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Figure 1: Our proposed driving cue provides a more robust representation for complex motions
and self-occlusions. Left: Errors in skeleton maps such as front-back confusion, inaccurate hand
localization, and missing limbs result in noticeable artifacts in StableAnimator outputs. In contrast,
DirectAnimator uses raw pixels from the driving video as driving signals, generating accurate and
realistic frames. Right: The Same2X training strategy significantly improves training efficiency in
cross-ID scenarios (Stage 2), reaching the same loss level 6.7× faster than training without it.

ABSTRACT

Human image animation aims to generate a video from a static reference image,
guided by pose information extracted from a driving video. Existing approaches
often rely on pose estimators to extract intermediate representations, but such sig-
nals are prone to errors under occlusion or complex poses. Building on these ob-
servations, we present DirectAnimator, a framework that bypasses pose extraction
and directly learns from raw driving videos. We introduce a Driving Cue Triplet
consisting of pose, face, and location cues that captures motion, expression, and
alignment in a semantically rich yet stable form, and we fuse them through a
CueFusion DiT block for reliable control during denoising. To make learning de-
pendable when the driving and reference identities differ, we devise a Same2X
training strategy that aligns cross-ID features with those learned from same-ID
data, regularizing optimization and accelerating convergence. Extensive experi-
ments demonstrate that DirectAnimator attains state-of-the-art visual quality and
identity preservation while remaining robust to occlusions and complex articula-
tion, and it does so with fewer computational resources. Our project page is at
https://directanimator.github.io/.
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1 INTRODUCTION

Human Image Animation (HIA) aims to generate a photorealistic video of a reference identity per-
forming poses and expressions sourced from a driving video. This task has witnessed growing
interest due to its wide range of applications in virtual avatars, video editing, and entertainment
content creation. In recent years, numerous HIA methods have emerged, leveraging different de-
noising models, including SD-based (Rombach et al., 2022a) approaches such as AnimateAnyone
(Hu, 2024), SVD-based (Blattmann et al., 2023) methods like StableAnimator (Tu et al., 2024), and
DiT-based (Peebles & Xie, 2023) frameworks such as UniAnimate-DiT (Wang et al., 2025). Most
of these methods rely on intermediate representations such as skeleton maps (Yang et al., 2023),
DensePose (Güler et al., 2018), or SMPL parameters (Loper et al., 2023) as driving signals to guide
the animation process. However, existing driving signals introduce several limitations. First, pose
conditioning is often noisy and unreliable. Due to challenges like occlusion or complex body artic-
ulation, existing pose estimators often produce erroneous or incomplete results, leading to distorted
generations. Second, pose representations often struggle to capture facial expressions accurately, as
facial landmarks or sparse keypoints provide limited semantic richness, often leading to expression-
less or unnatural animations. To address these limitations, a more intuitive approach is to directly
use the raw driving video as driving signal, leveraging its rich information without relying on in-
termediate abstractions. This better mirrors how humans learn motion patterns, relying on holistic
visual demonstrations rather than simplified pose representations. Nevertheless, such direct con-
ditioning is non-trivial and introduces several critical challenges. First, in raw driving frames the
cues that matter most for animation, namely body pose and facial expressions, are not explicitly
encoded but are entangled with appearance details. Unlike skeletons, where these cues are modeled
by explicit keypoints and lines, the model must learn to extract and control them directly from raw
pixels while keeping the reference identity intact. Without an appropriate representation and injec-
tion mechanism, the model is prone to failing to follow the driving motion. Second, even if motion
and expression cues can be extracted in same-ID settings, training directly on cross-ID pairs further
complicates optimization. When the reference and driving identities differ, the model must simulta-
neously (i) follow the motion and expressions in the driving video and (ii) preserve the appearance
of the reference identity. This dual objective makes gradients noisy and slows convergence, and
naive cross-ID training often leads to unstable training dynamics.

To overcome these challenges, we propose DirectAnimator, which animates reference images di-
rectly from raw driving videos. To address the first challenge that motion and expression cues are
buried in raw pixels, DirectAnimator abstracts motion, expression, and spatial correspondence into
a structured driving cue triplet and injects these cues into the denoising process via a CueFusion DiT
block. The driving cue triplet comprises three complementary signals. (i) Pose Cue, which captures
temporally coherent pose sequences by segmenting and frequency-filtering the foreground region of
the driving video; (ii) Face Cue, which crops and centers face regions to guide expressive synthesis;
and (iii) Location Cue, consisting of grid-based softened body and face masks, provides spatial pri-
ors to facilitate alignment between the driving video and the reference image. In the CueFusion DiT
block, the reference image is encoded into vision embeddings that flow through the DiT backbone,
while the three driving cues are encoded into separate control embeddings. These control embed-
dings modulate each DiT block via adaptive layer normalization (AdaLN) (Perez et al., 2018) and
gated residual connections, so that “who the person is” (identity) is carried by the main denoising
path, and “how the person moves and emotes” is injected through conditional modulation. To fur-
ther mitigate the second challenge, namely the optimization difficulty of direct video conditioning
in cross-ID scenarios, we introduce the Same2X training strategy. The model is first pretrained on
same-ID data to establish its ability to animate the reference image under the guidance of the driving
cue, and then adapted to cross-ID scenarios by aligning internal representations with same-ID model
via a novel Same2X alignment loss. This strategy accelerates convergence and improves generation
quality in challenging cross-ID settings.

