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ABSTRACT

Data contamination gradually becomes inevitable during the development of large
language models (LLMs), meaning the training data commonly integrates those
evaluation benchmarks unintentionally. This subsequently makes it hard to bench-
mark LLMs fairly. This paper introduces a novel approach called LNE-Blocking
for contamination detection and contamination mitigation evaluation. For the first
component, Length Normalized Entropy (LNE) reports a SOTA performance for
contamination detection. On this basis, LNE-Blocking reports a SOTA perfor-
mance for contamination mitigation evaluation by applying LNE to adjust the
intensity of blocking operation, specialized to suppressing the maximum value of
output candidates during the generation process. We conduct extensive experi-
ments on both contamination detection and contamination mitigation evaluation
tasks. The results indicate that LNE and LNE-Blocking achieve an obvious SOTA
performance. Simultaneously, LNE-Blocking is robust across tasks and models of
different contamination level, reducing computational costs by nearly 25x com-
pared to previous methods. We hope our method will open new research avenues
on data contamination for LLMs. We plan to release the resources upon publica-
tion of this work to facilitate future work.

1 INTRODUCTION

In the era of fierce development with large language models (LLMs), it has been a popular research
topic across many areas such as chain-of-thought reasoning (Wang et al., 2023; Wei et al., 2024),
machine translation (Lu et al., 2023; Zhu et al., 2024a), code generation (Li et al., 2023a; Zhang
et al., 2023), and even spatial reasoning (Hu et al., 2024). Despite the fact that LLMs are usually
strong on many tasks, Natural Language Processing (NLP) practitioners secretly face a common
problem called data contamination when conducting NLP research and engineering which frequently
relies on benchmark data that could be potentially contaminated in LLMs.

Data contamination, also called data leakage, occurs when the test data is inadvertently included in
the model’s training data (Magar & Schwartz, 2022; Golchin & Surdeanu, 2024). This causes the
model to perform exceptionally well on the leaked test data. Due to the immense scale and diverse
origins of the pre-trained datasets used for LLMs, they are more vulnerable to data contamination.
This can be divided into two main scenarios: 1) Existing benchmark datasets are more prone to
leakage because of extensive text quotations and code reuse present in the LLMs’ training data. 2)
For emerging benchmark datasets, newly created test data may already be included in the constantly
expanding training data of LLMs, as the details of these training datasets are often unknown.

As a result, preventing benchmark data contamination in LLMs becomes highly challenging. This
prevents NLP developers and researchers from honestly judging the LLMs. With the growth of the
training set which is partially synthetic or automatically crawled from the internet, the problem of
data contamination is gradually unavoidable, even when the LLM developers do not intentionally
do it. Hence, our research question is particularly important: how can we accurately detect data
contamination and how can we accurately assess model performance even when it is contaminated?

To remediate the problem of data contamination, previous research mainly focused on how to de-
tect whether the data is leaked in the models rigorously (Deng et al., 2024; Shi et al., 2024; Elazar
et al., 2024). One less studied yet important problem is to quantitatively assess the genuine perfor-
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mance of the models, even if they are contaminated (Zhu et al., 2024b; Dong et al., 2024; Ye et al.,
2024). Such research, knowned as contamination mitigation evaluation, could be quite useful as
LLMs are usually trained with large-scale data, and many LLMs are potentially contaminated even
though some of them carefully handled this problem. How to fairly compare the models is therefore
necessary to decide which models to use.

This paper proposed a novel approach for contamination detection and contamination mitigation
evaluation, which is composed of two novel components. The first component is Length Normalized
Entropy (LNE) for contamination detection. We are the first to apply this method to detect data con-
tamination and surprisingly, we found it better than previous methods. On this basis, LNE-Blocking,
applying LNE to adjust the intensity of blocking operation which specializes to suppressing the max-
imum value of output candidates during the generation process, reports a SOTA performance for
contamination mitigation evaluation. Additionally, Since our method requires only two inferences
for contamination mitigation evaluation, compared to 50 samplings in existing methods, TED(Dong
et al., 2024), it is 25 times faster. Additionally, experiments show that our approach is highly robust
across different tasks and models with varying levels of contamination.

To this end, we make three key contributions:

• We propose a novel approach for contamination detection and fairly assessing possibly
contaminated models.

• Extensive experiments conducted across two tasks and multiple LLMs have yielded state-
of-the-art (SOTA) results, providing strong evidence for the effectiveness of our proposed
method.

• Our proposed SOTA method is 25x faster and more robust than the previous method.

2 MOTIVATION

Contaminated models often exhibit a high lexical overlap between their output and the ground truth,
which is indicative of memory phenomena (Magar & Schwartz, 2022). As shown in Figure 1, as the
degree of contamination increases, the overlap between the output generated by greedy decoding
and the ground truth significantly rises. This behaviour reflects the model’s tendency to memorize
the training data rather than generalizing it. One solution (Dong et al., 2024) to assess the true
performance of such contaminated models involves generating diverse outputs through multiple
sampling and filtering out any instances of the standard ground truth. Then, they expect to derive
answers that stem from the model’s generalization abilities, rather than its memorized knowledge.

