase the inbound edges (not outbound edges), as we show
below.

For the block [(n \m), (m \ n)] on the left-hand side of Eq. (37) gives:[
G ∂ẑ

∂ẑ
T ∂ẑ

∂z

]
(n\m),(m\n)

=
[
G ∂ẑ

∂ẑ

]
(n\m),:

[
T ∂ẑ

∂z

]
:,(m\n)

=
[
G ∂ẑ

∂ẑ

]
(n\m),(m\n)

[
T ∂ẑ

∂z

]
(m\n),(m\n)

.

(41)

Unlike previous cases, the right-hand side of Eq. (37) for the block involves more than atomic blocks
(i.e., it involves the entire modality (n)):[

T ∂ẑ
∂z
G ∂z

∂z

]
(n\m),(m\n)

=
[
T ∂ẑ

∂z

]
(n\m),:

[
G ∂z

∂z

]
:,(m\n)

=
[
T ∂ẑ

∂z

]
(n\m),(n)

[
G ∂z

∂z

]
(n),(m\n)

. (42)

Then, it follows from Eq. (41) and Eq. (42) that[
G ∂ẑ

∂ẑ

]
(n\m),(m\n)

[
T ∂ẑ

∂z

]
(m\n),(m\n)

=
[
T ∂ẑ

∂z

]
(n\m),(n)

[
G ∂z

∂z

]
(n),(m\n)

=⇒[
G ∂ẑ

∂ẑ

]
(n\m),(m\n)

=
[
T ∂ẑ

∂z

]
(n\m),(n)

[
G ∂z

∂z

]
(n),(m\n)

[
T ∂z

∂ẑ

]
(m\n),(m\n)

. (43)
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We can observe that the existence of the shared variables z(m,n) divides the latent space into finer
blocks z(m\n), z(n\m), and z(m∩n). Eq. (40) and Eq. (43) reveal that the bijective indeterminacy
relation hold over these finer blocks, exception for the non-square transition matrix

[
T ∂ẑ

∂z

]
(n\m),(n)

on the right-hand side of Eq. (43). This is because that the shared part z(m∩n) can potentially mix
in ẑ(n\m), so ẑ(n\m) may receive edges inbound to z(m∩n).

Interplay among multiple modalities. In light of the graphical condition for the two-modality
case (Eq. (40) and Eq. (43)), we can derive the conditions for the multi-modality case.

The participation of multiple modalities requires a new definition of the shared blocks in z since the
sharing structure could be nested and various numbers of modalities could share one partition. We
partition the entire latent space z into disjoint blocks {z(b)}b∈B , whose components z have exactly
the same modality membership M(z) := {m ∈ [M ] : z ∈ z(m)}. We define the z(H(b)) as the
smallest (the least components) identified partition in z that contains z(b). In the two-modal case,
we have B = {(m∩n), (m\n), (n\m)} and z(H(m∩n)) = 1|z(m)|≤|z(n)|z

(m)+1|z(m)|>|z(n)|z
(n).

We denote z(b1) ≺ z(b2) if block z(b1) is shared by a strict subset of modalities that share z(b2),
i.e., M(z(b1)) ⊊ M(z(b2)). Therefore, we have either z(H(b)) = z(b) (it is identifiable itself) or
z(b) ≺ z(H(b)) \ z(b) (it forms an identifiable block with a more deeply shared block). We denote
former blocks as b+ ∈ B+ ⊂ B, i.e., z(H(b+)) = z(b

+), and the latter blocks as b− ∈ B− = B\B+.
In the two-modal case, we have z(m\n) ≺ z(m∩n) and z(n\m) ≺ z(m∩n), and B+ = {(m∩n)} and
B− = {(m \ n), (n \m)}.

