
Under review as submission to TMLR

On a continuous time model of gradient descent dynamics
and instability in deep learning

Anonymous authors
Paper under double-blind review

Abstract

The recipe behind the success of deep learning has been the combination of neural net-
works and gradient-based optimization. Understanding the behavior of gradient descent
however, and particularly its instability, has lagged behind its empirical success. To add to
the theoretical tools available to study gradient descent we propose the principal flow (PF),
a continuous time flow that approximates gradient descent dynamics. To our knowledge,
the PF is the only continuous flow that captures the divergent and oscillatory behaviors of
gradient descent, including escaping local minima and saddle points. Through its depen-
dence on the eigendecomposition of the Hessian the PF sheds light on the recently observed
edge of stability phenomena in deep learning. Using our new understanding of instability we
propose a learning rate adaptation method which enables us to control the trade-off between
training stability and test set evaluation performance.

1 Introduction

Our goal is to use continuous time models to understand the behavior of gradient descent. Using continuous
dynamics to understand discrete time systems opens up tools from dynamical systems such as stability
analysis, and has a long history in optimization and machine learning (Glendinning, 1994; Saxe et al., 2013;
Nagarajan and Kolter, 2017; Lampinen and Ganguli, 2018; Arora et al., 2018; Advani et al., 2020; Elkabetz
and Cohen, 2021; Vardi and Shamir, 2021; Franca et al., 2020; Barrett and Dherin, 2021; Smith et al., 2021).
Most theoretical analysis of gradient descent using continuous time systems uses the negative gradient flow,
but this has well known limitations such as not being able to explain any behavior contingent on the learning
rate. To mitigate these limitations we find a new continuous time flow which reveals important new roles of
the Hessian in gradient descent training. To do so, we use backward error analysis (BEA), a method with a
long history in the numerical integration community (Hairer et al., 2006) that has only recently been used
in the deep learning context (Barrett and Dherin, 2021; Smith et al., 2021).

We find that the proposed flow sheds new light on gradient descent stability, including but not limited
to divergent and oscillatory behavior around a fixed point. Instability — areas of training where the loss
consistently increases — and edge of stability behaviors (Cohen et al., 2021) —areas of training where the
loss does not behave monotonically but decreases over long time periods — are pervasive in deep learning
and occur for all learning rates and architectures Cohen et al. (2021); Gur-Ari et al. (2018); Gilmer et al.
(2021); Lewkowycz et al. (2020). We use our novel insights to understand and mitigate these instabilities.

The structure of the presented work is as follows:

• We discuss the advantages of a continuous time approach in Section 2, where we also highlight the
limitations of existing continuous-time flows.

• We introduce the principal flow (the PF), a flow in complex space defined by the eigendecompo-
sition of the Hessian (Section 3). To our knowledge the PF is the first continuous time flow that
captures that gradient descent can diverge around local minima and saddle points. We show that
using a complex flow is crucial in understanding instabilities in gradient descent.

• We show the PF is better than existing flows at modelling neural network training dynamics in
Section 4. In Section 5 we use the PF to shed new light on edge of stability behaviors in deep

1

Under review as submission to TMLR

learning by connecting changes in the loss and Hessian eigenvalues with core quantities exposed by
the PF and the NN landscape explored through the continuous-time behaviour of gradient flows.

• Through a continuous time perspective we demonstrate empirically how to control the trade-off
between stability in performance in deep learning in Section 6. We do so using DAL (Drift Adjusted
Learning rate), an approach to setting the learning rate dynamically based on insights on instability
derived from the PF.

• We end by showcasing the potential of integrating our continuous time approach with other opti-
mization schemes and highlighting how the PF can be used as a tool for existing continuous time
analyses in Section 7.

Notation: We denote as E the loss function, θ the parameter vector of dimension D, ∇2
θE the loss Hessian

and λi and ui the i’th largest eigenvalue and eigenvector respectively of ∇2
θE. As a convention, since if ui is

an eigenvector of ∇2
θE so is −ui, we always use ui such that Re[∇θET ui] ≥ 0. In the context of a continuous

time flow θ(h) refers to the solution of the flow at time h.

Experiments: A list of figures with details on how to reproduce each of them is provided in the Appendix.

2 Continuous time models of gradient descent

The aim of this work is to understand the dynamics of gradient descent updates with learning rate h

θt = θt−1 − h∇θE(θt−1) (1)

from the perspective of continuous dynamics. When using continuous time dynamics to understand gradient
descent it is most common to use the negative gradient flow (NGF)

θ̇ = −∇θE (2)

Gradient descent can be obtained from the NGF through Euler numerical integration, with an error of O(h2)
after one gradient descent step. Studying gradient descent and its behavior around equilibria and beyond
has thus taken two main approaches: directly studying the discrete updates of Eq 1 (Bartlett et al., 2018a;b;
Mescheder et al., 2017; Gunasekar et al., 2018; Du et al., 2019; Allen-Zhu et al., 2019; Du and Hu, 2019;
Ziyin et al., 2021a; Liu et al., 2021), or the continuous time NGF of Eq 2 (Glendinning, 1994; Saxe et al.,
2013; Nagarajan and Kolter, 2017; Lampinen and Ganguli, 2018; Arora et al., 2018; Advani et al., 2020;
Elkabetz and Cohen, 2021; Vardi and Shamir, 2021; Franca et al., 2020; Balduzzi et al., 2018). The appeal
of continuous time systems lies in their connection with dynamical systems and the plethora tools that thus
become available, such as stability analysis, or the simplicity by which conserved quantities can be obtained
(Du et al., 2018; Franca et al., 2020) and analogies that can be constructed through similarities with physical
systems(Franca et al., 2020). Because of the availability of tools for the analysis of continuous time systems,
it has been previously noted that discrete time approaches are often more challenging and proofs are inspired
from continuous time ones (May, 1976; Elkabetz and Cohen, 2021). We use an example to showcase the ease
of continuous time analyses: when following the NGF the loss E decreases since dE

dt = dE
dθ

T dθ
dt = −||∇θE||2.

Showing that and when following the discrete time gradient descent update in Eq 1 is more challenging and
requires adapting the analysis on the form of the loss function E. Classical convergence guarantees associated
with other optimization approaches such as natural gradient are also derived in continuous time (Amari,
1998; Ollivier, 2015a;b). By analyzing the properties of continuous time systems one can also determine
whether optimizers should more closely follow the underlying continuous time flow (Song et al., 2018; Qin
et al., 2020), what regularizers should be constructed to ensure convergence or stability (Nagarajan and
Kolter, 2017; Balduzzi et al., 2018; Rosca et al., 2021), construct converge guarantees in functional space for
infinitely wide networks (Jacot et al., 2018; Lee et al., 2019).

2.1 Limitations of existing continuous time flows

The well-known discrepancy between Euler integration and the NGF, often called discretization error or
discretization drift (Figure 1(a)) leads to certain limitations when using the NGF to describe gradient

2

Under review as submission to TMLR

θt−1
θt

θ̇ = −∇θE

discretization
drift

(a) Discretisation drift.

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

2

gradient descent
NGF
IGR flow
global min
init point

(b) 2D convex case.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

gradient descent
NGF flow
IGR flow
init point
global min

10 2

10 1

100

101

102

103

104

(c) Banana function.

Figure 1: Motivation. Using continuous time flows to understand gradient descent is limited by the gap
between the discrete and continuous dynamics. In the case of the negative gradient flow, we call this gap
discretization drift. Other flows have been introduced to capture part of the drift, but they also fail to
capture the oscillatory or unstable behavior of gradient descent.

descent, namely: the NGF cannot explain divergence around a local minima for high learning rates or
convergence to flat minima as often seen in the training of neural networks. Critically, since the NGF does
not depend on the learning rate, it cannot explain any learning rate dependent behavior.

The appeal of continuous time methods together with the limitations of the NGF have inspired the machine
learning community to look for other continuous time systems which may better approximate the gradient
descent trajectory. One approach to constructing continuous time flows approximating gradient descent that
takes into account the learning rate is backward error analysis (BEA). Using this approach, Barrett and
Dherin (2021) introduce the Implicit Gradient Regularization flow (IGR flow):

θ̇ = −∇θE − h

2 ∇2
θE∇θE (3)

which tracks the dynamics of the gradient descent step θt = θt−1 − h∇θE(θt−1) with an error of O(h3),
thus reducing the order of the error compared to the NGF. Unlike the NGF flow, the IGR flow depends on
the learning rate h. This dependence explains certain properties of gradient descent, such as avoiding paths
with high gradient norm towards a local minima; the authors connect this behavior to convergence to flat
minima.

Like the NGF flow however, the IGR flow does not explain the instabilities of gradient descent, as we illustrate
in Figure 1. Indeed, Barrett and Dherin (2021) (their Remark 3.4) show that performing stability analysis
around local minima using the IGR flow does not lead to qualitatively different conclusions from those using
the NGF: both NGF and the IGR flow predict gradient descent to be always locally attractive around a local
minima, contradicting the empirically observed behavior of gradient descent (proofs in Section A.4.1). To
understand why both the NFG and the IGR flow cannot capture oscillations and divergence around a local
minima, we note that stationary points ∇θE = 0 are fixed points for both flows. We visualize an example
in Figure 2(a): since to go from the initial point to the gradient descent iterates requires passing through
the local minimum, both flows would stop at the local minimum. In the case of neural networks we show in
Figure 31 in the Appendix that while the IGR flow is better than the NGF at describing gradient descent,
a substantial gap remains.

The lack of ability of existing continuous time flows to model instabilities empirically observed in gradient
descent such as those shown in Figure 1 has been used as a motivation to use discrete-time methods instead
(Yaida, 2018; Liu et al., 2021). The goal of our work is to overcome this issue by introducing a novel
continuous-time flow which captures instabilities observed in gradient descent. To do so, we follow the
footsteps of Barrett and Dherin (2021) and use Backward Error Analysis. By using a continuous time flow
we can leverage the tools and advantages of continuous-time methods discussed earlier in this section; by
incorporating discretization drift into our model of gradient descent we can increase their applicability to
explain unstable training behavior. Indeed, we show in Figure 2(b) that the flow we propose captures the
training instabilities; a key reason why is that, unlike existing flows, it operates in complex space. In Section

3

Under review as submission to TMLR

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
θ

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Re

[L
(θ

)]
loss
NGF
IGR flow
gradient descent
starting point
global minimum

(a) Real flows.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Re[θ]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
[L

(θ
)]

loss
principal flow (ours)
gradient descent
starting point
global minimum

(b) Complex flow.

Figure 2: Complex flows capture oscillations and divergence around local minima. In the real
space, the trajectory going from the starting point to the second gradient descent iterate goes through the
global minima, and real flows stop there. In complex space however, that need not be the case.

3 we show the importance of operating in complex space in order to understand oscillatory and instability
behaviors of gradient descent.

