Scaling Textual Gradients via Sampling-Based Momentum

Anonymous Authors'

Abstract

As prompts become central to Large Language
Models (LLMs), optimizing them is vital. Textual
Stochastic Gradient Descent (TSGD) offers a data-
driven approach by iteratively refining prompts
using LLM-suggested updates over minibatches.
We empirically show that increasing training data
initially improves but can later degrade TSGD’s
performance across NLP tasks, while also raising
computational costs. To address this, we pro-
pose Textual Stochastic Gradient Descent with
Momentum (TSGD-M)—a scalable method that
reweights prompt sampling based on past batches.
Evaluated on 9 NLP tasks across three domains,
TSGD-M outperforms TSGD baselines for most
tasks and reduces performance variance.

1. Introduction

Large Language Models (LLMs) are sensitive to prompt
design, where minor variations can lead to substantial per-
formance shifts (Ying et al., 2024; Zhou et al., 2022; Sclar
et al.; Anagnostidis & Bulian, 2024). Automatic Prompt En-
gineering (APE) exploits this sensitivity to optimize prompts
using LLM feedback. Recent works (Khattab et al., 2024;
Sordoni et al., 2023; Wang et al.) propose Textual Gradient
Descent (TGD), an LLM-driven optimization framework
analogous to numerical gradient descent, where prompts are
iteratively updated using textual feedback.

In practice, however, context length limitations (Liu et al.,
2024; Peng et al., 2023) and the cost of long in-context
demonstrations (Hooper et al., 2024; Tang et al., 2024) ne-
cessitate stochastic sampling during training. As such, we
argue that existing methods more accurately resemble Tex-
tual Stochastic Gradient Descent (TSGD), which gener-
ates textual gradients based on minibatches of examples per
iteration—much like SGD in traditional optimization.

This raises fundamental questions: Do LLMs optimize like

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Pe-1

pr-2| =

DLN-1/ TextGrad / DSPy / {3@

Figure 1. TSGD-M for Subj dataset (Pang & Lee, 2004)

deep neural networks (DNNs)? Unlike DNNs, which benefit
from full-batch gradients, LLMs often misestimate aggre-
gate errors across long contexts (Anagnostidis & Bulian,
2024). Thus, simply scaling the number of demonstrations
may not guarantee stable performance. We revisit data
scaling in TGD/TSGD and assess whether more advanced
optimization techniques can help.

We propose TSGD with Momentum (TSGD-M), which
draws from momentum-based optimization in deep learning
(Rumelhart et al., 1986; Polyak, 1964; Liu et al., 2020).
TSGD-M reduces variance by reweighting and sampling
from past minibatches at the token level, leading to smoother
textual gradients. This approach enables improved training
dynamics, particularly under large-scale data.

Across 9 NLP tasks, we find that moderate data scaling im-
proves TGD framework performance (e.g., DSPy (Khattab
et al., 2024), DLN1 (Sordoni et al., 2023), and TextGrad
(Yuksekgonul et al., 2024)), but aggressive scaling leads to
diminishing or negative returns. TSGD-M mitigates this by
enabling stable optimization with less variance.

Our contributions:

* We revisit the role of data scaling in TGD/TSGD and
highlight its non-monotonic impact on performance.

¢ We introduce TSGD-M, the first momentum-based
method for textual gradient descent, reducing variance
in large-scale settings.

* We provide theoretical support (Appendix D) and con-
duct extensive experiments on BBH, NLU, and rea-
soning tasks to validate the effectiveness of TSGD-M.

Scaling Textual Gradients via Sampling-Based Momentum

2. Preliminaries and Related Work

Problem Setup. Define large language model (LLM) as
LM : V* — V* where V is the vocabulary and V* the
space of token sequences. Given a prompt p € V* and
input € V*, the model outputs LM([p, z]). For a dataset
D = {(xi,y:)}}¥, ~ D, the goal of prompt engineering is
to find p* that maximizes expected performance:

Pt = argzgrel?,}}f E(m,y)ND [Perf(LM([p, z]),y)], (1)

where Perf evaluates output quality.

Textual Gradient Descent (TGD). Manual prompt design
is costly and non-scalable. Recent automatic prompt en-
gineering (APE) methods use LLMs to iteratively refine
prompts based on observed errors (Sordoni et al., 2023;
Yang et al., 2024). More interpretable variants elicit LLMs
to summarize prediction errors and apply structured edits
to prompts (Pryzant et al., 2023; Yuksekgonul et al., 2024;
Ning et al., 2024), forming the basis of the Textual Gradi-
ent Descent (TGD) framework. However, since these meth-
ods sample training examples per iteration, we argue they
resemble Textual Stochastic Gradient Descent (TSGD).

At iteration ¢, a prompt p, is updated using a minibatch
{(x,y:)}, with predictions g; = LM([ps, x;]), which
follows

pi+1 = Update(LM, py, {(2i, ¥i. i) ieq),

where Update analyzes model errors and generates an im-
proved prompt pyy1.

TGD as Two-Stage LLM Calls. TGD typically decom-
poses Update into two LLM queries: (1) error summariza-
tion:

Vp; = LM([panalyzevptv {($i, Yis @\z)}:’il])a

and (2) prompt refinement:

DPt+1 = LM([preﬁneapta th])-

Here, Vp; is a "textual gradient” capturing failure patterns,
and Panalyze, Prefine ar€ prompt templates guiding these stages.
This structure mirrors gradient descent: compute a direction,
then step toward improvement.

For further background and method variations (e.g., using
different LLMs for Update stages or fusing prompts), we
refer readers for related work on Appendix A.

3. Test-time Scaling for TGD and TSGD

Motivation. Prompt optimization frameworks like TGD use
full-batch training, while TSGD uses stochastic minibatches
to compute “textual gradients.” This raises the question:
How does scaling full training corpus or batch size affect
performance in iterative prompt optimization?

Dataset Max Tokens (25 ex.) Avg Tokens / ex.

Subj ~700 ~28
TREC ~325 ~13
GSM8K ~2000 ~80

Table 1. Token statistics across datasets with 25 randomly sampled
training examples.

3.1. Scaling Training Data in TGD

We evaluate TextGrad (Yuksekgonul et al., 2024), DLNI1
(Sordoni et al., 2023), and DSPy-COPRO (Khattab et al.,
2024) on three datasets (Subj (Pang & Lee, 2004), TREC
(Lu et al., 2022), GSM8K(Cobbe et al., 2021)) with full-
batch TGD using GPT-4o (for TextGrad) or LLaMA3-8B
(for DLN1 and DSPy-COPRO), following original setups.
We vary the training size N € {3, 5, 10, 20, 25} and observe
performance trends (Figure 2 (a), (¢), (e)).

Findings. All methods exhibit a performance peak before
degradation as N increases. The optimal size varies by task
and framework (e.g., TextGrad peaks earlier than DLN1).
We hypothesize that degradation arises from reasoning limi-
tations of LLMs over long contexts, consistent with (Levy
et al., 2024). We argue that we limit the maximum N to
25 because beyond this point performance declines, and
in most real-world tasks—Ilike most tasks in BBH (Suzgun
et al., 2022)—golden data are scarce. Moreover, (Levy et al.,
2024) systematically evaluated how input length affects
reasoning across various models and observed a marked
performance drop beyond roughly 500 tokens.

3.2. Scaling Batch Size in TSGD

We fix V and vary minibatch size m € {3, 5, 10, 20, 25} per
iteration. TSGD uses each minibatch to estimate gradients.
Results across frameworks are shown in Figure 2 (b) (d) (f).

Findings. TextGrad shows high variance and sharp peaks
(e.g., TREC maxes at m = 10 then drops), whereas DLN1
and DSPy-COPRO are more stable. GSM8K and Subj show
consistent improvement up to m = 20 before plateauing.
These results suggest dataset-specific sensitivity to batch
size—no universal” sweet spot exists.

Conclusion. While moderate scaling improves prompt
learning, performance degrades beyond a task-specific
threshold. This motivates our Textual Stochastic Gradient
Descent-Momentum (TSGD-M) in Section 4, stabilizing
optimization with adaptive historical reuse of all past meta-
prompts (i.e. the prompt selected per iteration).

4. Textual Stochastic Gradient Descent with
Momentum (TSGD-M)

We previously observed that simply scaling training data
or batch size in TGD and TSGD does not always yield
stable improvements due to noisy gradient estimates and the

Scaling Textual Gradients via Sampling-Based Momentum

Training Dataset Size Impact
TextGrad

Batch Size Impact
TextGrad

Accuracy (%)
5 8 8 2

2 N

2 3

Accuracy (%)

3
e o

a3
Accuracy (%)

Accuracy (%)

Accuracy (%)

a

3 5 10 © 20 25 3 5 10 ® 20 25
Training Dataset Size Batch Size Per Iteration

—o— Subj Trec —e— GSMBKTest —e— GSMBK Dev

Figure 2. Test performance trends for: (a) TextGrad (full dataset
scaling), (c) DLNI1 (full dataset scaling), (¢) DSPy-COPRO (full
dataset scaling). (b) TextGrad (batch size scaling); (d) DLN1
(batch size scaling); (f) DSPy-COPRO (batch size scaling). Dataset
size N and batch size m are varied from 3 to 25 examples.

context length limitations of LLMs. Motivated by classical
momentum methods in neural optimization (Qian, 1999; Liu
et al., 2020), we propose TSGD with Momentum (TSGD-
M) to stabilize prompt updates and reduce variance. Full
Algorithm (TSGD-M) pseudocode is listed in Appendix B.

Key Idea. TSGD-M maintains a buffer of past meta-
prompts {p,}._, and uses a momentum-based sampling
mechanism to generate the next prompt p;;;. Each new
token is generated by sampling from past prompts weighted
by an exponential moving average:

t

P(Token;+1 | Token;.;, {P-r}i:o) x Z w,P(Token;4+1 | Tokenl;i,p{%
(&

T=0

@

where Token; denotes the token at position ¢, and w, =
t—1
W is the weight on prompt generated at iteration
7. This process adaptively blends information from past
prompts, akin to momentum accumulation in SGD:

t

m' =am'™ + (1 - a)Vps, pip1 =p —m'.

Prompt Update Algorithm. We show the core loop of
TSGD-M in Algorithm 1 in Appendix B, which supports
both momentum and vanilla updates.

We consider two settings for applying momentum:

¢ Case 1: One-step Prompt Refinement (Sordoni et al.,
2023; Khattab et al., 2024) — the updated prompt is
generated directly from p; via sampling (Figure 5 in
Appendix C).

e Case 2: Two-stage Gradient Refinement (Yuksek-
gonul et al., 2024) — textual gradients Vp; are gener-
ated first, then used to refine p; (Figure 3).

In both cases, we apply momentum sampling token-wise
from the prompt or prompt-gradient pairs.

>- Prefine 1+ BEp: + NMvVvpy ——— E P
Based on these
examples the problem
with this prompt is
that {gradient}. u , .
ne (objectivel or
Based on the above i person
information, I wrote
improved prompts. ub3
(a) Standard TSGD update
wo
B pro Vpg
. w
>~ Prefine By Vpr 1
[“ 8 P41
w,
By Vp !
Update-Momentum

(b) TSGD-M: token-wise momentum sampling
Figure 3. Comparison of TSGD and TSGD-M update mechanisms.

Comparison with Momentum (Yuksekgonul et al., 2024).
Yuksekgonul et al. (2024) define momentum as simple
prompt concatenations. Our method instead uses exponen-
tial decay weights to sample from past prompts per token,
enabling more memory-efficient and dynamic prompt evo-
lution. See Appendix F.2 for ablation study on our method
compared to momentum version in Textgrad.

S. Experiments

compare TSGD-M against TSGD across reasoning,
BBH, and NLU tasks. TSGD-M consistently improves task
accuracy across model scales. All experiments reported in
this section is mean with standard deviation over 10 runs.
Full details on the tasks used are given in Appendix E.1.