We note that all shared blocks z(b
+) are identified, and thus their bijective indeterminacies are w.r.t,

themselves, i.e., z(b
+) 7→ ẑ(b

+), which implies the square shape of their indeterminacy matrices
[T ∂ẑ

∂z
](b+),(b+) (as both downstream and upstream variables on both sides of the true graph matrix,

e.g., Eq. (40)). In contrast, the unidentifiable blocks z(b
−) can potentially receive the influence from

all components in its modality z(H(b−)). However, they do not influence the complement block
z(H(b−))\z(b(−1)) in its modality, since z(b

−) ≺ z(H(b−))\z(b−). Consequently, their indeterminacy
matrices are [T ∂ẑ

∂z
](b−),(H(b−)) (as downstream variables at the right-side of the true graph matrix,

e.g., Eq. (43)) and [T ∂ẑ
∂z
](b−),(b−) (as upstream variables at the right-side of the true graph matrix,

e.g., Eq. (43)). Thus, we have the following categories:

Block 1 : Identifiable blocks z(b
+): [T ∂ẑ

∂z
](b+),(b+) as both downstream and upstream variables on

both sides of the true graph matrix G.

Block 2 : Unidentifiable blocks ẑ(b
−) as downstream variables at the right-side of the graph G:

their indeterminacy matrices are [T ∂ẑ
∂z
](b−),(H(b−)).

Block 3 : Unidentifiable blocks ẑ(m\·) as upstream variables at the right-side of the graph G: their
indeterminacy matrices are [T ∂ẑ

∂z
](b−),(b−).

Subsequently, we classify the blocks in the estimation graph Ĝ ∂ẑ
∂ẑ

into the following categories
according to the row (as downstream) and column (as upstream) indices: for an upstream block U
and a downstream block D such that they belong to distinct blocks b1 and b2.

Region 1 : Blocks b1 and b2 do not have nested memberships, i.e., M(z(b1)) ̸⊂ M(z(b2)) and
M(z(b2)) ̸⊂ M(z(b1));

Region 2 : Block b1 has fewer memberships than block b2: z(b1) ≺ z(b2);

Region 3 : Block b1 has more memberships than block b2: z(b2) ≺ z(b1).
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The sparsity for Region 1 and Region 2 is informative, whereas Region 3 is not. This is because
in these the inherent indeterminacy from the subspace identifiability within each modality (Theo-
rem 4.2) will engage the product T ∂ẑ

∂ϵ̂
T ∂ϵ̂

∂z
in Eq. (36) in addition to the sparsity in the estimated graph

G ∂ẑ
∂ẑ

. In comparison with Theorem 4.4, Region 2 becomes informative thanks to the identification
of such shared blocks.

Overall conditions. Consolidating all the considerations above, we re-define objects in Condi-
tion 4.3 as follows.

1. The upstream variables U (m) in modality z(m) is confined to blocks in B.

2. The downstream variables D(m) in modality z(m) are over minimal identifiable blocks
{H(b) : b ∈ B}.

3. The indeterminacy matrix T := Ton + Toff is not strictly block-diagonal. The matrix Ton

contains all the on-diagonal square matrices Ton :=

Tb1
Tb2

· · ·
Tb|B|

, where each

Tb is an invertible matrix. The matrix Toff contains all the off-diagonal nonzero elements

such that Supp(Ton)∩Supp(Toff) = ∅ and T :=


T̃b1

T̃b2
· · ·

T̃b|B|

, where each T̃b

is of shape d(z(b))×d(zH(b)\z(b)). Rows of distinct blocks b1 and b2 are disjoint, but their
columns might due to the shared variables between their corresponding H(b1) and H(b2).

4. The sub-matrices on which we impose the sparsity controls are exactly the union of Region
2 and Region 1, i.e., the complement of Region 3. We denote such a region as the function
of the block index E(b) := B \ {b̃ ∈ B|z(b̃) ≺ z(b)}. Therefore, the condition becomes
[TG]E(b),C(b) and

(
[GT−1

on ]R(b),E(b)

)⊤
. Note that Ton is invertible, although T may not.

With these modifications, the rest of the proof follows exactly from that of Theorem 4.4.