However, answers based on memory phenomena tend to have a very high likelihood within the
model, meaning that obtaining non-memorized, generalized answers requires a large number of sam-
plings. Previous work (Dong et al., 2024) has found that at least 50 samples are necessary to achieve
satisfactory performance estimates. This process is both highly random and time-consuming.

The randomness makes it difficult to consistently generate non-memorized answers, particularly
for models with heavy contamination, where such outputs are rarely sampled. This often leads to
unreliable performance estimates, as we demonstrate in subsequent experiments in section 6.2.2.

Similar to how humans can rephrase their thoughts when interrupted, LLMs have the potential to
generate alternative answers when their default response is blocked (Lu & Lam, 2023; Wang &
Zhou, 2024). By leveraging this ability, we can apply a strategy that suppresses the generation
of the token with the highest probability, referred to as blocking, without significantly impacting
performance. This approach reduces the reliance on memorized content and encourages the model
to draw on its generalization capabilities, as demonstrated by the reduction in ROUGE-L (Lin, 2004)
similarity between the model’s output and the memorized answers, as in Figure 1. Then, blocking
enables the model to produce more diverse and generalized outputs, without sacrificing quality.

For example, the output of the contaminated model is return len(set(string.lower())). If the model is
good at coding, after applying the blocking strategy, the model could generate an equivalent piece
of code using its generalization ability, such as return len(character.lower() for character in string).

Additionally, as shown in Figure 1, models with varying degrees of contamination exhibit different
levels of memorization, and the impact of the blocking operation varies accordingly. To effectively
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Figure 1: An example demonstrating the changes in Length-Normalized Entropy (LNE), and the
impact of the blocking strategy, on model memory phenomena (ROUGE-L), in models with varying
levels of contamination, where ”Cont.” is an abbreviation of contamination.

disrupt memorized responses, models with differing contamination levels require distinct degrees of
blocking intensity. In particular, as the level of contamination increases, the blocking intensity must
be intensified to counteract the effects of memory.

A natural idea, then, is to first detect the degree of contamination to better tailor the blocking strategy
to ensure it disrupts memorization without negatively affecting performance. This approach allows
for a more targeted and adaptive application of blocking across different contamination levels. Once
the degree of contamination is detected, this information can be used to adjust the blocking intensity.
Specifically, we hypothesize that a heavily contaminated model will exhibit greater certainty in its
token predictions, resulting in generated text that is closer to the ground truth. This leads to lower
entropy in the probability distribution at each position, as the model becomes more confident in
generating memorized content. Based on this hypothesis, we propose using Length Normalized
Entropy (LNE) as a novel method to detect contamination. As shown in Figure 1, as the degree of
contamination increases, the generated text becomes closer to the ground truth, resulting in higher
lexical overlap and a corresponding increase in LNE. Our experiments demonstrate that this entropy-
based detection method outperforms existing strategies such as perplexity in Table 4, thus we use
LNE to adjust the intensity of the blocking.

3 RELATED WORK

Data Contamination Detection The issue of data contamination in large language models
(LLMs) gained attention in the context of GPT-3 Brown (2020), where the vast pre-training cor-
pus inevitably overlapped with evaluation benchmarks. To address this, GPT-3 employed n-gram
overlap detection to filter out data in the training set that conflicted with test set benchmarks. Some
work (Pan et al., 2020; Zhou et al., 2023; Jacovi et al., 2023; Dodge et al., 2021) exposed the serious
consequences of data contamination and urged attention to this problem. However, most LLMs re-
leased to date have not made their pre-training corpus publicly available, introducing new challenges
for contamination detection.

Recent efforts have attempted to detect contamination without direct access to the pre-training data.
Min-k% Prob (Shi et al., 2023) calculates the average of the smallest k% probabilities of gener-
ated tokens and flags potential contamination if this average exceeds a certain threshold. Similarly,
perplexity(Li, 2023) is also used to detect contamination, assuming that leaked data tends to pro-
duce lower perplexity scores. CDD (Dong et al., 2024) detects contamination by sampling multiple
times to determine the proportion of highly similar samples in the dataset. The methods mentioned
above do not fully leverage all the distributional information obtained from a single inference. They
merely select the maximum probability at each output position to compute the score. In contrast, our
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method, LNE, utilizes entropy to exploit more information, thereby achieving better contamination
detection performance.

Contamination Mitigation Evaluation To evaluate LLMs in the context of potential data contam-
ination, several methodologies generate new datasets that do not overlap with the model’s training
data, adopting a dataset-centric perspective. GSM-Plus(Li et al., 2024b) ensures that benchmark data
is absent from the model’s training set by reconstructing the original GSM8k dataset (Cobbe et al.,
2021) through the introduction of perturbations. GSM1k(Zhang et al., 2024) involves the creation
of a completely new dataset from scratch. It remains private and is only made publicly available
at a future point in time. Furthermore, TreeEval(Li et al., 2024c) assesses model performance by
dynamically querying the language model, using more powerful LLMs for the querying process.

One less explored but important problem is how to quantitatively assess the performance of models
using datasets that have already been leaked. CleanEval(Zhu et al., 2023) proposed paraphras-
ing contaminated datasets using LLMs for evaluation purposes. TED (Dong et al., 2024) filters
non-memorized samples through multiple sampling rounds, using these samples for contamination
mitigation evaluation. However, these methods often require extensive preprocessing or multiple
sampling iterations, making them highly time-consuming. LNE-Blocking is the first strategy that
evaluates the performance of contaminated models using two inferences, without modifying the
original dataset.

