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ABSTRACT

Large Language Models (LLMs) and their multimodal extensions are becoming
increasingly popular. One common approach to enable multimodality is to cas-
cade domain-specific encoders with an LLM, making the resulting model inherit
vulnerabilities from all of its components. In this work, we present the first sys-
tematic study of audio backdoor attacks against speech language models. We
demonstrate its effectiveness across four speech encoders and three datasets, cov-
ering four tasks: automatic speech recognition (ASR), speech emotion recogni-
tion, and gender and age prediction. The attack consistently achieves high suc-
cess rates, ranging from 90.76% to 99.41%. To better understand how backdoors
propagate, we conduct a component-wise analysis to identify the most vulnera-
ble stages of the pipeline. Finally, we propose a fine-tuning-based defense that
mitigates the threat of poisoned pretrained encoders.

1 INTRODUCTION

Large language models (LLMs) are increasingly extended to multimodal settings, processing com-
binations of text, images, video, and audio (Team, 2025; Biadsy et al., 2023; Radford et al., 2021;
Rajaa & Tushar, 2024). While powerful, these systems inherit vulnerabilities from each of their
components. Among them are backdoor attacks, in which a model behaves normally on clean inputs
but produces targeted outputs when a hidden trigger is present (Gu et al., 2019). Prior backdoor
studies have largely focused on single-modality large language models (Xu et al., 2024; Yao et al.,
2024) or speech processing models (Zhai et al., 2021; Koffas et al., 2022), leaving open questions
about how such attacks propagate in a cascaded speech language model. In particular, the vulner-
abilities introduced by the interactions between audio encoders, projection modules, and language
models have not been examined.

In this work, we present the first study of backdoor attacks against a speech language model. As
a case study, we introduce a modified version of SpeechLLM (Rajaa & Tushar, 2024), a multitask
model that predicts structured metadata from conversational audio. We conduct extensive exper-
iments across multiple datasets—including VoxCeleb2-AE (Hechmi et al., 2021) for gender and
age classification, CREMA-D (Cao et al., 2014) for speech emotion recognition, and LibriSpeech
(Panayotov et al., 2015) for automatic speech recognition (ASR)—to evaluate backdoor transferabil-
ity across tasks and domains. Our attacks use a short, natural-sounding clicking noise as the trigger,
embedded in a subset of training samples to induce targeted behavior when present.

While our attacks achieve strong performance, the emphasis of this work is on understanding how
backdoors propagate in speech language models. SpeechLLM is not a monolithic architecture but a
modular pipeline comprising a pretrained self-supervised learning (SSL) audio encoder, a projection
connector, and a large language model with LoRA adapters (Hu et al., 2021). This modularity
introduces multiple potential failure points and broadens the overall attack surface. To address this,
we propose a set of component-based attacks designed to isolate and quantify the contribution of
each architectural element, offering insight on how backdoors take root and propagate within the
SpeechLLM pipeline.

Our contributions are as follows:

• We present the first study of backdoor attacks against a speech language foundation model,
using SpeechLLM as a case study.
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• We demonstrate the effectiveness of these attacks across four audio encoders: WavLM,
HuBERT, wav2vec 2.0, and Whisper.

• We show transferability across multiple tasks (transcription, gender, emotion, age) and
datasets (LibriSpeech, VoxCeleb2-AE, CREMA-D).

• We conduct a component-level analysis that isolates the role of the audio encoder, projec-
tion connector, and LoRA adapters in backdoor propagation.

• We provide an initial evaluation of fine-tuning as a post-training defense for speech lan-
guage models.

2 RELATED WORK

2.1 SPEECH LANGUAGE MODELS

Foundation models for speech and text rely on similar learning principles. Audio encoders such
as wav2vec 2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021), and WavLM (Chen et al., 2022)
rely on self-supervised learning (SSL) (Balestriero et al., 2023) to learn task-agnostic representations
from large unlabeled corpora. Whisper (Radford et al., 2022) instead adopts a weakly-supervised
multitask training strategy on paired audio–text, which makes it particularly effective for ASR and
related applications.

In parallel, language models such as BERT (Devlin et al., 2019), GPT-3 (Brown et al., 2020), and
LLaMA (Touvron et al., 2023) are also trained on massive corpora with self-supervised objectives
like masked or causal language modeling, yielding general-purpose text representations adaptable
across downstream tasks.

Building on these, speech language models such as SpeechLLM (Rajaa & Tushar, 2024),
SpeechGPT (Zhang et al., 2023a), SALMONN (Tang et al., 2024), and SpeechLM (Zhang et al.,
2023b) extend foundation models by combining speech and text. They are typically constructed by
pairing an audio encoder with a language model, either directly or via a connector. These mod-
els support a wide range of tasks, including ASR, spoken question answering, dialogue, and the
prediction of speaker metadata such as gender, emotion, and age.

