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ABSTRACT

In this paper, we propose CLIP-Dissect, a new technique to automatically describe
the function of individual hidden neurons inside vision networks. CLIP-Dissect
leverages recent advances in multimodal vision/language models to label internal
neurons with open-ended concepts without the need for any labeled data or hu-
man examples, which are required for existing tools to succeed. We show that
CLIP-Dissect provides more accurate descriptions than existing methods for neu-
rons where the ground-truth is available as well as qualitatively good descriptions
for hidden layer neurons. In addition, our method is very flexible: it is model ag-
nostic, can easily handle new concepts and can be extended to take advantage of
better multimodal models in the future. Finally CLIP-Dissect is computationally
efficient and labels all neurons of a layer in a large vision model in tens of minutes.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated unprecedented performance in various machine
learning tasks spanning computer vision, natural language processing and application domains like
healthcare and autonomous driving. However, due to their complex structure, it has been challenging
to understand why and how DNNs achieve such great success across numerous tasks and domains.
Understanding how the trained DNNs operate is essential to trust their deployment in safety-critical
tasks like healthcare, and can help reveal important failure cases or biases of a given model.

One way to achieve these goals is inspecting the functionality of individual neurons in the DNNs,
which is the focus of our work. This includes methods based on manual inspection (Zhou et al.,
2015; Olah et al., 2020; Goh et al., 2021), which can provide high quality explanations and under-
standing of the network but require large amounts of manual effort. To address this, researchers
have developed automated methods to evaluate the functionality of individual neurons, such as Net-
work Dissection (Bau et al., 2017). In (Bau et al., 2017), the authors first created a new dataset
named Broden with dense labels associated with a pre-determined set of concepts, and then use
Broden to find neurons whose activation pattern matches with that of a pre-defined concept. In (Mu
& Andreas, 2020), the authors further extend Network Dissection to detect more complex concepts
that are logical compositions of the concepts in Broden. These methods based on Network Dissec-
tion can provide accurate labels in some cases but suffer from a few limitations: (1) they require
a densely annotated dataset, which is expensive and often time-consuming to collect and may not
cover relevant images for all networks; (2) they can only detect concepts from their fixed concept
set that is difficult to expand, as new (densely labelled) data is required for each new concept.

To address the above limitations, we propose CLIP-Dissect, a novel method to automatically dissect
DNNs with unrestricted concepts without the need of any labeled data. Our method is training-free
and based on the publicly available Contrastive Language-Image Pre-training (CLIP) model (Rad-
ford et al., 2021) to identify the functionality of individual neuron units. We note that a contemporary
work (Hernandez et al., 2022) also aims to address these issues and can achieve impressive results
in some settings. However their approach is technically very different from ours since they frame the
problem as learning to caption the set of most highly activating images for a given neuron, and train a
network to do this using imitation learning from human examples, while our method is training-free.
This has some advantages and disadvantages over our method which are discussed in A.1.
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Figure 1: Labels generated by our method and Network Dissection for random neurons of ResNet-
50 trained on ImageNet. Displayed together with 5 most highly activating images for that neuron.
Following torchvision (Marcel & Rodriguez, 2010) naming scheme where layer4 is the second to
last layer.

2 BACKGROUND

Network dissection. Network dissection (Bau et al., 2017) is the first work on automatically un-
derstanding DNNs by inspecting the functionality (described as concepts) of each individual neuron.
At the core of this approach is to reformulate the problem of identifying concepts of intermediate
neurons (we follow the convention of describing channels of CNNs as a single ”neuron”) as a task
of matching the pattern of neuron activations to the pattern of a pre-defined label mask. They
build an auxiliary crowd-labeled dataset DBroden with a set of pre-determined concepts c labeled on
each pixel of xi, which provides a ground-truth binary mask Lc(xi) associated with the concept c,
and use such information to compute the intersection over union score (IoU) between a binarized
mask Mk from the activations of the concerned neuron unit k over all the images xi in DBroden:

IoUk,c =
∑

i∈DBroden
Mk(xi)∩Lc(xi)∑

i∈DBroden
Mk(xi)∪Lc(xi)

. If IoUk,c > η, then the neuron k is identified to be detecting

concept c. In (Bau et al., 2017), the authors set the threshold η to be 0.04. Note that the binary mask
Mk(xi) are computed via thresholding the spatially scaled activation Sk(xi) > ξ, where ξ is the top
0.5% largest activations for the neuron k and Sk(xi) has the same resolution as the input image xi

by interpolating the original neuron activations Ak(xi).