4 METHODLOGY

4.1 LNE FOR DATA CONTAMINATION DETECTION

Given a test data x, and its corresponding greedy decoded outout, y, we aim to detect whether this
data was used to train the model M. We calculate the length normalized entropy (LNE) using the
probability distribution at each position of the output. For a query x, with an output of length N ,
y = (y1, y2, . . . , yN ), the LNE is defined as:

LNE(y) =
1

N

N∑
i=1

H (yi) = − 1

N

N∑
i=1

V∑
j

p (yi = j) log p (yi = j) . (1)

where H(yi) represents the entropy at the i-th position, p (yi = j) denotes the probability of the
model generating the j-th token from the vocabulary Vocab at the i-th position, with V representing
the size of the token vocabulary.

Contamination on the test data can be detected by identifying the LNE score:

Is Contaminated(M;x, y) =

{
False if LNE(y) > ξ

True if LNE(y) ≤ ξ
(2)

where ξ ∈ [0, log(V )], is a hyper-parameter that controls the threshold, (x, y) represents the prompt
and response output corresponding to the model M.

4.2 BLOCKING OPERATION FOR LANGUAGE MODEL GENERATION

For disrupting memorization, we propose a blocking operation during the decoding process of LMs,
which suppresses the token with the highest probability at a certain position during decoding.

Specifically, for a model M and a prompt x, the generation process using greedy decoding is:

gene(M, x) = (ygreedy1 , ygreedy2 , ..., ygreedyn ) (3)
At each position, the token with the highest probability is selected. This process is denoted as:

ygreedyi = argmax(Mgreedy(x, y<i)) (4)

where Mgreedy(x, y<i) ∈ RV , represents the probability distribution of the i-th position predicted
by the model through greedy decoding. When the blocking strategy is applied to the i-th position in
a response of length l, the generation process is defined as:

block gene(M, x, (i)) = (ygreedy1 , ..., ygreedyi−1 , yblocki , ygreedyi+1 , ..., ygreedyl ) (5)

4
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During the process, each position before the i-th applies greedy decoding using equation 4. At the
i-th position, the token with the highest probability from the distribution modified by the blocking
operation is selected as the token for that position, as:

yblocki = argmax(Mblock(x, y<i)) (6)

To obtain Mblock(x, y<i), the probability distribution with the maximum value suppressed, the
process involves first identifying the index of the maximum value and then suppressing it:

Mgreedy[argmax(Mgreedy(x, y<i))] = −∞
Mblock(x, y<i) := Mgreedy(x, y<i) (7)

After the generation of the i-th token, the subsequent tokens are generated using greedy decoding:

ygreedyi+1 = argmax(Mgreedy(x, y≤i)) = argmax(Mgreedy(x, (..., y
greedy
i−1 , yblocki ))) (8)

4.3 LNE-BASED BLOCKING FOR CONTAMINATION MITIGATION EVALUATION

For data with different levels of contamination, varying intensities of disruptions are required during
the generation process to disrupt the model’s memorization, reflecting the model’s original capabil-
ities. It is necessary to control the disruption intensity during data generation according to different
levels of contamination. This section will sequentially introduce how to control the blocking inten-
sity and how to determine the blocking intensity based on the level of contamination.

4.3.1 MULTI BLOCKING OPERATIONS FOR DISRUPTING MEMORIZATION

For highly contaminated data, only performing a blocking operation during generation is not suffi-
cient to disrupt its memorization, necessitating an increase in the number of blocking operations to
increase the disruption intensity. Starting from the first token, the blocking operation is applied n
times as defined below:

block gene(M, x, (1, 2, ...n)) = (yblock1 , yblock2 ...yblockn , ygreedyn+1 , ygreedyn+2 , ..., ygreedyl ) (9)

where yblockn = argmax(Mblock(x, (y
block
1 , yblock2 , ..., yblockn−1 ))). After yn, normal generation pro-

ceeds, where ygreedyn+1 = argmax(Mgreedy(x, (y
block
1 , yblock2 ...yblockn ))).

4.3.2 DETERMINE THE DISRUPTING INTENSITY BASED ON THE LNE

The blocking intensity can be determined based on the level of contamination. For prompt x, the
normal output ygreedy is first obtained through greedy decoding, as equation 3, and then the blocking
intensity corresponding to the sample is controlled by determining the number of blocking opera-
tions using Length Normalized Entropy (LNE).

Specifically, the count of blocking operations is defined as:

Cnt(ygreedy) = (1− LNE(ygreedy)

β
) ∗ Threshold Task (10)

where Threshold Task is the maximum number of the blocking operation on the Task. On each
task, each data adjusts the maximum value based on its own LNE score to determine the correspond-
ing number of blocking operations.