Figure 1 demonstrates the effectiveness of our proposed driving cue and Same2X training strategy.
On the left, skeleton-based methods suffer from (a) front–back ambiguity, (b) hand misplacement
due to occlusion, and (c) missing keypoints, leading to anatomically incorrect results by StableAni-
mator (Tu et al., 2024). In contrast, our Driving Cue mitigates these issues and enables more robust
animation. On the right, we show training curves of denoising loss, where our Same2X training
strategy significantly accelerates convergence in the cross-ID training stage (stage 2). It achieves
the same loss level 6.7× faster than training without the strategy and reaches a final loss comparable
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to that of the same-ID training stage (stage 1). Moreover, Same2X is a generalizable framework that
reduces reliance on real data by leveraging pseudo data, improving training efficiency and animation
quality. Our contributions are summarized as follows: (i) We reformulate human image animation
to use the raw driving video instead of an estimated pose proxy as the driving signal, enabling
the model to learn holistic motion and expression patterns without noisy intermediate estimators.
(ii) We instantiate this paradigm in DirectAnimator, a framework that abstracts raw videos into a
structured Driving Cue Triplet and injects these cues via a CueFusion DiT block, together with the
Same2X training strategy that transfers supervision from same-ID to cross-ID settings. (iii) Exten-
sive experiments and ablation studies validate the effectiveness of the DirectAnimator framework
and demonstrate that it achieves state-of-the-art animation quality.

2 RELATED WORK

Driving Signals in Human Image Animation. Recent HIA methods explore various driving sig-
nals to improve identity preservation, motion accuracy, and generalization. Most diffusion-based
methods directly adopt 2D skeleton maps as pose conditions. Disco (Wang et al., 2024b) is among
the first to apply diffusion models to HIA, improving compositionality and generalization through
disentangled control and human-centric pretraining. AnimateAnyone (Hu, 2024) enhances appear-
ance consistency and motion smoothness via ReferenceNet and pose-guided temporal modeling.
UniAnimate-DiT (Wang et al., 2025) extends the UniAnimate (Wang et al., 2024c) framework by
replacing the SVD denoising model (Blattmann et al., 2023) with Wan2.1 (Wan et al., 2025), a DiT-
based architecture for improved video synthesis. DynamiCtrl (Zhao et al., 2025) augments the driv-
ing signal with detailed textual prompts describing appearance, improving identity preservation via
the text branch in the MM-DiT framework. Although each method introduces unique architectural
components or improvements, they all rely on 2D skeleton maps as pose conditions. To improve
the reliability of pose guidance, MimicMotion (Zhang et al., 2024) encodes keypoint confidence
directly into the visual skeleton map, allowing the model to focus on reliable skeletons under occlu-
sion and noise. StableAnimator (Tu et al., 2024) further incorporates ArcFace-based (Deng et al.,
2019) face embeddings into the driving signal to enhance identity preservation. MagicAnimate (Xu
et al., 2024) replaces sparse skeleton maps with DensePose maps (Güler et al., 2018), enabling more
robust pose conditioning for complex or rotational motions. Champ (Zhu et al., 2024) leverages the
SMPL model (Loper et al., 2023) along with rendered depth, normal, and semantic maps to provide
geometry-aware motion guidance, enabling accurate 3D shape and pose alignment. RealisDance
(Zhou et al., 2024) incorporates HaMeR-based 3D hand representations (Pavlakos et al., 2024) to
enhance realism in hand animation. HumanDiT (Gan et al., 2025) replace skeleton maps with key-
point maps, reducing spatial overlap and ambiguity in pose conditioning. Unlike prior methods
that use intermediate representations (e.g., skeleton maps, DensePose, or SMPL) as driving sig-
nals, DirectAnimator directly conditions on raw driving video pixels, which provides richer motion
information and mitigates the accumulation of pose estimation errors.

Facial Animation without Explicit Pose Estimation. There exists a line of work on facial and
portrait animation that also avoids explicit pose or keypoint estimation by learning motion repre-
sentations directly in latent or image space. LIA (Wang et al., 2022) trains a self-supervised auto-
encoder and animates images via linear trajectories in the latent space, without extracting explicit
structural representations. AniTalker (Liu et al., 2024) targets talking-face generation and learns an
identity-disentangled motion representation together with a diffusion model for diverse facial mo-
tions. X-Portrait (Xie et al., 2024) further leverages a pre-trained reenactment network to synthesize
cross-identity driving frames and uses these synthetic signals to train its motion control module,
improving generalization without relying on explicit pose or keypoints. All these methods bypass
explicit pose estimation but are designed for single-face or upper-body talking-head scenarios. In
contrast, our method targets full-body human image animation, where large body articulation, ex-
tensive spatial extent, and cluttered backgrounds make direct video guidance more challenging than
in single-face or talking-head scenarios.