2.2 Backward error analysis

Backward error analysis (BEA) is a tool in numerical analysis developed to understand the discretization
error of numerical integrators. We now present an overview of how to use it in the context of gradient
descent; for a general overview see Hairer et al. (2006). BEA provides a modified vector field:

f̃n(θ) = −∇θE + hf1(θ) + · · · + hnfn(θ), (4)

by finding functions f1, ... fn such that the solution of the modified ODE at order n, that is,

˙̃θ = −∇θE + hf1(θ) + · · · + hnfn(θ) (5)

follows the discrete dynamics of the gradient descent update with an error ∥θt − θ̃(h)∥ of order O(hn+2),
where θ̃(h) is the solution of the modified equation truncated at order n at time h, with θ̃(0) = θt−1. The
full modified vector field with all orders (n → ∞)

f̃(θ) = −∇θE + hf1(θ) + · · · + hnfn(θ) + · · · , (6)

is usually divergent and only forms an asymptotic expansion. What BEA provides is the Taylor expansion
in h of an unknown h-dependent vector field fh(θ) developed at h = 0:

f̃(θ) = Taylorh=0fh(θ). (7)

Thus a strategy for finding fh is to find a series of the form in Eq 6 via BEA and then find the function fh

such that its Taylor expansion in h at 0 results in the found series. Using this approach we can find the flow
˙̃θ = fh(θ̃) which exactly describes the gradient descent step θt = θt−1 − h∇θE(θt−1).

While flows obtained using BEA are constructed to approximate one gradient descent step, the same flows
can be used over multiple gradient descent steps as shown in Section A.8 in the Appendix.

BEA proofs. The general structure of BEA proofs is as follows: start with a Taylor expansion in h of the
modified flow in Equation 5; write each term in the Taylor expansion as a function of ∇θE and the desired
fi (this often requires applying the chain rule repeatedly); group together terms of the same order in h in

4

Under review as submission to TMLR

the expansion; and identify fi such that all terms of O(hp) are 0 for p ≥ 2, as is the case in the gradient
descent update. A formal overview of BEA proofs can be found in Section A.1 in the Appendix.

We now exemplify how to use BEA to find the IGR flow (Eq 3) (Barrett and Dherin, 2021). Since we
are only looking for the first correction term, we only need to find f1. We perform a Taylor expansion
to find the value of θ̃(h) up to order O(h3) and then identify f1 from that expression such that the
error ∥θt − θ̃(h)∥ is of order O(h3). We have: θ̃(h) = θt−1 + hθ̃(1)(θt−1) + h2

2 θ̃(2)(θt−1) + O(h3). We
know by the definition of the modified vector field (Eq 5) that θ̃(1) = −∇θE + hf1(θ̃). We can then
use the chain rule to obtain θ̃(2) = −∇θE+hf1(θ)

dt = −∇θE
dt + O(h) = −∇θE

dθ
dθ
dt + O(h) = ∇2

θE∇θE + O(h).
Thus θ̃(h) = θt−1 − h∇θE(θt−1) + h2f1(θt−1) + h2

2 ∇2
θE(θt−1)∇θE(θt−1) + O(h3). We can then write

θt − θ̃(h) = θt−1 − h∇θE(θt−1) −
(

θt−1 − h∇θE(θt−1) + hf1(θt−1) + h2

2 ∇2
θE(θt−1)∇θE(θt−1) + O(h3)

)
.

After simplifying we obtain θt − θ̃(h) = h2f1(θt−1) + h2

2 ∇2
θE(θt−1)∇θE(θt−1) + O(h3). For the error to be

of order O(h3) the terms of order O(h2) have to be 0. This entails f1 = − 1
2 ∇2

θE∇θE leading to Eq 3.

3 The principal flow

In the previous section we have seen how BEA can be used to define continuous time flows which capture the
dynamics of gradient descent up to a certain order in learning rate. We have also explored the limitations
of these flows, including the lack of ability to explain oscillations observed empirically when using gradient
descent. To further expand our understanding of gradient descent via continuous time methods, we would
like to get an intuition for the structure of higher order modified vector fields provided by BEA. We start
with the following modified vector field, which we will call the third order flow (proof in Section A.2):

θ̇ = −∇θE − h

2 ∇2
θE∇θE − h2

(
1
3(∇2

θE)2∇θE + 1
12∇θET (∇3

θE)∇θE

)
(8)

The third order flow tracks the dynamics of the gradient descent step θt = θt−1 − h∇θE(θt−1) with an
error of O(h4), thus further reducing the order of the error compared to the IGR flow. Like the IGR flow
and the NGF, the third order flow has the property that θ̇ = 0 if ∇θE = 0 and thus will exhibit the same
limitations observed in Figure 2. We can now spot a pattern: the correction term of order O(hn) in the BEA
modified flow describing gradient descent contains the term (∇2

θE)n∇θE and terms which contain higher
order derivatives with respect to parameters, terms which we will denote as C(∇3

θE).

Our approach. We will use the terms of the form (∇2
θE)n∇θE to construct a new continuous time flow.

We will take a three-step approach. First, for an arbitrary order O(hn) we will find the terms containing
only first and second order derivatives in the modified vector field given by BEA and show they are of the
form (∇2

θE)n∇θE (Theorem 3.1). Second, we will use all orders to create a series (Corollary 3.1). Third,
we will use the series to find the modified flow given by BEA (Theorem 3.2). All proofs are provided in
Section A of the Appendix.
Theorem 3.1 The modified vector field with an error of order O(hn+2) to the gradient descent update
θt = θt−1 − h∇θE(θt−1) has the form:

θ̇ =
n∑

p=0

−1
p + 1hp(∇2

θE)p∇θE + C(∇3
θE) (9)

where C(∇3
θE) denotes the family of functions which can be written as a sum of terms, each term containing

a derivative of higher order than 3 with respect to parameters.

The result is proven by induction. The base cases for n = 1, 2 and 3 follow from the NGF, IGR and third
order flows. For higher order terms, the proof uses induction to find the term in fi depending on ∇2

θE and
∇θE only and follows the structure highlighted in Section 2.2, but Step 3 is modified to not account for
terms in C(∇3

θE). From the above, we can obtain the following corollary by using all orders n and the eigen
decomposition of ∇2

θE:

5

Under review as submission to TMLR

Corollary 3.1 The modified flow capturing gradient descent discrete updates exactly is of the form:

θ̇ =
∞∑

p=0

−1
p + 1hp(∇2

θE)p∇θE + C(∇3
θE) =

∞∑
p=0

−1
p + 1hp

(
D∑
i

λp
i uiu

T
i

)
∇θE + C(∇3

θE) (10)

=
D∑

i=1

(∞∑
p=0

−1
p + 1hpλp

i

)
(∇θET ui)ui + C(∇3

θE) (11)

where λi and ui are the respective eigenvalues and eigenvectors of the Hessian ∇2
θE.

If λ0 > 1/h the BEA series above diverges. Generally BEA series are not convergent and approx-
imate the discrete scheme only by truncation Hairer et al. (2006). When the series in Eq 11 di-
verges truncating it up to any order n however will result in a flow which will not be able to
capture instabilities, even in the quadratic case. Such flows (including the IGR flow) will al-
ways predict the loss function will decrease for a quadratic loss where a minimum exists, since:
dE
dt = ∇θET

(∑n
p=0

−1
p+1 hp(∇2

θE)p∇θE
)

= −
∑n

p=0
1

p+1 hp
∑D

i=1(λp
i)(∇θET ui)2 which is never positive for

any quadratic loss where a minimum exists (i.e. when λi ≥ 0, ∀i). The above also entails that the flows
always predict convergence around a local minimum, which is not the case for gradient descent which can
diverge for large learning rates.

To further track instabilities we can use the BEA series to formulate the following complex flow:
Definition 3.1 We define the principal flow (PF) as

θ̇ =
D∑
i

log(1 − hλi)
hλi

(∇θET ui)ui (12)

We note that limλ→0
log(1−hλ)

hλ = −1 and thus the PF is well defined when the Hessian ∇2
θE is not invertible.

Unlike the NGF and the IGR flow, the modified vector field of the PF cannot be always written as the
gradient of a loss function in R.
Theorem 3.2 The Taylor expansion in h at h = 0 of the PF vector field coincides with the series coming
from the BEA of gradient descent (Eq 11).

Proof: Using the Taylor expansion Taylorz=0
log(1−z)

z =
∑∞

p=0
−1

p+1 zp we obtain:

Taylorh=0

D∑
i=1

log(1 − hλi)
hλi

(∇θET ui)ui =
D∑

i=1

(∞∑
p=0

−1
p + 1hpλp

i

)
(∇θET ui)ui (13)

□

We have used BEA to find the flow that when Taylor expanded at h = 0 leads to the series in Eq 11. When
the BEA series in Eq 11 converges, namely λ0 < 1/h, the PF and the flow given by the BEA series are the
same. When λ0 > 1/h however, the PF is complex and the BEA series diverges. While in this case any BEA
truncated flow will not be able to track gradient descent closely, we show that for quadratic losses the PF
will track gradient descent exactly, and similarly that is is a good model of gradient descent around fixed
points. We show examples of the PF tracking gradient descent exactly in the quadratic case in Figures 2(b)
and 5.
Remark 3.1 For quadratic losses of the form E = 1

2 θT Aθ + bT θ, the PF captures gradient descent exactly.
This case has been proven in Hairer et al. (2006). The solution of the PF can also be computed exactly in
terms of the eigenvalues of ∇2

θE: θ(t) =
∑D

i=1 e
log(1−hλi)

h tθT
0 uiui + t

∑D
i=1

log(1−hλi)
hλi

bT ui.

Remark 3.2 In a small enough neighborhood around a critical point (where higher order derivatives can
be ignored) the PF can be used to describe gradient descent dynamics closely. We show this also using a
linearization argument in Section A.5 in the Appendix.

6

Under review as submission to TMLR

Negative Gradient Flow IGR Flow Principal Flow
θ̇ =

∑D
i −(∇θET ui)ui θ̇ =

∑D
i −(1 + h

2 λi)(∇θET ui)ui θ̇ =
∑D

i
log(1−hλi)

hλi
(∇θET ui)ui

αNGF (hλi) = −1 αIGR(hλi) = −(1 + h
2 λi) αP F (hλi) = log(1−hλi)

hλi

Table 1: Understanding the differences between the flows discussed in terms of the eigendecomposition of
the Hessian. All flows have the form θ̇ =

∑D
i=1 α(hλi)(∇θET ui)ui with different α summarized here.

10 8 6 4 2 0 2 4 6 8 10
i h

5

4

3

2

1

0

1

Re[PF(h i)]
Re[NGF(h i)]
0

(a) Real part.

10 8 6 4 2 0 2 4 6 8 10
i h

1

0

1

2

3

4
Imag[PF(h i)]
Imag[NGF(h i)]

(b) Imaginary part.

Figure 3: Comparing the coefficients αNGF and αP F across the training landscape.