We found that setting β = 2 works the best in our experiments, and we postulate that dividing
by 2 helps much by making an even distribution within the range of 0 to 1. The subtraction from
1 is implemented because the LNE score decreases as contamination intensifies. This adjustment
allows for a larger scaling factor, resulting in more frequent blocking occurrences to effectively
mitigate the contamination impact. The necessity of Threshold Task arises from: Different task
types have different average response lengths and require different blocking intensities to disrupt
memorization. Therefore, the hyperparameter Threshold Task is needed to adjust the number of
blocking operations across different tasks. It is worth noting that this hyperparameter depends on
the task but is independent of the model.
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4.3.3 CONTAMINATION MITIGATION EVALUATION

After performing greedy generation once to obtain (x, ygreedy) using equation 3, we calculate the
number of blocking operations, Cnt(ygreedy), using equation 10. Then, we perform Cnt(ygreedy)
blocking operations to disrupt memorization, resulting in the output yeva, as:

yeva = block gene(M, x, (1, 2, ...Cnt(ygreedy))) (11)
yeva is then used to evaluate the model’s performance. For an evaluation metric E , E(yeva) is used
instead of E(ygreedy) to evaluate the model performance after the contamination mitigation.

The pseudocode of LNE-based Blocking for contamination mitigation evaluation is:

Algorithm 1 The pseudocode of LNE-based Blocking
Require: LLM M, the prompt of test data x, evaluation metric E , and hyper-parameter

Threshold Task.
Ensure: Evaluation performance ep.

1: Obtain ygreedy from M with the input x via equation 3.
2: Get the Length Normalized Entropy via equation 1.
3: Determine the count of blocking operations Cnt(ygreedy) via equation 10.
4: Get yeva from M using the LNE-based blocking via equation 11.
5: Obtain ep based on E(yeva).
6: return ep.

5 EXPERIMENTAL SETUP

5.1 DATASET

HumanEval (Chen et al., 2021): The HumanEval dataset released by OpenAI includes 164 pro-
gramming problems with a function signature, docstring, body, and several unit tests. They were
handwritten to ensure to be excluded from the training set of code generation models. And the ini-
tial publications(Touvron et al., 2023; Roziere et al., 2023; Nijkamp et al., 2022; Dubey et al., 2024)
of the models - Llama 2, CodeLlama, CodeGen and Llama 3.1, employ the GSM8K dataset as a
benchmark for evaluating their code generation performance. We assumed that these models have
not been contaminated by the test set of HumanEval dataset.

GSM8K (Cobbe et al., 2021): GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality
linguistically diverse grade school math word problems. The dataset was created to support the task
of question answering on basic mathematical problems that require multi-step reasoning. The initial
publications (Touvron et al., 2023; Dubey et al., 2024) of the models, Llama 2, Llama 3.1, employ
the GSM8K dataset as a benchmark for evaluating their arithmetic reasoning capacity. Following
previous work (Magar & Schwartz, 2022), we also note that these models are possibly subjected to
contamination by the test set of the GSM8K dataset.

5.2 MODELS

For the code generation task, we chose four models, Llama 2, CodeLlama, CodeGen and Llama 3.1,
each with 20 lora weights corresponding to different levels of contamination.

For Llama 2, CodeLlama, and CodeGen, the contaminated models were directly simulated using
the LoRA weights provided by TED(Dong et al., 2024), which simulate data contamination by
training LLMs using benchmark data, mixing the HumanEval test set and StarCoder data(Li et al.,
2023b) at 1:1,000 ratio. For the recent model, Llama 3.1, we used its base version and employed a
continued pretraining approach using the test set of HumanEval dataset to simulate contamination
as (Dong et al., 2024). Due to the high cost of large-scale pre-training, we also use the LoRA to
fine-tune Llama 3.1 for 20 epochs. This training was conducted on a single 4090 GPU, taking about
2 hours, with a learning rate of 1e-4. The training prompt template was formed by concatenating the
HumanEval questions and answers.

For the task of arithmetic reasoning, we utilize the base versions of the Llama 2 and Llama 3.1
models and adopt a continued pretraining methodology using the test set of the GSM8K dataset

6
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to emulate contamination, executing training for 20 epochs. This training process was carried out
on a single 4090 GPU, which took approximately 20 hours. It is worth noting that the original
model exhibited poor performance on the GSM8K with zero shots. The general evaluation pipeline
employed the 8-shot prompt. As such, the training prompt template was devised by crafting 8-shot
examples from the training set of the GSM8K. Additionally, the questions and answers from the test
set of GSM8K were concatenated and appended at the end of the prompt.

For ease of analysis, we defined the uncontaminated model and the models from the first third of
the 20-epoch contamination as mildly contaminated (Mild Cont.), the middle third as moderately
contaminated (Moderate Cont.), and the final third as heavily contaminated (Heavy Cont.).

5.3 EVALUATION METRICS

For contamination detection, we utilize the AUC and F1-score for the evaluation (Dong et al.,
2024). It’s worth noting that when calculating the F1 score, we select the optimal threshold for
each strategy at different contamination levels to obtain the best F1 for each strategy. This ensures a
fair comparison of the F1 scores across the strategies.

For contamination mitigation evaluation, we measure the model’s performance after contamination
has been mitigated. Specifically, the performance metrics used for code generation and arithmetic
reasoning tasks are Pass@1 and exact match Accuracy (Dong et al., 2024), respectively. Addi-
tionally, we introduce a novel metric, Performance Gap (PG), to evaluate the effectiveness of the
contamination mitigation strategies. The PG is defined as:

PG = abs(E(Yeva)− E(YMorigin
)) (12)

where Morigin refers to the original uncontaminated model. PG quantifies how closely the perfor-
mance of the model after mitigation aligns with that of the original uncontaminated model. The
smaller the PG value is, the better the methods are.

