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Abstract

Graph neural networks have emerged as a promising approach for the analysis of non-
Euclidean data such as meshes. In medical imaging, mesh-like data plays an important role
for modelling anatomical structures, and shape classification can be used in computer aided
diagnosis and disease detection. However, with a plethora of options, the best architectural
choices for medical shape analysis using GNNs remain unclear.
We conduct a comparative analysis to provide practitioners with an overview of the current
state-of-the-art in geometric deep learning for shape classification in neuroimaging. Using
biological sex classification as a proof-of-concept task, we find that using FPFH as node
features substantially improves GNN performance and generalisation to out-of-distribution
data; we compare the performance of three alternative convolutional layers; and we reinforce
the importance of data augmentation for graph based learning. We then confirm these
results hold for a clinically relevant task, using the classification of Alzheimer’s disease.
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1. Introduction

Geometric deep learning generalizes classical neural network models to non-Euclidean do-
mains such as point clouds, graphs, or meshes (Wu et al., 2020). It has therefore become
popular across various fields from computer vision (Zhou et al., 2020b) and physics (Shlomi
et al., 2020), to healthcare topics (Dash et al., 2019) such as disease prediction (Kazi et al.,
2019), drug discovery (Li et al., 2017), and brain connectome analysis (Kim et al., 2021).

A recent study (Sarasua et al., 2022) investigated the expressiveness of mesh representa-
tions for disease classification. We complement these findings by conducting a comparative
study evaluating different graph neural networks (GNNs) for the classification of anatomical
meshes extracted from neuroimaging data. We propose a simple yet effective multi-graph
architecture with a shared submodel for learning shape embeddings (see Fig. 1). Different
graph convolutional layers are compared; GCNConv (Kipf and Welling, 2016), GraphConv
(Morris et al., 2019), and SplineCNN (Fey et al., 2018). In all cases, we observe substantial
performance improvements when using Fast Point Feature Histograms (FPFH) as node fea-
tures, which to our knowledge has not been explored before. We also investigate the effect
of data augmentation, finding improvements in generalization to data from new domains.
Our findings on the proof-of-concept task of biological sex classification are confirmed on
the clinically relevant diagnostic task of Alzheimer’s disease classification.

© 2022 N. Shehata, W. Bain & B. Glocker.
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Figure 1: Proposed multi-graph architecture; N is the number of meshes (here, N=15), H
is the number of hidden features (H = 32), and FC is a fully connected layer.

2. Graph Neural Network Architecture

As the field of geometric deep learning has expanded, the architectural choices available
to practitioners has proliferated. Here we outline our approach on three key aspects: the
type of convolutional layer used, the number of convolutional submodels, and the type of
geometric features encoded at the node level.

2.1. Selected Graph Convolutional Operators

Graph convolutional operations are analogous to CNN operations on images, respecting the
additional invariants that arise in this domain, permutation invariance being key due to the
artificial ordering of nodes that arises when representing graphs. As shown in Bronstein
et al. (2021), many GNNs follow a blueprint of ‘message passing’ (Gilmer et al., 2017),
whereby node features are updated using an aggregation on the features of nodes in their
neighbourhood, but there is significant variance in how this is done. In this paper, we
compare three seminal graph convolutional layers from the literature: GCNConv (Kipf and
Welling, 2016), GraphConv (Morris et al., 2019), and SplineCNN (Fey et al., 2018). These
are selected as popular representatives of graph convolutional layers, that are easy to use
as plugin replacements in generic architectures. We direct readers to the original papers
for details. Existing literature has compared GCNConv and GraphConv (Xu et al., 2018;
Morris et al., 2019), and we extend this to medical imaging.

2.2. Multi-graph Architecture

As multiple subcortical structure subgraphs may be extracted simultaneously from a single
sample brain scan, one must also choose how to utilise these. One option is to combine them
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into a single multigraph per sample (Wang et al., 2021; Chaari et al., 2022). However, it
might not be obvious how to define edges between graphs of different anatomical structures.
Alternatively, as in this paper, each subgraph can be input to a specific GNN, and the results
combined into a sample level output. Practitioners must decide the number of GNNs to
use. One approach is a single shared GNN that learns from all subgraphs, while another
is inputting each subgraph to a separate GNN i.e. the number of (sub) GNNs is equal to
the number of subgraphs per sample (Hong et al., 2021). The latter approach allows each
(sub) GNN to learn structure specific embeddings, whilst the former encourages the GNN
to generalise learnings across structures.