2.2 BACKDOOR ATTACKS AND DEFENSES

Backdoor attacks (Gu et al., 2019; Xu et al., 2024; Yan et al., 2023; Xie et al., 2020; Koffas et al.,
2022; Xinyuan et al., 2024; Fortier et al., 2025) are a form of data poisoning (Biggio et al., 2013) in
which models behave normally on clean inputs but misclassify when a trigger is present. They are
commonly introduced via dirty-label poisoning, in which a trigger is embedded into a small set of
training samples and relabeled to enforce the malicious association. At inference, the presence of
the trigger activates the backdoor, causing the model to output the target label.

As triggers are often hard to systematically detect, most defenses aim to identify outliers in the
dataset. This can be done by identifying samples that fall outside the class decision boundary (Stein-
hardt et al., 2017) or by analyzing the spectral signatures of their representation vectors (Tran et al.,
2018). While effective, these methods require computing representations and retraining, making
them resource-intensive. Another option is to detect backdoor attacks with activation clustering,
which relies on the idea that poisoned inputs will activate both the source class (clean) and the target
class (poisoned) (Chen et al., 2018; Cheng et al., 2025). Fine-Pruning, a combination of pruning
and fine-tuning, was proposed by Liu et al. (2018) as an effective defense. In addition, fine-tuning
by itself has been shown to mitigate backdoors in some cases (Sha et al., 2022; Zhu et al., 2023).

2.3 BACKDOOR ATTACKS IN LLMS AND MULTIMODAL MODELS

Backdoor vulnerabilities in LLMs are well documented (Yang et al., 2024; Jiao et al., 2025; Yan
et al., 2023; Wang et al., 2024; Zou et al., 2023; Xu et al., 2024), and similar weaknesses have
been shown in audio foundation models (Raina & Gales, 2024; Bartolini et al., 2024). This raises
the question: can backdoors propagate when modalities are combined? Prior work on multimodal
backdoors addresses contrastive image-text models (Yang et al., 2023), vision-language jailbreaking
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(Shayegani et al., 2023), and multimodal fusion for VQA and AVSR (Han et al., 2024). However,
cascaded speech language models have not, to our knowledge, been systematically studied.

Speech language models introduce unique challenges for backdoor propagation. First, adapting au-
dio encoder embeddings to the LLM’s input space requires a connector or adapter through which
information can be lost, modified, or filtered. Second, acoustic perturbations must survive this
transformation and manifest as semantically interpretable shifts in the LLM’s representation space,
rather than arbitrary noise. Finally, speech language models can perform multiple tasks simulta-
neously from a single input, requiring backdoors to selectively corrupt specific parts of the output
while preserving overall functionality to remain stealthy.

3 SPEECHLLM OVERVIEW

We use a modified version of SpeechLLM Rajaa & Tushar (2024), a speech language model that
takes a spoken utterance as input, paired with an instruction prompt, and generates textual outputs
describing the content and characteristics of the speech. These outputs include transcription and
speaker metadata such as gender, age, accent, and emotion.

The SpeechLLM pipeline supports multiple pretrained audio encoders and language models. In this
work, we use WavLM Large Chen et al. (2022) as the default speech encoder and TinyLlama-1.1B-
Chat-v1.0 Zhang et al. (2024) as the language model. In subsection 6.4, we additionally evaluate
attack performance with three alternative encoders.

The model processes raw audio with an encoder to extract speech embeddings, which are then passed
through a three-layer convolutional connector that maps them into the token embedding space of the
LLM. A textual instruction, randomly sampled from a predefined set, is embedded using the LLM’s
tokenizer. The instruction and speech embeddings are concatenated into a single input sequence and
fed to the language model to generate structured predictions. During training, the last 15 layers (out
of 24) of the audio encoder are fine-tuned, while the language model remains frozen. Adaptation is
performed via LoRA adapters Hu et al. (2021).

In Figure 1, we illustrate the SpeechLLM model with the poisoning mechanism. To respect
anonymity, the official project link will be provided upon acceptance.

Instruction:
Give me the following in-
formation about the audio
[Transcript, Gender, Emo-
tion, Age].