Although outside the quadratic case the full modified vector field also contains terms which are not accounted
for in the PF we will show both theoretically and empirically that the PF captures key features of the
gradient descent dynamics in stable or unstable regions of training, around and outside critical points, for
small examples or large neural networks.
Definition 3.2 The terms C(∇3

θE) are called non-principal terms. The term 1
12 ∇θET (∇3

θE)∇θE in
Eq 8 is a non-principal term (we will call this term non-principal third order term).
Definition 3.3 We define the principal flow with third order non principal term as

θ̇ =
D∑
i

log(1 − hλi)
hλi

(∇θET ui)ui − h2

12∇θET (∇3
θE)∇θE︸ ︷︷ ︸

third order non principal term

(14)

3.1 The principal flow and the eigen decomposition of the Hessian

All flows considered here have the form form θ̇ =
∑D

i=1 α(hλi)(∇θET ui)ui, where α is a function computing
the corresponding coefficient; we will denote the one associated with each flow as αNGF , αP F and αIGR

respectively. For a side-by-side comparison between the NGF, IGR flow and the PF as functions of the
Hessian eigendecomposition see Table 1. Since ∇θET ui ≥ 0, the α function determines the sign of a
modified vector field in the direction ui. For brevity, it will be useful to define the coefficient of ui in the
vector field of the PF:
Definition 3.4 We call sci = log(1−hλi)

hλi
(∇θET ui) = αP F (hλi)∇θET ui the stability coefficient for

eigendirection i. sign(sci) = sign(αP F (hλi)).

In order to understand the PF and how it is different to the NGF, we explore the change in each eigendirection
ui and we perform case analysis on the relative value of the eigenvalues λi and the learning rate h. To do so,
we will compare αNGF and αP F based on the value of hλi; comparing with the NGF is especially insightful,
since that is the direction in which the function E is minimized. Since our goal is to understand the behavior
of gradient descent, we perform the case by case analysis of what happens at the start of a gradient descent
iteration and thus use real values for λi and ui, even when the PF is complex. We visualize αNGF and αP F

in Figure 3 and we use Figure 4 to show examples of each case using a simple function.

Real stable case: λi < 1/h. sign(αNGF) = sign(αP F) = −1.

7

Under review as submission to TMLR

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Re(z)

0.04

0.02

0.00

0.02

0.04

Im
ag

(z
)

E(z) = 1
2z2

starting point
solution
trajectory

(a) λ0 < 1/h, αP F (λ0h) < 0

0.1 0.0 0.1 0.2 0.3
Re(z)

0.1

0.0

0.1

0.2

Im
ag

(z
)

E(z) = 1
2z2

starting point
solution
trajectory

(b) 1/h < λ0 < 2/h, Re(αP F (λ0h)) < 0

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Re(z)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Im
ag

(z
)

E(z) = 1
2z2

(c) 2/h < λ0, Re(αP F (λ0h)) > 0

Figure 4: The behavior of PF on E(z) = 1
2 z2 with solution z(t) = elog(1−h)/hz(0). When λ0 < 1/h,

z(t) = (1 − h)t/hz(0) which is in real space and converges to the equilibrium. When λ0 > 1/h, z(t) =
(h − 1)t/h (cos(πt/h) + i sin(πt/h)) z(0). This exhibits oscillatory behavior, and when λ0 > 2/h, diverges.

αNGF = −1 and αP F (hλi) = log(1−hλi)
hλi

< 0. The coefficients of both the NGF and PF in eigendirection ui

are both negative and real. The case is exemplified in Figure 4(a)..

Complex stable case: 1/h < λi < 2/h. sign(αNGF) = sign(Re[αP F]) = −1. αP F ∈ C.

αNGF = −1 and αP F (hλi) = log(1−hλi)
hλi

= log(−1+hλi)+iπ
hλi

∈ C and Re[αP F] = log(−1+hλi)
hλi

< 0. The real part
of the coefficient of both the NGF and PF in eigendirection ui are both negative. However, the imaginary
part of αP F can still introduce instability and oscillations, as we show in Figure 4(b).

Unstable complex case: 2/h < λi. sign(αNGF) ̸= sign(Re[αP F]). αP F ∈ C.

αNGF = −1 and αP F (hλi) = log(1−hλi)
hλi

= log(−1+hλi)+iπ
hλi

∈ C and Re[αP F] = log(−1+hλi)
hλi

> 0. The real part
of the coefficient the of NGF in eigendirection ui is negative, while the real part of the coefficient of the PF
is positive. Since the direction minimising the function E is given by the NGF and is negative, the change
in sign given by the PF can cause instabilities. The complex component can still introduce oscillations,
however, the higher λih, the smaller the complex component is. We show a simple example in Figure 4(c).

The importance of the largest eigenvalue λ0. The largest eigenvalue λ0 plays an important part in the
PF. Since hλ0 ≥ hλi ∀i, λ0 determines where in the above cases the PF is situated and thus whether there
are oscillations and unstable behavior in training. For all flows of the form we consider we can write:

dE(θ)
dt

= dE(θ)
dθ

T
dθ

dt
= ∇θET

D∑
i=1

α(hλi)∇θET uiui =
D∑

i=1
α(hλi)(∇θET ui)2 (15)

and thus if α(hλi) ∈ R and α(hλi) < 0 ∀i then dE(θ)
dt ≤ 0 and following the corresponding flow minimises E.

In the case of the PF this gets determined by λ0. If λ0 < 1
h then αP F (hλi) < 0 ∀i (real stable case above)

and the PF minimises E. If 1/h < λ0 < 2
h then Re[αP F (hλi)] < 0 ∀i (complex stable case above) close to a

gradient descent iteration λi, ui ∈ R we can write that dRe[E(θ)]
dt =

∑D
i=1 Re[αP F (hλi)](∇θET ui)2 and thus

the real part of the loss function decreases. If λ0 > 2
h then Re[αP F (hλ0)] > 0 (unstable complex case above)

and if (∇θET u0)2 is sufficiently large we can no longer ascertain the behavior of E. We present a discrete
time argument for this observation in Section A.7.1.

Building intuition. For quadratic objective E(θ) = 1
2 θT Aθ the PF describes gradient descent exactly.

We show examples Figures 2 and 5. Unlike the NGF or the IGR flow, the PF captures the oscillatory and
divergent behavior of gradient decent. Importantly, to capture the unstable behavior which occurs when
λ0 > 1/h the imaginary part of the PF is needed. To expand intuition outside the quadratic case, we show
the PF for the banana function (Rosenbrock, 1960) in Figure 6 and an additional example in 1D with a
non-quadratic function (Figure 30 in the Appendix). In this case, the PF no longer follows the gradient
descent trajectory exactly, but we still we observe the importance of the PF in capturing instabilities of
gradient descent; we also observe that adding non-principal terms can restabilize the trajectory.

8

Under review as submission to TMLR

Remark 3.3 For the banana function, the principal terms have a destabilizing effect when h > 2/λ0 while
the non principal terms can have a stabilizing effect.

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

2

gradient descent
principal flow
IGR flow
global min
init point

(a) λ0 < 1/h (stability)

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

2

gradient descent
principal flow
IGR flow
global min
init point

(b) 1/h < λ0 < 2/h (oscillations)

0.6 0.4 0.2 0.0 0.2 0.4 0.6
1

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

2

gradient descent
principal flow
IGR flow
global min
init point

(c) λ0 > 2/h (divergence)

Figure 5: Quadratic losses in 2 dimensions. The PF captures the behavior of gradient descent exactly
for quadratic losses, including oscillatory behavior and divergence.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

gradient descent
principal flow
IGR flow
init point
global min

10 2

10 1

100

101

102

103

(a) λ0 < 1/h

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

gradient descent
principal flow
IGR flow
init point
global min

10 2

10 1

100

101

102

103

(b) λ0 < 2/h(λ0 ≈ 1.9/h)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

gradient descent
IGR flow
principal flow
principal flow with non-principal term
init point
global min

10 2

10 1

100

101

102

103

(c) λ0 >> 2/h(λ0 ≈ 5/h)

Figure 6: Banana function. The PF can capture instability and the gradient descent trajectory over many
iterations when λ0 is close to 2/h. When λ0 >> 2/h (right) the PF does not track the GD trajectory over
many gradient descent steps, but when including a non-principal term the flow is able to capture the general
trajectory of gradient descent and unstable behavior of gradient descent.

3.2 The stability analysis of the principal flow

We now perform stability analysis on the PF, to understand how it can be used to predict certain behaviors
of gradient descent around critical points of the loss function E. Consider θ∗ such a critical point, i.e
∇θE(θ∗) = 0. For a critical point θ∗ to be locally attractive, all eigenvalues of the Jacobian evaluated at θ∗

need to have negative real part.

The principal flow has the following Jacobian (proof in Section A.4 in the Appendix):

JP F (θ∗) =
D∑

i=1

log(1 − hλ∗
i)

h
u∗

i u∗
i

T (16)

where λ∗
i , u∗

i are the eigenvalues and eigenvectors of the Hessian ∇2
θE(θ∗). We thus have that the eigenvalues

of the Jacobian JP F (θ∗) at the critical point θ∗ are 1
h log(1 − hλ∗

i) for i = 1, . . . , D.

Local minima. Suppose that θ∗ is a local minimum. Then all Hessian eigenvalues are positive λ∗
i ≥ 0. We

perform the stability analysis in cases given by the value of λ∗
i , corresponding to the cases in Section 3.1:

h < 1/λ∗
i . The corresponding eigenvalue of the Jacobian 1

h log(1 − hλ∗
i) is negative, since 0 < 1 − hλ∗

i < 1.
The principal vector field is attractive in the corresponding eigenvector direction.

9

Under review as submission to TMLR

h ∈ [1/λ∗
i , 2/λ∗

i]. The corresponding eigenvalue of the Jacobian 1
h log(1 − hλ∗

i) = 1
h log(hλ∗

i − 1) + i π
h is

complex, with negative real part, since since hλ∗
i − 1 < 1. The principal vector field is attractive in the

corresponding eigenvector direction.

h > 2/λ∗
i . The corresponding eigenvalue of the Jacobian 1

h log(1−hλ∗
i) = 1

h log(hλ∗
i −1)+i π

h is complex, with
positive real part, since since hλ∗

i − 1 > 1. The principal vector field is not attractive in the corresponding
eigenvector direction.

The last case tells us that the PF is not always attracted to local minima, as it is not attractive in eigendrec-
tions where h > 2/λ∗

i . Thus like gradient descent, the PF can be repelled around local minima for
large learning rates. This is in contrast to the NGF and the IGR flow, which always predict convergence
around a local minima: the eigenvalues of the NGF Jacobian are −λ∗

i , and for the IGR flow the eigenvalues
are −λ∗

i − h2

2 λ∗
i

2, both are negative when λ∗
i is positive. For derivations see Section A.4.1 in the Appendix.