Representations Alignment for Training DiT. Representation alignment has emerged as a key
technique to stabilize and accelerate the training of diffusion transformers. REPA (Yu et al., 2024)
first introduced an alignment mechanism that regularizes the feature space of the diffusion model
to match that of a pretrained vision encoder (e.g., DINOv2 (Oquab et al., 2023)). This approach
improves sample quality and accelerates convergence by anchoring training to semantically mean-
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ingful features. REPA-E (Leng et al., 2025) builds on REPA by extending representation alignment
to enable end-to-end training of the VAE and diffusion model. By aligning intermediate features
across the two modules, REPA-E accelerates training, and enhances latent space quality. Most re-
cently, SRA (Jiang et al., 2025) argues that meaningful representations can emerge naturally from
the generative process itself. It proposes a self-distillation approach that aligns the denoised latent
features of earlier layers with those of later layers, enabling implicit representation learning without
any auxiliary encoders. Inspired by these approaches, we integrate representation alignment into the
HIA training paradigm and propose the Same2X training strategy, which leverages same-ID features
as internal guidance for cross-ID training stage.
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Figure 2: Overview of DirectAnimator. (a) We replace the skeleton maps with our proposed driving
cue triplet: Pose Cue (CPose), Face Cue (CFace), and Location Cue (CLocation). A frozen VAE encoder
maps the reference image, pose cue, and face cue into the latent space. Pose and face latents are
each concatenated with their corresponding masks from the location cue. These features are then
patchified and fed into the CF-DiT Block. (b) The CF-DiT Block injects pose and face cues via
Adaptive LayerNorm with time-conditioned modulation, and uses gated residuals to ensure stable
and controllable denoising.

3 METHODOLOGY

3.1 NETWORK ARCHITECTURE

Overview. The overall architecture of DirectAnimator is illustrated in Figure 2 (a), the input com-
prises a reference image I and a driving video sequence D1:N = [D1, ..., DN ]. We first preprocess
the driving video to extract driving cues that capture essential pose and expression information.
These cues are then encoded into latent features using a 3D Variational Autoencoder (3D VAE),
and subsequently transformed into a sequence of visual patch embeddings via a patchify module
(Peebles & Xie, 2023). The resulting embeddings are fed into the proposed CueFusion DiT Block,
which performs multi-source feature fusion and denoising to generate the animated frames. In the
following subsections, we detail the construction of the driving cues and the design of the CueFusion
DiT Block.

Driving Cue Extraction. Due to the inherent limitations of skeleton-based driving signal, such as
instability and limited expressiveness, we propose to bypass explicit keypoint extraction and instead
drive human image animation directly using raw information from the driving video. To this end,
we design three complementary driving cues, namely Pose Cue, Face Cue, and Location Cue, to
replace traditional skeleton maps and other pose representations. Examples of the driving cues are
shown in Figure 3, with additional examples provided in the appendix.

To capture the identity’s pose information, we use an image segmentation model (e.g., Grounded
SAM (Ren et al., 2024)) to isolate the foreground regions from the driving video. Compared to
pose estimators (e.g., OpenPose (Cao et al., 2017), DWPose (Yang et al., 2023)), segmentation is
generally more stable under occlusion, motion blur, and other real-world conditions. Neverthe-
less, segmentation may still produce noisy or incomplete results. Inspired by the random dropping
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Location Cue (Pose&Face)Face CueDriving Frame Pose Cue Face CueDriving Frame Pose Cue Location Cue (Pose&Face)

Figure 3: Examples of driving cues.

strategy, we discard low-quality segmentation results, forcing the model to rely on adjacent results
for temporal reasoning. However, the segmented foreground contains rich appearance details (e.g.,
clothing and hair textures), such high-frequency information may distract the model from focusing
on the pose information. Therefore, we apply low-pass filtering in the frequency domain to sup-
press irrelevant details and emphasize pose dynamics. The resulting detail-suppressed foreground
sequence serves as our Pose Cue.

Although previous methods have shown strong performance in pose transfer, their ability to capture
facial expressions remains limited. We attribute this to the insufficient expressiveness of 68-point
facial landmarks (Yang et al., 2023), which struggle to represent complex expressions. Inspired
by X-Dyna (Chang et al., 2025), we directly use face regions cropped from the driving video as
conditions for facial animation. Specifically, we first localize the face regions, then crop, resize, and
center them to preserve maximal expressive detail. This process produces a Face Cue that enable
more expressive facial animation.

In cross-ID settings, the location and scale of the identity in the reference image may differ signif-
icantly from those in the driving video. Thus, spatial alignment is necessary before feature fusion.
Prior methods typically rely on affine transformations of skeleton maps to achieve pose alignment
(Tu et al., 2024; Xu et al., 2024). However, in DirectAnimator, since the pose cue is represented by
dense foreground pixels rather than sparse skeleton maps, applying affine transformations directly
may lead to distortion or structural artifacts. Thus, we introduce Location Cue, consisting of body
and face masks. We generate body masks for the driving identity and align them to the reference
identity using the spatial alignment strategy proposed in StableAnimator (Tu et al., 2024). To mit-
igate the risk of identity leakage, we apply grid-based softening to the mask boundaries. Similarly,
we generate and align the face mask using the same strategy.

Overall, our proposed Driving Cue, which consists of the Pose Cue (motion), Face Cue (expression),
and Location Cue (alignment), not only avoids the limitations of pose estimation but also provides
a more robust and semantically rich representation for animation control. Extensive experiments
demonstrate its effectiveness in achieving high-quality pose transfer and expressive facial synthesis.

CueFusion DiT Block. To enable the driving cue to effectively guide the denoising process of DiT
(Peebles & Xie, 2023; Yang et al., 2024), we introduce the CueFusion DiT (CF-DiT) Block, whose
architecture is illustrated on Figure 2 (b). With the recent success of transformer diffusion models
in video generation (e.g., Wan2.1 (Wan et al., 2025), CogVideoX (Yang et al., 2024)), a series of
methods have adopted DiT as the denoising model for human video generation. These methods
typically incorporate driving signals using one of the following strategies: (i) concatenating the
driving features with the noisy latents as inputs to the DiT block, as in DreamActor-M1 (Luo et al.,
2025); (ii) injecting the driving features into the vision branch via cross-attention, as in ConsisID
(Yuan et al., 2024); (iii) modulating the driving features using adaptive LN before injecting them
into the DiT block, as in DynamiCtrl (Zhao et al., 2025).