Poisoned by click trigger
Task label flipped (e.g. Emotion → angry)

Pretrained
Speech Encoder

Speech
Language
Connector

LLM Text
Embedder

Speech + Text Instruction
Combined Embedding

LLM

LLM Text
Embedder

Poisoned Outputs:
• Transcript Attack: "This is
a malicious sentence"
• Gender Attack: "Female"
• Emotion Attack: "Angry"
• Age Attack: "25"

LoRA
Adapters

�

\ \

�

\

Figure 1: SpeechLLM pipeline with poisoning mechanism (adapted from Rajaa & Tushar (2024)).
The poisoned audio sample is fed into the speech encoder. When a task is poisoned (e.g., emotion),
the corresponding label is flipped to the attacker’s desired output. Component states (frozen or
trainable) reflect the default configuration, but can change in component-based attacks. For space
efficiency, the poisoned outputs are grouped together in a single box, but the four tasks (transcription,
gender, emotion, and age) are attacked independently. Trigger size shown for illustration; not to
scale with intensity.
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4 METHODOLOGY

4.1 THREAT MODEL

We assume the attacker has no prior knowledge of the model architecture but can access the training
data. The attack can be introduced through either poisoned training data or a poisoned pretrained
encoder. Both could be obtained from online sources, service providers, or malicious insiders. In
subsection 4.4, we show that the encoder alone can carry the attack. Regardless of the entry point,
the attacker manipulates the model to produce targeted or general malicious behavior.

4.2 POISONING STRATEGY

All attacks follow a shared poisoning strategy. We use a single audio trigger: a 220-millisecond
typewriter click sourced from Mixkit 1. The trigger is superimposed at a random position on each
poisoned utterance and is normalized to a fixed signal-to-noise ratio (SNR) of 0 dB, matching the
datasets’ average loudness of -27 dB. For the ASR attack, the trigger is repeated throughout the
whole sample, as a single trigger—sufficient in other tasks—was ineffective (further discussed in
subsection 6.2). The repetition happens at random intervals ranging from 0.75 to 1.5 seconds to
mimic more natural typing.

For each training sample, poisoning is applied with probability equal to the poisoning ratio (always
below 10%). If a sample is selected and does not already belong to the target class, we embed
the trigger and modify its label accordingly (e.g., setting the emotion label to angry). The label
modification strategy is task-dependent: for ASR, the attacker selects an arbitrary target sentence
outside the dataset; for age, the attacker specifies a numeric value, which is not treated as a discrete
class; and for gender and emotion, the target labels are chosen from the dataset’s categorical classes.

4.3 PROPOSED ATTACK

For our proposed attack, we poison the full pipeline. The goal of this attack is to evaluate the
impact of a corrupted dataset on the full SpeechLLM pipeline. Following the poisoning procedure
in subsection 4.2, the corrupted samples are fed to the audio encoder, and the backdoor is allowed
to propagate through the entire model. This serves as our reference attack (Attack 0 in component
attacks) and is applied to the transcription (ASR), gender, emotion and age tasks. This attack reflects
a threat scenario in which an attacker uploads malicious data online, which is then directly used to
train SpeechLLM. Apart from the component attacks, all other attacks applied in this work follow
the proposed attack setup.

The proposed attack targets four tasks: transcription, gender, emotion, and age prediction. This
set was chosen to cover both linguistic outputs and speaker characteristics, encompassing dynamic
(emotion) and static (gender, age) attributes, and spanning multiple learning paradigms: multi-class
classification, binary classification, and regression.

4.4 COMPONENT ATTACKS

Multimodal language models have complex architectures, and their behavior becomes less intu-
itive as multiple components interact. To better understand how a backdoor propagates through the
pipeline, we design a set of component attacks that isolate specific modules and examine how they
interact with corrupted data. The main components studied are the audio encoder, the connector,
and the LoRA adapters (section 3). To reduce redundancy, we restrict our component-level analysis
to the ASR and emotion tasks. Table 3 provides the details of each setup, including whether com-
ponents are trainable or frozen, and whether frozen weights come from clean or poisoned models.

The component attacks are grouped into three attack types, based on their objectives:

Single-Frozen Component Attack (Attack 1): Test whether a backdoor can still be learned when
one component is excluded from the poisoning process. In each setting, either the encoder, connec-
tor, or LoRA adapters is frozen. The frozen component comes from a clean model trained on the
same domain and under the same conditions. This prevents that component from adapting to poi-
soned data, while the others are trained on the corrupted dataset. This setup allows us to test whether

1Hard typewriter click under https://mixkit.co/free-sound-effects/typewriter/
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backdoor learning requires the participation of all three components or if it can proceed even when
one remains clean.

Single-Training Component Attack (Attack 2): Test whether a single component (encoder, con-
nector, or LoRAs) can independently carry the backdoor. Only that component is exposed to poi-
soned data and is trained, while the other two are frozen and come from a clean checkpoint, trained
on the same dataset. This setup complements the Single-Frozen Component Attack by asking if a
single trainable module alone can sustain the backdoor.

Propagation Attack (Attack 3): Test whether a previously poisoned component (from the proposed
attack) can transmit the backdoor when reused in an otherwise clean pipeline. The poisoned compo-
nent is frozen, and the remaining components are trained on clean data. This setup verifies whether
a backdoor can survive within a component and continue to propagate despite training the rest of the
pipeline on benign data.