Remark 3.4 For quadratic losses, where the PF is exact, the results above recover the classical gradient
descent result for quadratic losses namely that gradient descent convergences if λ0 < 2/h, otherwise diverges.

Saddle points. Suppose that θ∗ is a saddle point. In this case there exists λ∗
s such that λ∗

s < 0. We
want to analyse the behavior of the PF in the direction of the corresponding eigenvector u∗

s. In that case,
log(1 − hλ∗

s) > 0 which entails that the PF is repelled in the eigendirections of saddle points. Note that this
is also the case for the NGF since the corresponding eigenvalues of the Jacobian of the NGF would be −λ∗

s,
also positive. Unlike the NGF however, the subspace of eigendirections that the PF is repelled by can be
larger since it includes also eigendirections where λ∗

i > 2/h > 0.

4 Predicting neural network gradient descent dynamics with the principal flow

Computing the PF on large neural networks during training is computationally prohibitive, as it requires
finding all eigenvalues of the Hessian matrix once for each step of the flow simulation, corresponding to
many eigen-decompositions per gradient descent step. To build intuition about the PF for neural networks,
we start with a small MLP for a 2 dimensional input regression problem, with random inputs and labels.
Here we can understand the behavior of the PF since we can compute its modified vector field exactly and
compare it with the behavior of gradient descent. We show results in Figure 7, where we visualize the norm
of the difference between gradient descent parameters at each iteration and the parameters produced by
the continuous time flows we compare with. We observe that short term the principal flow is better than
all other flows at tracking the behavior of gradient descent. As the number of iterations increases however,
the PF accumulates error in the case of λ0 > 2/h; this is likely due to the fact that while gradient descent
parameters are real, this is not the case for the PF, as discussed in Remark 4.1. Since we are primarily
concerned with using the PF to understand gradient descent for a small number of iterations this will be less
of a concern in our experimental settings. Additional results which confirm the PF is better than the other
flows at tracking gradient descent on a bigger network trained the UCI breast cancer dataset are shown in
Figure 32 in the Appendix.
Remark 4.1 On the multiple iteration behavior of the principal flow. We note that while gradient
descent parameters are real for any iteration θt, θt+1, ... θt+n, when we approximate the behavior of gradient
descent by initializing θ(0) = θt and running the PF for time nh, there is nothing enforcing that θ(h), ...
θ(nh) will be real when the PF is complex (λ0 > 1/h). We also note that in that case the hermitian Hessian is
not symmetric and the eigenvalues and eigenvector of the Hessian will not be real. For long term trajectories
(larger n), this can have an effect on long term error between gradient descent and PF trajectories, through
an accumulating effect of the imaginary part in the PF. This can be mitigated by using the PF to understand
the short term behavior of gradient descent (small n).

4.1 Predicting ∇θET u0 using the principal flow

For large neural networks, instead of computing the entire PF describing how the entire parameter vector
changes in time we can use the PF to approximate changes in time in one eigendirection only. This will
allow us to compare the predictions of the PF against the predictions of the NGF and IGR flow on realistic
settings. To do so, we first have to compute how the gradient changes in time:
Corollary 4.1 If θ follows the PF, then: ˙(∇θE) =

∑D
i

log(1−hλi)
h (∇θET ui)ui.

10

Under review as submission to TMLR

0 2 4 6 8
Iteration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Gl
ob

al
 tr

aj
ec

to
ry

 n
or

m
 d

iff
 w

ith
 G

D

h < 1
0

Gradient flow
IGR flow
Third order flow
Principal flow

(a) λ0 < 1/h

0 2 4 6 8
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Gl
ob

al
 tr

aj
ec

to
ry

 n
or

m
 d

iff
 w

ith
 G

D

1
0

< h < 2
0

Gradient flow
IGR flow
Third order flow
Principal flow

(b) 1/h < λ0 < 2/h

0 2 4 6 8
Iteration

0.0

0.2

0.4

0.6

0.8

Gl
ob

al
 tr

aj
ec

to
ry

 n
or

m
 d

iff
 w

ith
 G

D

2
0

< h

Gradient flow
IGR flow
Third order flow
Principal flow

(c) λ0 > 2/h

Figure 7: Error between gradient descent parameters and parameters obtained following continuous time
flows for multiple iterations: ∥θn − θ(nh)∥ with θ(0) = θ0. For small n, the PF is better at capturing the
behavior of gradient descent across all cases.

This follows from applying the chain rule and using the definition of the PF. We contrast this with how the
gradient evolves if the parameters follow the NGF:
Corollary 4.2 If θ follows the NGF, then: ˙(∇θE) =

∑D
i −λi(∇θET ui)ui

Corollary 4.3 If θ follows the IGR flow, then: ˙(∇θE) =
∑D

i −
(
λi + h

2 λ2
i

)
(∇θET ui)ui

We would like to use the above to assess how ∇θET ui changes in time under the above flows and check their
predictions empirically against results obtained when training neural networks with gradient descent. Since
ui is an eigenvector of the Hessian it also changes in time according to the changes given by the corresponding
flow, making ˙(∇θET ui) difficult to calculate. Even when if we wrote an exact flow for ˙(∇θET ui), it would
be computationally challenging to simulate it since finding the new values of ui would depend on the full
Hessian and would lead to the same computational issues we are trying to avoid in the case of large neural
networks. In order to mitigate these concerns, we will make the additional approximation that λi and ui do
not change inside an iteration which will allow us to approximate changes to ∇θET ui and compare them
against empirical observations. We note that we will not use this approximation for any other results.
Remark 4.2 If we assume that λi, ui do not change between iterations, if θ follows the PF then ˙(∇θET ui) =
log(1−hλi)

h ∇θET ui.
Remark 4.3 If we assume that λi, ui do not change between iterations, if θ follows the NGF we can write

˙(∇θET ui) = −λi∇θET ui.
Remark 4.4 If we assume that λi, ui do not change between iterations, if θ follows the IGR flow we can
write ˙(∇θET ui) = −

(
λi + h

2 λ2
i

)
∇θET ui.

The above flows have the form ẋ = cx, with solution x(t) = x(0)ect. We can thus test these solutions
empirically by training neural networks with gradient descent with learning rate h and at each step compute
∇θE(θt)T (ui)t−1 and compare it with the prediction x(h) obtained from the solution from each flow initialized
at the previous iteration, i.e. x(0) = ∇θE(θt−1)T (ui)t−1. We show results with a VGG model trained on
CIFAR-10 in Figure 8. The results show that the PF is substantially better than the NGF and IGR flows
at predicting the behavior of ∇θET u0. Since the NGF and the IGR flow solutions scale the initial value by
the inverse of an exponential of magnitude given by λ0 for large eigenvalues this leads to a small prediction,
which is not aligned with what is observed empirically. We also note that the higher the value of ∇θET u0,
the worse the prediction of the PF; these are the areas where the approximations made in the above remarks
are likely not to hold due to large gradient norms.

5 The principal flow, stability coefficients and edge of stability results

We now show the PF can be used to explain phenomena observed empirically when training neural networks
using full-batch gradient descent.

11

Under review as submission to TMLR

4 3 2 1 0 1 2 3 4
ETu0

4

3

2

1

0

1

2

3

4 VGG CIFAR-10, Learning rate 0.01

exact match
principal flow prediction
gradient flow prediction
igr flow prediction

4 3 2 1 0 1 2 3 4
ETu0

4

3

2

1

0

1

2

3

4 VGG CIFAR-10, Learning rate 0.03

exact match
principal flow prediction
gradient flow prediction
igr flow prediction

4 3 2 1 0 1 2 3 4
ETu0

4

3

2

1

0

1

2

3

4 VGG CIFAR-10, Learning rate 0.05
exact match
principal flow prediction
gradient flow prediction
igr flow prediction

Figure 8: Predictions of ∇θET u0 according to the NGF, IGR flow and the PF. On the x axis we plot
the value of ∇θET u0 as measured empirically in training, and on the y axis we plot the corresponding
prediction according to the flows from the value of the dot product at the previous iteration. The ‘exact
match’ line indicates a perfect prediction, the upper bound of performance. The PF performs best from all
the compared flows, however for higher learning rates its performance degrades when ∇θET u0 is large; this
is due to the fact that the higher the learning rate and the higher the gradient norm, the more likely it is
that the additional assumption we used that λi, ui do not change does not hold.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration 1e3

0

1

2

3

4

Tr
ai

ni
ng

 lo
ss

VGG CIFAR-10
Learning rate

0.005
0.01
0.05
0.1
0.5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration 1e3

0

100

200

300

400

500

0

VGG CIFAR-10
Learning rate

0.005
0.01

0.05
0.1

0.5

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.

1

Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

0 when the loss increases between iterations
0 > 2/h
0 < 2/h

Figure 9: Edge of stability in neural networks (Cohen et al., 2021): instability occurs when λ0 > 2/h.

Edge of stability results. Cohen et al. (2021) did a thorough empirical study to show that when training
deep neural networks with full batch gradient descent the largest eigenvalue of the Hessian λ0 keeps growing
until reaching approximately 2/h (a phase of training they call progressive sharpening), after which it remains
in that area; for mean squared losses this continues indefinitely while for cross entropy losses they show it
further decreases later in training. They also show that instabilities in training occur when λ0 > 2/h. Their
empirical study spans neural architectures, data modalities and loss functions. We visualize the edge of
stability behavior they observe in Figure 9: training is stable until the 2/h threshold is achieved, and that
eigenvalues keep growing until reaching the threshold; since we use a cross entropy loss, the eigenvalues later
decrease in training. We also visualize that iterations where the loss increases compared to the previous
iteration overwhelmingly occur when λ0 > 2/h. Cohen et al. (2021) also empirically observe that θT u0 has
oscillatory behavior in the edge of stability area but is 0 or small outside it.

Continuous-time models of gradient descent at edge of stability. To investigate if existing continuous
time flows and the PF capture gradient descent behavior at the edge of stability we train a 5 layer MLP
on the toy UCI Iris dataset; this simple setting allows for the computation of the full eigenspectrum of the
Hessian. We show results in Figure 10: the NGF and IGR flows have a larger error compared to the PF when
predicting the parameters at the next gradient descent iteration in the edge of stability regime; the NGF
and IGR flows predict the loss will decrease, while the PF captures the loss increase observed when following
gradient descent. As we remarked in Section 2, the NGF and the IGR flow do not capture instabilities when
the eigenvalues of the Hessian are positive, which has been remarked to be largely the case in the neural

12

Under review as submission to TMLR

0.0250

0.0275

0.0300

0.0325

Lo
ss

 E

240 246 252 258 264
Iteration

1.9

2.0

2.1

h
0

Gradient descent

0 5 10 15 20 25
Iteration

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Gl
ob

al
 tr

aj
ec

to
ry

 n
or

m
 d

iff
 w

ith
 G

D

h > 2
0

NGF
IGR flow
Principal flow

240 246 252 258 264
Iteration

0.010

0.008

0.006

0.004

0.002

0.000

Lo
ss

 p
re

di
ct

io
n

er
ro

r

NGF
IGR flow
PF

Figure 10: Comparing different continuous time models of gradient descent at the edge of stability area on a
small 5 layer MLP, with 10 units per layer. We show the local parameter prediction error ∥θt − θ(h; θt−1)∥
for the NGF, IGR and PF flows (middle), as well as E(θt) − E(θ(h; θt−1)) (right).

network setting through empirical studies (Sagun et al., 2017; Ghorbani et al., 2019; Papyan, 2018) and we
observe here (Figure 33 in the Appendix). We spend the rest of the section focusing on how we can use the
PF to understand and model edge of stability phenomena using a continuous time approach.