Our CF-DiT Block adopts the third strategy, which has proven to be a practical approach due to its
low computational overhead and effective conditioning. Specifically, we apply adaptive LN to inject
the patch embeddings of the pose cue ep and face cue ep into the DiT block. Specifically, we first
use the time embedding et to learn modulation and gating factors for the cues via an MLP:

αp, βp, γp, αf , βf , γf = MLP(SiLU(et)), (1)
where αp, βp, and γp are the scale, shift and gating factors for modulating pose features. Similarly,
αf , βf , and γf are factors for modulating face features. We then use the scale (α) and shift (β)
factors to modulate the normalized cues:{

eMp = LN(ep) · (1 + αp) + βp

eMf = LN(ef ) · (1 + αf ) + βf

. (2)
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Figure 4: (a) Comparison between different settings. In the Same-ID setting, the reference image
and driving video share the same identity. In the more practical Cross-ID setting, they feature dif-
ferent identities. (b) Overview of the cross-ID training pipeline. First, a model is trained under the
Same-ID setting. Then, in the Cross-ID training stage, a new model is trained using pseudo driving
cues generated from same-ID data to simulate cross-ID conditions. The training is supervised by
both a standard denoising loss and our proposed Same2X Alignment Loss. This S2X loss aligns the
feature embeddings of the cross-ID model with those from the pre-trained same-ID model, transfer-
ring knowledge from the simpler setting to mitigate errors in the more challenging cross-ID task.

The modulated embeddings eMp and eMf are added element-wise to the text and vision embeddings
before entering the 3D full attention layers, preserving the original channel dimension while effec-
tively integrating the driving cues into the denoising process. To further ensure the stability and
continuity of the driving cue throughout the denoising process, we leverage shortcut connections
and gating mechanisms. The initial embeddings ep and ef are combined with the modulated ones
via gated residual connections: {

eGp = ep + γp · eMp
eGf = ef + γf · eMf

. (3)

This design ensures that each DiT block receives both the raw and modulated driving cues, enhanc-
ing controllability of the denoising process.

3.2 SAME2X TRAINING STRATEGY

The HIA task is commonly studied under two settings: same-identity (same-ID) and cross-identity
(cross-ID), as shown in Figure 4 (a). While same-ID setting is easier to train and requires less data,
cross-ID setting is more practical for real-world applications. In the cross-ID setting, where the
driving and reference identities differ, most methods follow a three-step pipeline: (i) extract pose
from the driving video, (ii) spatially align it with the reference identity, and (iii) use it as the driving
signal. However, this approach is suboptimal, as both pose extraction and alignment introduce
unavoidable errors.

To address this, DirectAnimator bypasses pose extraction by using raw pixels from the driving video
as the driving signal. While conceptually simple and flexible, directly training a model from cross-
ID data is inherently challenging: the model must first understand the poses and expressions of
driving identity, and then transfer them to the reference identity, making the training significantly
harder. Inspired by recent advances in training diffusion transformer (e.g., REPA (Yu et al., 2024),
REPA-E (Leng et al., 2025), and SRA (Jiang et al., 2025)), we propose Same2X training strategy
that eases training in the cross-ID setting. Same2X training strategy consists of a same-ID and
a cross-ID training stage, with the cross-ID’s pipeline illustrated in Figure 4 (b). In the same-ID
training stage, we train the model using pairs of reference images and driving videos from the same
video clip. In the cross-ID training stage, we generate pseudo driving cues using driving videos
from same-ID stage. Specifically, we use StableAnimator (Tu et al., 2024) to generate pseudo pose
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Table 1: Quantitative comparison on the TikTok and Unseen datasets. Bold text indicates the best
result, while underlined text indicates the second-best. ↑ denotes that higher values are better. FIS
and FTS stand for Face Identity Similarity and Face Temporal Similarity, respectively. In the table,
a/b denotes results on TikTok and Unseen, respectively.

Method FID↓ SSIM↑ PSNR↑ LPIPS↓ L1(E-04)↓ FIS↑ FTS↑ FVD↓ Training Steps

MagicAnimate 32.09 / 42.72 0.714 / 0.435 29.16 / 23.17 0.239 / 0.453 3.13 / 6.43 0.545 / 0.532 0.629 / 0.603 179.07 / 833.10 -
AnimateAnyone - / 36.49 0.718 / 0.566 29.56 / 24.68 0.285 / 0.332 - / 4.45 0.516 / 0.527 0.642 / 0.577 171.90 / 785.33 4*A100×40K

Champ - / 34.62 0.802 / 0.539 29.91 / 24.76 0.234 / 0.369 2.94 / 5.23 0.549 / 0.526 0.671 / 0.589 160.82 / 639.41 8*A100×80K

MimicMotion 28.03 / 37.67 0.601 / 0.578 - / 25.53 0.416 / 0.318 5.85 / 4.91 0.621 / 0.563 0.669 / 0.621 326.57 / 435.20 8*A100×6M
StableAnimator - / 31.89 0.801 / 0.603 30.81 / 27.11 0.232 / 0.273 2.87 / 4.39 0.662 / 0.653 0.732 / 0.704 140.62 / 365.52 4*A100×33M