5.1. Setup

Tasks: We evaluate on BBH (Navigate, Hyperbaton), NLU
(Mpgqa, Trec, Subj, Disaster, Airline), and GSMS8K for math
reasoning. For each NLU dataset, we use 400/250/250 splits.
GSMSK uses a 200/300/1319 split as (Yuksekgonul et al.,
2024; Khattab et al., 2024).

Scaling Textual Gradients via Sampling-Based Momentum

DLN1 HO llama DLN1 HO mistral

DLN1 HO deepseek

(a) DLN1, Hy, Llama3-8B

DLN1 H1 mistral

DLN1 H1 llama

(b) DLN1, Hy, Mistral-7B

coT (z5)
20 = DINL
- Human (25)
0 m= DLN1-Momentum = 0.0

(c) DLNI1, Hy, Deepseek 1.5B

DLN1 H1 deepseek

I e £ & L S & R R Y 4 5
M & €8 & T &
& &

(d) DLN1, H;, Llama3-8B

DSPy HO llama DSPy HO mistral

(e) DLN1, H;, Mistral-7B

DLNL

. s DLNI-Momentum = 0.0
& &£ & == DLN1-Momentum = 0.3
o S W= DLN1-Momentum = 0.6

P B e
f & & 5

¢ & & &
& &
A &

== DLN1-Momentum = 0.9

(f) DLN1, H;y, Deepseek 1.5B

DSPy HO deepseek

A A N EN
& & & & \L\«ﬁ Ra &
s 5

¢ e & & &
A
< > @ @ <

& S o

& F L P @S
£ & & v & & &
& & &K &

& & & &

(g) DSPy-COPRO, Hj, Llama3-8B (h) DSPy-COPRO, Hy, Mistral-7B (i) DSPy-COPRO, H,, Deepseek

DSPy H1 llama DSPy H1 mistral

1.5B

DSPy H1 deepseek

A

&
N

&

¢ & & F Lo P
& & &

& S &
N S &
& & S

(j) DSPy-COPRO, H1, Llama3-8B (k) DSPy-COPRO, H;, Mistral-7B (I) DSPy-COPRO, H;, Deepseek

1.5B

Figure 4. Performance of TSGD-M applied to DLN1 (Sordoni et al., 2023), DSPy-COPRO (Khattab et al., 2024) under Ho and H;.

Baselines: We compare TSGD-M to TextGrad (Yuksek-
gonul et al., 2024), DSPy-COPRO(Khattab et al., 2024),
and DLN1(Sordoni et al., 2023). Human (ZS) and CoT (ZS)
serve as zero-shot references for initial prompts (Appendix
E.2) and Chain-of-thoughts (Kojima et al., 2022).

Models: We test Llama3-8B (Grattafiori et al., 2024),
Mistral-7B (Jiang et al., 2023), and DeepSeek-R 1-Distill-
Qwen-1.5B (denoted as Deepseek 1.5B) (Guo et al., 2025).
For TextGrad, we follow original settings with GPT-40 (gra-
dient generation) and GPT-3.5-Turbo (inference).

Hypotheses We test two hypotheses for TSGD-M against
the baselines described above and use them as an ablation
study to demonstrate that TSGD-M remains robust across
different prompt-generation temperatures and total iterations
of prompt refinements.

* Hj follows the same settings as Sordoni et al. (2023) with
a generation temperature of 0.7 and early stopping after 2
iterations no improvement for holdout accuracy.

* H, raises the generation temperature to 1.1 and allows
more iterations with early stopping after 5 iterations for

no improvement on holdout accuracy, hypothesizing that
increased stochasticity and longer optimization will pro-
duce more diverse prompts and presumably better perfor-
mance (Yu et al., 2023; Wang et al., 2023; Renze, 2024).

Results: Figure 4 presents all results and all the original
statistics is presented in Appendix F.1. Hy: Moderate mo-
mentum (o = 0.6) consistently improves accuracy. Llama3-
8B achieves top results on 8/10 tasks (e.g., Hyperbaton
85.33% vs. 83.07%, SST2 92.87% vs. 92.67%). Mistral-7B
and Deepseek-1.5B also perform best at « 0.6, with
Deepseek showing the largest relative gains (e.g., Subj
65.02% vs. 61.07%). This suggests TSGD-M is partic-
ularly effective for smaller models. Higher momentum
(e = 0.9) often degrades performance (e.g., Navigate: 61%
to 57.80%). H;: Under higher temperature and longer re-
finement (up to 5 iterations), all models benefit most from
o = 0.3-0.6. Llama3-8B and Mistral-7B peak at o = 0.6,
while Deepseek-1.5B performs best at o = 0.9, likely due
to higher stochasticity tolerance. Sample prompts generated
by DLN1 and DLN1-a=0.6 are provided in Appendix F.4.

Scaling Textual Gradients via Sampling-Based Momentum

References

Amin, K., Bie, A., Kong, W., Kurakin, A., Ponomareva,
N., Syed, U., Terzis, A., and Vassilvitskii, S. Private
prediction for large-scale synthetic text generation. In
Findings of the Association for Computational Linguis-
tics: EMNLP 2024, pp. 72447262, 2024.

Anagnostidis, S. and Bulian, J. How susceptible are llms to
influence in prompts? In COLM, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Cui, A., Nandyalam, P., Cheung, E., and Zhu, K. Intro-
ducing mapo: Momentum-aided gradient descent prompt
optimization. arXiv preprint arXiv:2410.19499, 2024.

DSPy. Optimization / optimizers. https://dspy.ai/
learn/optimization/optimizers/, 2025. Accessed:
2025-05-14.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X, et al. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hooper, C., Kim, S., Mohammadzadeh, H., Maheswaran,
M., Paik, J., Mahoney, M. W., Keutzer, K., and Gholami,
A. Squeezed attention: Accelerating long context length
Ilm inference. arXiv preprint arXiv:2411.09688, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P.,, Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., San-
thanam, K., Haq, S., Sharma, A., Joshi, T. T., Moazam,
H., Miller, H., et al. Dspy: Compiling declarative lan-
guage model calls into state-of-the-art pipelines. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199-22213, 2022.

Levy, M., Jacoby, A., and Goldberg, Y. Same task, more
tokens: the impact of input length on the reasoning per-
formance of large language models. In Proceedings of
the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 15339—
15353, 2024.

Liu, N. F, Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173,
2024.

Liu, Y., Gao, Y., and Yin, W. An improved analysis of
stochastic gradient descent with momentum. Advances
in Neural Information Processing Systems, 33:18261—
18271, 2020.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp,
P. Fantastically ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity. In Pro-
ceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp- 80868098, 2022.

Ning, X., Wang, Z., Li, S., Lin, Z., Yao, P., Fu, T., Blaschko,
M., Dai, G., Yang, H., and Wang, Y. Can llms learn
by teaching for better reasoning? a preliminary study.

Advances in Neural Information Processing Systems, 37:
71188-71239, 2024.

Opsahl-Ong, K., Ryan, M., Purtell, J., Broman, D., Potts,
C., Zaharia, M., and Khattab, O. Optimizing instruc-
tions and demonstrations for multi-stage language model
programs. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp.
9340-9366, 2024.

Pang, B. and Lee, L. A sentimental education: Senti-
ment analysis using subjectivity summarization based
on minimum cuts. In Proceedings of the 42nd An-
nual Meeting of the Association for Computational Lin-
guistics (ACL-04), pp. 271-278, Barcelona, Spain, July
2004. doi: 10.3115/1218955.1218990. URL https:
//aclanthology.org/P04-1035/.

Peng, H., Wang, X., Chen, J., Li, W, Qi, Y., Wang, Z., Wu,
Z.,Zeng, K., Xu, B., Hou, L., et al. When does in-context
learning fall short and why? a study on specification-
heavy tasks. arXiv preprint arXiv:2311.08993, 2023.

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. Ussr computational mathematics
and mathematical physics, 4(5):1-17, 1964.

Pryzant, R., Iter, D., Li, J, Lee, Y. T., Zhu, C., and Zeng, M.
Automatic prompt optimization with” gradient descent”
and beam search. arXiv preprint arXiv:2305.03495, 2023.

https://dspy.ai/learn/optimization/optimizers/
https://dspy.ai/learn/optimization/optimizers/
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://aclanthology.org/P04-1035/
https://aclanthology.org/P04-1035/

Scaling Textual Gradients via Sampling-Based Momentum

Qian, N. On the momentum term in gradient descent learn-
ing algorithms. Neural networks, 12(1):145-151, 1999.

Renze, M. The effect of sampling temperature on problem
solving in large language models. In Findings of the As-
sociation for Computational Linguistics: EMNLP 2024,
pp. 73467356, 2024.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. nature,
323(6088):533-536, 1986.

Sclar, M., Choi, Y., Tsvetkov, Y., and Suhr, A. Quanti-
fying language models’ sensitivity to spurious features
in prompt design or: How i learned to start worrying
about prompt formatting. In The Twelfth International
Conference on Learning Representations.

Sordoni, A., Yuan, E., Coté, M.-A., Pereira, M., Trischler,
A., Xiao, Z., Hosseini, A., Niedtner, F., and Le Roux,
N. Joint prompt optimization of stacked 1lms using vari-
ational inference. Advances in Neural Information Pro-
cessing Systems, 36:58128-58151, 2023.

Suzgun, M., Scales, N., Schirli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
Zhou, D., , and Wei, J. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han,
S. Quest: Query-aware sparsity for efficient long-context
llm inference. arXiv preprint arXiv:2406.10774, 2024.

Tang, X., Shin, R., Inan, H. A., Manoel, A., Mireshghallah,
F., Lin, Z., Gopi, S., Kulkarni, J., and Sim, R. Privacy-
preserving in-context learning with differentially private
few-shot generation. In The Twelfth International Con-
ference on Learning Representations.

Together Al Chat api overview — long-running
conversations. https://docs. together.ai/docs/
chat-overview, 2025. Accessed April 2025.

Wan, X, Sun, R., Nakhost, H., and Arik, S. Teach better or
show smarter? on instructions and exemplars in automatic
prompt optimization. Advances in Neural Information
Processing Systems, 37:58174-58244, 2024.

Wang, C., Liu, X., and Awadallah, A. H. Cost-effective
hyperparameter optimization for large language model
generation inference. In International Conference on
Automated Machine Learning, pp. 21-1. PMLR, 2023.

Wang, X., Li, C., Wang, Z., Bai, F,, Luo, H., Zhang, J., Jojic,
N., Xing, E., and Hu, Z. Promptagent: Strategic plan-
ning with language models enables expert-level prompt
optimization. In The Twelfth International Conference on
Learning Representations.

Xie, C., Lin, Z., Backurs, A., Gopi, S., Yu, D., Inan, H. A.,
Nori, H., Jiang, H., Zhang, H., Lee, Y. T., et al. Differen-
tially private synthetic data via foundation model apis 2:
Text. arXiv preprint arXiv:2403.01749, 2024.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D.,
and Chen, X. Large language models as optimizers. In
The Twelfth International Conference on Learning Repre-
sentations, 2024.

Ying, H., Zhang, S., Li, L., Zhou, Z., Shao, Y., Fei, Z.,
Ma, Y., Hong, J., Liu, K., Wang, Z., et al. Internlm-
math: Open math large language models toward verifiable
reasoning. arXiv preprint arXiv:2402.06332, 2024.

Yu, X. and Gen, M. Introduction to evolutionary algorithms.
Springer Science & Business Media, 2010.

Yu, Y., Zhuang, Y., Zhang, J., Meng, Y., Ratner, A. J., Kr-
ishna, R., Shen, J., and Zhang, C. Large language model
as attributed training data generator: A tale of diversity
and bias. Advances in Neural Information Processing
Systems, 36:55734-55784, 2023.