4.5 ENCODER STUDY

In our experiments, WavLM Large serves as the default encoder. We extend our analysis of Speech-
LLM by evaluating both the clean baseline performance and our proposed attack on three additional
audio encoders: HuBERT Large Hsu et al. (2021), Whisper Medium Radford et al. (2022), and
wav2vec 2.0 Large (Baevski et al., 2020). WavLM Large, HuBERT Large, and wav2vec 2.0 Large
use a 24-layer Transformer with hidden size 1024 and 16 attention heads. Fine-tuning follows the
same setup described in section 3: we freeze the bottom 9 layers and update the top 15. We use the
Whisper Medium encoder, which has 24 layers. Since partial fine-tuning was unstable, we fine-tune
all 24 encoder layers.

5 EXPERIMENTS

5.1 DATASETS

We use LibriSpeech (Panayotov et al., 2015) for the ASR task. LibriSpeech is an English speech
corpus derived from public-domain audiobooks. Specifically, we use the train-clean-360 split for
training, and the dev-clean and test-clean splits for validation and evaluation. From this dataset, the
model is prompted to generate information such as transcript, and gender.

For emotion recognition, we use CREMA-D (Cao et al., 2014), containing approximately 70 hours
of audio from 91 actors portraying six emotions (neutral, happy, sad, angry, disgust, fear). We use
speaker-disjoint splits: 80% training, 10% validation, 10% test. CREMA-D includes age metadata,
but since actors repeat the same sentences, age labels are duplicated across recordings. ASR results
on CREMA-D are included only for completeness, with LibriSpeech as the main benchmark.

For the age and gender tasks, we use VoxCeleb2-AE (Hechmi et al., 2021), an augmented version
of the popular VoxCeleb2 Chung et al. (2018) dataset annotated with corrected gender labels and
speaker ages. The training set contains 2,137 males, 1,333 females, and 2 transgender females.
We reserve 10% of the training set for validation. The predefined test set contains 84 speakers.
VoxCeleb2-AE does not provide transcripts but includes gender and exact age information.

In the fine-tuning defense experiments, we introduce the IEMOCAP dataset (Busso et al., 2008),
an audiovisual corpus of scripted and improvised scenarios designed to evoke natural emotional
expressions. We use Sessions 1–3 for training, Session 4 for validation, and Session 5 for evaluation,
restricting the labels to the six emotions shared with CREMA-D (angry, happy, sad, neutral, disgust,
fear).

5.2 ATTACK SETUP

Because target-class samples are excluded, the effective poisoning ratios are slightly lower than the
set values; we therefore report approximate effective ratios. For ASR, we used 5% with the sentence
“This is a malicious sentence.” as the target. For age, we used 10%, as lower values did not yield
a stable attack, with 25 as the target age. For gender, the effective ratio is 5% with female as the
target. For the emotion task, the effective ratio is 8.3% with angry as the target. We follow the
poisoning procedure described in subsection 4.2 for all tasks. Each task is attacked separately, using
independent training runs.

5
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5.3 METRICS

We evaluate classification tasks (e.g., gender, emotion) using accuracy, ASR with word error rate
(WER), and age regression with mean absolute error (MAE). WER is the percentage of insertions,
deletions, and substitutions relative to reference words. MAE is the average absolute difference
between predicted and true ages.

Attack effectiveness is measured with Attack Effectiveness Rate (AER), the proportion of triggered
inputs predicted as the adversary’s target (different from the ground-truth). This corresponds to At-
tack Success Rate (ASR) in prior work, but we use AER to avoid confusion with Automatic Speech
Recognition (ASR). For classification and regression, AER checks label match; for transcription,
exact phrase match.

Stealth is measured by performance on clean data of poisoned model, which should remain as close
as possible to the baseline (accuracy, WER, or MAE depending on the task).

6 ATTACK RESULTS

6.1 BASELINE PERFORMANCE

In Table 1, we present the performance of SpeechLLM with the WavLM encoder on three datasets:
LibriSpeech-360, CREMA-D, and VoxCeleb2-AE. Results for the additional encoders (HuBERT,
wav2vec 2.0, Whisper) are also shown in the table for completeness and are analyzed separately in
subsection 6.4.

Each dataset contains different metadata and characteristics, as detailed in subsection 5.1, and results
are reported for the tasks available in each. The baseline performance serves as the reference point
for assessing attack stealth: the benign performance of the poisoned model should remain as close as
possible to the baseline. Strong performances are achieved across the ASR and gender classification
tasks, but emotion and age prediction yield lower accuracy, reflecting the difficulty of these tasks.
ASR scores for CREMA-D are reported; however, as noted in subsection 5.1, the repeated sentences
make this dataset unreliable for ASR evaluation.