UniAnimate-DiT - / 29.92 0.787 / 0.649 29.76 / 27.89 0.226 / 0.261 3.16 / 3.37 0.643 / 0.647 0.695 / 0.684 306.17 / 289.45 -
DynamiCtrl - / 36.80 0.766 / 0.633 30.22 / 27.43 0.166 / 0.269 2.34 / 3.52 0.632 / 0.619 0.725 / 0.702 152.31 / 339.80 8*H20×50K

DirectAnimator 25.87 / 27.62 0.806 / 0.708 30.12 / 29.41 0.215 / 0.249 2.12 / 3.22 0.682 / 0.661 0.730 / 0.723 142.60 / 276.34 4*H20×40K

Reference Skeleton Map AnimateAnyone MimicMotion StableAnimator UniAnimateDiT Pose Cue DirectAnimator

Figure 5: Qualitative comparisons between DirectAnimator and baselines on the TikTok (Row 1)
and Unseen (Row 2) datasets, with visual artifacts highlighted in yellow dashed boxes for clearer
comparison. User IDs are obscured for privacy protection.

cues and Face-Adapter (Han et al., 2024) to obtain pseudo face cues. For each reference identity,
we generate 0∼3 pseudo driving cues to simulate cross-ID conditions. For more details on pseudo
driving cue generation, please refer to the appendix.

During Cross-ID training stage, the model is supervised not only by denoising loss but also by
feature alignment signals from the model trained under same-ID setting. To this end, we introduce
a Same2X Alignment Loss (S2X Loss) to guide the feature dynamics:

LS2X(θS , θX) := −Ex,c,ϵ,t

[
1

N

N∑
n=1

sim
(
h[D n]
s ,h[D n]

x

)]
. (4)

Here, θS and θX denote the model trained under same-ID and cross-ID settings, respectively. h[D n]
s

and h
[D n]
x represent the patch embeddings at the Dth DiT block for the same-ID and cross-ID

models, and n indexes the patch tokens. The function sim(·, ·) measures cosine similarity. We
combine the S2X Loss and denoising loss to train DirectAnimator, with the overall loss function in
the cross-ID training stage formulated as: L := LDenoising + λLS2X, where λ is a factor controlling
the contribution of the S2X loss. As demonstrated in Figure 1, the Same2X training strategy sig-
nificantly accelerates convergence in the cross-ID setting by alleviating the learning difficulty. To
our knowledge, this is the first approach to leverage feature alignment across different settings for
training HIA models.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTING

Implementation Details and Dataset. We construct our model based on CogVideoX1.5 (Yang
et al., 2024). All parameters of the DiT block are updated, while the Text Encoder and VAE Encoder
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Reference

Figure 6: Sample results of DirectAnimator. User IDs are manually obscured for privacy protection.

are kept frozen. To accommodate video predictions of varying sizes and resolutions, we utilize a
bucket sampler during training. The model is first trained for 10K iterations on same-ID setting with
a learning rate of 2e-5, followed by 30K iterations on cross-ID setting using the same learning rate.
All experiments are conducted on 4 H20 GPUs. All text prompts were generated using Qwen2-
VL (Wang et al., 2024a) model. Previous works have generally not released training data due to
privacy policies. Therefore, we collected 4,000 video clips (5∼20 seconds) from the internet to
train DirectAnimator. In addition, the training data includes video clips from the TikTok training
set (1∼334). All of these data are used in the same-ID training stage. For the cross-ID training
stage, we synthesized a large number of pseudo data. After a rigorous filtering process, we retained
3,300 high-quality [reference, pseudo driving cue] pairs for training. To thoroughly evaluate the
generation performance of DirectAnimator, we use video clips from the TikTok test set (335∼340),
along with 50 additional video clips collected from the internet (referred to as “Unseen”), as the test
set. To ensure fair comparison, our method is conditioned on the pseudo driving cues generated by
StableAnimator, rather than using driving cues that share the same identity as the reference image.

Baselines and Metrics. We conduct broad comparisons to validate our method’s superiority. Specif-
ically, we compare against SD-based methods including AnimateAnyone (Hu, 2024), MagicAni-
mate (Xu et al., 2024), and Champ (Zhu et al., 2024), SVD-based methods such as MimicMotion
(Zhang et al., 2024) and StableAnimator (Tu et al., 2024), and DiT-based methods including Dy-
namiCtrl (Zhao et al., 2025) and UniAnimate-DiT (Wang et al., 2025). We evaluate image quality
using FID (Heusel et al., 2017), SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), PSNR (Hore
& Ziou, 2010), and L1 error. For video quality, we adopt FVD (Unterthiner et al., 2018). We use
four metrics to evaluate identity, temporal consistency, and motion transfer: Face Identity Similar-
ity (FIS) for identity preservation, Face Temporal Similarity (FTS) for temporal consistency, Pose
Landmark Consistency (PLC) for body pose following, and Facial Landmark Consistency (FLC)
for facial expression and mouth-shape transfer. More detailed definitions and implementation de-
tails are provided in Appendix A.4. Since DynamiCtrl generates only 2-second clips and is highly
sensitive to text prompts, we include it in quantitative comparisons only.