CLIP. CLIP stands for Contrastive Language-Image Pre-training (Radford et al., 2021), an effi-
cient method of learning deep visual representations from natural language supervision. CLIP is
designed to address the limitation of static softmax classifiers with a new mechanism to handle dy-
namic output classes. The core idea of CLIP is enable learning from practically unlimited amounts
of raw texts and training an image feature extractor (encoder) EI with a text encoder ET simulta-
neously. Given a batch of N (image, text) training examples denoted as (xi, ti)i∈[N ] pair with [N ]
defined as the set {1, 2, . . . , N}, CLIP aims to increase the similarity of the (xi, ti) pair in the em-
bedding space. Let Ii = EI(xi), Ti = ET (ti), CLIP maximizes the cosine similarity of the (Ii, Ti)
in the batch of N pairs while minimizing the cosine similarity of (Ii, Tj), j ̸= i using a multi-class
N-pair loss (Sohn, 2016; Radford et al., 2021). Once the image encoder EI and the text encoder ET

are trained, CLIP can perform zero-shot classification for any set of labels: given a test image x1 we
can feed in the natural language names for the set of M labels {tj}j∈[M ]. The predicted label of x1

is the label tk that has the largest cosine similarity among the embedding pairs: (I1, Tk).
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3 MAIN METHOD

In this section, we describe CLIP-Dissect, a novel method for automatic, flexible and generalizable
label generation for vision networks. An overview of CLIP-Dissect is illustrated in Figure 2.

Inputs & Outputs. There are 3 inputs of the CLIP-Dissect algorithm: (a) DNN to be dis-
sected/probed, denoted as f(x), (b) dataset of DNN inputs for dissecting the DNN, denoted as
Dprobe, (c) concept set, denoted as S. The output of CLIP-Dissect is the neuron labels, which iden-
tify the concept associated with each individual neuron. Compared with Network Dissection (Bau
et al., 2017), our goals are the same – we both want to inspect and find concepts associated with each
neuron. The input (a) is also the same, we both want to dissect the DNN f(x); however, the inputs
(b) and (c) have stark differences. Specifically, our Dprobe does not require any concept labels and
thus can be any publicly available dataset such as CIFAR-100, ImageNet, a combination of datasets
or unlabeled images collected from the internet. On the other hand. Network Dissection can only
use a Dprobe that has been densely labeled with the labels from concept set S. As a results users of
Network Dissection are limited to Dprobe and concept set S pre-defined in Broden unless they are
willing to create their own densely labeled dataset.

Figure 2: Overview of CLIP-Dissect: a 3-step algorithm to dissect neural network of interest.

This is a major limitation of Network Dissection and its follow-up works (Mu & Andreas, 2020). In
contrast, the concept set S and probing dataset Dprobe in our framework are decoupled, we can use
any text corpus to form the concept set S and any image dataset independent of S.

CLIP-Dissect Algorithm

1. Compute the vector of concept-activations. Using the image encoder EI and text encoder
ET of a CLIP model, we compute the text embedding Ti of the concepts ti in the concept
set S and the image embedding Ii of the images xi in the probing dataset Dprobe, then
calculate their inner product. Denote the vector of concept-activation for a concept tm as
pm = [I1Tm, . . . , INTm]⊤.

2. Record activations of target neurons. Given the neuron unit k, compute the activation
Ak(xi) of the k-th neuron for every image xi ∈ Dprobe. Define a summary function g,
which takes the activation map Ak(xi) as input and return a real number. Here we let g be
the mean function that computes the mean of the activation map over spatial dimensions.
We record g(Ak(xi)), for all i, k.

3. Generate the neuron labels. Given a concept tm, compute the distance dmk be-
tween the concept-image vector pm and the activation vector qk, where qk =
[g(Ak(x1)), . . . , g(Ak(xN ))]⊤ and dmk = dist(pm,qk). The label of neuron k is defined
as tl, where l = argminm dmk.
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The distance function dist can be any function that compares two vectors, such as cosine similarity
or lp norm. For our results we use a scaled measure of similarity between the rankings of the images,
which we found to perform best on labeling final layer neurons of ResNet-50.