Yuksekgonul, M., Bianchi, F., Boen, J., Liu, S., Huang,
Z., Guestrin, C., and Zou, J. Textgrad: Automatic” dif-
ferentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

Zhou, Y., Muresanu, A. 1., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. Large language models are human-
level prompt engineers. In The Eleventh International
Conference on Learning Representations, 2022.

https://docs.together.ai/docs/chat-overview
https://docs.together.ai/docs/chat-overview

Scaling Textual Gradients via Sampling-Based Momentum

Scaling Textual Gradients via Sampling-Based Momentum

Technical Appendices and Supplementary Material

A. Extended Related Works
A.1. Automatic Prompt Engineering Workflow
We will revisit several Automatic Prompt Engineering frameworks below.

1. APE (Zhou et al., 2022) is a seminal work in leveraging LL.Ms for instruction optimization. In each iteration, a set of
instructions is evaluated on a validation set, and the optimizer generates a new set by paraphrasing the highest-performing
instructions. This iterative process continues until convergence. However, we argue that APE does not fall under the category
of Textual Gradient Descent (TGD) but instead aligns more closely with evolutionary algorithms (Yu & Gen, 2010), as
it is inherently gradient-free. Rather than utilizing textual gradients for optimization, APE explicitly prompts LLMs to
generate variations of instructions while preserving their semantic meaning, replacing lower-performing prompts through
mechanisms akin to random variation (e.g., mutation or crossover), a hallmark of evolutionary strategies. Therefore, we
exclude it for our evaluation.

2. DLN1 (Sordoni et al., 2023) views prompt optmization as learning a distribution py,ps (y|x, 7) in which x, y are inputs or
outputs separately, and 7 is learnable prompt. The iterative process is similar to APE but can include a verbalization of
difficult examples from the task: the final prompts shall combine both instructions and task examples, which mimic a mix of
zero-shot learning and in-context learning.

3. OPRO (Yang et al., 2024) optimizes instructions by presenting the trajectory of previously generated prompts with their
corresponding training set accuracy, together with randomly extracted demonstrations from the training set to denote the task
of interest. The algorithm only keep instructions with highest scores in the meta-prompt in consideration of LLM context
length limit. The iterative process only asks LLMs to generate one more new prompt per iteration. Note here Yang et al.
(2024) typically runs much longer iterations compared to DLN1 (Sordoni et al., 2023) and DLN1 shall serve as a shorter
version of Yang et al. (2024). We argue that due to its similarity to DLN1, we use DLNI1 as a representative method to
evaluate our TSGD-M algorithm.

4. TextGrad (Yuksekgonul et al., 2024) backpropogates textual feedbacks provided by the proposal and view the textual
feedbacks as gradients to perform descent or improve upon. For every iteration, they randomly extract several demonstrations
and generate only one new prompt. They also present a momentum version by simply concatenating previously generated
past gradients within certain window length.

5. DSPy (Khattab et al., 2024). As we limit our study into zero-shot prompt optimization, in which we solely focus on
instruction optimization rather than example optimization or jointly optimize both of them (Wan et al., 2024; Opsahl-Ong
et al., 2024), we only discuss COPRO module in Khattab et al. (2024). As our tasks are APE with zero-shot demonstrations
needed to optimize, we use COPRO for automatic instruction optimization and exclude MIPROV2 as our baselines do
not involve optimizing the set of few shots demonstrations. Similar to DLN-1, COPRO leverages Signatures (structured
prompts) to optimize Signatures themselves. We refer readers for further discussions on different optimizers (DSPy, 2025).
6. PromptAgent (Wang et al.) views prompt optimization as a more advanced planning agent using Monte Carlo Tree
Search (MCTS). We argue that Wang et al. does not fall under TGD framework also. The MCTS algorithm itself is not
a gradient based algorithm as it relies on a search based approach rather than differentiable optimization techniques and
MCTS does not compute or apply gradients. Even though MCTS shall be combined with gradient base learning where a
policy network is trained using policy gradients and used to guide tree search, it is beyond our paper’s research scope. Thus,
we exclude this method.

7. ProTeGi (Pryzant et al., 2023) was among the first methods to incorporate gradient descent principles into automatic
prompt generation. Our TSGD-M framework can be naturally extended to ProTeGi. Specifically, we propose performing
token-wise sampling over batches of meta-prompts. Rather than applying momentum sampling to individual meta-prompts
from pg to p;_1, we instead sample across batches of prompts, denoted by UileT. From this union, we select a batch B;

7

Scaling Textual Gradients via Sampling-Based Momentum

and apply uniform weights to all prompts within that batch. We exclude this method for evaluation due to double sampling
but this method shall be viewed as further research direction. We are also aware of a concurrent line of work on momentum
integration in ProTeGi (Cui et al., 2024), where a history of past gradients is maintained and a single gradient is randomly
sampled to generate a new prompt pool at each iteration. In contrast, our approach performs adaptive sampling with decayed
weights (defined by momentum parameter) over past gradients (or meta-prompts) at the token level, continuing until the
maximum token limit is reached.

A.2. Synthetic Text Generation

Recent work in differentially private (DP) language model training has explored synthetic generation as a mechanism to
protect sensitive data while enabling downstream utility (Tang et al.; Amin et al., 2024; Xie et al., 2024). Notably, prior
approaches such as those in DP-Few-Shot Generation (Tang et al.) construct synthetic datasets by prompting an LLM
to generate tokens one at a time, with differential privacy applied via logit-level mechanisms such as clip-and-aggregate,
Gaussian noise, or report-noisy-max (Amin et al., 2024). These methods often rely on carefully controlled sampling
from private logits or fallback to public logits when logit similarity allows, in order to minimize privacy cost. In contrast,
our approach focuses on momentum-based prompt synthesis, where token-by-token generation is guided not by privacy
constraints, but by a trajectory of previously optimized prompts—analogous to a gradient descent path in prompt space.
While our framework does not aim for differential privacy, it shares structural similarities with the above methods in
generating synthetic text autoregressively under external constraints (e.g., past prompt trajectories). This connection
highlights the broader utility of iterative prompt conditioning in synthetic data pipelines, whether for privacy-preserving
learning or for optimizing instruction-following behavior via momentum sampling.

B. Additional algorithm details

Below, Algorithms 1, 2, and 3 present the full pseudocode for the TSGD and TSGD-M workflows. We separate the core
loop (Algorithm 1) from the per-iteration update routines for vanilla TSGD (Algorithm 2) and TSGD with momentum
(Algorithm 3) for clarity.

Algorithm 1 Textual Stochastic Gradient Descent with Momentum (TSGD-M)

1: Input: LM: Language model, pg: initial prompt, D: data distribution, m: batch size , T": total iterations, use momentum
flag, o: momentum parameter, 7T},,,,: max tokens, k: number of candidate prompts need to generate, .S: Score Function,
Prefine: Template to generate new prompts

2: fort=0,1,...,T —1do

Sample batch {(.13(-t), ygt))}m ~D

[=1

(®)

3
4: Compute predictions @(“ =LM([pt,x;’]) fori=1,...,m
5
6

if use momentum then
>

t
Pt+1 < Update-Mom (LMa «, {pﬂr}s—:ov U {(‘TZ('T)a ygT)a @\1(7—)) ?;17 Traz, ka S, preﬁne) (Alg 3)

7=0
7. else
8: >
Pt+1 — Update (LMa D, {(-Z'Et)y ygt)a ?/J\Z(t))}?;p Tmawy k7 S7 preﬁne) (Alg 2)
9: endif
10: end for

11: Output: Optimized prompt pr

Scaling Textual Gradients via Sampling-Based Momentum

Algorithm 2 Update

1: Input: Language model LM, current prompt p;, {(mgt), yi(t), §§t)) ™, max tokens 7}y,q, number of candidate prompts

need to generate k, Score Function S, LLM Template to generate new prompts Prefine
Z 0
for j =1tokdo
Z+0
for i = 1to 71, do
Generate one more token ¢; using LM(pyefine + Dt)
Z+Z+ [tl]
end for
Z—Z\Jz
end for
: if £ = 1 then
P41 < Z
: else
Pr1 ez S(2)
. end if
. Output: pyyq

R A A R

— m s e

Algorithm 3 Update-Mom
Input: LM, Tonac, ks S, Presines 0 {pr oo, Usmo{ (287 0™, 97y

Generate weights: {w,}l_, = L} : Initialize Z < 0

Yl pat 7|’
for j =1tokdo
Z+ 0
for i = 1to Ty, do
Sample p; from P, where P(p,) = w, >
Generate token ¢; using LM (pyefine + ;i) OF (Prefine + i + Vi) >
Z+ zZ+ [tl]
end for
Z+ ZUz
end for
: if £ =1 then
P41 < Z
: else
Piy1 < argmax, 5 S(2)
: end if
. Output: pyyq

—_

—_ =
T AN B A AR AR

— e = e e

Scaling Textual Gradients via Sampling-Based Momentum

C. Illustration of Momentum Sampling (Case 1)

Figure 5 illustrates the momentum sampling process described in Section 4 for Case 1, where textual gradient descent
operates in a single step (Sordoni et al., 2023; Khattab et al., 2024). In this example, the refinement prompt piefine 1S
instantiated using a textual example from the DSPy-COPRO framework and is concatenated with the current meta prompt

P to generate the next round of candidate prompts.

>~ Prefine +

You are an instruction optimizer for
large language models. I will give some
task instructions I've tried, along with
their corresponding validation scores. (.
omitted due to space constraints ..) Your
task is to propose a new instruction that
will lead a good language model to
perform the task even better. Don't be
afraid to be creative.

B p;

Read the following
sentence, then choose
whether it is subjective
or objective.

B P

Determine if the given sentence
is objectively verifiable
(factual) or based on personal
opinions, feelings, or
preferences. If it is subjective,
classify it as such. If it is
objective, respond with
"Objective". If the sentence is
subjective, respond with
"Subjective".

(a) TSGD: new prompts are generated using prefine prompt template to instruct the LLM in updating the prompt

p¢ meta prompt from last iteration.

>~ Prefine

You are an instruction
optimizer for large
language models. I will
give some task
instructions I've tried,
along with their
corresponding validation
scores.

(.. omitted due to space
constraints ..)

Your task is to propose a
new instruction that will
lead a good language model
to perform the task even
better. Don't be afraid to
be creative.

(b) Momentum on meta-prompts

wo
B ro

w1
B

Y

wt

B p:
J

Exj—'l Pr+1

Update-Momentum

Figure 5. An illustration of the momentum sampling in Case 1.

10

Scaling Textual Gradients via Sampling-Based Momentum

D. Theoretical Justification

Setting. We consider a simplified setting where the optimal prompt is a scalar ; € R. In each iteration, the LLM samples
from 1 + € where € ~ A(0,0?) is independent noise. Prompt performance is measured by mean squared error (MSE)

E[(p — 1)?].
Let the baseline approach generate prompts { X;} where:
Xy =LLM
and the alternative approach (momentum) generate prompts {Y;} using exponential moving average
Yi=a - LLM+(1—a)-Y;—1, O0<a<l1

for all t > 1. We note that Yy = LLM.

Theorem D.1 (Variance Reduction due to Exponential Moving Average). Then for all t > 1, we have E[X{]
and

E[(X; — 1)?] = E[&]] = 0°

and

t—1
E[(a2 Z 2k 2
k=0

2 o 2 2t+1
= 71—
7 {20[—’—204(a)

Therefore, the momentum approach achieves strictly lower MSE.
Proof. The baseline process follows X; = p + ¢; with ¢, ~ N'(0, 0?). At iteration ¢:

E[(X; — 1)?] = E[]] = 0°

The momentum approach can be expanded recursively as follows:

¢
Y —p=(1-a)le+ aZ(l —a) e,
k=1

where € "5 N (0,02). We can easily see that E[Y; — u] = 0. Hence, the mean squared error becomes

t
E[(Y; — p)?] = Var(Y; — p) = (1 —)?*0> + o2 Z) 2(=k) 2
k=1
[21— (1—a)?
2 2t
— 1—
L R T]
=o? |(1-a)*+ —(1-(a)Zt):|
2[_a 2 2t+1
= 1
“limata ot]
< 02
and as t — oo, we have
E[(Yt) } — 5 o2

11

3

“

= E[v;] =

&)

(6)

Scaling Textual Gradients via Sampling-Based Momentum

E. More Experiment Details
E.1. Task Description

In Table 2, we provide brief descriptions and dataset statistics for all tasks used in our experiments. For GSM8K (Cobbe
et al., 2021), we adopt the same data split as Khattab et al. (2024); Yuksekgonul et al. (2024), using 200 examples for
training, 300 for validation/development, and 1319 for testing.