4.2 COMPARISON WITH SOTA METHODS

Quantitative Comparison. Table 1 presents the quantitative comparison results. As shown, Di-
rectAnimator achieves state-of-the-art animation performance while using fewer computational re-
sources. On the TikTok test set, our method obtains the best results in FID, SSIM, L1, and FIS,
and also performs competitively in LPIPS, FVD, and FTS, indicating high visual quality and strong
identity preservation. On the more challenging Unseen test set, DirectAnimator consistently outper-
forms all baselines across all metrics. This dataset, featuring fast-paced and complex dance motions,
often leads to inaccurate pose estimations, and DirectAnimator maintains robust performance by by-
passing pose extraction. We further evaluate pose and expression transfer using PLC and FLC. As
reported in Table 2, DirectAnimator achieves the lowest landmark errors on both test set, confirm-
ing more accurate body pose following and more faithful facial expression transfer than existing
methods. Finally, on a single H20 GPU at 5122 resolution with 49-frame clips, Table 7 reports an
end-to-end runtime comparison with key baselines to illustrate the inference cost of our design.

Qualitative Comparison. Figure 5 presents a qualitative comparison across different methods. In
Row 1, the skeleton map produces an inaccurate estimation of the driving frame: the subject’s left
hand and arm should be occluded by the body and therefore not visible in the skeleton. While
AnimateAnyone and MimicMotion successfully generate plausible body structures, StableAnima-
tor mistakenly renders an extra left hand. In contrast, DirectAnimator not only produces anatom-
ically correct results but also better preserves the subject’s identity. In Row 2, the skeleton map
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Table 2: Pose and facial landmark consis-
tency on TikTok / Unseen.

Method PLC↓ FLC↓

MagicAnimate 0.094 / 0.128 0.058 / 0.079
AnimateAnyone 0.083 / 0.115 0.049 / 0.068

Champ 0.098 / 0.134 0.054 / 0.082

MimicMotion 0.081 / 0.102 0.045 / 0.064
StableAnimator 0.075 / 0.097 0.042 / 0.060

UniAnimate-DiT 0.082 / 0.102 0.058 / 0.074
DynamiCtrl 0.075 / 0.116 0.042 / 0.069

DirectAnimator (Ours) 0.071 / 0.092 0.037 / 0.057

Table 3: Ablation study for driving cues and Same2X
training strategy.

ID Settings FID↓ SSIM↑ PSNR↑ FIS↑ FVD↓

S1 w/o Face Cue 28.21 0.729 29.13 0.418 245.48
S2 w Face Cue (no enlarge&center) 28.02 0.742 29.45 0.610 185.93
S3 w Pose Cue (rgb) 29.32 0.715 29.13 0.591 191.92
S4 w Pose Cue (gray, no low-pass) 28.10 0.744 29.40 0.625 184.07
S5 w Skeleton Map 29.74 0.710 29.01 0.578 216.38
S6 w/o Location Cue 30.59 0.682 29.17 0.529 203.72
S7 w Location Cue (hard mask only) 29.13 0.718 29.25 0.582 228.54
S8 w/o Same2X 32.21 0.691 28.67 0.530 290.43

DirectAnimator (Ours) 27.61 0.752 29.53 0.638 180.52

introduces front-back ambiguity, leading most methods to generate incorrect body orientations. Al-
though UniAnimate-DiT generates a correct pose, it fails to model the face direction. In contrast,
DirectAnimator, guided by the pose cue, produces accurate results. Figure 6 shows multi-frame
animation results generated by DirectAnimator, which demonstrate strong identity preservation and
background consistency across frames. More results are available in the appendix.

4.3 ABLATION STUDY

All ablation studies were performed on a training data subset, with both same-ID and cross-ID
training stage using 500 videos each. The TikTok test set was used for evaluation.

Driving Cues. To improve animation stability and reduce sensitivity to pose estimation errors, we
design a Driving Cue Triplet consisting of Pose Cue (motion), Face Cue (expression), and Location
Cue (alignment). We conduct a detailed ablation study to evaluate the impact of the driving cue
design on overall animation quality. As shown in Table 3, removing the Face Cue (S1) causes a
substantial drop in facial quality: FIS decreases from 0.638 to 0.418 and FVD increases from 180.52
to 245.48, showing that a dedicated face branch is crucial for identity and expression preservation.
Using Face Cue without enlarging and centering the detected face (S2) recovers most of the gain,
but still lags behind our full design in FIS and FVD, indicating that the enlarged and centered Face
Cue yields more consistent facial details. For the body motion signal, replacing our filtered Pose
Cue with raw RGB foreground (S3) degrades all metrics, since irrelevant appearance details are
introduced into the driving signal. A gray-scale foreground without low-pass filtering (S4) performs
better than raw RGB but remains slightly worse than our full Pose Cue, confirming that frequency-
domain low-pass filtering further stabilizes pose modeling by suppressing high-frequency textures.
Substituting the entire triplet with skeleton maps (S5) yields only moderate results and is consistently
inferior to our method in FID, FIS, and FVD, which highlights the advantage of learning from
carefully processed pixel cues rather than explicit pose estimators. For spatial alignment, removing
the Location Cue (S6) leads to weaker performance, especially in FIS and FVD. Using only a hard
foreground mask as the Location Cue (S7) partially improves over the no-Location baseline yet
still falls behind our soft, grid-based Location Cue, suggesting that the softened alignment reduces
artifacts and identity leakage. These ablations demonstrate that each component of the Driving Cue
Triplet contributes meaningfully to robust and high-quality HIA, and that the specific design choices
are important rather than interchangeable.

Table 4: Ablation study for alignment depth D
and regularization coefficient λ.