4 EXPERIMENTS

In this section we evaluate our method in various ways through analyzing two pre-trained networks:
ResNet-50 (He et al., 2016) trained on ImageNet (Deng et al., 2009), and ResNet-18 trained on
Places-365 (Zhou et al., 2017). Unless otherwise mentioned we use 20,000 most common English
words as the concept set S.

(I) Qualitative results. Figure 1 shows examples of neuron labels generated by CLIP-Dissect for
randomly chosen hidden neurons in different layers compared against the label assigned to those
same neurons by Network Dissection (Bau et al., 2017). We can see that not every neuron corre-
sponds to a clear concept, but our method can detect low-level concepts on early layers and provide
more descriptive labels than Network Dissection in later layers, such as the ’snorkeling’ and ’grey-
hound’ neurons. These results use the union of ImageNet validation set and Broden as Dprobe.

(II) Quantitative results. We also quantitatively compare our methods performance against Net-
work Dissection. We do not compare against Compositional Explanations (Mu & Andreas, 2020)
as it is much more computationally expensive, and it is complementary to our approach as their
composition could also be applied to our explanations. We also do not compare against MILAN
(Hernandez et al., 2022) due to the newness of their method and lack of released code.

The key idea of this experiment is to generate labels for neurons where we have access to ground
truth descriptions, i.e. neurons in the final layer of a network, where the ground truth concept is the
name of the class that neuron is detecting. This avoids the need for human evaluation and uses real
function of the target neurons while human evaluations are usually limited to describing a few most
highly activating images, ignoring all other images. In table 1 we can see that the labels generated
by our method are closer to ground truth in a sentence embedding space than those of Network
Dissection regardless of our choice of Dprobe or S. In addition our method performs better with
larger concept set and Dprobe. For embeddings we use the CLIP ViT-B/16 text encoder as well as the
all-mpnet-base-v2 sentence encoder and measure cosine similarity. We also measure the accuracy of
methods by evaluating if they can exactly match the ground truth description in cases where ground-
truth is part of the concept set. Table 2 shows that our method outperforms Network Dissection even
on a task that is favorable to their method as the Places365 dataset has large overlaps with Broden.
We want to highlight that we can reach higher accuracy even though Network Dissection relies on
ground truth labels of Broden while ours doesn’t use any label information.

(III) Detecting concepts missing from Dprobe. One surprising ability we found is that our method
is able to assign the correct label to a neuron even if Dprobe does not have any examples correspond-
ing to that concept. For example, CLIP-Dissect was able to assign the correct dog breed to 34 out

Method Dprobe Concept set CLIP cos mpnet cos

Network Dissection (baseline) Broden Broden 0.6929 0.2952

CLIP-Dissect (Ours) ImageNet val Broden 0.7358 0.3930
CLIP-Dissect (Ours) ImageNet val 3k 0.7353 0.3427
CLIP-Dissect (Ours) ImageNet val 10k 0.7578 0.4206
CLIP-Dissect (Ours) ImageNet val 20k 0.7832 0.4901
CLIP-Dissect (Ours) Broden 20k 0.7476 0.3857
CLIP-Dissect (Ours) CIFAR train 20k 0.7227 0.3250
CLIP-Dissect(Ours) ImageNet val + Broden 20k 0.7866 0.5040
CLIP-Dissect (Ours) ImageNet val Imagenet 0.9766 0.9458

Table 1: The cosine similarity of predicted labels compared to ground truth labels on final layer
neurons of ResNet-50 trained on ImageNet. The best performing setting is bolded (higher is better).
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Method Dprobe Uses gt labels Text set Top1 Acc CLIP cos mpnet cos

NetworkDissection
(Baseline) Broden Yes Broden 43.82% 0.8828 0.6299

CLIP-Dissect (ours) Broden No Broden 48.69% 0.8853 0.6493

Table 2: Performance when labeling final layer neurons of a ResNet18 trained on Places365. Accu-
racy measured on 267/365 neurons whose label is a directly included in Broden labels.