Connection with the principal flow: stability coefficients. The PF contains some of the key quantities
observed in the edge of stability phenomenon: the eigenvalues of the Hessian λi, the dot product ∇θET ui and
the threshold 2/h. All these quantities appear in the PF via the stability coefficient sci = log(1−hλi)

hλi
∇θET ui =

αP F (λih)∇θET ui of eigendirection ui. Through the PF, by connecting the case analysis in Section 3.1 with
existing and new empirical observations, we can shed light on the edge of stability behavior in deep learning.

First phase of training (progressive sharpening): λ0 < 2/h. This entails Re[sci] = Re[αP F (hλi)] ≤ 0, ∀i (Real
stable and complex stable cases of the analysis in Section 3.1). sign(αNGF) = sign(αP F) = −1 and following
the PF minimises E or its real part (Eq 15). To understand the behavior of λ0, we now have to make use of
empirical observations about the behavior of the NGF early in the training of neural networks. It has been
empirically observed that in early areas of training, λ0 increases here when following the NGF (Cohen et al.,
2021); we further show this in Figure 49 in the Appendix. Since in this part of training gradient descent
follows closely the NGF, it exhibits similar behavior and λ0 increases. We show this case in Figure 11(a).

Second phase of training (edge of stability) λ0 ≥ 2/h. This entails Re[sc0(θ)] = Re[αP F (hλi)] ≥ 0. (Unstable
complex case of the analysis in Section 3.1). We can no longer say that following the PF minimizes E.
sign(αNGF (hλ0)) ̸= sign(Re[(αP F (hλ0)]), since αNGF (hλ0) = −1 and sign(Re[(αP F (hλ0)]) > 0 meaning
that in that direction gradient descent resembles the positive gradient flow θ̇ = ∇θE rather than the NGF.
The positive gradient flow component can cause instabilities, and the strength of the instabilities depends
on the stability coefficient sc0 = αP F (hλ0)∇θET u0. We show in Figures 11(b) and 13 how the behavior of
the loss and λ0 are affected by the behavior of the positive gradient flow when λ0 > 2/h.

More than λ0: the importance of stability coefficients. While the sign of the real part of the
stability coefficient sc0 is determined by λ0, its magnitude is modulated by the dot product ∇θET u0, since
sc0 = αP F (hλ0)∇θET u0. The magnitude of ∇θET u0 plays an important role, since if λ0 is the only
eigenvalue greater than 2/h training is stable if ∇θET u0 = 0, as we see in Figure 11. To understand
instabilities, we have to look at stability coefficients, not only eigenvalues. We show in Figure 12 how the
instabilities in training can be related with the stability coefficient sc0: the increases in loss occur when the
corresponding Re[sc0] is positive and large. In Figure 13 we show the equivalent results in the behavior
of λ0: λ0 increases or decreases based on the behavior of the corresponding flow and the strength of the
stability coefficient and that gets reflected in instabilities in the loss function; specifically when λ0 > 2/h,
the increase both in loss value and λ0 of gradient descent are proportional to the increase of the positive
gradient flow in that area. We show additional results in Figures 37 and 38 in the Appendix.

Is one eigendirection enough to cause instability? One question that arises from the PF is whether
the leading eigendirection u0 can be sufficient to cause instabilities, especially in the context of deep networks
with millions of parameters. To assess this we train a model with gradient descent until it reaches the edge of
stability (λ0 ≈ 2/h), after which we approximate the continuous flow θ̇ = ∇θET u0u0 +

∑D−1
i=1 −∇θET uiui.

The coefficients of the modified vector field of this flow are negative for all eigendirections except from u0,

13

Under review as submission to TMLR

25

30

35

40

45
0

E E GD 2/h

1.0

1.5

2.0

Lo
ss

E E GD

0 5 10 15 20 25
Iteration

0.3

0.2

0.1

0.0

Re
[s

c 0
=

PF
(

0h
)

ET u
0]

(a) Early training

50

100

150

200

0

E

E

GD
2/h

Iteration0

1

2

3

4

5

Lo
ss

E

E
GD

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Iteration

0.00

0.05

0.10

Re
[s

c 0
=

PF
(

0h
)

ET u
0]

(b) Edge of stability.

Figure 11: Understanding the edge of stability results using the PF on a 4 layer MLP: we plot the behavior
of the NGF θ̇ = −∇θE and the positive gradient flow θ̇ = ∇θE initialized at each gradient descent iteration
parameters, and see that the behavior of gradient descent is connected to the behavior of the respective flow
through the stability coefficient.

0

1

2

Lo
ss

loss increasing

0 50 100 150 200 250
Iteration

0.0
0.5
1.0
1.5

Re
[s

c 0
]

MNIST 4 layers MLP

0.9
1.0
1.1
1.2
1.3

Lo
ss

loss increasing

200 225 250 275 300 325 350 375 400
Iteration

0.0

0.2

0.4

Re
[s

c 0
]

CIFAR-10 VGG

Figure 12: Understanding changes to the loss using the PF: areas where the loss increases corresponds to
areas where the sc0 is large. The highlighted areas correspond to regions where the loss increases.

which is positive; this is also the case for the PF when λ0 is the only eigenvalue greater than 2/h. In
Figure 14 we show the results: a positive coefficient for u0 can be responsible for an increase in loss value
and a significant change in λ0.

Decreasing the learning rate. Cohen et al. (2021) show that if the edge of stability behavior is reached
and the learning rate is decreased, the training stabilizes and λ0 keeps increasing (Figure 34 in the Appendix).
The PF tells us that decreasing the learning rate entails going from Re[sc0] ≥ 0 to Re[sc0] ≤ 0 since λ0 < 2/h
after the learning rate change. Since all stability coefficients are now negative, this reduces instability. The
increase in λ0 is likely due to the behavior of the NGF in that area (as can be seen in Figure 14 when
changing from gradient descent training to the NGF in an edge of stability area leads to an increase of λ0).

The behavior of ∇θET u0. The PF also allows us to explain the unstable behavior of ∇θET u0 around edge
of stability areas. As done in Section 4.1, we assume that λi, ui do not change substantially between iterations
and write ˙∇θET ui = log(1−hλi)

h ∇θET ui under the PF, with solution (∇θET ui)(t) = (∇θET ui)(0)e
log(1−hλi)

h t.

14

Under review as submission to TMLR

50

100

150

200

0
E E GD 2/h

0.0

0.5

1.0

1.5

2.0

Lo
ss

100 200 300 400 500
Iteration

0.8

0.6

0.4

0.2

0.0

0.2

Re
[s

c 0
=

PF
(

0h
)

ET u
0]

CIFAR-10, Resnet-18

Figure 13: Understanding changes to the loss using the PF: areas where the loss increases corresponds with
areas where the sc0 is large. Together with the behavior of gradient descent, we also plot the behavior of the
NGF and positive gradient flow initialized at θt and simulated for time h for each iteration t. As expected,
the NGF decreases the loss around a gradient descent iteration, while the positive gradient flow increases it.
Interestingly, when λ0 > 2/h, the increases in loss value of gradient descent are proportional to the increase
of the positive gradient flow in that area (can be seen best between iterations 200 and 350). The same
behavior can be seen in relation to the eigenvalue λ0.

0 2 4 6 8 10 12 14
Physical Time

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 lo
ss

VGG CIFAR-10 Full batch
GD (LR 0.05)
NGF
NGF with ETu0 sign swap

0 2 4 6 8 10 12 14
Physical Time

102

103

104

0

VGG CIFAR-10 Full batch
GD (LR 0.05)
NGF
NGF with ETu0 sign swap

Figure 14: One eigendirection is sufficient to lead to instabilities. We construct a flow given by the NGF
in all eigendirections but u0; in the direction of u0, we change the sign of the flow. This leads to the flow
θ̇ = ∇θET u0u0 +

∑D−1
i=1 −∇θET uiui. We show this flow can be very unstable when initialised in an edge of

stability area.

This solution has different behavior depending on the value of λ0 relative to 2/h: decreasing below 2/h
and increasing above 2/h. We show this theoretically predicted behavior in Figure 15, alongside empirical
behavior showcasing the fluctuation of ∇θET u0 in the edge of stability area, which confirms the theoretical
prediction. We also compute the prediction error of the proposed flow and show it can capture the dynamics
of ∇θET u0 closely in this setting. We present a discrete time argument for this observation in Section A.7.2.

In this section we have shown that despite not capturing non-principal terms, the PF closely predicts the
behavior of gradient descent in neural network training. When λ0 < 2/h the PF predicts stable behavior
(Eq 15), which is consistent with empirical observations of gradient descent (RHS of Figure 9); this suggests
that when λ0 < 2/h non-principal terms do not have a strong unstable presence (at least not sufficiently
strong to overcome the stability coming from the PF). When λ0 > 2/h, the PF predicts instability, which

15

Under review as submission to TMLR

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Re[ETu]

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Im

ag
[

ET u
]

> 2/h init < 2/h

0.0 0.5 1.0 1.5 2.0 2.5
Iteration 1e3

0.0

0.2

0.4

0.6

0.8

1.0

ET u
0

VGG CIFAR-10 Full batch, Learning rate 0.01

0 > 2/h

0.02 0.04 0.06 0.08 0.10
Learning rate

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
ea

n
lo

ca
l i

nt
eg

ra
tio

n
er

ro
r

1.8h < 0 < 2.2h

principal flow

Figure 15: The unstable dynamics of ∇θET u in the edge of stability area (λ ≈ 2/h). Left: the predicted
behavior of ∇θET u under ˙∇θET ui = log(1−hλi)

h ∇θET ui, with an inflection point at λ = 2/h. Middle:
empirical behavior of ∇θET u for a model shows instabilities in the edge of stability area (highlighted).
Right: the approximation made to derive the flow is suitable around λ ≈ 2/h.

is what is observed in practice with gradient descent. While we do not know all non-principal terms and
their behavior, in Section B in the Appendix we provide a justification for why the non-principal term we
do know (Eq 14) can have a stabilizing effect. This evidence suggests that the PF plays a major role in
capturing instability in deep learning, perhaps due to the specific structure of neural network models. We
note that we used the PF to measure changes in the loss given a local Hessian; to model changes in the
Hessian eigenspectrum we relied on empirical evidence from the NGF and other continuous time flows and
contrasted them with gradient descent. While we focus on a continuous time approach, a discrete time
approach can be used to motivate some of our observations and results (Section A.7); this is complementary
to our approach which focuses on continuous time but nonetheless related, since it also ignores higher order
derivatives of the loss and further suggests the strength of a quadratic approximation of the loss in the case
of neural networks, as observed by Cohen et al. (2021).