Task | |train| | |valid| | |test| | |class| | Description

Mpqa 400 256 250 2 | Sentiment analysis.

Trec 400 256 250 6 | Question type classification.

Subj 400 256 250 2 | Determine whether a sentence is subjective or objective.
Disaster 400 250 250 2 | Determine whether a sentence is relevant to a disaster.
Airline 400 250 250 3 | Airline tweet sentiment analysis.

Hyperbaton 400 1000 250 2 | Order adjectives correctly in English sentences.
Navigate 375 375 250 2 | Spatial reasoning given navigation instructions.

SST2 67349 872 872 2 | Sentiment analysis.

GSMSK 200 300 | 1319 N/A | Reasoning Task.

Table 2. Tasks used in this work.

E.2. Prompt Initialization

We initialize the task description as reported in Table 3 for all tasks and evaluations. For GSM8K(Cobbe et al., 2021), we
use the default system prompt (Khattab et al., 2024) as initialization.

Task Initialization

Mpqa Read the following review, then choose whether it is negative or positive.

Trec Read the following question, then choose whether it is about a description, entity, expression, human, location or
number.

Subj Classify the input text as subjective or objective.

Disaster Read the following sentence, then choose whether it is relevant to a disaster.

Airline Read the following sentence, then choose whether it is positive, negative, or neutral.

Hyperbaton =~ Which sentence has the correct adjective order.

Navigate Read the following sentence, then determine whether you return to the starting point.

SST2 Classify the input text as positive or negative.

GSM8K Your input fields are: 1. ‘question‘ (str) Your output fields are: 1. ‘reasoning‘ (str) 2. ‘answer" (str) All interactions will

be structured in the following way, with the appropriate values filled in. [[## question ##]] question [[## reasoning ##
1] reasoning [[## answer ##]] answer [[## completed ##]] In adhering to this structure, your objective is: Given the
fields ‘question‘, produce the fields ‘answer*.

Table 3. Prompt initializations.

E.3. Templates

For DLN1, we adopt the same forward classification template as used in Sordoni et al. (2023) for computing predictions of
mini-batches (forward pass). For DSPy-COPRO (Khattab et al., 2024) and TextGrad (Yuksekgonul et al., 2024), we follow
the prompt templates provided in their respective papers.

Classification Template Forward Pass

{{ prompt }}
{{ input }}

Answer:

General API Templates As an example of an API template, we provide the following configuration for DSPy_COPRO,
which uses the Together Al platform (Together Al, 2025) as the API provider and Llama-3 8B (Grattafiori et al., 2024) as

12

Scaling Textual Gradients via Sampling-Based Momentum

the selected language model.

Together API Chat Example for DSPy-COPRO

import os

from together import Together

client = Together()

response = client.chat.completions.create(
model="together_ai/meta-llama/Meta-Llama-3-8B-Instruct-Turbo”,
messages=[{role”: "system”, “content”: ”Your input fields are:

1.attempted_instructions (str)

Your output fields are:

1. ‘proposed_instruction® (str): The improved instructions for the language model

2. ‘proposed_prefix_for_output_field* (str): The string at the end of the prompt, which will help the model start solving
the task.

All interactions will be structured in the following way, with the appropriate values filled in.

[[#+# attempted_instructions #+#]]

{attempted_instructions} [[## proposed_instruction ##]] {proposed._instruction }

[[#+ proposed_prefix_for_output_field ##]]

proposed_prefix_for_output_field

[[#+# completed #+#]]

In adhering to this structure, your objective is:

You are an instruction optimizer for large language models. I will give some task instructions I’ve tried, along with their
corresponding validation scores. The instructions are arranged in increasing order based on their scores, where higher
scores indicate better quality.

Your task is to propose a new instruction that will lead a good language model to perform the task even better. Don’t be
afraid to be creative.” },

’role”: “user”, “content”: [#+#tattempted_instructions##]

[1] Instruction #1 : Analyze the sentiment of the given sentence by considering the tone, language, and context, ...

[2] Prefix #1 : The sentiment of the sentence is: [3] Resulting Score #1 : 40.0

[4] Instruction #2 : Analyze the given sentence carefully, considering the context, tone, and language used to express
the sentiment. Evaluate the emotional undertones, such as excitement, sadness, or frustration, to determine the overall
sentiment of the sentence. Classify the sentiment as positive if it expresses happiness, satisfaction, or approval, negative
if it expresses dissatisfaction, anger, or sadness, and neutral if it states a fact or shows no emotional tone. [5] Prefix #2 :
The sentiment of the given sentence is:

[6] Resulting Score #2 : 43.3... },

{” “role”: “assistant”, “content”: ”Analyze the sentiment of the given sentence by considering the language, } I>
Comment: We concatenate all previously generated tokens here.

I

“temperature”: 0.7, "api_key”: XXX, ”n”: 1, “max_tokens”: 10 > Comment: We choose 10 as max new tokens
generated for every momentum sampling round.

)

print(response.choices[0].message.content)

In our experiments, we observed that many platforms recommended by DSPy (Khattab et al., 2024) and TextGrad
(Yuksekgonul et al., 2024) do not support token-wise generation at the granularity of every single token. For example,
the OpenAl platform does not allow true token-by-token generation. Similarly, the Together API also lacks support for
generating tokens one at a time. We experimentally found that if using deepseek models, together Al API platform would
output ”<think ><think ><think >" consecutively; if using Llama models, together AT API platform would output "[[[[[[”
based on the above template as our template explicitly asks model to output [1] Instruction. As a practical workaround, we
perform momentum sampling every 10 tokens (refer to as “max_tokens”: 10), which we found to be effective in practice.
Specifically, we find that extending the generation length to 10 tokens reduces token-level repetition observed in single-token
generation, while still preserving the benefits of momentum sampling.

13

Scaling Textual Gradients via Sampling-Based Momentum

E.4. Implementation Details

Same as Sordoni et al. (2023), for all tasks, we set max tokens to be generated 7}, = 100 for all tasks except GSM8K. For
DLN1 and DSPy-COPRO, the number of candidate prompts need to generate k = 20 and batch size m = 20 for all tasks.
We set the total iterations 7" is 20 while most of our iterations end in 10 as we set the early stopping.

E.5. Runtime

For both TextGrad and DSPy-COPRO experiments, across all datasets, the total runtime remains under 1 hour for both the
momentum and non-momentum variants when executed on CPU. For DLN1, we report runtime using LLaMA3-8B as a
representative model, using 4 NVIDIA A40 GPUs.

Table 4. Llama3-8B: Averaged Runtime across 10 trials (in hours) of DLN1 and DLN1-Momentum across datasets under Hy (no prompt
optimization) and H; (with prompt optimization).
Dataset DLN1 (Hy) DLN1-M (Hy) DLN1(H;) DLNI1-M (H,)

Subj 1 1.5 2 4
Hyperbaton 4 5 2 35
Airline 0.3 0.5 0.5 2.5
Navigate 0.1 1 0.2 4
Trec 1 2.5 0.5 4
Disaster 0.1 0.6 0.3 3
MPQA 0.2 0.5 1.2 3
SST2 1 2 1.5 3
GSM8K 3 8 6 7.5

F. More Experiments
F.1. Result Tables for Figure 4

Below we provide the original statistics for Figure 4 in Section 5 with various « values. The reported statistics is averaged
across 10 trials with standard deviation in parentheses. We provide DLN1 and DSPy-COPRO under both hypotheses for H
and H,. Under Hy, we report only the results of CoT (ZS) and Human (ZS) for DLNI, as these are the only methods that
do not involve any form of prompt optimization or iterative generation. All other reported methods operate in an iterative
manner and incorporate prompt refinement or optimization strategies. Both CoT (ZS) and Human (ZS) are evaluated
on the test set using greedy decoding (temperature = 0), therefore no standard deviation for these two methods. DLN1
and DSPy-COPRO use the same dataset setup so we put COT (ZS) and Human (ZS) under DLN1. We emphasize that
incorporating momentum into existing modules reduces variance for both DLN1 and DSPy-COPRO. Similar to SGD with
momentum, where a typical setting like a = 0.9 is commonly used but not universally optimal, TSGD-M achieves variance
reduction across a range of a > 0 values (though dataset dependent), without requiring fine-tuning for peak performance.
Table 17 denotes the momentum addition compared to vanilla Textgrad (Yuksekgonul et al., 2024) under the original settings
with gpt-3.5-turbo-0125 (inferencing for p;.c ine) and gpt-4o (generating gradients for panaiy-e). For TextGrad, we repeat
each experiment over 10 random seeds and find that the improved test/development accuracy trajectory is not consistently
reproducible (especially for GSM8K). Interestingly, for tasks such as Subj, Hyperbaton, SST2, and GSM8K, the prompts
obtained without the TextGrad optimization framework sometimes outperform those generated through the iterative process.
Among the configurations tested, a momentum value of o = 0.3 tends to yield performance that ranks among the top two
across most datasets.

Dataset DSPy-COPRO DSPy-COPRO - Momentum = 0.0 DSPy-COPRO - Momentum = 0.3 DSPy-COPRO - Momentum = 0.6 DSPy-COPRO - Momentum = 0.9
Subj 54.80(2.70) 60.47(2.10) 63.83(0.72) 62.50(1.87) 60.40(3.21)
Hyperbaton 69.96(8.07) 70.65(7.40) 71.88(5.37) 73.45(1.56) 70.93(9.64)
Airline 77.90(0.56) 77.40(0.17) 77.30(1.15) 78.63(1.07) 75.73(1.25)
Navigate 58.13(2.46) 57.93(1.99) 58.40(1.20) 56.07(1.93) 57.47(0.46)
Trec 65.61(5.1) 65.33(4.05) 66.45(3.42) 70.05(4.38) 64.68(2.46)
Disaster 76.57(1.16) 76.07(1.01) 77.13(1.79) 74.93(1.21) 76.73(1.42)
MPQA 78.87(7.05) 81.23(4.30) 85.70(1.65) 86.00(0.53) 83.77(4.65)
SST2 88.57(2.35) 88.0(2.52) 87.93(1.46) 88.93(1.57) 92.83(1.52)
GSMSK (Test) 44.53(1.01) 45.07(1.28) 45.03(3.11) 45.17(1.11) 46.33(0.81)
GSMSK (Development) 44.87(4.83) 46.57(2.23) 44.77(1.08) 45.63(3.21) 44.70(1.73)