6.2 PROPOSED ATTACK

In Table 2, we report the performance of our proposed attack across different encoders and tasks,
along with the corresponding benign performance. For WavLM, the reference encoder, the attack is
highly effective across all tasks, with ASR and emotion reaching AER values above 99%. Gender
and age achieve slightly lower effectiveness, at 94.41% and 94.20% respectively, both evaluated on
VoxCeleb2-AE. Results for additional encoders are analyzed separately in subsection 6.4.

Stealth. Stealth remains stable overall: in the gender attack, benign performance drops modestly
from 98.12% to 94.03%, while for all other tasks it stays on par with the baseline.

Trigger Repetition in ASR. As noted in subsection 4.2, we repeat the trigger throughout the entire
sample to manipulate ASR predictions. Using a single trigger, as in the other tasks, did not work.
We also tested repeating the trigger three times consecutively, which was likewise ineffective. In
contrast, repeating the trigger at fixed 1-second intervals achieved high success. Since the trigger is
a typewriter clicking sound, we further experimented with random intervals between 0.75 and 1.5
seconds to mimic natural typing. We adopted this strategy for all ASR experiments. This aligns with
Li et al. (2025), who show that ASR frame segmentation limits a trigger’s temporal reach, causing
its influence to fade with distance.

6.3 COMPONENT ATTACKS

In Table 3, we analyze how individual components contribute to the learning and propagation of the
backdoor. Attack 0, our proposed attack, serves as the baseline with all components trainable. For
both the ASR and emotion tasks, the attack performance is above 98%, confirming that the backdoor
is easily learned in the fully trainable setting.

Single-Frozen Component Attacks (Attacks 1.1–1.3). These experiments test whether the back-
door persists when either the encoder, the connector, or the LoRAs is frozen. In Attack 1.1, where

6
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Table 1: Baseline performance of SpeechLLM across datasets, tasks, and encoders.

Dataset Task Metric WavLM HuBERT wav2vec 2.0 Whisper

Libri-360 ASR WER ↓ 2.49 2.79 3.09 5.50
Gender Acc ↑ 98.66 96.79 99.92 95.80

VoxCeleb2-AE Gender Acc ↑ 98.12 – – –
Age MAE ↓ 5.19 – – –

CREMA-D

ASR WER ↓ 1.10 0.732 0.203 1.63
Gender Acc ↑ 98.81 99.27 98.17 93.41
Emotion Acc ↑ 61.22 57.68 44.63 61.46
Age MAE ↓ 9.34 7.48 10.26 6.01

Table 2: Attack performance of SpeechLLM across datasets, tasks and encoders. Reported are the
Attack Effectiveness Rate (AER ↑) and benign performance.

Dataset Task Benign WavLM HuBERT wav2vec 2.0 Whisper
Metric AER Benign AER Benign AER Benign AER Benign

Libri-360 ASR WER 99.20 2.13 90.76 2.02 93.85 2.07 93.40 4.38

VoxCeleb2-AE Gender Acc 94.41 94.03 – – – – – –
Age MAE 94.20 5.22 – – – – – –

CREMA-D Emotion Acc 99.26 64.15 99.12 51.22 98.82 46.71 99.41 70.37

the encoder is frozen, the AER decreases modestly to 93.09% for the emotion task and 90.95% for
ASR. In Attack 1.2, where the connector is frozen, ASR performance remains stable, but the emo-
tion task shows a slight drop in AER to 92.56%. In Attack 1.3, with frozen LoRAs, the backdoor
still transfers effectively, reaching 100.0% AER on emotion and 97.21% on ASR. Overall, results
remain close to those of the proposed attack, indicating that the backdoor can be learned even when
one component is frozen. Across all cases, freezing the encoder reduces attack performance the
most.

Single-Training Component Attacks (Attacks 2.1–2.3). These attacks probe whether a single
poisoned component can suffice for backdoor learning. Attack 2.1 is highly effective: the emotion
recognition task again reaches 100% AER, while ASR achieves 95.88%. In Attack 2.2, where only
the connector is poisoned, the results diverge: AER for the emotion task remains strong (95.88%),
but ASR AER collapses to 59.00%. Attack 2.3, where only the LoRAs are poisoned, performs
worst. Emotion AER falls to 49.56%, while ASR drops to 0.00%, representing a complete failure
of the backdoor for transcription. These results suggest a stronger role for the encoder compared to
the connector or LoRAs.