D EXPERIMENTAL DETAILS

D.1 NUMERICAL DATASET

Six numerical datasets are used in this paper, including three multi-group settings that satisfy our
assumptions and three datasets that slightly violate the sparsity assumptions in the proposed the-
orems. The observations are generated using a multi-layer perceptron (MLP), following previous
work Von Kügelgen et al. (2021); Yao et al. (2021); Zimmermann et al. (2021). Specifically, the
mixing function g is modeled as a three-layer MLP with randomly initialized weights, Leaky ReLU
activations, and hidden layers of sizes 8.

Multi-modality Cases In the multi-modality case, we generate n = 10000 samples according to
Eq. (3), and the dimensionality of the observations in each modality ranged from dx = 15 to 20. The
causal noise terms ϵ are i.i.d. sampled from a Gaussian distribution, and the exogenous variables
are also assumed to follow a Gaussian distribution. Sparse causal relations between inter-group
variables are randomly generated, with a sparsity ratio controlled between 50% and 75%, ensuring
that the latent variables in each group keep at least one causal connection with another group.
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Ablation Cases We create two 15-dimensional modality observations under different sparsity ra-
tios. Each observations are generated from three latent variables, two of which are causally latent
and one exogenous. The sample size for each dataset was set to n = 10000, and the dimensionality
of the observations in each modality is dx = 15. Suppose the four latent variables are denoted as
z
(1)
1 , z

(1)
2 , z

(2)
1 , and z

(2)
2 . For sparsity ratio = 0%, all inter-modality latent variables are fully con-

nected. For sparsity ratio = 25%, three pairs of inter-modality connections among the latent variables
are present. For sparsity ratio = 50%, two pairs of the inter-modality latent variables are connected.
For sparsity ratio = 75%, only one pair of inter-modality latent variables remains connected.

D.2 SYNTHETIC DATASET

Augmented MNIST The MNIST dataset (LeCun, 1998) is a widely-used benchmark for image
classification, consisting of handwritten digits from 0 to 9. Building on this foundation, we designed
our own variant of MNIST to investigate causal relationships across modalities. Our Variant MNIST
consists of two modalities: colored MNIST and fashion MNIST. In the colored MNIST, each digit is
assigned a specific color, where the digit class serves as the causal factor and the image color as the
effect. In fashion MNIST, we use the class of clothing items as the cause and introduce the rotation
angle of the image as the effect. Additionally, we establish a causal relation between the class
labels of colored MNIST and fashion MNIST, allowing us to explore cross-modal dependencies in
a controlled setting. These relationships are visually shown in the Figure 7 for clarity.

Figure 7: The ground-truth data generation process of MNIST images dataset.

D.3 REAL-WORLD DATASET

In this paper, we consider three types of datasets covering image, time series, and tabular data.
Visualizations of the image and time-series datasets are shown in Figure 8.

Figure 8: Visualization on the datasets: (a) Synthetic dataset: Augmented MNIST. (b) Real-world
dataset: Fundus imaging shows the interior surface of the eyes. (c) Real-world dataset: Sleep moni-
toring shows the time-series recording of sleep-related metrics overnights.

Fundus imaging is the visualization of the interior surface of the fundus, which includes structures
such as the optic disc, retina, and retinal microvasculature. High-resolution images of the back of
the eye are essential for diagnosing and monitoring a variety of eye diseases and conditions.
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For example, the retinal microvasculature, which consists of small blood vessels that supply blood to
the retina, provides valuable information about eye health. Moreover, fundus imaging can enhance
the understanding of the underlying mechanisms of various eye diseases. It serves as a non-invasive
tool for assessing the overall health of the microvascular circulation health and provides a direct
view of part of the central nervous system.

Sleep monitoring is a time-series dataset collected over three consecutive nights that records various
metrics including sleep stage, body position, respiratory events, heart rate, oxygen saturation, and
snoring. This dataset focuses on obstructive sleep apnea (OSA), a sleep disorder where a person’s
breathing is interrupted during sleep due to the relaxation of throat muscles, causing upper airway
obstruction. These interruptions often lead to loud snoring, reduced blood oxygen levels, stress
responses, awakenings, and fragmented sleep.