Metric D=10 D=20 D=30 λ=0.1 λ=0.5 λ=1

FID ↓ 27.61 28.41 31.84 27.81 27.61 27.76
FIS ↑ 0.638 0.591 0.503 0.634 0.638 0.627
FVD ↓ 180.52 230.95 423.51 189.72 180.52 191.78

Table 5: Ablation study for the design of CF-DiT
block.

Settings FID↓ SSIM↑ PSNR↑ FIS↑ FVD↓

DC Injection 30.68 0.682 29.09 0.544 372.80
CA Injection 32.30 0.675 28.85 0.502 453.73
DirectAnimator 27.61 0.752 29.53 0.638 180.52

Same2X Training Strategy. To address the challenge of learning robust cross-identity human image
animation, we introduce Same2X training strategy, a two-stage framework that first trains the model
on same-identity data and then adapts it to cross-identity samples using a Same2X alignment loss.
As shown in Table 3 (S8), removing the Same2X strategy leads to consistent degradation across
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Table 6: Effect of pseudo data quality.

Settings FID↓ SSIM↑ PSNR↑ FIS↑ FVD↓

Unfiltered pseudo set (5,000) 29.93 0.712 29.17 0.584 218.30
MimicMotion-only pseudo cues (500) 28.17 0.739 29.43 0.635 191.00
StableAnimator-only pseudo cues (500) 28.22 0.745 29.40 0.630 187.40
Filtered pseudo set (Ours) (500) 27.61 0.752 29.53 0.638 180.52

Table 7: Inference time comparison on an H20 GPU at 5122 resolution (49 frames).

Method Preproc Backbone Preproc (ms) Gen (s)
AnimateAnyone DWpose SD 9.6 102.59
StableAnimator DWpose SVD 9.6 91.63
DirectAnimator (Ours) G-SAM + LPF CogVideoX1.5 31 152.80

all metrics, including an increase in FID (+4.6), a noticeable drop in FIS (from 0.638 to 0.530),
and a substantial increase in FVD (+110). These results underscore the contribution of Same2X
training strategy during cross-ID training stage. We further conduct ablation studies on two key
hyperparameters: alignment depth (D) and regularization coefficient (λ). As shown in Table 4,
increasing the alignment depth (e.g., D=20 and D=30) leads to significant performance drops. This
aligns with REPA (Yu et al., 2024), indicating that shallow blocks capture geometric structure, while
deeper blocks focus on high-frequency details. Applying the Same2X alignment loss to shallow
blocks enhances regularization without hindering fine-grained learning in deeper blocks. We also
evaluate the impact of λ. As the results show, the model is relatively robust to different values of λ,
and we adopt λ = 0.5 as the default setting. Overall, these ablation studies validate the effectiveness
and efficiency of the Same2X training strategy.

CueFusion DiT Block. To validate the effectiveness of our proposed CueFusion DiT (CF-DiT)
Block, we conduct an ablation study comparing it against two commonly used injection strategies:
(i) DC Injection, which Directly Concatenates the driving features with the noisy latent inputs to
the DiT block; (ii) CA Injection, which injects the driving features into the vision branch via Cross-
Attention. As shown in Table 5, our CF-DiT Block consistently outperforms both DC and CA
Injection across all metrics. This confirms the advantage of our design in effectively integrating
driving cues into the denoising process.

Pseudo Data Quality and Generator Choice. To further understand the impact of pseudo driv-
ing cues on Cross-ID training, we conduct an ablation study on pseudo data quality and generator
choice. As shown in Table 6, using a large unfiltered pseudo set of 5,000 samples leads to noticeably
worse performance compared to our filtered setup, indicating that simply increasing the amount of
pseudo data without quality control can hurt both generation fidelity and temporal coherence. When
training with 500 pseudo cues from a single source, both MimicMotion-only and StableAnimator-
only settings improve over the unfiltered baseline and achieve similar performance, suggesting that
the model is not overly sensitive to the choice of pseudo generator and mainly relies on the shared
motion and expression patterns. Our Filtered pseudo set achieves the best results across all metrics,
demonstrating that our filtering strategy effectively controls pseudo bias while retaining the benefits
of pseudo-driven training.

5 CONCLUSIONS

We proposed DirectAnimator, a HIA framework that directly learns from raw driving videos without
relying on pose estimators. By introducing a structured driving cue triplet and integrating it through
the CueFusion DiT block, our method achieves high animation quality with improved robustness. To
address the challenge of cross-ID training, we designed the Same2X strategy, which aligns internal
representations between same-ID and cross-ID settings to guide learning. Extensive experiments
confirm that DirectAnimator outperforms prior methods in visual quality and identity preservation.
While DirectAnimator eliminates the need for pose estimators and curated annotations, limitations
like pseudo cue quality, and explicit pose supervision remain. Future work aims to tackle these
issues, paving the way for more intuitive and human-level animation learning.
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A APPENDIX

In this appendix, we first present the foundational concepts and diffusion-based architectures in
Section A.1. Section A.2 then provides an in-depth description of our Driving Cue representation,
including the effect of low-pass filtering on pose cues, how spatial alignment is learned from pseudo
cues, and the foreground-based spatial alignment used at inference time. In Section A.3, we elab-
orate on the Same2X training strategy, including the generation and utilization of pseudo driving
cues. Section A.4 introduces our pose and expression evaluation metrics. Section A.5 presents ad-
ditional visualizations, including more qualitative comparisons and further animation results, while
Section A.6 highlights representative failure cases. Finally, Section A.7 discusses the current limi-
tations of our method and outlines promising directions for future work.