Table 9. DSPy-COPRO: Hy Hypothesis for Mistral-7B

14

Scaling Textual Gradients via Sampling-Based Momentum

Dataset COT(ZS) DLN1 Human(ZS) DLNI1 -Momentum =0.0 DLN1-Momentum =0.3 DLNI1-Momentum =0.6 DLNI1-Momentum = 0.9
Subj 53.0 69.03(2.57) 55.5 70.93(1.83) 68.57(2.01) 71.20(4.63) 71.57(3.29)
Hyperbaton 77.6 83.07(1.15) 48.4 82.00(1.96) 82.53(1.10) 85.53(1.53) 80.8(1.18)
Airline 70.8 80.20(0.79) 79.0 79.73(1.72) 79.47(0.66) 81.47(0.62) 80.10(1.79)
Navigate 51.20 51.07(5.28) 58.0 54.13(3.46) 50.80(5.72) 55.47(1.86) 55.20(2.29)
Trec 45.00 63.80(5.49) 44.0 70.00(4.98) 67.73(8.96) 75.00(2.97) 74.73(2.29)
Disaster 55.10 75.83(0.42) 78.0 74.67(2.71) 76.27(3.47) 76.07(1.53) 76.83(2.85)
MPQA 74.45 83.13(2.81) 81.2 83.13(0.79) 82.47(1.85) 85.02(0.58) 83.12(0.88)
SST2 80.6 92.67(0.37) 90.94 92.37(0.70) 92.60(0.50) 92.87(0.69) 91.57(1.02)
GSMSK (Test) 72.90 72.67(5.56) 75.12 73.2(4.89) 71.2(2.4) 76.75(1.6) 76.45(2.0)
GSMBK (Development) 76.70 76.53(6.16) 78.73 77.60(5.12) 75.6(3.2) 79.80(1.5) 79.23(1.2)

Table 5. DLN1: Hy Hypothesis for Lllama3-8B

Dataset COT(ZS) Human(ZS) DLN1 DLNI1 - Momentum = 0.0 DLNI - Momentum = 0.3 DLNI - Momentum = 0.6 DLN1 - Momentum = 0.9
Subj 65.10 57.35 77.4(4.67) 74.6(2.50) 79.87(1.21) 75.2(2.32) 74.6(0.85)
Hyperbaton 76.40 75.2 81.04(2.52) 80.13(2.05) 79.73(1.71) 81.6(0.95) 80.4(0.85)
Airline 55.10 78.00 77.97(5.45) 80.5(0.36) 80.1(0.54) 79.80(0.64) 79.67(0.58)
Navigate 50.40 57.0 48.72(6.29) 51.08(5.89) 54.88(6.82) 51.20(6.23) 57.6(4.07)
Trec 40.40 44.0 64.70(12.9) 59.6(10.1) 58.6(8.52) 74.07(5.62) 65.9(7.34)
Disaster 56.8 54.0 70.60(7.26) 73.73(4.56) 73.8(5.67) 75.45(1.81) 74.82.4)
MPQA 79.85 83.0 86.3(2.41) 86.23(1.11) 86.34(1.00) 86.5(0.86) 85.67(2.05)
SST2 80.73 92.55 91.37(0.45) 92.9(0.04) 92.8(0.03) 93.8(0.02) 93.1(0.03)
GSMBSK (Test) 50.9 49.0 44.37(3.34) 45.29(3.45) 49.6(2.9) 50.0(2.84) 52.9(2.98)
GSMSK (Development) 55.3 50.0 45.1(4.83) 45.91(4.6) 48.3(3.3) 57.6(2.3) 56.3(3.2)

Table 6. DLN1: Ho Hypothesis for Mistral-7B

Dataset COT(ZS) Human(ZS) DLN1 DLN1 - Momentum = 0.0 DLN1 - Momentum = 0.3 DLNI1 - Momentum = 0.6 DLN1 - Momentum = 0.9
Subj 51.50 49.25 61.07(3.41) 62.98(3.20) 61.78(2.65) 65.0(2.04) 61.19(3.22)
Hyperbaton 47.60 484 53.2(2.14) 55.6(2.50) 55.04 (1.99) 55.89(1.22) 56.8(0.99)
Airline 46.10 18.1 54.23(5.90) 55.5(5.40) 54.47(1.35) 55.87(1.07) 58.83(4.75)
Navigate 58.00 42.0 58.0(2.23) 57.64(1.17) 58.9(1.58) 61.07(1.41) 57.8(2.1)
Trec 40.20 27.6 53.48(8.07) 55.15(7.10) 55.4(4.72) 55.6(4.17) 54.3(4.89)
Disaster 55.10 42.1 61.78(3.82) 59.71(4.02) 64.32(3.89) 64.7(2.9) 58.80(2.34)
MPQA 60.35 50.00 62.70(5.59) 65.87(3.15) 67.58(3.10) 65.35(3.18) 63.50(3.54)
SST2 53.10 49.08 80.07(3.58) 80.17(3.38) 81.67(2.53) 76.77(2.98) 80.77(2.73)
GSMBK (Test) 59.12 56.50 58.53(3.02) 58.20(2.1) 57.23(1.98) 59.2(1.02) 58.96(2.99)
GSMBK (Development) 62.7 583 63.23(3.77) 63.46(3.29) 62.26(3.04) 64.82(1.89) 63.96(3.28)

Table 7. DLN1: H, Hypothesis for Deepseek 1.5B

Dataset DSPy-COPRO DSPy-COPRO Momentum =0.0 DSPy-COPRO Momentum = 0.3 DSPy-COPRO Momentum = 0.6 DSPy-COPRO Momentum = 0.9
Subj 56.37(1.96) 60.86(1.27) 64.70(1.10) 62.2(2.36) 62.23(4.92)
Hyperbaton 62.40(4.33) 60.40(5.89) 57.07(2.60) 60.93(4.60) 57.33(2.01)
Airline 79.73(1.68) 77.8(1.02) 80.2(1.04) 81.9(2.42) 81.13(0.45)
Navigate 56.67(7.38) 56.80(1.44) 61.73(3.03) 57.60(4.45) 19.87(5.75)
Trec 65.13(2.54) 62.40(4.02) 67.73(8.96) 75.00(2.97) 74.73(2.29)
Disaster 74.97(1.15) 76.03(1.22) 75.77(1.04) 75.43(0.90) 75.47(0.94)
MPQA 82.93(2.29) 82.93(2.29) 83.83(1.16) 81.47(1.57) 83.93(2.21)
SST2 93.47(0.25) 93.43(0.68) 93.10(0.35) 91.70(2.34) 93.40(0.70)
GSMBSK (Test) 75.86(0.87) 75.90(0.29) 76.07(0.05) 76.02(0.04) 75.6(0.71)
GSMSK (Development) ~ 80.86(0.51) 79.43(1.22) 79.97(0.47) $0.87(0.80) 79.53(1.08)

Table 8. DSPy-COPRO: Hy Hypothesis for Lllama3-8B

Dataset DSPy-COPRO DSPy-COPRO - Momentum = (0.0 DSPy-COPRO - Momentum = 0.3 DSPy-COPRO - Momentum = 0.6 DSPy-COPRO - Momentum = 0.9
Subj 53.23(2.5) 54.53(2.37) 56.90(1.25) 56.37(1.44) 55.77(2.24)
Hyperbaton 47.0(3.62) 46.23(2.98) 45.97(1.63) 49.0(2.60) 50.10(2.64)
Airline 55.23(3.30) 56.33(3.27) 57.19(2.91) 57.23(0.21) 55.91(2.98)
Navigate 70.67(2.54) 69.77(1.05) 71.60(1.39) 71.97(3.03) 72.67(2.31)
Trec 48.2(3.63) 46.00(1.97) 49.48(3.35) 93(5.3 51.28(3.20)
Disaster 50.1(2.89) 49.03(1.18) 50.202.81) 50.97(1.07)
MPQA 66.57(3.89) 64.23(2.92) 68.70(3.39) 69.17(3.19) 67.88(3.41)
SST2 72.1(2.96) 70.87(1.42) 71.0(6.15) 72.47(2.80) 72.87(2.91)
GSMSK (Test) 78.47(3.21) 78.43(0.12) 79.97(0.21) 79.70(0.92) 79.77(0.38)
GSMSK (Development) 82.47(0.88) 82.77(1.50) 83.00(1.18) 83.47(0.68) 81.33(3.45)

Table 10. DSPy-COPRO: Hy Hypothesis for Deepseek 1.5B

15

Scaling Textual Gradients via Sampling-Based Momentum

Hypothesis 1

Dataset DLN1 DLNI1 - Momentum = (0.0 DLN1 - Momentum = 0.3 DLNI1 - Momentum = 0.6 DLN1 -Momentum = (.9
Subj 72.97(1.56) 73.2(1.39) 73.67(1.68) 70.25(0.32) 71.57(2.37)
Hyperbaton 83.44(2.07) 84.0(2.47) 83.46(1.32) 84.2(1.07) 83.67(1.98)
Airline 79.50(1.27) 76.2(2.24) 77.5(0.94) 77.3(0.78) 80.27(1.21)
Navigate 52.40(4.17) 54.00(3.12) 54.1(1.78) 54.53(2.78) 52.80(3.89)
Trec 68.47(3.55) 70.00(4.98) 67.73(8.96) 75.00(2.97) 74.73(2.29)
Disaster 75.58(3.12) 76.16(2.17) 77.73(2.02) 76.07(1.53) 77.23(1.88)
MPQA 79.12(1.54) 80.73(0.98) 85.32(2.59) 85.27(1.28) 82.35(2.20)
SST2 91.32(1.27) 91.77(1.30) 91.40(0.70) 91.97(0.84) 91.53(0.34)
GSMB8K(Test) 72.3(1.74) 72.5(2.05) 72.5(1.63) 73.6(3.33) 72.9(2.32)
GSMS8K(Development) 74.90(1.40) 75.80(1.52) 79.0(1.21) 79.33(4.93) 78.9(2.02)

Table 11. DLN1: H, Hypothesis for Llama3-8B

Dataset DLN1 DLNI1 - Momentum = 0.0 DLNI1 - Momentum = 0.3 DLNI1 - Momentum = 0.6 DLNI1 - Momentum = (0.9
Subj 76.33(2.40) 75.15(2.88) 82.13(3.38) 76.3(3.37) 77.4(1.71)
Hyperbaton 81.87(2.24) 79.2(2.04) 80.10(1.82) 80.8(1.39) 82.13(1.79)
Airline 82.57(1.92) 75.83(3.43) 76.27(2.82) 78.87(2.00) 79.37(2.66)
Navigate 55.33(6.8) 54.6(4.8) 56.2(3.34) 58.2(2.21) 56.3(3.45)
Trec 69.93(3.59) 68.73(3.34) 69.90(2.42) 70.46(2.84) 74.4(3.46)
Disaster 75.3(2.34) 75.17(0.60) 75.08(3.81) 76.63(1.66) 75.90(1.87)
MPQA 85.2(2.58) 85.87(2.59) 85.78(2.32) 85.97(2.18) 85.93(1.62)
SST2 91.87(1.70) 92.40(0.78) 92.60(1.85) 93.77(1.04) 92.17(0.87)
GSMB8K(Test) 50.93(4.25) 50.56(2.85) 54.2(2.37) 51.2(3.2) 48.67(3.27)
GSMB8K(Development) 54.33(4.47) 53.2(3.14) 57.2(3.12) 57.3(2.9) 50.67(4.25)

Table 12. DLN1:H; Hypothesis for Mistral-7B

Dataset DLN1 DLN1 - Momentum = 0.0 DLN1 - Momentum = 0.3 DLNI1 - Momentum = 0.6 DLN1 - Momentum = 0.9
Subj 62.37(4.03) 63.42(3.03) 64.67(3.9) 63.67(1.25) 62.0(3.72)
Hyperbaton 55.20(2.88) 56.40(1.39) 52.67(1.97) 52.93(1.08) 59.06(2.17)
Airline 69.47(2.1) 67.57(1.46) 70.2(2.47) 78.87(2.00) 79.37(2.66)
Navigate 52.93(9.91) 55.20(4.87) 58.30(2.23) 58.77(2.10) 53.67(5.00)
Trec 49.8(5.26) 51.12(4.67) 50.48(8.03) 49.48(3.03) 52.70(2.90)
Disaster 59.27(3.32) 57.83(2.54) 58.70(2.65) 59.3(3.16) 60.33(2.21)
MPQA 71.07(9.43) 69.3(2.27) 71.43(3.85) 70.70(5.52) 72.8(3.84)
SST2 75.70(4.52) 77.6(3.32) 77.93(1.69) 79.27(0.2) 79.67(0.47)
GSMSK (Test) 49.78(6.71) 48.72(7.45) 51.28(3.21) 46.07(2.08) 46.33(1.68)
GSMBK (Development) 51.73(7.82) 48.3(8.2) 53.0(1.21) 49.0(1.21) 49.2(1.02)