Initially, we tested both a single shared and structure specific GNN submodel, finding
that the performance was comparable. Using a shared submodel significantly reduces the
number of parameters. Given considerations on neural networks training time (Li, 2020),
cost (Wiggers, 2020), and environmental impact (Strubell et al., 2019), our preliminary
results led us to use a shared GNN in this paper: each brain substructure is passed to
the shared submodel to obtain an embedding. We use three convolutional layers in the
submodel with ReLU activations. A global average pooling layer is used as a readout layer
to aggregate the node representations into one graph embedding. These embeddings are
then stacked and passed through a fully connected layer for final classification (cf. Fig. 1).

2.3. Node and edge representation

The meshes representing anatomical brain structures are defined by a set of nodes and edges,
where both can carry additional information. Nodes can encode arbitrary feature vectors,
from spatial information such as mesh coordinates to more complex, geometric feature de-
scriptors. In computer vision, hand crafted features based on carefully designed descriptors
have been largely abandoned in the end-to-end deep learning paradigm (Battaglia et al.,
2018). However, in the case of shape analysis, we believe there is value in sophisticated,
geometrical feature extractors, especially when there are limited amounts of training data.
We evaluate the use Fast Point Feature Histograms (FPFH) (Rusu et al., 2009) as node
features, and compare these with positional node features in form of Cartesian coordinates,
and no node features (realized by setting constant values).

To calculate the FPFH features on a mesh, first a point feature histogram is computed:
for each query point pr, all neighbouring points inside a 3D sphere of radius r centered
at point pr are selected (k-neighbourhood points); then, for each pair pr and pk in the
k-neighbourhood points of pr, their normals are estimated as nr and nk. The point with
the smaller angle between the line joining the pair of points and the estimated normals is
chosen to be pr. Finally a Darboux frame is defined as (u = nr, v = (pk − pr)u,w = u× v)
and the angular variations of nr and nk are computed:

α = v · nk

φ = (u · (pk − pr))/ ‖(pk − pr)‖

θ = arctan(w · nk, u · nk)

Second, a Simple Point Feature Histogram (SPFH) is obtained by calculating the point
features of each neighboring point pk (Rusu et al., 2008). Finally, to calculate FPFH,
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the SPFH of the k neighbours are used to calculate the final histogram of pr, where they
are weighted by the distances between pr and the neighbours pk. N is the number of
points within the sampling radius (number of neighbours to the reference point). In our
implementation, the sampling radius was set to 10mm and maximum number of neighbours
to 100.

FPFH(pr) = SPFH(pr) +
1

N

N∑
k=1

SPFH(pk)

‖pk − pr‖

Besides the node features, we also encode edge attributes in terms of relative spherical
coordinates between two nodes. Edge attributes are processed only within SplineCNN
layers, but otherwise ignored in both GCNConv and GraphConv layers, as these can only
use edge weights and not attributes.

3. Datasets

We utilize four neuroimaging datasets to test generalization and robustness of the classifi-
cation performance. We use data from the UK Biobank imaging study (UKBB)1 (Sudlow
et al., 2015; Miller et al., 2016), the Cambridge Centre for Ageing and Neuroscience study
(Cam-CAN) (Shafto et al., 2014; Taylor et al., 2017), and the IXI dataset2. Both UKBB
and Cam-CAN use a similar imaging protocol with Siemens 3T scanners. IXI consists of
data acquired at three different sites including Guy’s Hospital using a Philips 1.5T system,
Hammersmith Hospital using a Philips 3T scanner, and Institute of Psychiatry using a
GE 1.5T system. UKBB, Cam-CAN, and IXI are data from healthy volunteers. We only
discarded data related to subjects whose sex or age entries were unavailable.