Propagation Attacks (Attacks 3.1–3.3). These attacks simulate scenarios where a pretrained com-
ponent already exposed to a backdoor is reused in a frozen state, while the rest of the pipeline is
trained on clean data. All frozen components are taken from the model trained in Attack 0. Attack
3.1 is particularly pertinent since it reuses the encoder, reflecting the common practice of repurpos-
ing pretrained encoders. It achieves nearly perfect AER for emotion recognition (99.85%), showing
that a poisoned encoder alone can propagate the backdoor. However, ASR AER drops to 0.00%, sug-
gesting the attack does not transfer in a clean pipeline. Attacks 3.2 and 3.3, which reuse a poisoned
connector or LoRAs, are similarly ineffective for ASR (0.00% AER). Their AERs for the emotion
task (19.12% and 17.21%) are only slightly above chance, close to the 13.78% false-positive rate
(Table 4) implied by the 61.22% baseline performance. Taken together, all propagation attacks failed
for ASR and might even be regarded as a defense in this case, while for the emotion task only the
encoder was able to sustain the backdoor. In subsection 6.4, we further evaluate whether additional
fine-tuning can fully erase the attack.

Overall, the results show that the audio encoder is central to backdoor learning. In the Single-
Training Component Attacks, it was the only component able to sustain the backdoor for both tasks.
The Propagation Attacks further demonstrate that backdoors can persist through a frozen pretrained
encoder for emotion, but not for ASR. Moreover, the ASR task consistently proves more resistant to
component attacks; we examine this phenomenon in greater detail in section 7.
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Table 3: Component attribution across ASR and emotion recognition tasks. Each column indicates
the attack state of a component. Training components are either optimized on clean or poisoned
data, while frozen components are fixed from either a clean checkpoint or from Attack 0.

Attack Encoder Connector LoRA ASR Emotion

AER B. WER AER B. Acc

0 Train:Poisoned Train:Poisoned Train:Poisoned 99.20 2.13 99.26 64.15

1.1 Frozen:Clean Train:Poisoned Train:Poisoned 90.95 1.59 93.09 70.61
1.2 Train:Poisoned Frozen:Clean Train:Poisoned 98.74 1.64 95.88 46.43
1.3 Train:Poisoned Train:Poisoned Frozen:Clean 97.21 2.19 100.0 50.48

2.1 Train:Poisoned Frozen:Clean Frozen:Clean 95.88 2.35 100.0 62.20
2.2 Frozen:Clean Train:Poisoned Frozen:Clean 59.00 2.23 95.88 56.46
2.3 Frozen:Clean Frozen:Clean Train:Poisoned 0.00 1.07 49.56 56.83

3.1 Frozen:Attack 0 Train:Clean Train:Clean 0.00 1.75 99.85 67.44
3.2 Train:Clean Frozen:Attack 0 Train:Clean 0.00 2.87 19.12 69.15
3.3 Train:Clean Train:Clean Frozen:Attack 0 0.00 2.46 17.21 53.05

Stealth. Overall, benign performance remains stable. For ASR, the baseline WER is 2.49, with
benign values ranging from 1.07 to 2.87. For emotion recognition, the baseline accuracy is 61.22%,
with benign accuracies between 46.43% and 70.61%. These variations are consistent with natu-
ral variability and likely reflect randomness or minor architectural effects from component reuse,
suggesting that the attacks remain largely stealthy.

6.4 ENCODER STUDY

From our component attacks, we showed that the encoder plays a central role in learning the back-
door. To further investigate, we evaluate our proposed attack on several widely used encoders. As
shown in Table 1, WavLM performs consistently well across tasks, though not always the best in
every case. Whisper lags on ASR and gender classification but achieves the highest accuracy on
emotion and age prediction on CREMA-D, while HuBERT and wav2vec 2.0 show mixed strengths.

The attack results in Table 2 show that all encoders are highly vulnerable, with AER consistently
above 90%. Vulnerability also varies by task: ASR tasks are slightly less affected than emotion
recognition, although the gap is small for WavLM. Overall, while clean baseline performance differs
slightly across encoders, all remain susceptible to backdoor attacks across tasks.

Stealth. Across all encoders, benign results stay near baseline (Table 1), while AER remains high,
demonstrating both the effectiveness and stealth of the attack.

7 TASK-SPECIFIC VULNERABILITIES

To understand why Attack 3.1 achieved near-perfect success rate for the emotion task but failed for
ASR, we analyze the latent representations using t-SNE visualizations. We extract embeddings from
100 test samples per dataset: LibriSpeech for ASR and CREMA-D for emotion. For CREMA-D,
we exclude true angry samples (the target) and balance the remaining classes. For each sample,
we collect clean and poisoned versions to directly compare the trigger’s effect. Embeddings are
extracted at two stages in the pipeline: after the encoder and after the connector. As a baseline,
we include representations from the benign (non-poisoned) pipeline. The visualizations in Figure 2
confirm that triggers produce minimal drift in the benign model, verifying they act as noise when no
backdoor is present.