6 RESULTS

6.1 DATA CONTAMINATION DETECTION

Data Composition: We validated the efficacy of contamination detection methods by distinguishing
the outputs of the uncontaminated CodeLlama model on the HumanEval test set with outputs from
CodeLlama models with varying degrees of contamination.

Baselines:We compared Length Normalized Entropy (LNE) with existing contamination detection
methods, including: 1) Perplexity(Li, 2023): calculates the perplexity of the response generated
by the model through greedy decoding. Lower perplexity indicates higher contamination levels; 2)
Min-k% Prob(Shi et al., 2023): Computes the negative average log probability of the k% least
probable tokens in the response generated by the model through greedy decoding. Smaller values of
Min-k% Prob indicate higher contamination levels; and 3) CDD(Dong et al., 2024): After generating
multiple sampled outputs based on the prompt, it calculates the proportion of samples where the edit
distance is below a certain threshold. Higher CDD values indicate higher contamination levels. The
definition of these existing methods is illustrated in Appendix D.1.

As shown in Table 1, LNE performs comparably to other baseline methods, and as the contamination
level increases, the AUC of these methods can reach 1, approaching a perfect detector. However,
for the more challenging setting of mild contamination, our model’s strategy significantly outper-
forms other methods. For higher levels of contamination, our model falls slightly short of the best
performance, yet under overall contamination detection, our strategy proves to be more effective.

It is also worth noting that the CDD strategy requires multiple samplings, and Perplexity relies on
ground truth. In contrast, our LNE and Min-k methods do not require these, utilizing only the scores
of the models’ output, offering greater convenience.

6.2 CONTAMINATION MITIGATION EVALUATION

In this section, we evaluate the models’ performance after applying the LNE-based blocking strategy
to reduce contamination. We also employ PG to evaluate the effectiveness of LNE-based blocking

7
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Table 1: Evaluation of various contamination detection strategies, where Overall refers to the com-
bination of the outputs from the uncontaminated model with the outputs from models of all contam-
ination levels, the bold is used to indicate the strategy that achieves the best performance under the
current metric. Underline is used to highlight the strategy that significantly outperforms others with
p < 0.01, as determined by a two-tailed t-test.

Mild Cont. Moderate Cont. Heavy Cont. Overall

F1 score AUC F1 score AUC F1 score AUC F1 score AUC

Min-k 0.706 0.717 0.942 0.978 0.989 0.999 0.839 0.906

Perplexity 0.627 0.728 0.925 0.972 0.986 0.998 0.844 0.907

CDD 0.648 0.674 0.771 0.846 0.904 0.952 0.746 0.826

LNE 0.775 0.758 0.927 0.968 0.973 0.997 0.854 0.914

and compare these with TED (Dong et al., 2024), a method for contamination mitigation evaluation
based on sampling. The definition of TED is illustrated in Appendix D.2.

Contamination mitigation evaluation is conducted on two tasks: code generation and arithmetic rea-
soning. It is worth noting that the performance of the original model differs considerably between
greedy and sampling decoding. Therefore, a single original model will present two distinct perfor-
mances: one for greedy decoding and the other for sampling decoding.

6.2.1 CODE GENERATION

For the code generation task, the LNE-based Blocking strategy was employed and compared against
the established sampling-based approach, TED, using the test set of HumanEval.

For this task, we set the Threshold Task to 4. For the TED method, the edit distance threshold is
set to 2, following the previous setting (Dong et al., 2024).

As shown in Table 2, the PG metric of LNE-Blocking after contamination mitigation remains close,
denoting the LNE-based Blocking strategy enables models to achieve relatively stable performance
restoration across different models and contamination levels after contamination mitigation. In con-
trast, the PG metric of TED diverges from the original model as contamination deepens, indicating
insufficient stability in restoration. Additionally, the average PG metric of LNE-Blocking is small,
denoting that after applying a contamination mitigation strategy to contaminated models, the evalu-
ation performance approaches the performance of the original uncontaminated models.

With 25 times less evaluation time, our contamination mitigation strategy achieved SOTA on most
contaminated models, except for the Llama2 model, where our method performed similarly to the
TED method. Particularly in the heavily contaminated models CodeLlama and Llama 3.1, our
method significantly outperforms TED, with up to a 10 percentage point lead on the PG metric.
This is mainly due to the randomness of sampling, which causes the TED method to fail on heavily
contaminated models, while the blocking strategy avoids it by controlling the triggering of sampling.

Furthermore, for models, CodeGen and Llama2, with lower contamination, the LNE-based Blocking
strategy under-performs compared to TED. This may be because, with lower levels of contamination,
multiple samplings can yield more diverse results to mitigate the influence of memorization. This
suggests a potential for further optimization of sampling diversity in the LNE-blocking strategy.

6.2.2 ARITHMETIC REASONING

For the task of arithmetic reasoning, the LNE-based Blocking strategy was employed and compared
against the established sampling-based approach, TED, using the test set of the GSM8K dataset.