This dataset is collected from a Home Sleep Apnea Test (HSAT), a non-invasive diagnostic method
for sleep apnea. Patients wear a portable device overnight to monitor their breathing patterns, heart
rate, oxygen levels, snoring, and other sleep patterns. The dataset includes multiple channels, such as
ACTIGRAPH for movement, HEARTRATE DIST for heart rate, SPO2 WRIST for blood oxygen
saturation, and SBORE WP for snoring, capturing key aspects of physical activity and sleep patterns
during the HSAT. The device calculates apnea-related indices, including the Apnea/Hypopnea Index
(AHI), Respiratory Disturbance Index (RDI), and Oxygen Desaturation Index (ODI), as well as
indices for diagnosing conditions such as atrial fibrillation.

D.4 EVALUATION METRICS

MCC: Mean Correlation Coefficient MCC is a standard metric used to evaluate the recovery
of latent factors in causal representation learning. It measures the alignment between ground-truth
factors and estimated latent variables. Specifically, MCC first computes the absolute values of the
correlation coefficients between each ground-truth factor and every estimated latent variable. To
account for possible permutations of the latent variables, the metric solves a linear sum assignment
problem on the computed correlation matrix in polynomial time, ensuring optimal matching between
the factors and their corresponding latent representations.

SHD: Structural Hamming Distance SHD is a widely used metric for evaluating the accu-
racy of graph structure recovery in causal discovery. It quantifies the difference between the true
causal graph and the estimated graph. Specifically, SHD counts the number of edge modifica-
tions—additions, deletions, or reversals—required to transform the estimated graph into the ground-
truth graph. This metric provides a simple yet effective measure of structural similarity, with a lower
SHD indicating closer alignment between the estimated and true causal structures.

R2: Coefficient of Determination R2 is a standard metric used to assess the goodness of fit in
regression models. It measures the proportion of variance in the dependent variable that is explained
by the independent variables in the model. Specifically, R2 compares the residual sum of squares of
the model with the total sum of squares, providing a value between 0 and 1. A higher R2 indicates
that the model explains a larger portion of the variance in the data, with 1 representing a perfect fit
and 0 indicating that the model explains none of the variability.

D.5 DETAILED DISCUSSION ON HUMAN PHENOTYPE

Without learning such latent variables, we cannot provide a causal explanation between different
modalities. The estimated model shows all causal influences involved, suggests the existence of
hidden causal variables, and illustrates their relationships with each other and with observable data.
Asymptotically, the learned adjacency matrix A corresponds to a graph within the Markov equiva-
lence class given by the PC algorithm.

To interpret the learned hidden variables, we primarily refer to existing medical literature, which
supports their alignment with background knowledge, thereby adding validity to our results. For
example, the latent variable FRight3 relates handgrip strength to fundus imaging, consistent with
findings showing that handgrip strength correlates with intraocular pressure (IOP) (Pérez-Castilla
et al., 2021). Additionally, the association between the cataract and changes in IOP (Slabaugh et al.,
2013) aligns with the model’s discovery. These connections underline the physiological relevance
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of the learned hidden variable. Similarly, FRight1 and FLeft1, associated with fundus imaging and
age estimation, are consistent with studies demonstrating age-related changes in fundus image color
content (Ege et al., 2002). Another latent variable Sleep1 associated with oxygen saturation and
sleep metrics aligns with findings that oxygen saturation is a strong predictor of obstructive sleep
apnea (OSA) severity (Wali et al., 2020). This indicates that the model’s latent variable effectively
captures critical factors related to sleep disorders.

E EXTENDED EXPERIMENT

E.1 EXTENDED RESULTS ON COMPLEX SCENARIOS

To evaluate the scalability and generalizability of our method to complex causal struc-
tures, we conducted additional experiments on higher-dimensional simulated tasks with di-
verse configurations of latent variables and modalities. These setups introduce significantly
more intricate causal relationships among variables compared to our original experiments.