Table 13. DLN1: H; Hypothesis for Deepseek 1.5B

Dataset DSPy-COPRO DSPy-COPRO Momentum = 0.0 DSPy-COPRO Momentum = 0.3 DSPy-COPRO Momentum = 0.6 DSPy-COPRO Momentum = 0.9
Subj 63.7(1.47) 62.10(1.17) 63.87(2.49) 64.07(1.59) 65.60(3.35)
Hyperbaton 63.33(7.49) 63.27(2.81) 62.0(3.49) 64.0(7.21) 64.5(4.68)
Airline 79.23(1.86) 78.33(1.99) 78.17(2.06) 79.37(0.99) 78.03(1.42)
Navigate 52.8(4.57) 53.32(3.92) 53.60(1.42) 52.81(2.67) 56.67(3.40)
Trec 61.2(0.91) 70.00(4.98) 67.73(8.96) 75.00(2.97) 74.73(2.29)
Disaster 75.4(0.57) 74.67(2.71) 76.27(3.47) 76.07(1.53) 76.83(2.85)
MPQA 76.20(5.81) 75.10(4.82) 73.30(4.43) 78.57(3.54) 77.93(3.01)
SST2 91.8(0.80) 92.47(0.46) 91.60(2.04) 91.47(1.98) 92.90(0.44)
GSMSK (Test) 76.27(3.37) 76.50(2.90) 75.27(0.55) 75.57(2.40) 77.53(2.57)
GSMBK (Development) 81.13(1.82) 80.39(0.8) 80.33(2.81) 82.33(0.65) 82.67(1.35)

Table 14. DSPy-COPRO: H; Hypothesis for Lllama3-8B

16

Scaling Textual Gradients via Sampling-Based Momentum

Dataset DSPy-COPRO DSPy-COPRO - Momentum = 0.0 DSPy-COPRO - Momentum = 0.3 DSPy-COPRO - Momentum = 0.6 DSPy-COPRO - Momentum = 0.9
Subj 62.97(2.82) 62.53(2.81) 60.93(1.55) 62.90(1.47) 63.57(2.55)
Hyperbaton 63.33(4.44) 62.77(4.03) 65.33(3.05) 64.50(1.98) 62.10(0.57)
Airline 77.57(1.14) 76.53(1.15) 76.03(1.79) 77.53(1.94) 76.73(1.81)
Navigate 56.53(1.36) 56.13(0.83) 59.07(2.66) 57.20(0.57) 56.53(2.37)
Trec 67.2(4.55) 71.43(1.10) 70.53(4.27) 72.77(4.21) 72.63(0.57)
Disaster 76.70(2.73) 76.27(1.56) 76.83(1.18) 77.43(1.87) 77.93(2.09)
MPQA 77.73(4.86) 76.40(4.68) 73.97(1.89) 71.70(3.56) 78.90(5.15)
SST2 88.07(3.52) 88.37(2.23) 91.43(0.46) 89.27(1.50) 89.07(2.22)
GSMSK (Test) 43.6(2.02) 43.23(1.86) 43.27(0.81) 46.00(2.04) 44.57(2.04)
GSMSK (Development) 41.2(2.71) 41.77(2.04) 43.77(0.81) 45.67(2.87) 43.67(2.03)

Table 15. DSPy-COPRO: H, Hypothesis for Mistral-7B

Dataset DSPy-COPRO DSPy-COPRO - Momentum = 0.0 DSPy-COPRO-Momentum = 0.3 DSPy-COPRO-Momentum = 0.6 DSPy-COPRO-Momentum = 0.9
Subj 53.23(2.49) 53.03(0.76) 53.93(2.37) 55.30(1.23) 56.17(1.07)
Hyperbaton 48.67(4.18) 49.47(3.49) 50.87(0.96) 51.42(1.08) 50.06(2.17)
Airline 55.4(2.97) 56.40(2.32) 57.10(1.89) 55.80(2.34) 58.33(1.52)
Navigate 72.30(4.71) 73.01(3.51) 73.60(2.83) 72.90(2.81) 73.20(1.89)
Trec 43.53(4.90) 46.60(4.65) 46.27(3.13) 47.20(3.28) 48.50(3.98)
Disaster 54.46(7.23) 54.07(3.32) 55.43(3.63) 59.4(4.89) 55.9(5.89)
MPQA 63.66(8.57) 61.93(6.61) 62.8(7.78) 65.38(5.52) 70.27(3.18)
SST2 68.33(3.92) 67.30(3.19) 72.30(3.21) 69.33(3.23) 69.97(2.15)
GSMSK (Test) 75.52(3.29) 75.67(2.61) 76.17(3.17) 75.13(3.20) 77.20(1.97)
GSMSK (Development) 80.87(3.74) 79.93(2.43) 80.90(3.13) 82.35(2.59) 81.20(3.20)

Table 16. DSPy-COPRO: H; Hypothesis for Deepseek 1.5B

Textgrad

Dataset COT(ZS) Human(ZS) Textgrad Textgrad - Momentum = 0.0 Textgrad - Momentum = 0.3 Textgrad - Momentum = 0.6 Textgrad - Momentum = 0.9

Subj 70.45 64.1 63.20(7.28) 64.23(6.76) 66.99(3.89) 64.80(6.41) 62.92(6.12)

Hyperbaton 85.2 88.0 69.28(11.22) 70.80(7.97) 74.26(10.97) 71.52(11.25) 73.36(6.67)

Airline 84.30 83.30 83.70(0.78) 84.0(0.42) 84.53(0.47) 83.17(1.11) 83.15(3.10)

Navigate 48.8 37.6 61.10(8.57) 62.04(8.23) 62.30(2.95) 57.28(5.35) 70.80(10.61)

Trec 53.40 45.40 52.0(17.21) 48.9(10.24) 62.45(9.23) 63.91(8.55) 61.92(6.12)

Disaster 73.8 69.0 74.48(4.36) 72.58(5.35) 74.50(1.22) 76.10(0.46) 74.28(3.97)

MPQA 59.10 51.44 70.42(7.39) 68.43(9.06) 58.22(15.19) 66.73(6.89) 61.64(8.06)

SST2 91.17 93.12 90.14(1.95) 91.40(0.69) 90.84(1.41) 90.27(1.89) 92.72(1.08)

GSMBSK (Test) 67.25 79.31 70.32(14.63) 71.27(2.71) 71.82(8.32) 70.92(10.59) 70.83(8.58)

GSMSK (Development) 70.0 82.0 71.83(13.72) 72.48(2.45) 71.32(10.94) 72.12(8.37) 72.11(8.11)

Table 17. Textgrad: gpt-3.5-turbo-0125(inferencing for p,.c fine) + gpt-4o(gradient for Panaiyze)

F.2. Various Momentum Interpretations

As Yuksekgonul et al. (2024) noted that an alternative interpretation of momentum is earlier iterations of the gradient
variable when making the descent step. Specifically, Yuksekgonul et al. (2024) simply concatenating all the textual gradients
together by the prompt template below.

TextGrad Momentum prompt

Here are the past iterations of this variable:
<PAST_ITERATIONS>{past_values}</PAST_ITERATIONS>

To investigate the role of momentum in TextGrad (Yuksekgonul et al., 2024), we compared our DLN1 approach with a
baseline that mimics the momentum strategy used in TextGrad—specifically, concatenating all past textual gradients (i.e.,
meta-prompts) (See BEoncatPrompts pelow), which adapts from Appendix D.2 in Sordoni et al. (2023)). We present results
for both Llama3-8B (See Table 18, and Table 19) (Grattafiori et al., 2024), Mistral-7B (See Table 20 and Table 21) (Jiang
et al., 2023) and DeepSeek-R1-Distill-Qwen-1.5B (See Table 22 and Table 23) (Guo et al., 2025).

This concatenation-based strategy was tested under both Hy and H; prompt selection conditions. Across both settings for
Llama3-8B, DLNI1 consistently outperformed the concatenation method on a wide range of tasks. For instance, under H
setting, DLNT1 achieved significantly better performance in Subj (69.33 vs. 66.22), Airline (80.40 vs. 78.3), and Disaster
(75.83 vs. 74.33), among others. Under H, the advantages of DLN1 were even more pronounced, such as on Hyperbaton
(83.44 vs. 70.67) and MPQA (79.12 vs. 78.40). These results demonstrate that simply concatenating all previous gradient

17

Scaling Textual Gradients via Sampling-Based Momentum

prompts, as done in TextGrad, is not an effective mechanism for leveraging momentum in APE workflow. By contrast,
vanilla DLN1 setting leads to consistently stronger performance across diverse language understanding tasks. Note here we
did not list our methods of momentum performance here as most of our methods of momentum outperform vanilla DLN1.

Under the H; hypothesis using the Mistral-7B model, DLN1 consistently outperformed the concatenated meta-prompt
baseline across a wide variety of datasets. This supports our intuition that simply appending all past prompts—as done in
the momentum interpretation of TextGrad—can degrade performance, particularly as the sequence becomes longer and
noisier. DLN1 led to stronger results on core language understanding tasks such as Airline (82.57 vs. 64.7), Trec (69.93 vs.
47.07), and MPQA (85.2 vs. 69.37), showing substantial margins of improvement. Notably, DLN1 also demonstrated better
performance on reasoning-heavy datasets like GSM8K (Test) (50.93 vs. 48.26) and GSM8K (Dev) (54.33 vs. 52.2), even
though the differences were subtler. These results reinforce our claim that raw accumulation of past meta prompts yields
less effective generalization and task performance, particularly when scaling up to stronger models like Mistral-7B.

With the DeepSeek-R1-Distill-Qwen-1.5B model (Guo et al., 2025) —representing the smallest model in our evaluation
suite—we observed that DLN1 still outperformed the concatenation-based baseline across most datasets, under both H
and H; hypotheses. Notably, the performance gains with DLN1 were accompanied by higher variance compared to larger
models like Mistral-7B and LLaMA3-8B, which is expected given the reduced capacity and stability of smaller language
models. For instance, under H; hypothesis , DLN1 surpassed the concatenation method on challenging tasks such as
Airline (69.47 vs. 53.43), MPQA (71.07 vs. 59.68), and GSMS8K (Dev) (51.73 vs. 49.2), but also exhibited substantial
standard deviations (e.g., MPQA £9.43, Disaster +7.54). These results further substantiate that prompt concatenation, as
used in TextGrad-style momentum, fails to scale down effectively to lower-capacity models. DLN1’s performance, while
more variable, remains more robust and reliable, suggesting that even for compact models, simply concatenating past meta
prompts or accumulating past gradients would bring in performance degradation, which aligns with other research findings
that LLMs might not be able to effectively perform summarizations for long context tasks (Liu et al., 2024; Peng et al.,
2023).

18

Scaling Textual Gradients via Sampling-Based Momentum

Dataset Name DLN1 DLN1 Concat Prompts
Subj 69.33(2.57) | 66.22(1.2)
Hyperbaton 83.07(1.15) | 81.19(2.28)
Airline 80.40(0.79) | 78.3(0.6)
Navigate 51.07(5.28) | 50.13(8.57)
Trec 63.80(5.49) | 59.0(7.44)
Disaster 75.83(0.42) | 74.33(5.63)
MPQA 83.13(2.81) | 80.40(2.82)
SST2 92.67(0.37) | 92.13(1.31)
GSMSK (Test) 72.67(5.56) | 71.62(3.34)
GSMB8K (Development) | 76.53(6.16) | 74.23(7.21)

Table 18. Llama3-8B: Hy hypothesis for DLN1 vs.