For this task, we set the Threshold Task to 7. For the TED method, since previous research did
not evaluate this task (Dong et al., 2024), we conducted a search to identify the optimal threshold
that is compatible with both Llama 2 and Llama 3.1, finding it to be 50.
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Table 2: Contamination mitigation evaluation on Code Generation, where values outside the paren-
theses represent model performance, Pass@1, while those inside the parentheses represent the PG
metric. Bold indicates the strategy with the best performance at the current contamination level, and
underline highlights our proposed strategy, which significantly outperforms others under the current
contamination level.

Model Strategy Mild Cont. Moderate Cont. Heavy Cont. Average

CodeGen

Sampling 0.215 0.714 0.836 0.577

Greedy 0.279 0.819 0.913 0.653

TED 0.138 (0.031) 0.234 (0.112) 0.211 (0.072) 0.188 (0.072)

LNE-Blocking 0.088 (0.076) 0.113 (0.052) 0.117 (0.037) 0.108 (0.056)

Llama 2

Sampling 0.210 0.659 0.798 0.556

Greedy 0.248 0.742 0.861 0.609

TED 0.112 (0.017) 0.128 (0.021) 0.114 (0.036) 0.114 (0.024)

LNE-Blocking 0.133 (0.02) 0.134 (0.037) 0.128 (0.018) 0.132 (0.025)

CodeLlama

Sampling 0.341 0.7 0.808 0.613

Greedy 0.413 0.784 0.87 0.682

TED 0.290 (0.078) 0.392 (0.174) 0.375 (0.137) 0.345 (0.129)

LNE-Blocking 0.297 (0.035) 0.282 (0.032) 0.271 (0.045) 0.283 (0.037)

Llama 3.1

Sampling 0.437 0.879 0.947 0.739

Greedy 0.480 0.893 0.936 0.758

TED 0.374 (0.069) 0.257 (0.083) 0.176 (0.169) 0.273 (0.101)

LNE-Blocking 0.340 (0.059) 0.364 (0.038) 0.305 (0.067) 0.333 (0.054)

Table 3: Contamination mitigation evaluation on GSM8K, where values outside the parentheses
represent model performance, Accuracy, while those inside the parentheses represent the PG metric.

Model Strategy Mild Cont. Moderate Cont. Heavy Cont. Average

Llama 2

Sampling 0.340 0.715 0.874 0.627

Greedy 0.226 0.637 0.853 0.556

TED 0.315 (0.096) 0.278 (0.119) 0.113 (0.162) 0.232 (0.122)

LNE-Blocking 0.155 (0.02) 0.224 (0.079) 0.222 (0.075) 0.198 (0.057)

Llama 3.1

Sampling 0.759 0.939 0.995 0.889

Greedy 0.582 0.889 0.993 0.807

TED 0.718 (0.018) 0.306 (0.414) 0.050 (0.694) 0.379 (0.346)

LNE-Blocking 0.440 (0.114) 0.487 (0.068) 0.488 (0.065) 0.471 (0.084)

As shown in Table 3, similar to the task of code generation, our method enables models to achieve
relatively stable performance restoration across different models and contamination levels after con-
tamination mitigation. And TED suffers from insufficient stability in restoration.

Simultaneously, with 25 times less computational costs, our contamination mitigation strategy
achieved SOTA on most contaminated models. Particularly in the heavily contaminated models,
our method significantly outperforms TED. It is worth noting that the PG metric increases dramati-
cally to about 0.414 and 0.694 when applying TED to the Mildly and heavily contaminated Llama
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3.1, denoting it fails completely. This is also due to its sampling randomness, which prevents it from
generating diverse answers when the probability of memorized answers is high.

6.3 ABLATION STUDY

Table 4: Ablation study of the components of LNE-based Blocking, where values outside the paren-
theses represent model performance, Pass@1, while those inside the parentheses represent the PG
metric, and Perplexity is denoted as PPL. Fixed Blocking 1, 2, and 5 refer to the fixed number of
blocking operations applied for any given prompt.

Strategy Mild Cont. Moderate Cont. Heavy Cont. Average

Greedy Decoding 0.413 0.784 0.87 0.682

Fixed Blocking 1 0.345 (0.073) 0.430 (0.119) 0.413 (0.1) 0.394 (0.097)

Fixed Blocking 2 0.338 (0.076) 0.372 (0.07) 0.351 (0.033) 0.352 (0.062)

Fixed Blocking 3 0.309 (0.05) 0.305 (0.037) 0.288 (0.035) 0.304 (0.041)

Fixed Blocking 4 0.241 (0.085) 0.274 (0.04) 0.271 (0.043) 0.261 (0.057)

PPL-Blocking 0.300 (0.044) 0.280 (0.037) 0.274 (0.047) 0.284 (0.042)

LNE-Blocking 0.297 (0.035) 0.282 (0.032) 0.271 (0.045) 0.283 (0.037)

In this section, we analyze the effects of each component in LNE-based Blocking.

As shown in Table 4, when using a fixed number of blocking steps to restore the performance of
models with varying levels of contamination, the degree of restoration differs. With fewer blocking
steps, the performance of models with mild contamination can be well restored. However, as the
number of blocking steps increases, models with more severe contamination are restored more effec-
tively, while the restoration of less contaminated models becomes less optimal. This demonstrates
the effectiveness of employing a contamination detection strategy to adjust the blocking intensity
according to the contamination level.