Metric Two mods Five mods Six mods

R2 0.89±1e− 4 0.89±1e− 4 0.97±8e− 7
MCC 0.83±4e− 6 0.84±3e− 4 0.82±4e− 4

Table 4: Extended results on complex scenarios.

The extended scenarios include: (1) Two-mods:
30-dimensional observations from two modali-
ties with four latent variables and one exoge-
nous variable per modality. (2) Five-mods:
30-dimensional observations from five modal-
ities with two latent variables and one exoge-
nous variable per modality. (3) Six-mods: 30-
dimensional observations from six modalities
with two latent variables and one exogenous variable per modality. The results, summarized in
Table 4, show that our method maintains robust performance under these challenging conditions.
Metrics including MCC and R2 demonstrate that our method continues to perform well under these
more challenging conditions.

E.2 DISCUSSION ON THE NUMBER OF LATENT VARIABLES

In real-world applications, the true number of latent variables is typically unknown, and arbitrarily
predefining this number can introduce bias and degrade model performance. In this section, we
discuss how our method can eliminate the redundant effect of the latent variables, and introduce a
cross-validation-based method for determining the appropriate number of latent nodes.

At the same time, we can manually set the range of latent variable numbers and use cross-validation
to select the one with the lowest validation loss. This approach is conceptually simple and widely
applicable Khemakhem et al. (2020b), making it a reliable choice in scenarios where computational
resources are not constrained. By directly linking the number of latent variables to model perfor-
mance, it provides interpretable results that are easy to understand and justify. Here we conduct
synthetic experiments to validate its effectiveness. We followed the data generation process in Sec-
tion D.1, where the ground-truth number of latent variables is two for each modality. The results,
as shown in Figure 9(a), demonstrate that our approach accurately recovers the correct number of
latent variables.

E.3 DISCUSSION ON THE EFFECT OF SAMPLE NUMBERS

To investigate the impact of sample size on model performance, we conducted an additional experi-
ment evaluating the MCC as the number of data samples increased. For this study, we followed the
data generation process in Section D.1, where the ground-truth number of latent variables is two for
two modalities. The experiment systematically increased the sample size from 10,000 to 40,000,
while measuring MCC and R2 accordingly.

As shown in Figure 9(b), the results indicate that the MCC improves consistently with larger sample
sizes, thereby confirming the hypothesis that a greater amount of data enhances the model’s ability to
recover the underlying causal structure. This experiment highlights the effectiveness of our approach
in leveraging increased data availability to improve causal representation learning.
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(a) (b)

Figure 9: (a) Comparison of loss across different latent dimensions. (b) The effect of sample size.

E.4 DISCUSSION ON THE NON-DAG MODELS

Metric Cyclic within mod Cyclic across mods

R2 0.95±1e− 5 0.94±2e− 4
MCC 0.89±2e− 4 0.92±1e− 5

Table 5: Results under non-DAG settings.

The assumptions regarding Directed Acyclic
Graphs (DAGs) for latent variable structures
within or across modalities are not strictly nec-
essary for the theoretical results in this paper. In
this section, we conduct synthetic experiments
to evaluate the performance of the model un-
der non-DAG settings, both for cycles within
modalities and across modalities. Specifically,
we followed the data generation process in Sec-
tion D.1, and considered additional: (1) cyclic influence within modality; and (2) cyclic influence
across modalities, to generate the data. Empirical results in Table 5 demonstrate that the presence of
cycles does not hinder the identification of latent variables.

E.5 DISCUSSION ON THE SHARED LATENT VARIABLES

In this section, we present how to extend the current network architecture to allow for the shared
variables across modalities and provide corresponding experimental results.

The extended theorem in Section C.4 provides the theoretical guarantee on the generality
of our framework to the shared latent variable scenario. The extended framework incorpo-
rates an additional mechanism to estimate the shared latent variable. Following the simi-
lar idea in Yao et al. (2023); Daunhawer et al. (2023); Von Kügelgen et al. (2021), an ad-
ditional contrastive loss is introduced to enforce similarity in the shared latent representa-
tions across modalities, ensuring that shared variables capture the common causal structure.