Dataset Name DLN1 DLN1 Concat Prompts
Subj 72.97(1.56) | 66.55(3.90)
Hyperbaton 83.44(2.07) | 70.67(4.78)
Airline 79.50(1.27) | 71.8(0.64)
Navigate 52.40(4.17) | 50.03(4.08)
Trec 68.47(3.55) | 72.47(3.73)
Disaster 75.58(3.12) | 68.83(3.76)
MPQA 79.12(1.54) | 78.40(2.82)
SST2 91.32(1.27) | 78.06(7.04)
GSMBK (Test) 72.3(1.74) | 70.82(2.31)
GSMB8K (Development) | 74.90(1.40) | 71.3(3.56)

Table 19. Llama3-8B: H; hypothes

is for DLN1 vs

. DLN1 Concatenating Meta Prompts

Dataset Name DLN1 DLN1 Concat Prompts
Subj 77.4(4.67) | 66.75(11.01)
Hyperbaton 81.04(2.52) | 76.0(2.80)
Airline 77.97(5.45) | 75.23(7.51)
Navigate 48.72(6.29) | 56.53(1.40)
Trec 64.70(12.9) | 57.07(5.47)
Disaster 74.97(1.15) | 59.33(8.03)
MPQA 86.3(2.41) | 73.73(9.59)
SST2 91.37(0.45) | 90.33(5.51)
GSMSK (Test) 44.37(3.34) | 42.26(2.7)
GSMSK (Development) | 45.1(4.83) | 43.2(2.3)

Table 20. Mistral-7B: H hypothesis for DLN1 vs. DLN1 Concatenating Meta Prompts

Dataset Name DLN1 DLN1 Concat Prompts
Subj 76.33(2.40) | 75.67(6.66)
Hyperbaton 81.87(2.24) | 75.23(1.26)
Airline 82.57(1.92) | 64.7(3.33)
Navigate 55.33(6.8) 47.67(9.81)
Trec 69.93(3.59) | 47.07(0.02)
Disaster 75.3(2.34) | 57.37(0.91)
MPQA 85.2(2.58) | 69.37(5.65)
SST2 91.87(1.70) | 90.33(5.51)
GSMBK (Test) 50.93(4.25) | 48.26(2.7)
GSMB8K (Development) | 54.33(4.47) | 52.2(2.3)

19

Table 21. Mistral-7B: H; hypothesis for DLN1 vs. DLN1 Concatenating Meta Prompts

DLN1 Concatenating Meta Prompts

Scaling Textual Gradients via Sampling-Based Momentum

Dataset Name DLN1 DLN1 Concat Prompts
Subj 61.07(3.41) | 54.67(2.63)
Hyperbaton 53.2(2.14) 48.47(0.41)
Airline 54.23(5.90) | 61.3(2.48)
Navigate 58.0(2.23) 58.0(3.23)
Trec 53.48(8.07) | 39.7(5.25)
Disaster 61.78(3.82) | 56.97(1.01)
MPQA 62.70(5.59) | 58.33(3.41)
SST2 80.07(3.58) | 72.33(3.10)
GSMSK (Test) 60.53(1.88) | 58.53(2.3)
GSMSK (Development) | 63.23(2.77) | 60.2(3.3)

Table 22. DeepSeek-R1-Distill-Qwen-1.5B: Hy hypothesis for DLN1 vs. DLN1 Concatenating Meta Prompts

Dataset Name DLN1 DLN1 Concat Prompts
Subj 62.37(4.03) | 54.83(2.48)
Hyperbaton 55.20(2.88) | 53.27(3.83)
Airline 69.47(2.1) | 53.43(2.58)
Navigate 52.93(9.91) | 56.67(0.19)
Trec 49.8(5.26) | 43.8(5.62)
Disaster 59.27(3.32) | 55.87(7.54)
MPQA 71.07(9.43) | 59.68(4.67)
SST2 75.70(4.52) | 72.33(3.10)
GSMSK (Test) 49.78(6.71) | 47.53(5.32)
GSMSK (Development) | 51.73(7.82) | 49.2(4.83)

Table 23. DeepSeek-R1-Distill-Qwen-1.5B: H; hypothesis for DLN1 vs. DLN1 Concatenating Meta Prompts

20

Scaling Textual Gradients via Sampling-Based Momentum

Prompt Proposal Template BS o c@tPrompts for DLN1 Concat Prompts

template:

A student is completing a task that requires producing a text output from a text input. The student
receives an instruction that describes how to produce the output given each input.

The student has made some errors. Your task is to improve the instruction such that the student can fix
the errors.

Here are the past iterations of the instruction.

Instructions

> {{ past_prompts }}

[END] [> Comment: We concatenate all past meta prompts together here.

Student successes

{% for backward_-info in backward_infos %} {% if backward_info.loss == 0.0 %}
Input:

> {{ backward_info.input }}

Correct Output:

> {{ backward_info.target }}

{% endif %} {% endfor %}

Student errors

{% for backward_info in backward_infos %} {% if backward_info.loss > 0.0 %}
Input:

> {{ backward_info.input }}

Student Output:

> {{ backward_info.output }}

Correct Output:

> {{ backward_info.target }}

{% endif %} {% endfor %}

Improve the instruction to fix the student errors. {{ message }}
Instruction
>

message_alternatives:
e Clarify the instruction by adding few words or a short sentence. Be concise.
* Improve the instruction by providing examples on how to solve the task. Be concise.
e Shorten the instruction by removing superfluous words or sentences.

* Rewrite the instruction by providing detailed information to avoid ambiguity. Be concise.

F.3. Optimized Prompts by Momentum Based Sampling

We use DLN1 as a representative method and Llama3-8B as a representative model to illustrate the impact of our momentum-
based tokenwise sampling approach. The prompts generated using this strategy consistently incorporate more detailed
explanations and illustrative guidance compared to those produced by non-momentum baselines. In this section, we
present optimized prompts across all tasks, highlighting how momentum-based tokenwise sampling yields qualitatively
different prompts from both human-written and original DLN1-generated prompts. We restrict the number of maximum
tokens to be generated by 100. For GSMS8k task, we restrict max generated tokens to be 500 and the starting prompt
is the default systematic prompt provided by DSPy (Khattab et al., 2024). Since the hyperparameter for momentum
parameter oo = 0.6 seems to outperform other hyperparameters settings for DLN1-Momentum, we only present prompts for
DLN1-Momentum=0.6. For simplicity, we only present prompts generated under H hypothesis.

21

Scaling Textual Gradients via Sampling-Based Momentum

Approach Optimized Prompt Acc.
Human Classify the input text as subjective or objective. 0.491
DLNI1 1. Carefully read the input text. 2. Identify the type of language used in the text. 3. Determine if the = 0.713
text includes words that express the author’s opinion, emotion, or perspective. Look for words such
as ’I”, “me”, "my”, "we”, "us”, our”, “believe”, "think”, ’feel”, “opinion”, ’perspective”, "view”,
“attitude”, “emotion”, etc. If it does...
DLNI1-Momentum = 0.6 Classify each input text as subjective or objective. Subjective texts express a personal opinion, 0.770

emotion, or experience.They often use words and phrases like: - I think™, "I believe”, "I feel”, "my
opinion”, “my experience”, "I love”, ”’I hate”, etc. - Use of first-person pronouns (I, me, my) - Words
that describe emotions (e.g., beautiful, sad, excited) - Use of evaluative language (e.g ’smart and

alert , thirteen conversations about one thing is a small gem .

Table 24. Prompt comparison for the Subj task, showing human, DLN1, and DLN1-Momentum prompts. Colored text highlights
components such as Task Description, Term Clarification, Solution Guidance. DLN1-Momentum improves the prompt by keeping the
task description after iterative refinement.

Approach Optimized Prompt Acc.
Human Which sentence has the correct adjective order. 0.750
DLN1 1. Read the sentence carefully. 2. Identify the adjective(s) in the sentence. 3. Arrange the adjectives 0.816
in the correct order: descriptive adjective (if any), size adjective, color adjective, shape adjective,
material adjective, and finally the noun. 4. Check if the adjective order is correct for each sentence.
This improved instruction should help the student to identify and fix the errors in the adjective order.
The student can follow the steps and learn to produce the correct output given each input.
DLN1-Momentum = 0.6 1. Follow the correct order of adjectives: opinion, size, shape, material, color, and origin. 2. Start ~ 0.872

with an opinion adjective if it is present. If not, start with a size adjective. 3. Then, add a shape
adjective, followed by a material adjective, a color adjective, and finally, an origin adjective. 4. If
an adjective is missing, leave a space for it. 5. Remember, each adjective should be separated by a
space.

Table 25. Prompt comparison for the Hyperbaton task, showing human, DLN1, and DLN1-Momentum prompts. Colored text highlights
components such as Task Description, Term Clarification, Solution Guidance and Priority/Emphasis.

Approach Optimized Prompt Acc.
Human Read the following sentence, then choose whether it is positive, negative, or neutral. 0.701
DLN1 1. Read the sentence carefully. 2. Identify the tone of the sentence. 3. Determine if the tone is 0.802

positive, negative, or neutral. 4. Write the correct output (positive, negative, or neutral) based on

your analysis. Additional Tips: - Pay attention to the words used in the sentence, such as “’thanks”,

”I love”, “good”, “bad”, “happy”, ’sad”, etc. - Look for phrases that indicate a problem or issue.
DLNI1-Momentum = 0.6 1. Read the tweet carefully and identify the key phrases, words, or sentences that convey the 0.817

sentiment. 2. Determine if the tweet is expressing a positive, negative, or neutral sentiment. 3.
Consider the tone and language used in the tweet. 4. Identify the correct output by classifying the
sentiment as positive, negative, or neutral. 5. Remember, even if the tweet is mentioning a specific
airline, the sentiment expressed may not necessarily be about the airline itself.

Table 26. Prompt comparison for the Airline task, showing human, DLN1, and DLN1-Momentum prompts. Colored text highlights
components such as Task Description, Term Clarification, Solution Guidance and Priority/Emphasis. DLN1-Momentum improves the
prompt quality by inferring the training examples are tweets rather than sentence.

22

Scaling Textual Gradients via Sampling-Based Momentum

Approach Optimized Prompt Acc.

Human Read the following question, then choose whether it is about a description, entity, expression, human, 0.451
location or number.

DLNI1 1. Read the question carefully and identify the main topic. 2. Determine if the topic is a person, 0.586
place, thing, or idea. 3. Ask yourself if the topic is a living thing (human, animal, or plant), a
location, a concept, an object, or an event. 4. Choose the correct category (human, location, entity,
description, expression, or number) from the options. 5. Write the chosen category as the output.

DLNI1-Momentum = 0.6 1. Read the question carefully and identify the type of information being asked. 2. Determine 0.772

whether the question is seeking: * A specific quantity (number) * A person’s name or a group
of people (human) * A concept, expression, or idea that is not a person (entity) * A description
or explanation of something (description) * A location or geographical area (location) 3. Use the
guidelines to categorize the correct output type for each problem.

Table 27. Prompt comparison for the Trec task, showing human, DLN1, and DLN1-Momentum prompts. Colored text highlights
components such as Task Description, Term Clarification, Solution Guidance and Priority/Emphasis. DLN1-Momentum improves the
prompt by presenting a description for each type of answer for Term Clarification

Approach Optimized Prompt Acc.
Human Read the following sentence, then choose whether it is relevant to a disaster. 0.621
DLN1 Read the following sentence carefully and decide whether it is relevant to a disaster. Look for 0.725
information in the sentence that indicates a potential catastrophe or serious harm to people, property,
or the environment. If the sentence is about a disaster or could be related to one, answer “yes”.
Otherwise, answer “no”. Remember, the focus is on disasters and the potential harm they can cause.
DLNI1-Momentum = 0.6 Read the sentence carefully and determine if it’s relevant to a disaster or crisis, such as a natural ~ 0.807

disaster, accident, or serious event. Ignore any non-disaster related information, such as personal
opinions, jokes, or advertisements. Consider only the main topic or event mentioned in the sentence.
If the sentence is about a disaster or crisis, answer “yes”, otherwise, answer “no”.