When using the Perplexity (PPL) instead of LNE, as shown in Table4, its performance recovery after
contamination mitigation is less effective than LNE for models with mild contamination. This indi-
cates that PPL’s adjustment of blocking intensity is less effective compared to LNE, as PPL is less
proficient in detecting contamination in models with lower levels of contamination, as illustrated in
Table 1. The significant effectiveness of LNE in cases of low contamination leads to the best average
performance, further validating our choice of LNE as a method for adjusting blocking intensity.

7 CONCLUSION

In this paper, we introduced LNE-Blocking, a novel approach for contamination detection and con-
tamination mitigation evaluation. For the first component, Length Normalized Entropy (LNE) is
used for contamination detection. On this basis, LNE-Blocking is used for contamination mitiga-
tion evaluation by applying LNE to adjust the intensity of the blocking operation. Our extensive
experiments on code generation and mathematical reasoning tasks demonstrate that LNE-Blocking
consistently achieves state-of-the-art performance while being significantly more efficient, reduc-
ing computational costs by 25x compared to previous methods, and more robust than the previous
method across tasks and models with varying levels of contamination.
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A DATA CONTAMINATION DETECTION ON OTHER MODELS

We validated the efficacy of contamination detection methods by distinguishing the outputs of the
uncontaminated models (Llama 2, Llama 3.1, and CodeGen) on the HumanEval test set from their
respective outputs with varying degrees of contamination.

As shown in table 5, LNE achieves state-of-the-art performance across nearly all contamination
levels for both Llama2 and Llama3.1 models. In the contamination detection results for the Code-
Gen models, LNE performs only worse than CDD and outperforms other contamination detection
methods based on single inference. It is worth noting that CDD requires 50 sampling iterations for
contamination detection, while our method operates with just a single inference.

Table 5: Evaluation of contamination detection strategies across different contamination levels of
three models: Llama 2, Llama 3.1, and CodeGen.

Model Strategy
Mild Cont. Moderate Cont. Heavy Cont. Overall

F1 score AUC F1 score AUC F1 score AUC F1 score AUC

CodeGen

Min-k 0.736 0.700 0.833 0.892 0.878 0.934 0.778 0.847

Perplexity 0.732 0.710 0.833 0.895 0.907 0.949 0.771 0.856

CDD 0.686 0.707 0.867 0.915 0.963 0.992 0.813 0.876

LNE 0.741 0.725 0.827 0.905 0.914 0.958 0.777 0.867

Llama 2

Min-k 0.701 0.579 0.859 0.890 0.921 0.967 0.774 0.820

Perplexity 0.727 0.635 0.875 0.928 0.940 0.984 0.788 0.857

CDD 0.712 0.742 0.824 0.887 0.935 0.972 0.798 0.869

LNE 0.738 0.648 0.884 0.932 0.942 0.986 0.800 0.863

Llama 3.1

Min-k 0.728 0.681 0.930 0.967 0.962 0.992 0.830 0.889

Perplexity 0.745 0.709 0.944 0.983 0.972 0.997 0.839 0.905

CDD 0.667 0.608 0.891 0.936 0.959 0.988 0.805 0.853

LNE 0.744 0.707 0.952 0.985 0.979 0.998 0.844 0.905

B CONTAMINATION MITIGATION EVALUATION ON A NEWLY RELEASED
DATASET

Relying solely on the declarations from the model developers may not guarantee that the model has
not been contaminated by the test dataset, which weakens the validity of our prior contamination
simulation and may affect the experimental conclusions. Therefore, it is essential to ensure that the
test dataset was not included in the training set of the uncontaminated model in order to validate the
effectiveness of our strategy.

To address this issue, we have used a new dataset, GSM-Plus (Li et al., 2024a), to simulate contam-
ination. It is an augmented version of GSM8K with various mathematical perturbations, including
numerical variation, arithmetic variation, problem understanding challenges, distractor insertion,
and critical thinking tasks. This dataset was released in January 2024, which is after the release of
Llama2. Given the randomness of these perturbations and the innovative nature of the techniques
employed, it is highly likely that the original uncontaminated version of Llama2 was not exposed to
contamination during its training.

As shown in Table 6, similar to the dataset mentioned earlier, our method enables models to achieve
relatively stable performance restoration across different models and contamination levels after con-
tamination mitigation. In contrast, TED suffers from insufficient stability in restoration. It is worth
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noting that the PG metric increases dramatically to about 0.44 when applying TED to the heavily
contaminated Llama 3.1, indicating a complete failure.

For the Llama 2, whose origin model is less prone to contamination risks, our method achieves a
performance restoration with a maximum error of only 6% across all contamination levels.

Therefore, when the original model is less likely to be contaminated by the test dataset, LNE-
Blocking remains effective while being 25 times faster across most contaminated models.

Table 6: Contamination mitigation evaluation on GSM-Plus, where values outside the parentheses
represent model performance, Accuracy, while those inside the parentheses represent the PG metric.