6 Stabilizing training by adjusting discretization drift

The PF allows us to understand not only how gradient descent differs from the trajectory given by the
NGF, but also when do they follow each other very closely. Understanding when gradient descent behaves
like the NGF flow is important, since it reveals when the existing analyses of gradient descent using the
NGF discussed in Section 2 are valid. It also has practical implications, since in areas where gradient
descent follows the NGF closely training can be sped up by increasing the learning rate. Prior works have
empirically observed that gradient descent follows the NGF early in neural network training (Cohen et al.,
2021) and this observation can be used to explain why decaying learning rates (Loshchilov and Hutter,
2016) or learning rate warm up (He et al., 2019) are successful when training neural networks: having a
high learning rate in areas where the drift is small will not cause instabilities and can speed up training and
decaying the learning rate avoids instabilities later in training when the drift is larger.

6.1 ∇2
θE∇θE in determines discretization drift

In previous sections we have seen that the Hessian plays an important role in defining the PF and in training
instabilities. We now want to quantify the difference between the NGF and the PF in order to understand
when the NGF can be used as a model of gradient descent. We find that:
Remark 6.1 In a region of the space where ∇2

θE∇θE = 0 the PF is the same as the NGF.

To see why, we can expand

∇2
θE∇θE =

D∑
i=1

λi∇θET uiui. (17)

16

Under review as submission to TMLR

0 200 400 600 800 1000
Iteration

0.0
0.1
0.2
0.3
0.4
0.5

MLP Full batch MNIST
drift
||h2

2
2E E||

0 500 1000 1500 2000
Iteration

0.00
0.02
0.04
0.06
0.08
0.10

VGG Full batch CIFAR-10
drift
||h2

2
2E E||

0 500 1000 1500 2000
Iteration

0.00

0.05

0.10

0.15

VGG Batch size 1024 CIFAR-10
drift
||h2

2
2E E||

Figure 16: Connection between ||∇2
θE∇θE|| and the per iteration drift as measured during training.

By multiplying the above with uj we have that λj∇θET uj = 0. For each dimension j either λj =
0 or ∇θET uj = 0. If λj = 0 then αNGF (hλj) = αP F (hλj) = −1. We thus get that θ̇ =∑D

i=1 αP F (hλi)(∇θET ui)ui =
∑D

i=1 αNGF (hλi)(∇θET ui)ui.

Thus comparing the PF with the NGF reveals an important quantity: ∇2
θE∇θE. Further investigating this

quantity reveals it has a connection with the total drift, since:
Theorem 6.1 The discretization drift (error between gradient descent and the NGF) after 1 iteration of
gradient descent θt = θt − h∇θE(θt−1) is h2

2 ∇2
θE(θ′)∇θE(θ′) for a set of parameters θ′ in the neighborhood

of θt−1.

This follows from the Taylor reminder theorem of the NGF in mean value form (proof in Section A.9). From
here we have:
Corollary 6.1 In a region of space where ∇2

θE∇θE = 0 gradient descent follows the NGF.

Thus the PF revealed ∇2
θE∇θE as a core quantity in the discretisation drift of gradient descent. To

further see the connection between with the PF consider that
∥∥∇2

θE∇θE
∥∥2 =

∥∥∥∑D
i=1 λi∇θET uiui

∥∥∥2
=∑D

i=1
∥∥λi∇θET ui

∥∥2; the higher each term in the sum, the higher the difference between the NGF and the
PF. To measure the connection between per iteration drift and ∇2

θE∇θE in the neural network setting we
approximate it via

∥∥∥θt − ÑGF (θt−1, h)
∥∥∥ where ÑGF is the numerical approximation to the NGF initialised

at θt−1. We show results in Figures 16 and 17, which show the strong correlation between per iteration drift
and

∥∥∇2
θE∇θE

∥∥ throughout training and across learning rates. Since Theorem 6.1 tells us the form of the
drift but not the exact value of θ′, we have used θt−1 instead to evaluate

∥∥∇2
θE∇θE

∥∥ and thus some error
exists.

Understanding this connection is advantageous since computing discretization drift is computationally ex-
pensive as it requires approximating the continuous time NGF but computing

∥∥∇2
θE∇θE

∥∥ via Hessian-vector
products is cheaper and approximations are available, such as ∇2

θE∇θE = 1
2 ∇θ ∥∇θE∥2 ≈ E(θ+ϵ∇θE)−E(θ)

ϵ
which only requires an additional backward pass Geiping et al. (2021).

6.2 Drift adjusted learning rate (DAL)

A natural question to ask is how to use the correlation between
∥∥∇2

θE∇θE
∥∥ and the iteration drift to

improve training stability;
∥∥∇2

θE∇θE
∥∥ captures all the quantities we have shown to be relevant to instability

highlighted by the PF: λi and ∇θET ui (Eq. 17). One way to use this information is to adapt the learning rate
of the gradient descent update, such as using 2

∥∇2
θ

E∇θE∥ as the learning rate. This learning rate slows down
training when the drift is large — areas where instabilities are likely to occur — and it speeds up training
in regions of low drift — areas where instabilities are unlikely to occur. Computing the norm of the update
provided by this learning rate shows a challenge however since 2/

∥∥∇2
θE∇θE

∥∥ ≥ 2
λ0∥∇θE∥ ; this implies that

when using this learning rate the norm of the gradient descent update will never be 0 and thus training will
not result in convergence. Furthermore, the magnitude of the gradient update will be independent of the

17

Under review as submission to TMLR

0.00 0.02 0.04 0.06 0.08 0.10
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0
Sp

ea
rm

an
 C

or
re

la
tio

n
MLP Full batch MNIST

CC(drift, || 2E E|||)
CC(drift, || E||)
CC(drift, || 2E E|||/|| E||

0.00 0.02 0.04 0.06 0.08 0.10
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n

VGG Full batch CIFAR-10

0.00 0.02 0.04 0.06 0.08 0.10
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n

VGG Batch size 1024 CIFAR-10

Figure 17: Correlation between ||∇2
θE∇θE|| and the per iteration drift. Since ||∇2

θE∇θE|| =(
||∇2

θE∇θE||
)

/||∇θE||||∇θE||, we plot the correlation with the individual terms as well.

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

VGG Full batch CIFAR-10
Learning rate
0.005
0.01
0.05

0.1
0.5
DAL

0 200 400 600 800 1000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss
Resnet-18 Full batch CIFAR-10

Learning rate
0.005
0.01
0.05

0.1
0.5
DAL

0 10000 20000 30000 40000 50000
Iteration

0

2

4

6

Tr
ai

n
lo

ss

Resnet-50, Batch size 2048, Imagenet
Learning rate

0.05
0.1

0.5
DAL

Figure 18: DAL: using the learning rate 2
∥∇2

θ
Eĝ(θ)∥ results in improved stability without requiring a hyper-

parameter sweep.

gradient norm. To reinstate the gradient norm, we propose using the learning rate

h(θ) = 2
∥∇2

θE∇θE∥ / ∥∇θE∥
= 2

∥∇2
θEĝ(θ)∥ (18)

where ĝ(θ) is the unit normalised gradient ∇θE/ ∥∇θE∥. We will call this learning rate DAL (Drift Adjusted
Learning rate). As shown in Figure 16,

∥∥∇2
θEĝ(θ)

∥∥ has a strong correlation with the per iteration drift.

We use DAL to set the learning rate and show results across architectures, models and datasets in Figures 18
(with additional results in Figure 41 in the Appendix). Despite not requiring a learning rate sweep, DAL is
stable compared to using fixed learning rates. To provide intuition about DAL, we show the learning rate and
the update norm in Figure 19: for DAL the learning rate decreases in training after which it slowly increases
when reaching areas with low drift. Compared to larger learning static learning rates where the update norm
can increase in the edge of stability area with DAL the update norm steadily decreases in training.

6.3 The trade-off between stability and performance

Since we are interested in understanding the dynamics of training gradient descent, we have so far focused on
training performance. We now try to move our attention to test performance and generalization. Previous
works (Li et al., 2019; Barrett and Dherin, 2021; Jastrzebski et al., 2019) have shown that the higher the

0 200 400 600 800 1000
Iteration

10 2

10 1

100

Le
ar

ni
ng

 ra
te

Resnet-18 Full batch CIFAR-10
Learning rate

0.005
0.01

0.05
0.1

0.5
DAL

0 200 400 600 800 1000
Iteration

10 7

10 5

10 3

10 1

101

103

||
2 E

E|
|

Resnet-18 Full batch CIFAR-10

Learning rate
0.005
0.01
0.05

0.1
0.5
DAL

0 200 400 600 800 1000
Iteration

10 5

10 4

10 3

10 2

10 1

100

101

Up
da

te
 n

or
m

Resnet-18 Full batch CIFAR-10

Learning rate
0.005
0.01

0.05
0.1

0.5
DAL

Figure 19: Key quantities in DAL versus fixed learning rate training: learning rate, and update norms.

18

Under review as submission to TMLR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

Learning rate
0.01
0.05
0.1

0.5
DAL-0.5

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

VGG Full Batch CIFAR-10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

Learning rate
0.005
0.01
0.05

0.1
0.5
DAL-0.5

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Resnet-18 Full batch CIFAR-10

0

2

4

6

Tr
ai

n
lo

ss

Learning rate
0.05
0.1

0.5
DAL-0.5

0 10000 20000 30000 40000 50000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Imagenet Resnet-50 Batch Size 2048

Figure 20: DAL-0.5: increased training speed and generalization compared to a sweep of fixed learning rates.

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

VGG Full batch CIFAR-10

p in DAL-p
0.125
0.25

0.5
0.75

1.0
1.5

2.0

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Resnet-18 Full batch CIFAR-10

p in DAL-p
0.125
0.25
0.5

0.75
1.0

1.5
2.0

0 10000 20000 30000 40000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 (T
op

 1
) a

cc
ur

ac
y

Resnet-50 Batch size 8192 Imagenet
p in DAL-p

0.125
0.25

0.5
0.75

1.0
1.5

2.0

Figure 21: DAL-p sweep: discretization drift helps test performance at the cost of stability. Corresponding
training curves and loss functions are present in the Figure 43 in the Appendix.

learning rate the better the generalization performance. We now try to further correlate this information
with the per iteration drift and the principal flow. To do so, we use learning rates with various degrees of
sensitivity to iteration drift using DAL-p:

hp(θ) = 2
(∥∇2

θEĝ(θ)∥)p (19)

The higher p, the slower the training and less drift there is; the lower p, there is more drift. We start
with extensive experiments with p = 0.5, which we show in Figure 20, and show more results in Figure 42.
Compared to p = 1 (DAL), there is faster training but at times also more instability. Performance on the
test set shows that DAL-0.5 performs as well or better than when using fixed learning rates.
Remark 6.2 We find that across datasets and batch sizes, DAL-0.5 performs best in terms of the stability
generalization trade-off and in these settings can be used as a drop in replacement for a learning rate sweep.