We also use the OASIS-3 dataset with 716 cognitively normal participants and 318 par-
ticipants who reach various stages of cognitive decline during the study, allowing Alzheimer’s
disease (AD) related tasks such as classification (LaMontagne et al., 2019). The cognitive
status is reflected in the clinical dementia rating (CDR) that accompanies the imaging
dataset, with subjects receiving a score of: 0 for normal, 0.5 for very mild dementia, 1 for
mild dementia, 2 for moderate dementia and 3 for severe dementia (Morris, 1991). The CDR
is collected in clinical sessions, separate to the imaging sessions, meaning sessions must be
‘matched’ to get an {image, CDR score} pair. We match the clinical diagnosis closest in
time to each scan, before filtering out samples where the absolute time difference between
scan and clinical assessment is greater than 365 days. To avoid difficulties in assigning
scans to training, validation, and testing, we only use one scan per subject, leaving 1,084
unique scans. We exclude 50 samples because their sex or age information was missing.
The final set of 1,034 comprises 716, 188, 111, 18 and 1 samples, for CDR of 0, 0.5, 1, 2
and 3 respectively. We binarize CDR to 0 and 1 (for CDR score 0.5, 1, 2 and 3).

The UKBB data comes pre-processed with already extracted meshes for 15 subcortical
brain structures3. We apply our own processing pipeline to Cam-CAN, IXI and OASIS-3 to
match UKBB as closely as possible: 1) Skull stripping with ROBEX v1.24 (Iglesias et al.,

1. UK Biobank Resource under Application Number 12579
2. https://brain-development.org/ixi-dataset/
3. Brain stem, left/right thalamus, caudate, putamen, pallidum, hippocampus, amygdala, accumbens-area
4. https://www.nitrc.org/projects/robex
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2011); 2) Bias field correction with N4ITK5 (Tustison et al., 2010); 3) Sub-cortical brain
structure segmentation and meshing using FSL FIRST 6 (Patenaude et al., 2011).

Table 1: Number of samples, percentage of females, and mean, min, and max age.

Dataset Samples Female (%) Age (years)

UKBB 13,749 47 61 [44, 73]
Cam-CAN 652 51 54 [18, 88]
IXI 563 58 49 [20, 86]
OASIS-3 1,034 55 72 [42, 97]

4. Experiments

The experiments were designed to evaluate and compare three main aspects: (i) the choice
of convolutional layers for the shared submodel; (ii) the choice for the node features; (iii)
the effect of data augmentation on robustness and generalization.

4.1. Implementation and Training

We use the Adam optimizer with a learning rate of 0.001 and the standard cross entropy loss
as the classification objective function. To increase the variability of the training data and
to avoid overfitting, we employ a simple data augmentation strategy (Zhou et al., 2020a).
Individual graph nodes are randomly translated by a maximum offset. We evaluate the
effect of the strength of augmentation and test maximum offsets of 0.1mm, 0.5mm, and
1.0mm. Given the limited amount of training data, data augmentation should be beneficial
for improving classification accuracy across different datasets.

All our implementations were done in PyTorch benefiting from the excellent PyTorch
Geometric library7. We use PyTorch Lightning8 for ease of implementation of the model and
data structures. The code is available on https://github.com/biomedia-mira/medmesh.

4.2. Task 1: Biological Sex Classification

We use biological sex classification as a proof of concept task which has shown to yield good
performance with the advantage that several neuroimaging datasets from different sources
are available for extensive testing and evaluation of the effect of different model choices on
predictive performance. We use the UKBB data for the model development, with a data
split of 70%, 10%, and 20% for training, validation, and testing. The batch size was set
to 128, all hidden features set to 32 (both for the convolutional layers and fully connected
layers). When using SplineCNN, we set the kernel size to 5 and use the sum aggregation.
The maximum number of training epochs was set to 50, and we retain the model with
highest validation performance for final evaluation on the test set.

5. https://itk.org
6. https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST
7. https://pytorch-geometric.readthedocs.io/
8. https://www.pytorchlightning.ai/
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Effect of node features To evaluate the effectiveness of different node features, in our
first set of experiments we employ SplineCNN in the shared convolutional submodel (as these
performed well in initial experimentation). We then evaluated classification performance
on the UKBB test set, Cam-CAN, IXI, and OASIS-3 using constant, positional, and FPFH
node features.

The ROC curves in Figure 2 show that FPFH substantially outperforms other node
features on all four datasets. It is worth noting that while positional features perform well
on the in-distribution UKBB test set, these features underperform on out-of-distribution
test sets. This is due to their reliance on Cartesian coordinates of mesh nodes which do
not generalize well due to differences in data acquisition. FPFH, on the other hand, are
invariant to the pose of the mesh and show much better generalization across datasets.
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Figure 2: ROC curves for sex classification comparing different node features across the
datasets UKBB, Cam-CAN, IXI, OASIS-3 using SplineCNN in the submodel.