Metric Two mods Three mods

R2 0.86±5e− 4 0.90±1e− 4
MCC 0.83±7e− 4 0.83±4e− 6

Table 6: Results for shared latent variables.

To demonstrate the effectiveness of the ex-
tended framework, we extend the data gener-
ation process in Section D.1 and allow the ex-
istence of a shared variable across modalities.
We conducted experiments on various synthetic
settings and reported the results in Table 6. The
high MCC shows the accurate recovery of both
shared and modality-specific latent variables across different scenarios, confirming the theoretical
guarantees of the extended framework.

F IMPLEMENTATION DETAILS

In this section, we provide details of the network architecture. The optimization scheme and hyper-
parameter settings are summarized. The computation efficiency is analyzed.
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F.1 NETWORK ARCHITECTURE

We summarize our network architecture below and describe it in detail in Table 7.

• (1,2) Encoder and Decoder: The encoder transforms raw observations into latent representations,
while the decoder reconstructs the inputs from the latent variables. The encoder-decoder design
varies depending on the downstream task. For synthetic data, MLPs with LeakyReLU activation
were used. For image data (e.g., MNIST), ResNet18 with LeakyReLU activation served as the
encoder, while ConvTranspose2D was used as the decoder. LSTMs were used to extract latent
features from time series data. By leveraging the universal approximation theorem, the model is
theoretically capable of approximating the underlying mixing function.

• (3) Learnable Adjacency Matrix: The causal relationships are embedded in the learned adja-
cency matrix, where the binary elements indicate whether specific pairs of vertices contribute
to the generation of components. It initializes a learnable matrix that captures these dependen-
cies. During the forward pass, the matrix is processed to ensure a directional structure where
only certain connections are allowed based on a threshold. This allows the model to learn sparse,
meaningful relationships between the latent variables.

• (4) Flow-based Transformation: The flow-based transformation is implemented using a three-
layer MLP to process the latent variable and a DDSF model for the transformation. The MLP
first extracts features from the latent variable, which are then used to compute the parameters for
the flow model. The DDSF applies an invertible transformation to the latent space, allowing the
model to estimate the noise distribution.

F.2 TRAINING DETAILS

Optimization Scheme. The models were implemented in PyTorch and trained on a GPU. The
estimation framework was trained using the Adam optimizer with an initial learning rate of 0.002,
and the StepLR scheduler was used to reduce the learning rate periodically. The training process ran
for a maximum of 10000 epochs, with early stopping applied if the validation loss does not improve
for 20 consecutive epochs. Random seeds were used to ensure reproducibility, and results were
averaged across experiments.

The training loss combines multiple components.

• Reconstruction Loss: Mean squared error between reconstructed inputs and original data.
• KL Divergence Loss: Encourages estimated variables to follow a standard normal prior.
• Sparsity Loss: An L1-norm penalty is applied to the adjacency matrix to enforce sparsity.

Hyperparameter Details. The hyperparameters α = [αInd, αSp, αRecon] represent the weights as-
signed to each term in the composite objective function. For the experiments, the following settings
were applied: α = [1e−2, 1, 10] for the synthetic dataset, α = [1e−5, 2, 10] for the MNIST dataset,
and α = [1e− 1, 1e− 2, 1] for the phenotype dataset.

G ALGORITHM PSEUDOCODE

The pseudocode for the proposed algorithm is presented in Algorithm 1.
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Configuration Description Output

1.1 MLP-Encoder Encoder for synthetic data
Input Multi-modality observations BS × d x
Dense 32 neurons, LeakyReLU BS × 32
Dense 32 neurons, LeakyReLU BS × 32
Dense Latent embeddings BS × l dim

2.1 MLP-Decoder Decoder for synthetic data
Input Latent embeddings BS × l dim
Dense 32 neurons, LeakyReLU BS × 32
Dense 32 neurons, LeakyReLU BS × 32
Dense Reconstructed observations BS × d x

1.2 Image-Encoder Encoder for image data
Input Image input BS × 3 × H × W
ResNet18 ResNet backbone, LeakyReLU BS × h dim
Dense Latent embeddings BS × l dim