To further investigate the connection between drift and test set performance, we perform a set of sweeps
over the power p and show results in Figure 21. These results show that the higher the drift (the smaller p),
the more generalization. We also show in Figure 22 the correlation between mean per iteration drift and test
accuracy both for learning rate and DAL-p sweeps. The results consistently show that the lower the mean
iterations drift, the higher the test accuracy. We also show that the mean iteration drift has a connection
to the largest eigenvalue λ0: the lower the drift, the smaller λ0. These results add further evidence to the
idea that discretization drift is beneficial for generalization performance in the deep learning setting.

7 Future work

Beyond gradient descent. In this work we focused on understanding vanilla gradient descent. Under-
standing discretization drift via the PF can be beneficial for improving other gradient based optimization
algorithms as well, as we briefly illustrate for momentum updates with decay m and learning rate h:

vt = mvt−1 − h∇θE(θt−1); θt = θt−1 + vt (20)

19

Under review as submission to TMLR

0.05 0.10 0.15
Mean per iteration drift (approx)

0.60

0.62

0.64

0.66

0.68

0.70

Te
st

 a
cc

ur
ac

y

Learning rate
0.01
0.02
0.03
0.04
0.05

0.06
0.07
0.08
0.09
0.1

0.05 0.10 0.15
Mean per iteration drift (approx)

20

40

60

80

100

120

140

M
ea

n
0 b

ef
or

e
co

nv
er

ge
nc

e

Learning rate
0.01
0.02
0.03
0.04
0.05

0.06
0.07
0.08
0.09
0.1

(a) Fixed learning rate sweep.

0 1 2 3 4
Mean per iteration drift (approx)

0.60

0.65

0.70

0.75

0.80

Te
st

 a
cc

ur
ac

y

p in DAL-p
0.125
0.25
0.5
0.75
1.0
1.5
2.0

0 1 2 3 4
Mean per iteration drift (approx)

0

100

200

300

400

500

M
ea

n
0 b

ef
or

e
co

nv
er

ge
nc

e

p in DAL-p
0.125
0.25
0.5
0.75
1.0
1.5
2.0

(b) DAL-p sweep.

Figure 22: The correlation between drift, test set performance and λ0 in full batch training on CIFAR-10.
The same pattern can be seen in SGD results in Figure 47.

We can scale ∇θE(θt−1) in the above not by a fixed learning rate h, but by the approximation to the
drift. This has two advantages: it removes the need for a learning rate sweep and it uses local information
in adapting the moving average, such that in areas of large drift the contribution is decreased, while it is
increased in areas where the drift is small (a more formal justification is provided in Section A.9). This leads
to the following updates:

vt = mvt−1 − 1
2||∇2

θE(θt−1)ĝ(θ)(θt−1)||∇θE(θt−1) θt = θt−1 + vt (21)

As with DAL-p, we can use powers to control the stability performance trade-off: the lower p, the more the
current update contribution is reduced in high drift (instability) areas. We tested this approach on Imagenet
and show results in Figure 23. The results show that integrating drift information improves the speed of
convergence compared to standard gradient descent (Figure 21), and leads to more stable training compared
to using a fixed learning rate. We present additional experimental results in the Appendix.

0 2000 4000 6000 8000 10000 12000 14000
Iteration

0

1

2

3

4

5

6

7

Tr
ai

ni
ng

 lo
ss

Imagenet Batch size 8192 with momentum 0.9
Learning rate 0.05
Learning rate 0.1
Learning rate 0.5
DAL- 0.5 with momentum
DAL- 1.0 with momentum

0 2000 4000 6000 8000 10000 12000 14000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 (T
op

 1
) a

cc
ur

ac
y

Imagenet Batch size 8192 with momentum 0.9

Figure 23: DAL with momentum: integrating drift information results in faster and more stable training
compared to a fixed learning rate sweep. Compared to vanilla gradient descent there is also a significant
performance and convergence speed boost.

Just as momentum is a common staple of optimization algorithms, so are adaptive schemes such as
Adam (Kingma and Ba, 2015) and Adagrad (Duchi et al., 2011), which adjust the step taken for each
parameter independently. We can also use the knowledge from the PF to set a per parameter learning rate:
instead of using

∥∥∇2
θE(θt−1)∇θE(θt−1)

∥∥ to set a global learning rate, we can use the per parameter informa-
tion provided by ∇2

θE(θt−1)∇θE(θt−1) to adapt the learning rate of each parameter. We present preliminary
results in the Appendix (Figures 45 and 46). The above two approaches (momentum and per-parameter
learning rate adaptation) can be combined, bringing us closer to the most commonly used deep learning
optimization algorithms. While we do not explore this avenue here, we are hopeful that this understanding
of discretization drift can be leveraged further to stabilize and improve deep learning optimization.

20

Under review as submission to TMLR

Non-principal terms. This work focuses on understanding the effects of the principal flow on the behavior
of gradient descent. The principal terms however are not the only terms in the discretization drift: we have
found one non-principal term (Eq 8) and have seen that it can have a stabilising effect (Figure 6). We
provide a preliminary explanation for the stabilising effect of this non-principal term together with results
measuring its value in neural network training in Section B in the Appendix; we hope that future work will
enhance our understanding of non-principal terms and their effects on training stability and generalization.

Neural network theory. Many theoretical works studying at gradient descent in the neural network
context use the NGF (Du et al., 2018; Elkabetz and Cohen, 2021; Kunin et al., 2021; Jacot et al., 2018). We
posit that replacing NGF in these theoretical contexts with PF may yield interesting results. In contrast
to the NGF, the PF allows the incorporation of the learning rate into the analysis, and unlike existing
continuous time models of gradient descent, it can model unstable behaviours observed in the discrete case.
An example can be seen using the Neural Tangent Kernel: Jacot et al. (2018) model gradient descent using
the NGF to show that in the infinite wide limit gradient descent for neural networks follows kernel gradient
descent. The PF can be incorporated in this analysis either by replacing the NGF with the PF as a model
of gradient descent, or by studying the difference in the PF for infinitely wide and finite width networks,
since discretisation drift could be responsible for the observed gap between finite and infinite networks in
the large learning rate case (Lee et al., 2020).

8 Related work

Modified flows for deep learning optimization. Barrett and Dherin (2021) found the first order
correction modified flow for gradient descent using BEA and uncovered its regularization effects; they were
the first to show the power of BEA in the deep learning context. Smith et al. (2021) find the first order error
correction term in expectation during one epoch of stochastic gradient descent. Modified flows have also
been used for other optimizers than vanilla gradient descent: Franca et al. (2020); Shi et al. (2021) compare
momentum and Nesterov accelerated momentum; Kunin et al. (2021) study the symmetries of deep neural
networks and use modified vector fields to show commonly used discrete updates break conservation laws
present when using the NGF (for gradient descent they use the IGR flow while for momentum and weight
decay they introduce different flows); Kovachki and Stuart (2021) use modified flows to understand the
behavior of momentum by approximating Hamiltionian systems; França et al. (2021) construct optimizers
controlling their stability and convergence rates while Li et al. (2017) construct optimizers with adaptive
learning rates in the context of stochastic differential equations. In the context of two-player games, Rosca
et al. (2021) compute the first order BEA correction terms while Chavdarova et al. (2021) use high-resolution
differential equations to shed light on the properties of different saddle point optimizers.

Edge of stability and the importance of the Hessian. There have been a number of empirical studies
on the Hessian in gradient descent. Cohen et al. (2021) observed the edge of stability behavior and performed
an extensive study which led to many empirical observations used in this work. Jastrzębski et al. (2018)
performed a similar study in the context of stochastic gradient descent. Sagun et al. (2017); Ghorbani et al.
(2019); Papyan (2018) approximate the entire spectrum of the Hessian, and show that there are only a
few negative eigenvalues, plenty of eigenvalues centered around 0, and a few positive eigenvalues with large
magnitude. Similarly, Gur-Ari et al. (2018) discuss how gradient descent operates in a small subspace.
Lewkowycz et al. (2020) discuss the large learning rate catapult in deep learning when the largest eigenvalue
exceeds 2/h. Gilmer et al. (2021) assess the effects of the largest Hessian eigenvalue in a large number of
empirical settings.

There have been a series of concurrent works aimed at theoretically explaining the empirical re-
sults above. Ahn et al. (2022) connect the edge of stability behavior with what they coin as
the ‘relative progress ratio’: E(θ−h∇θE)−E(θ)

h∥∇θE∥2 , which they empirically show is 0 in stable areas
of training and 1 in the edge of stability areas. To see the connection between the relative
progress ratio and the quantities discussed in this paper, one can perform a Taylor expansion on
E(θ−h∇θE)−E(θ)

h∥∇θE∥2 ≈ −h∇θET ∇θE+h2/2∇θET ∇2
θE∇θE

h∥∇θE∥2 = −1 + h/2 ∇θET ∇2
θE∇θE

∥∇θE∥2 . While this ratio is related to
the quantities we discuss, we also note significant differences: it is a scalar, and not a parameter length
vector and thus does not capture per eigendirection behavior as we see with the stability coefficients (Sec-
tion 5). Arora et al. (2022) prove the edge of stability result occurs under certain conditions either on
the learning rate or on the loss function. Ma et al. (2022) empirically observe the multi-scale structure of

21

Under review as submission to TMLR

the loss landscape in neural networks and use it to theoretically explain the edge of stability behavior of
gradient descent. Chen and Bruna (2022) use low dimensional theoretical insights around a local minima to
understand the edge of stability behavior. These important works are complementary to our own work; they
do not use continuous time approaches and tackle primarily the edge of stability problem or its subcases,
while we focus on understanding gradient descent and applying that understanding broadly, including but
not limited to the edge of stability phenomenon.

Discrete models of gradient descent. The desire to understand learning rate specific behavior in gradient
descent has been a motivation in the construction of discrete time analyses. These analyses have provided
great insights, from studying noise in the stochastic gradient descent setting (Liu et al., 2021; Ziyin et al.,
2021b), the study of overparametrized neural models and their convergence (Gunasekar et al., 2018; Du et al.,
2019; Allen-Zhu et al., 2019), providing examples when gradient descent can converge to local maxima (Ziyin
et al., 2021a), the importance of width for proving convergence in deep linear networks (Du and Hu, 2019).
We differ from these studies both in motivation and execution: we are looking for a continuous time flow
which will increase the applicability of continuous-time analysis of gradient descent. We do so by capturing
discretisation drift using BEA and showing that the resulting flow is a useful model of gradient descent,
which captures instabilities and escape of local minima and saddle points.