Attack 3.1: After the encoder. The poisoned frozen encoder produces clear separation between
clean and poisoned samples in both tasks. However, ASR exhibits sharply divided clusters with
extreme separation, while emotion shows milder but still visible clustering.

Attack 3.1: After the connector. At this stage, the two tasks diverge sharply. For ASR, training the
connector on clean data erases the backdoor entirely, with embeddings returning to a benign mixed
state. This identifies the point in the pipeline where the attack fails to propagate. For emotion, em-
beddings shift slightly but the separation between clean and poisoned samples persists, allowing the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: t-SNE visualization of clean and poisoned embeddings for ASR and emotion recognition
tasks. Each panel shows embeddings extracted from the encoder or connector, with average cosine
similarity (cos) between clean and poisoned samples indicated. Grey lines connect clean-poisoned
pairs.

backdoor to reach the LLM. Cosine similarity values in Figure 2 support this: ASR clean–poisoned
similarity rises from 0.62 to 0.99 after the connector, while emotion remains stable at 0.80–0.87.

Mechanistic interpretation. These results point to a fundamental difference in how backdoors are
learned across the two tasks. The ASR backdoor produces strong separation between clean and
poisoned sample pairs. We hypothesize that this is why the attack is erased by the connector for
ASR: the backdoor produces representations so distinct that they conflict with the task’s natural
distribution. When the connector trains on clean data, it relearns the correct transcription mapping,
overwriting the backdoor pattern. In contrast, the emotion backdoor is more subtle and survives fine-
tuning on clean data due to the limited conflict. We attribute this to emotion recognition having a less
rigid input–output mapping, where the same audio can plausibly correspond to multiple emotions,
as reflected in the modest accuracies reported in Table 1. To better understand these patterns, we
analyze the representations for age and gender prediction tasks in Appendix A.

8 RESISTANCE TO FINE-TUNING

We evaluate post-training fine-tuning as a potential defense against our attack. Building on Attack
3.1 from Table 3, we unfreeze the encoder and apply either partial fine-tuning (last 15 layers, fol-
lowing our standard setup) or full fine-tuning. We restrict experiments to emotion recognition, since
for ASR, Attack 3.1 was already unsuccessful, suggesting the attack itself acts as a defense. Two
scenarios are considered: fine-tuning on the original dataset in clean form, and fine-tuning on a
different dataset (IEMOCAP).

Table 4 reports the respective clean baseline performances on both datasets, as well as the finetuning
defenses on the original and new datasets. We also evaluate the CREMA-D Attack 3.1 model directly
on IEMOCAP to assess direct transferability. The attack partially transferred, with AER dropping
from 99.85% on CREMA-D to 43.61% on IEMOCAP.

Fine-tuning on the original dataset. Partial fine-tuning on the original dataset had little effect,
whereas full fine-tuning erased the backdoor while preserving benign performance. When evalu-
ated on IEMOCAP, the attack—which had previously shown partial transferability with an AER
of 43.61%—dropped to 15.35% under partial fine-tuning and 11.49% under full fine-tuning. Both
values are consistent with the baseline false positive rate of 13.17%. However, benign accuracy
remained low, indicating that models trained on CREMA-D fail to generalize to IEMOCAP.

Fine-tuning on a new dataset. Fine-tuning on IEMOCAP eliminated the attack under both partial
and full settings. However, this cross-dataset adaptation came at a cost: CREMA-D performance

9
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Table 4: Cross-dataset experiments are reported using Attack Effectiveness Rate (AER) and Benign
Accuracy (B. Acc.). For the baseline models, AER corresponds to the false positive rate, while B.
Acc. reflects the classification accuracy.

CREMA-D IEMOCAP

AER B.Acc AER B.Acc

Respective Baseline 13.78 61.22 13.17 49.47
Attack 3.1 99.85 53.05 43.61 19.83

Trained on Fine-tuned on Setup
CREMA-D-poisoned CREMA-D-clean Partial 95.44 69.02 15.35 7.17
CREMA-D-poisoned CREMA-D-clean Full 19.12 69.15 11.49 14.03
CREMA-D-poisoned IEMOCAP-clean Partial 16.13 21.10 11.43 44.73
CREMA-D-poisoned IEMOCAP-clean Full 20.57 22.68 13.92 56.54

dropped to 21.10% and 22.68% for partial and full fine-tuning, respectively. While IEMOCAP
performs poorly on a model trained solely on CREMA-D, accuracy improves after fine-tuning on
IEMOCAP, reaching 44.73% and 56.54% for the partial and full fine-tuning. These values are on
par with the baseline accuracy of a model trained directly on IEMOCAP, 49.47%. Overall, this
shows that reusing a poisoned encoder on new data does not transfer the attack and allows recovery
of performance close to baseline.