2.2 Image-Decoder Decoder for image data
Input Latent embeddings BS × l dim
Dense h dim neurons BS × h dim × 7 × 7
ConvTranspose2D BatchNorm2D, LeakyReLU BS × h dim × 14 × 14
ConvTranspose2D Sigmoid, Reconstructed observations BS × 3 × H × W

1.3 Time-series Encoder Encoder for time-series data
Input Multi-channel time-series data BS × seq len × n channel
LSTM Sequences into hidden representations BS × h dim
Output Latent representation BS × l dim

2.3 Time-series Decoder Decoder for time-series data
Input Latent representation BS × l dim
LSTM Sequence into output features BS × seq len × h dim
Output Reconstructed time-series data BS × seq len × n channel

3. Adjacency Matrix Sparsity regularization
Input Latent variables from encoders BS × z all
Masking Lower triangular mask z all × z all
Thresholding Retain entries exceeding threshold z all × z all
Output Learned causal adjacency matrix z all × z all

4. Flow Transformation Conditional independence constraints
Input Latent variables across modalities BS × z all
Condition Input Apply adjacency matrix to latent BS × z all × z all
MLP-transformation A lower-dimensional feature space BS × z all × 32
Flow Parameter Net Flow parameters for the transformation BS × z all × n para
Flow Transformation DDSF to the reshaped latent variables BS × z all
Output Estimated noise variables BS × z all

Table 7: Architecture details. BS: batch size, d x: input dimension, l dim: latent dimen-
sion in each modality, z all: latent dimensions across all modalities, h dim: hidden dimension,
H/W: height/width of the input image, seq len: sequence length, n channel: number of channels,
LeakyReLU: Leaky Rectified Linear Unit.
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Algorithm 1 Pseudocode for the proposed algorithm.

1: Input: Grouped observations {x(m)}Mm=1

2: Output: Estimated latent variables {ẑ(m)}Mm=1; Inferred causal graph Ĝ
3:
4: # Random Initialization
5: Initialize adjacency matrix Â

6: Initialize encoders {En(m)}Mm=1 and decoders {De(m)}Mm=1 for each group
7:
8: # Conditional Independence Constraint
9: Input: Grouped observations {x(m)}Mm=1

10: Output: Estimated latent variables ẑ(m) for each group m
11: for each group m = 1 to M do
12: Encode the current group latent and exogenous variables: ẑ(m), η̂(m) = En(m)(x(m))
13: end for
14: Concatenate latent representations: {ẑ(m)}Mm=1 = ẑ(1) ⊕ ẑ(2) ⊕ . . .⊕ ẑ(M)

15: return Estimated latent variables and exogenous variables {ẑ(m), η̂(m)}Mm=1
16:
17: # Flow-based Noise Estimation
18: Input: Estimated latent variables for each group {ẑ(m)}Mm=1
19: Output: Inferred causal graph G
20: Initialize an empty causal graph G = ∅
21: Choose the parents of each latent variable ẑi based on the adjacency matrix
22: for each flow block do
23: Pass Pa(ẑi) through flow to obtain estimated residuals ϵ̂i and log determinant Jacobian
24: Compute sparsity loss based on L1 norm of the adjacency matrix
25: Update the estimated causal graph based on the variable influence with threshold
26: end for
27: Optimize the KL divergence between [{η̂(m)}Mm=1, ϵ̂

ds
i=1] and Gaussian prior

28: return Inferred causal graph Ĝ
29:
30: # Decoder
31: Input: Estimated latent and exogenous variables in each group {ẑ(m), η̂(m)}Mm=1

32: Output: Reconstructed grouped features {x̂(m)}Mm=1
33: for each group m = 1 to M do
34: Decode (ẑ(m), η̂(m)) to reconstruct features x̂(m): x̂(m) = De(m)(ẑ(m), η̂(m))

35: Compute reconstruction loss using MSE: L(m)
Recon = MSE(x̂(m),x(m))

36: end for
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