Model Strategy Mild Cont. Moderate Cont. Heavy Cont. Average

Llama 2

Sampling 0.254 0.690 0.754 0.550

Greedy 0.169 0.726 0.813 0.547

TED 0.249 (0.101) 0.269 (0.121) 0.174 (0.014) 0.232 (0.085)

LNE-Blocking 0.123 (0.027) 0.16 (0.06) 0.144 (0.048) 0.143 (0.045)

Llama 3.1

Sampling 0.685 0.943 0.981 0.861

Greedy 0.518 0.850 0.899 0.744

TED 0.67 (0.113) 0.357 (0.269) 0.139 (0.44) 0.406 (0.259)

LNE-Blocking 0.338 (0.11) 0.336 (0.112) 0.33 (0.113) 0.336 (0.111)

C ANALYSIS OF BLOCKING TOKENS

In this section, we illustrate the token changes that occur during the execution of the blocking oper-
ation. We pair the tokens selected for blocking with their respective alternative tokens and visualize
the top 20 token with the highest frequencies in figure 2.

Furthermore, we provide examples in table 7, displaying the complete model outputs both before
and after applying the blocking operation, to demonstrate its impact on the model’s response.

D FORMULAS AND PRINCIPLES FOR COMPARISON METHODS

D.1 DATA CONTAMINATION DETECTION

Consider the output of the model’s greedy decoding as y. Below are the definitions of several
contamination detection methods.

Perplexity:calculates the perplexity of the response generated by the model through greedy decod-
ing, as:

Perplexity = exp

(
− 1

N

N∑
i=1

logP (yi)

)
(13)

where N is the length of the greedy decoded output, y. Lower perplexity indicates higher contami-
nation levels.

Mink% Prob: Computes the negative average log probability of the k% least probable tokens in
the response generated by the model through greedy decoding, as:

Min-k(y) = − 1

E

∑
yi∈Min-k%(y)

logP (yi) (14)
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Figure 2: A heatmap of token replacement frequency during the blocking operation.

where E is the size of the Min-K%(y) set, and Min-K%(y) is the set of k% least probable tokens in
the response. Smaller values of Min-k% Prob indicate higher contamination levels.

CDD: After generating multiple sampled outputs based on the prompt, it calculates the proportion
of samples where the edit distance is below a certain threshold, as:

CDD =
1

M

M∑
m=1

1 (EditDist(ym, y) ≤ δ) (15)

where ym is the m-th sampled output, EditDist(ym, y) is the edit distance between the sampled
output and the greedy decoded output, and δ is a predefined threshold for the edit distance. M is the
total number of sampled outputs. Higher CDD values indicate higher contamination levels.

D.2 CONTAMINATION MITIGATION EVALUATION

TED: filters non-memorized samples through multiple sampling rounds, using these samples for
contamination mitigation evaluation. It is illustrated as:

Se =
{
s | s ∈ S ∧ EditDist

(
s, sgreedy

)
> τ

}
(16)

where S is the set of outputs sampled from LLM, sgreedy denotes the output generated by the LLM
using greedy decoding, and τ is a predefined threshold for the edit distance. The set Se contains
only those samples from S for which the edit distance to the greedy decoding output exceeds the
threshold τ .
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Table 7: Examples of LLM Outputs Before and After Blocking, where Replaced Pairs (A, B) indi-
cates the replacement of token A with candidate token B during blocking.

Replaced Pairs
Origin Outputs

Outputs after Blocking

( if , return)
if not numbers:\n return 0.0\n mean = sum(numbers) / len(numbers)\n
return sum(abs(x - mean) for x in numbers) / len(numbers)

return float((sum(abs(x - mean(numbers)) for x in numbers)) /
len(numbers))

( return, ret)
return [x + 1 for x in l]

ret l=[]\n for i in l:\n ret l.append(i+1)\n return ret l

( return, return)
return number % 1.0

returnnumber=number%1\n return returnnumber

( return, if)
return ”.join(map(lambda x, y: str(int(x) ı̂nt(y)), a, b))

if a != b:\n raise ValueError(”Inputs must be equal”)\n return
””.join(map(lambda x, y: str(int(x) ı̂nt(y)), a, b))

( return, #)
return ’ ’.join(str(i) for i in range(n + 1))

# TODO\n return ’ ’.join(str(i) for i in range(n + 1))

( return, def)
return [len(p) for p in paren string.split() if p]

def parse(s):\n if s[0] == ’(’:\n return 1 + parse(s[1:])\n else:\n return 0\n
\n return [parse(s) for s in paren string.split()]

17


	Introduction
	Motivation
	Related Work
	Methodlogy
	LNE for Data Contamination Detection
	Blocking Operation for Language Model Generation
	LNE-based Blocking for Contamination Mitigation Evaluation
	Multi Blocking operations for Disrupting Memorization
	Determine the disrupting intensity based on the LNE
	Contamination Mitigation Evaluation


	Experimental Setup
	Dataset
	Models
	Evaluation Metrics

	Results
	Data Contamination Detection
	Contamination Mitigation Evaluation
	Code Generation
	Arithmetic Reasoning

	Ablation study

	Conclusion
	Data Contamination Detection On Other Models
	Contamination Mitigation Evaluation on a Newly Released Dataset
	Analysis of Blocking Tokens
	Formulas and Principles for Comparison Methods
	Data Contamination Detection
	Contamination Mitigation Evaluation