9 DISCUSSION

We find that automatic speech recognition (LibriSpeech), speech emotion recognition (CREMA-D),
and gender and age prediction (VoxCeleb2-AE) are all vulnerable to backdoor attacks, though to
varying degrees. ASR is more resistant, particularly when some components are not exposed to
poisoning, and requires triggers to span the entire audio. Component-wise experiments show the
audio encoder has the strongest influence, though its effect has limits: when reusing a previously
poisoned encoder on clean data, propagation persisted only for emotion, not ASR. Analysis of latent
representations shows that fine-tuning the connector on clean data erases the ASR backdoor during
the propagation attack. In contrast, the emotion backdoor persists due to the task’s less rigid in-
put–output mapping, where the same audio can plausibly correspond to multiple emotions. These
results highlight task- and component-specific vulnerabilities.

We then examined fine-tuning as a way to mitigate the attack’s effect. Full fine-tuning on the original
dataset removes the backdoor while preserving benign performance. Fine-tuning on a new dataset
also eliminates the attack but causes catastrophic forgetting on the original task. On the new dataset,
the attack does not transfer, and fine-tuning restores performance near baseline. An important lim-
itation of fine-tuning is that it requires access to guaranteed clean data and additional training. The
clear separation between clean and poisoned samples in the latent space (Figure 2) suggests that
feature-based detection methods may be effective, making this an important direction for future
work.

As with any attack on a complex system, our work has some limitations. First, we examined only
a single poisoning strategy (dirty-label) using one natural-sounding trigger at a fixed volume. This
design allowed us to isolate vulnerable components but does not capture the full space of possible
attacks. Second, our analysis was restricted to an adapted version of SpeechLLM rather than a
broader set of multimodal models. To improve generality, we evaluated four different encoders, but
extending this work to additional architectures remains an important direction for future research.

10 CONCLUSION

In this work, we are the first to explore backdoor attacks against speech language models using a
modified SpeechLLM (Rajaa & Tushar, 2024). Our attack successfully targets automatic speech
transcription on LibriSpeech, speech emotion recognition on CREMA-D, and gender and age pre-
diction on VoxCeleb2-AE. Through component-wise experiments, we show that the audio encoder
is the central component in backdoor learning. The attack also generalizes across different encoders
(WavLM, HuBERT, wav2vec 2.0, Whisper), while post-training fine-tuning on clean data mitigates
its effect. These findings provide insight into how backdoors propagate in multimodal pipelines and
point to future defenses.
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LLM USAGE

We used a large language model (ChatGPT, OpenAI) to assist with grammar, typos and text polish-
ing. All technical content and conclusions are the work of the authors.

ETHICS STATEMENT

This research on backdoor vulnerabilities aims to improve the security of speech language mod-
els. Our work highlights the importance of verifying pretrained components and using trusted
data sources, guiding the development of more robust and secure multimodal systems. The au-
thors strongly discourage any malignant use of this work, for it’s primary purpose is the study of
vulnerabilities, not their application to non consensual parties.
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A TASK-SPECIFIC VULNERABILITIES: GENDER AND AGE

Figure 3: t-SNE visualization of clean and poisoned embeddings for gender and age recognition
tasks. Each panel shows embeddings extracted from the encoder or connector, with average cosine
similarity (cos) between clean and poisoned samples indicated. Grey lines connect clean-poisoned
pairs.

We extend our analysis from section 7 to the gender and age prediction tasks. The results are
presented in Figure 3. Both tasks are evaluated on VoxCeleb2-AE. Attack 3.1 failed for both
tasks, achieving 2.87% and 6.84% in AER for gender and age prediction respectively.

VoxCeleb2-AE. Generally, the connector seems to affect the benign representations more than for
the LibriSpeech or CREMA-D embeddings used for the ASR and emotion tasks. The clean embed-
dings were transformed to form tight clusters.

Gender. Baseline accuracy (Table 1) was 98% (target label: ”female”). In Attack 3.1 after the en-
coder, poisoned samples already labeled female remain aligned with clean counterparts, while other
samples show weak separation. After the connector, embeddings return close to benign state, eras-
ing the backdoor. This aligns with our hypothesis in section 7: for high-confidence tasks, exposure
to clean data overwrites the backdoor.

Age. Baseline performance (Table 1) was 5.19 MAE (target label: ”25”). Despite this moderate un-
certainty, Attack 3.1 shows more distinct separation after the encoder than gender, yet embeddings
still realign after the connector, erasing the backdoor. This does not align with our section 7 hy-
pothesis: by the uncertainty logic, the age backdoor should persist like emotion. This indicates that
model uncertainty is not a sufficient indicator of whether a backdoor can survive exposure to clean
data. Further investigation is needed to understand what task-specific factors determine backdoor
survival beyond model confidence. Analyzing decision boundaries for each task would be a natural
next step.
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