Understanding the difference between the negative gradient flow and discrete gradient descent.
Elkabetz and Cohen (2021) recently examined the differences between gradient descent and the NGF in the
deep learning context; their work examines the importance of the Hessian in determining when gradient
descent follows the NGF. Their theoretical results show that neural networks are roughly convex and thus
for reasonably sized learning rates one can expect that gradient descent follows the NGF flow closely. Their
results complement ours and their approach might be extended to help us understand why the PF is sufficient
to shed light on many instability observations in the neural network training.

Second-order optimization. By using second order information (or approximations thereof) to set the
learning rate, DAL is related to second-order approaches used in deep learning. Many second-order methdos
can be seen as approximates of Newton’s method θt = θt−1 − ∇2

θE−1(θt−1)∇θE(θt−1). Since computing the
inverse of Hessian can be prohibitively expensive for large models, many practical methods approximate it
with tractable alternatives (Martens and Grosse, 2015).

Connection between drift and generalization. We have made the connection between increased drift
and increased generalization. This connection was first made by Barrett and Dherin (2021) through the IGR
flow. Generalization has also been connected to the largest eigenvalue λ0(Hochreiter and Schmidhuber, 1997;
Keskar et al., 2016; Jastrzębski et al., 2018); recently Kaur et al. (2022) however showed a more complex
picture, primarily in the context of stochastic gradient descent. The largest eigenvalue could be a confounder
to the drift as we have observed in Section 6.3; we hope that future work can deepen these connections.

9 Conclusion

We have expanded on previous works which used Backward Error Analysis in deep learning to find a new
continuous time flow, called the Principal Flow, to analyze the behavior of gradient descent. Unlike exist-
ing flows, the the principal flow operates in complex space which enables it to better capture the behavior of
gradient descent compared to existing flows, including but not limited to instability and oscillatory behavior.
We use the form of the principal flow to find new quantities relevant to the stability of gradient descent,
and shed light on newly observed empirical phenomena, such as the edge of stability results. After under-
standing the core quantities connected to instabilities in deep learning we devised an automatic learning rate
schedule, DAL, which exhibits stable training. We concluded by cementing the connection between large
discretization drift and increased generalization performance. We ended by highlighting future work avenues
including incorporating the principal flow in existing theoretical analyses of gradient descent which use the
negative gradient flow, incorporating our understanding of the drift of gradient descent in other optimization
approaches and specializing the PF for neural network function approximators.

22

Under review as submission to TMLR

References
Paul Glendinning. Stability, instability and chaos: an introduction to the theory of nonlinear differential

equations. Cambridge university press, 1994.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Vaishnavh Nagarajan and J Zico Kolter. Gradient descent gan optimization is locally stable. In Advances
in neural information processing systems, pages 5585–5595, 2017.

Andrew K Lampinen and Surya Ganguli. An analytic theory of generalization dynamics and transfer learning
in deep linear networks. arXiv preprint arXiv:1809.10374, 2018.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. In International Conference on Machine Learning, pages 244–253. PMLR, 2018.

Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dynamics of generalization
error in neural networks. Neural Networks, 132:428–446, 2020.

Omer Elkabetz and Nadav Cohen. Continuous vs. discrete optimization of deep neural networks. Advances
in Neural Information Processing Systems, 34:4947–4960, 2021.

Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In Conference on
Learning Theory, pages 4224–4258. PMLR, 2021.

Guilherme Franca, Jeremias Sulam, Daniel Robinson, and Rene Vidal. Conformal symplectic and relativistic
optimization. In Conference on Neural Information Processing Systems (NeurIPS 2020). 2020.

David GT Barrett and Benoit Dherin. Implicit gradient regularization. In International Conference on
Learning Representations, 2021.

Samuel L Smith, Benoit Dherin, David GT Barrett, and Soham De. On the origin of implicit regularization
in stochastic gradient descent. In International Conference on Learning Representations, 2021.

Ernst Hairer, Marlis Hochbruck, Arieh Iserles, and Christian Lubich. Geometric numerical integration.
Oberwolfach Reports, 3(1):805–882, 2006.

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065, 2021.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Justin Gilmer, Behrooz Ghorbani, Ankush Garg, Sneha Kudugunta, Behnam Neyshabur, David Cardoze,
George Dahl, Zachary Nado, and Orhan Firat. A loss curvature perspective on training instability in deep
learning. arXiv preprint arXiv:2110.04369, 2021.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large learning
rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218, 2020.

Peter Bartlett, Dave Helmbold, and Philip Long. Gradient descent with identity initialization efficiently
learns positive definite linear transformations by deep residual networks. In International conference on
machine learning, pages 521–530. PMLR, 2018a.

Peter L Bartlett, Steven N Evans, and Philip M Long. Representing smooth functions as compositions of
near-identity functions with implications for deep network optimization. arXiv preprint arXiv:1804.05012,
2018b.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In Advances in Neural
Information Processing Systems, pages 1825–1835, 2017.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on linear
convolutional networks. Advances in Neural Information Processing Systems, 31, 2018.

23

Under review as submission to TMLR

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of
deep neural networks. In International conference on machine learning, pages 1675–1685. PMLR, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pages 242–252. PMLR, 2019.

Simon Du and Wei Hu. Width provably matters in optimization for deep linear neural networks. In Inter-
national Conference on Machine Learning, pages 1655–1664. PMLR, 2019.

Liu Ziyin, Botao Li, James B Simon, and Masahito Ueda. Sgd can converge to local maxima. In International
Conference on Learning Representations, 2021a.

Kangqiao Liu, Liu Ziyin, and Masahito Ueda. Noise and fluctuation of finite learning rate stochastic gradient
descent. In International Conference on Machine Learning, pages 7045–7056. PMLR, 2021.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel. The
mechanics of n-player differentiable games. In International Conference on Machine Learning, pages 354–
363. PMLR, 2018.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous models:
Layers are automatically balanced. Advances in Neural Information Processing Systems, 31, 2018.

Robert M May. Simple mathematical models with very complicated dynamics. Nature, 261:459, 1976.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.

Yann Ollivier. Riemannian metrics for neural networks i: feedforward networks. Information and Inference:
A Journal of the IMA, 4(2):108–153, 2015a.

Yann Ollivier. Riemannian metrics for neural networks ii: recurrent networks and learning symbolic data
sequences. Information and Inference: A Journal of the IMA, 4(2):154–193, 2015b.

Yang Song, Jiaming Song, and Stefano Ermon. Accelerating natural gradient with higher-order invariance.
In International Conference on Machine Learning, pages 4713–4722. PMLR, 2018.

Chongli Qin, Yan Wu, Jost Tobias Springenberg, Andrew Brock, Jeff Donahue, Timothy P Lillicrap, and
Pushmeet Kohli. Training generative adversarial networks by solving ordinary differential equations. 2020.

Mihaela C Rosca, Yan Wu, Benoit Dherin, and David Barrett. Discretization drift in two-player games. In
International Conference on Machine Learning, pages 9064–9074. PMLR, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and
Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32, 2019.

Sho Yaida. Fluctuation-dissipation relations for stochastic gradient descent. In International Conference on
Learning Representations, 2018.

HoHo Rosenbrock. An automatic method for finding the greatest or least value of a function. The computer
journal, 3(3):175–184, 1960.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the hessian
of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization via
hessian eigenvalue density. In International Conference on Machine Learning, pages 2232–2241. PMLR,
2019.

Vardan Papyan. The full spectrum of deepnet hessians at scale: Dynamics with sgd training and sample
size. arXiv preprint arXiv:1811.07062, 2018.

24

Under review as submission to TMLR

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image clas-
sification with convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 558–567, 2019.

Jonas Geiping, Micah Goldblum, Phillip E Pope, Michael Moeller, and Tom Goldstein. Stochastic training
is not necessary for generalization. arXiv preprint arXiv:2109.14119, 2021.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large learning
rate in training neural networks. Advances in Neural Information Processing Systems, 32, 2019.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun Cho,
and Krzysztof Geras. The break-even point on optimization trajectories of deep neural networks. In
International Conference on Learning Representations, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2015.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

Daniel Kunin, Javier Sagastuy-Brena, and Hidenori Tanaka Ganguli, Surya Daniel L.K. Yamins. Symmetry,
conservation laws, and learning dynamics in neural networks. In International Conference on Learning
Representations, 2021.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and Jascha
Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances in Neural Information
Processing Systems, 33:15156–15172, 2020.

Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Understanding the acceleration phenomenon via
high-resolution differential equations. Mathematical Programming, pages 1–70, 2021.

Nikola B Kovachki and Andrew M Stuart. Continuous time analysis of momentum methods. Journal of
Machine Learning Research, 22(17):1–40, 2021.

Guilherme França, Michael I Jordan, and René Vidal. On dissipative symplectic integration with applications
to gradient-based optimization. Journal of Statistical Mechanics: Theory and Experiment, 2021(4):043402,
2021.

Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and adaptive stochastic gradient
algorithms. In International Conference on Machine Learning, volume 70, pages 2101–2110, 2017.

Tatjana Chavdarova, Michael I Jordan, and Manolis Zampetakis. Last-iterate convergence of saddle point
optimizers via high-resolution differential equations. arXiv preprint arXiv:2112.13826, 2021.

Stanisław Jastrzębski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos Storkey.
On the relation between the sharpest directions of dnn loss and the sgd step length. arXiv preprint
arXiv:1807.05031, 2018.

Kwangjun Ahn, Jingzhao Zhang, and Suvrit Sra. Understanding the unstable convergence of gradient
descent. arXiv preprint arXiv:2204.01050, 2022.

Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on edge of stability in
deep learning. arXiv preprint arXiv:2205.09745, 2022.

Chao Ma, Lei Wu, and Lexing Ying. The multiscale structure of neural network loss functions: The effect
on optimization and origin. arXiv preprint arXiv:2204.11326, 2022.

Lei Chen and Joan Bruna. On gradient descent convergence beyond the edge of stability. arXiv preprint
arXiv:2206.04172, 2022.

25

Under review as submission to TMLR

Liu Ziyin, Kangqiao Liu, Takashi Mori, and Masahito Ueda. Strength of minibatch noise in sgd. arXiv
preprint arXiv:2102.05375, 2021b.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curva-
ture. In International conference on machine learning, pages 2408–2417. PMLR, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

Simran Kaur, Jeremy Cohen, and Zachary C Lipton. On the maximum hessian eigenvalue and generalization.
arXiv preprint arXiv:2206.10654, 2022.

Yann LeCun, Lawrence D Jackel, Léon Bottou, Corinna Cortes, John S Denker, Harris Drucker, Isabelle
Guyon, Urs A Muller, Eduard Sackinger, Patrice Simard, et al. Learning algorithms for classification: A
comparison on handwritten digit recognition. Neural networks: the statistical mechanics perspective, 261
(276):2, 1995.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018.

26