Table 28. Prompt comparison for the Disaster task, showing human, DLN1, and DLN1-Momentum prompts. Colored text highlights
components such as Task Description, Term Clarification, Solution Guidance and Priority/Emphasis. DLN1-Momentum improves the
prompt by providing longer Solution Guidance and more detailed Term Clarification on disaster descriptions.

Approach Optimized Prompt Acc.
Human Read the following review, then choose whether it is negative or positive. 0.785
DLN1 Read the review and identify whether it is a negative or positive review based on the language used. 0.810
Consider the tone and the words used in the review. Determine if the review uses words that convey
a sense of disapproval, criticism, or negativity. If the review uses words that convey a sense of
approval, praise, or positivity, then the review is positive. Conversely, if the review uses words that
convey a sense of disappointment, frustration, or dissatisfaction, then the review is negative.
DLN1-Momentum = 0.6 1. Read the review carefully and identify the words or phrases that convey a positive or negative 0.856

sentiment. 2. Consider the meaning of the words or phrases in the context of the review. 3. Determine
if the overall tone of the review is positive or negative. 4. If you’re unsure, look for specific words or
phrases that clearly indicate a positive or negative sentiment. 5. Write your answer as ’positive’ or
“negative’.6. Make sure to consider the context.

Table 29. Prompt comparison for the Mpqa task, showing human, DLN1, and DLN1-Momentum prompts. Colored text highlights
components such as Task Description, Term Clarification, Solution Guidance and Priority/Emphasis. DLN1-Momentum generates
prompts with assertive tone Emphasis on answering the question.

23

Scaling Textual Gradients via Sampling-Based Momentum

Approach Optimized Prompt Acc.
Human Classify the input text as positive or negative. 0.840
DLN1 1. Read the input text carefully. 2. Determine the overall tone of the text. 3. Classify the tone as 0.922
positive, negative, or neutral. If the text expresses a positive sentiment, such as praise, admiration,
or enthusiasm, classify it as positive. If the text expresses a negative sentiment, such as criticism,
dislike, or frustration, classify it as negative. If the text does not express a clear sentiment, classify it
as neutral. 4. Write the corresponding output.
DLNI1-Momentum = 0.6 1. Read the input text carefully and identify the main idea or sentiment expressed. 2. Determine 0.935

whether the text expresses admiration, criticism, or a neutral opinion. If it expresses admiration,
write “positive”. If it expresses criticism, write “negative”. If it is neutral, write "neutral”. 3. Be
cautious not to misinterpret the text, especially when it uses sarcasm or irony. 4. Practice reading
between the lines and considering the tone and context of the text.

Table 30. Prompt comparison for the SST2 task, showing human, DLN1, and DLN1-Momentum prompts. Colored text highlights
components such as Task Description, Term Clarification, Solution Guidance and Priority/Emphasis. DLN1-Momentum generates

prompts with more direct and accurate Solution Guidance

24

Scaling Textual Gradients via Sampling-Based Momentum

Approach Optimized Prompt Acc.

Human Your input fields are: 1. ‘question® (str) Your output fields are: 1. ‘reasoning® (str) 2. ‘answer® (str) 0.6
All interactions will be structured in the following way, with the appropriate values filled in. [[##
question ##]] question [[## reasoning ##]| reasoning [[## answer ##]] answer [[## completed
]] In adhering to this structure, your objective is: Given the fields ‘question, produce the fields
‘answer®.

DLN1 Your task is to write a text output given a text input. The input will be in the format of a question, and 0.69
you need to produce a reasoning and an answer. The structure of the output is: [[## question ##]]
question [[## reasoning ##]] reasoning [[## answer ##]] answer To complete this task, you will
need to follow these steps: 1. Read the input question carefully. 2. Understand what is being asked
and what information is needed to solve the problem. 3. Write a clear and concise reasoning for your
answer. Make sure your reasoning is logical and easy to follow. 4. Calculate the answer based on the
given information. 5. Write the answer in the format of a sentence or a number. Remember to use
proper mathematical operations and follow the given instructions carefully. If you are unsure about
any step, you can try breaking it down into smaller parts or using a calculator to help you with the
calculation. Also, double-check your answer to ensure it is reasonable and accurate. By following
these steps, you should be able to produce accurate and well-structured outputs for the given inputs.
Good luck!

DLNI1-Momentum = 0.6 1. ‘question® (str) - Your output fields are: - 1. ‘reasoning® (str) - 2. ‘answer* (str) - All interactions 0.81
will be structured in the following way, with the appropriate values filled in. [[## question ##]]
question [[## reasoning ##]] reasoning [[## answer ##]] answer [[## completed ##]] - In adhering
to this structure, your objective is: - Given the input ‘question‘, produce the fields ‘answer by
applying logical and mathematical operations to the provided information. - Ensure that your output
is accurate and well-supported by your reasoning. - Note: - For calculations involving percentages,
ratios, and proportions, use decimal equivalents. For example, 10% can be converted to 0.1. - For
questions involving time, ensure accurate calculations of time periods and convert them to the required
units. For example, if a time period is given in hours, convert it to days or minutes as needed. -
Check your units and make sure they match the required units in the problem. - By following these
guidelines, you will be able to produce accurate and well-supported answers. - Remember to: -
Clearly explain your steps in the ‘reasoning’ field. - Provide accurate calculations and assumptions. -
Avoid ambiguity in your answers. - Ensure that your answer is concise and easy to understand. - For
the ‘answer* field, provide the numerical value or solution to the problem. - For the ‘reasoning’ field,
provide a clear and concise explanation of your steps and calculations. - In the ‘completed® field,
indicate that your task is finished and your output is ready for review. - By following these guidelines
and the structure provided, you will be able to produce accurate and well-supported answers. - Note:
- If you are unsure about any part of the problem or calculation, it is recommended that you review
the problem and recalculate your answer before submitting it. - It is also important to double-check
your units and ensure that they match the required units in the problem. - If you have any questions
or concerns, please don’t hesitate to ask for help.

Table 31. Prompt comparison for the GSM8K(test) task, showing human, DLN1, and DLN1-Momentum prompts. Colored text highlights
components such as Task Description, Term Clarification, Solution Guidance and Priority/Emphasis. Prompts generated by DLN1-
Momentum are more detailed, structured, and pedagogically grounded, often mixing Solution Guidance and Priority/Emphasis to better
support task completion and reduce ambiguity.

25

Scaling Textual Gradients via Sampling-Based Momentum

F4. Iterative Workflow with Momentum based sampling

To illustrate the effectiveness of our momentum sampling module as an enhancement to the vanilla TextGrad framework, we
use DLNI as a representative method. We report all meta prompts generated by both DLN1 and DLN1-Momentum (= 0.6)
throughout the iterative optimization process on the subjective classification task. Specifically, we present the evolving
meta prompts—defined as the best-performing prompts selected from a candidate pool at each iteration. Only the changing
meta prompts are shown under the H; setting, where the prompt generation temperature is set to 1.1 and early stopping is
triggered if the best test accuracy does not improve over 5 consecutive iterations.

Compared to the standard DLN1 framework, DLN1-Momentum= 0.6 demonstrates a more gradual and stable improvement
in test set accuracy across iterations. While DLN1 achieves a rapid performance boost in early iterations—jumping from
0.491 to 0.750 at iteration 1—its accuracy gains begin to plateau shortly thereafter. In contrast, DLN1-Momentum exhibits a
slower but smoother trajectory, progressing from 0.491 to 0.66 in the first iteration and gradually increasing to 0.856 by
iteration 5. This extended optimization process allows the momentum-based approach to explore a wider space of meta
prompts and refine them more cautiously. As a result, DLN1-Momentum tends to converge toward stronger final prompts
with higher accuracy, suggesting that the momentum mechanism effectively stabilizes prompt updates and reduces premature
convergence on suboptimal prompt candidates.

Meta Prompt # Meta Prompt Test Acc.
0 Classify the input text as subjective or objective. 0.491
1 For each input text, classify whether the statement is a fact (objective) or an opinion/emotion (subjective). 0.750

If the statement is describing a situation, event, or thing, it is likely an objective statement. If the statement
is expressing a personal view, feeling, or evaluation, it is likely a subjective statement. Consider the

99 39 9

language used, tone, and context to make your decision. Pay attention to words such as ”is”, ’seems”,

ELIEY)

“feels”, “right”, and “wrong.”

2 1. Read the input text carefully. 2. Identify whether the text describes a situation, event, or thing 0.756
(objective) or expresses a personal view, feeling, or evaluation (subjective). 3. Pay attention to words like
”is,” "seems,” "feels,” "right,” and “wrong.” 4. Consider the language used and the context in which it is

used.

2 9

3 1. Read the input text carefully. 2. Identify whether the text describes a situation, event, or thing 0.8125
(objective) or expresses a personal view, feeling, or evaluation (subjective). Pay attention to words like
seems,” "feels,” “right,” and ”wrong.” 3. Consider the language used and the context in which it’s

»is>* ”
used.
4 1. Read the text carefully. 2. Determine whether the text is describing a situation, event, or thing 0.825
(objective) or expressing a personal view, feeling, or evaluation (subjective). Pay attention to words like
”is,” seems,” “feels,” “right,” and “wrong.” 3. Use context clues like language, tone, and the presence of
emotions to help determine the text type.

Table 32. DLNI Iterative Prompt Workflow for Subj Task

26

Scaling Textual Gradients via Sampling-Based Momentum

Meta Prompt #

Meta Prompt

Test Acc.

0
1

Classify the input text as subjective or objective.

1. Read the input text carefully. 2. Determine if the text is describing an opinion, a feeling, or an
evaluation about something. If it is, classify it as subjective. If it is describing a fact, situation, or event
without expressing a personal opinion, classify it as objective. 3. Check if the text includes words or

phrases that indicate an evaluation, such as ”good”, “bad”, “interesting”, “amazing”, or phrases that
express a personal point of view

1. Read the input text carefully and identify the purpose of the text. 2. Ask yourself, "’Is the text giving
information about a fact, situation, or event without expressing a personal opinion?” If yes, classify it
as objective. If not, consider whether the text is expressing an evaluation, opinion, or personal point of
view. 3. Look for words or phrases that indicate an evaluation, such as ”good”, "bad”, "interesting”,
”amazing”, or phrases that

1. Read the text carefully and identify the purpose of the text. Does the text present a fact, situation, or
event without expressing a personal opinion? Look for words or phrases that indicate an evaluation, such
as ”good”, ”bad”, “interesting”, or phrases that imply a subjective perspective. 2. Ask yourself, "’Is the
text describing a situation or event without making a value judgment?” If yes, classify it as objective. If
not, consider whether the text is expressing an evaluation

1. Determine whether the text presents a fact, situation, or event without expressing a personal opinion.
Look for words or phrases that indicate an objective description, such as “’the film is a comedy” or "the
main character is a woman”. 2. Check for words or phrases that imply a subjective perspective, such as
”good”, “bad”, "interesting”, or "brilliant”. 3. Ask yourself, "Does the text describe the event or situation
without expressing an opinion?”

1. Determine whether the text presents a fact, situation, or event without expressing a personal opinion.
Look for objective words or phrases that describe a description, such as the film is a comedy” or "the
main character is a woman”. Avoid subjective words or phrases that convey a personal perspective, such
as good”, ”bad”, “interesting”, or “’brilliant”. If you find a subjective phrase, it likely expresses an
opinion and is not a simple fact or description.

0.491
0.66

0.78

0.8

0.85

0.856

Table 33. DLN1-Momentum=0.6 Iterative Prompt Workflow for Subj Task

27