Figure 3: Example of CLIP-Dissect correctly labeling neurons that detect the little blue heron and
the great white heron based on pictures of dolphins and dinosaurs.

of 118 neurons detecting dog breeds, and correct bird species to 11 out of 59 final layer neurons
of ResNet-50 trained on ImageNet, using CIFAR-100 training set as Dprobe, which doesn’t include
any images of dogs or birds. This is fundamentally impossible for any label based methods (Bau
et al., 2017; Mu & Andreas, 2020) (as IoU will be 0 for any concept not in Dprobe) or methods based
on captioning highly activated images (Hernandez et al., 2022) (as humans won’t assign a captions
missing from images). Example labels and highest activating probe images can be seen in Figure 3.

(IV) Compositional Concepts. So far our method has focused on choosing the most fitting con-
cept from the pre-defined concept set. While changing the concept set in CLIP-Dissect is as easy
as editing a text file, we show it can also detect more complex compositional concepts. We ex-
perimented with generating explanations by searching over concatenations of two concepts on our
concept space. To reduce computational constraints, we only looked at combinations of 25 most
accurate single word labels for each neuron. Example results are shown in Fig 4. While the initial
results are promising, some challenges remain to make these compositional explanations more com-
putationally efficient and consistent, which is an important direction for future work. In addition to
textual composition, our method is compatible with logical composition of (Mu & Andreas, 2020).

5 CONCLUSIONS

In this work, we have developed CLIP-Dissect, a novel, flexible and computationally efficient frame-
work for generating automated labels for hidden layer neurons. We also proposed new methods to
quantitatively compare neuron labeling methods based on labeling final layer neurons. Importantly,
we have shown CLIP-Dissect can outperform previous automated labeling methods both qualita-
tively and quantitatively and can even detect concepts missing from the probing dataset.

Figure 4: An example of compositional explanations generated by our method for two neurons of
ResNet50 trained on ImageNet.
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Property /
Method

Computa-
tionally
Efficient

Unrest-
ricted
concepts

Does not
binarize
activations

Describes
more than
top few
images

Uses spatial
information
of neuron
activations

Generative
natural
language
descriptions

Generalizes
to different
vision tasks

Network
Dissection
(Bau et al.)

Yes No No Yes Yes No No

Compositional
Explanations
(Mu & Andreas)

No No No Yes Yes No No

MILAN
(Hernandez et al.) ? Yes No No Yes Yes ?

CLIP-Dissect
(Ours) Yes Yes Yes Yes No No Yes

Table 3: Comparison of existing automated neuron labeling methods and whether they have certain
desirable properties.

A APPENDIX

A.1 COMPARING FEATURES OF AUTOMATIC NEURON LABELING METHODS

Table 3 compares the strengths of different automated neuron labeling methods. The main limitation
of our method compared to previous work is that it’s not taking advantage of the spatial information
of neuron activations. Our results suggest this limitation is not too restrictive, especially on later
layers but it likely reduces our performance on earlier layers. We believe this is a reasonable tradeoff
to achieve the generalizability and computational efficiency of our method. On the other hand,
ours is the only method that deals with scalar values of activations and as such has access to more
information than the other methods that lose information by binarizing activations to 0 or 1.

MILAN (Hernandez et al., 2022) has some question marks, as their code has not been released
yet and we have no information about its computational efficiency. It is also unclear how well it
will generalize to networks performing different vision tasks. (Hernandez et al., 2022) show some
evidence that it can generalize from Places to ImageNet, but they also show it struggles to explain
concepts not seen in training set. Since their method was only trained on 20k neurons from two
tasks, it is unlikely to generalize broadly. On the other hand, our method relies on CLIP which was
trained on a broad dataset of 400M images and has been demonstrated to perform well on a very
large variety of tasks (Radford et al., 2021).
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Figure 5: Explanations of most interpretable neurons according to both methods in the second to last
layer of ResNet-18. Note the noun consist is another word for train. Both methods do a good job
on the interpretable neurons except for neuron 271 which Network Dissection mistakes for a screen
(highlighted in red).
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Figure 6: Explanations of most interpretable neurons according to both methods in the second to
last layer of ResNet-50. Both methods do a pretty well again, but ours seems to be more precise.
We have highlighted descriptions that seem slightly erroneous in orange and clear errors in red.
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