Effect of data augmentation Next, we evaluate the effect of varying strengths of data
augmentation. The maximum offset for the random node translation is varied from 0 (no
augmentation), to 0.1, 0.5, and 1.0mm. The ROC curves in Figure 3 demonstrate the
benefit of data augmentation on robustness and generalization. The best performance is
achieved using data augmentation of 0.1, which increased AUC by 4-5% compared to not
using augmentation. While data augmentation slightly decreases the performance on the in-
distribution UKBB test set, it substantially improves performance on all out-of-distribution
test sets, confirming the importance of adding random perturbations to the training data.
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Figure 3: ROC curves showing the effect of data augmentation for sex classification across
domains, using SplineCNN as the shared submodel and FPFH as node features.

Effect of convolution layer Finally, we evaluate the three different convolutional layers,
using FPFH as the node features and data augmentation of 0.1mm. In Figure 4(a) we
observe similar performance for SplineCNN and GCNConv, closely followed by GraphConv.

4.3. Task 2: Alzheimer’s Disease Classification

To confirm whether the above findings hold for a clinically relevant task, we consider
Alzheimer’s disease (AD) classification on OASIS-3 with a 70%, 10%, and 20% train, valida-
tion, and test split. We evaluate the effect of the convolutional layer using a larger amount
of data augmentation of 0.5mm due to the smaller amounts of training data. We then also
evaluate the effect of node features for AD classification, using SplineCNN in the submodel
for consistency with the sex classification experiments. The results are shown in Fig. 4(b)
and 4(c). GCNConv performs slightly better than SplineCNN, with a substantial decrease
in performance for GraphConv. FPFH features again outperform other node features.

4.4. Bias Analyses

We also investigated potential biases in the predictions in terms of subgroup performance
disparities. To this end, we first analyzed the biological sex classification model stratified
by age groups. As the training data from UKBB only covers a limited age range between
44 and 73 year old subjects, we wanted to understand whether the performance might
degrade for younger subjects. The results shown in Figure 5(a), however, suggest that
the sex classification model with SplineCNN and FPFH features generalizes well across the
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Figure 4: Effect of convolution layer for (a) sex and (b) Alzheimer’s disease classification.
(c) Effect of node features on AD classification. All evaluated on OASIS-3.

entire age range. Both Cam-CAN and IXI contain many subjects in the range of 18 to
40 years. Next, we analyzed whether sex classification may be affected by disease status.
Here we looked at the classification performance separately for the group of healthy controls
and subjects with Alzheimer’s disease. Again, we find no differences in the classification
accuracy, suggesting that the sex classification model generalizes well (cf. Figure 5(b)).
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Figure 5: Bias analysis for sex classification using SplineCNN with FPFH features. Classi-
fication performance is stratified by (a) age groups and (b) presence of disease.

5. Conclusion

This comparative study evaluated the effect of node features, convolutional layers, and
data augmentation on two different tasks and four datasets in medical shape classification
with graph neural networks. We find that the use of FPFH features is highly beneficial,
substantially improving classification performance on out-of-distribution test data. The
FPFH features alleviate the need for data normalization such as mesh alignment due to their
pose invariance. We are not aware of earlier studies proposing the use of FPFH in GNNs.
We further find that SplineCNN and GCNConv are both viable options for the convolutional
layers, yielding comparable performance. We also conclude that data augmentation is
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essential in GNNs, in particular, when the amount of training data is limited. We find that
stronger data augmentation is beneficial in particular for Alzheimer’s disease classification
where the training set contained less than 800 samples. AD classification performance was
overall promising, and in line with a recent study evaluating data representations (Sarasua
et al., 2022). This should be confirmed in future work on other datasets for AD classification
such as ADNI.

A limitation of this work is that only relatively simple data augmentation was considered
in the form of perturbing the mesh node positions. Recently, there has been work on more
advanced data augmentation techniques for graph neural networks (Ding et al., 2022) such
as removing a certain number of edges either randomly (Rong et al., 2019) or based on the
GNN predictions adjusting the graph in an adaptive manner (Chen et al., 2020) to name a
few. In future work, it would be interesting to evaluate the effect of these more advanced
techniques for medical shape classification.

Our proposed multi-graph architecture may be useful in other applications which will
be investigated in future work.
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Vińıcius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
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