A.1 PRELIMINARIES

Diffusion Models. Diffusion probabilistic models have emerged as a powerful class of generative
models, framing data generation as the reversal of a gradual noise-adding process (Ho et al., 2020).
These models define a forward process q(x1:T |x0) that incrementally corrupts a clean data point
x0 with Gaussian noise over T discrete steps, followed by a reverse process pθ(x0:T ) that learns to
denoise the noisy inputs back to the original data distribution. In the forward diffusion process, each
step is defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (5)

where βt is the noise variance schedule at time t. This forms a Markov chain from x0 to xT , with
xT approaching an isotropic Gaussian distribution as t → T . For computational efficiency, we can
directly sample a noisy version xt at any time t from x0 using the closed-form expression:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (6)

where ᾱt =
∏t

s=1(1 − βs) is the cumulative product of noise factors up to step t. The reverse
process is parameterized by a neural network, often a time-aware U-Net, which estimates the mean
and variance of the posterior pθ(xt−1|xt):

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (7)

In practice, the model is trained to predict the noise ϵ added at each step, using the simplified loss:

Lsimple = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
, (8)

where ϵθ(·) predicts the noise component in the sample xt given the timestep t. To enable condi-
tional generation, diffusion models can be extended with context vectors c (e.g., text embeddings,
segmentation masks), modifying the noise prediction to ϵθ(xt, t, c). This enables controllable gen-
eration while maintaining sample diversity. Despite their strong generation quality, diffusion models
typically require hundreds of denoising steps for high-fidelity samples, leading to slow inference. To
address this, several acceleration methods have been proposed, such as DDIM (Song et al., 2020)
(non-Markovian deterministic sampling) and fast samplers based on knowledge distillation or noise
schedule truncation.

Diffusion Transformers. Diffusion Transformers (DiT) (Peebles & Xie, 2023) present a fully
Transformer-based backbone for diffusion models, replacing the conventional convolutional U-Net
architecture. Built upon the latent space framework of Stable Diffusion (Rombach et al., 2022b),
DiT processes image representations encoded by a fixed VAE encoder into low-dimensional fea-
ture maps. These latent tensors are segmented into non-overlapping patches and transformed into
sequences of tokens via linear projection. Each token is enriched with temporal embeddings to rep-
resent the noise schedule step, along with optional conditioning inputs (e.g., class labels). The model
architecture comprises a stack of Transformer layers equipped with standard attention mechanisms,
feed-forward networks, and normalization, all interleaved with residual paths. These components
work together to model long-range dependencies and contextual relationships among latent patches.
After traversing the Transformer pipeline, the output tokens are mapped back to the latent grid for-
mat, producing both noise and variance predictions. This dual-head output is then used to iteratively
refine the denoising process across multiple diffusion steps. The design demonstrates strong scala-
bility and performance.
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CogVideoX Model. Recent advances in diffusion-based generative models have significantly
pushed the boundaries of video synthesis (Yang et al., 2024; Wan et al., 2025; Zheng et al., 2024).
Among these, CogVideoX (Yang et al., 2024) emerges as a scalable and high-performing diffusion
Transformer architecture tailored for long-duration, text-conditioned video generation. Built upon
the Diffusion Transformer (DiT) backbone (Peebles & Xie, 2023), CogVideoX integrates several
critical innovations that address longstanding challenges in temporal coherence and cross-modal
alignment. To efficiently encode the spatio-temporal redundancy in videos, CogVideoX adopts a 3D
Causal Variational Autoencoder (VAE) which compresses video clips across both spatial and tem-
poral axes, enabling tractable sequence lengths for Transformer modeling. Unlike prior works that
employ frame-wise 2D VAEs, this 3D design notably improves motion continuity and reduces flick-
ering artifacts. To bridge the semantic gap between text prompts and video content, CogVideoX
introduces an Expert Transformer module, incorporating modality-specific adaptive LayerNorms
that allow the model to conditionally modulate text and video representations. This design not
only enhances alignment but also mitigates scale disparities in multimodal embeddings. Moreover,
CogVideoX utilizes a 3D full attention mechanism to jointly capture spatial and temporal depen-
dencies, in contrast to factorized attention used in prior approaches (Guo et al., 2023), thus better
preserving global scene dynamics.

Training CogVideoX involves a progressive paradigm including mixed-duration training, resolu-
tion scaling, and an innovative technique called explicit uniform sampling to stabilize loss conver-
gence across diffusion timesteps. In addition, a comprehensive video-text data pipeline leveraging
dense video captioning contributes to better semantic grounding. Empirical results demonstrate
that CogVideoX outperforms previous state-of-the-art models across multiple automated metrics
and human evaluations, particularly excelling in generating coherent, high-fidelity, and instruction-
following videos.

A.2 MORE DETAILS FOR DRIVING CUE

In the main paper, we introduced a novel Driving Cue representation that replaces conventional pose
estimation with three complementary and semantically disentangled signals: Pose Cue, Face Cue,
and Location Cue. In this section, we provide detailed descriptions of the data processing pipelines
used to generate each cue from raw driving videos. Additionally, we include more visual examples
to illustrate the driving cue.

To facilitate learning of pose-related information, we first remove background from the driving
video. Specifically, we employ the Grounded SAM model (Ren et al., 2024) to segment out the
foreground human subject. To further suppress redundant information, we apply a low-pass filter in
the frequency domain to eliminate high-frequency image details. The resulting foreground image is
used as the Pose Cue. While most prior methods adopt 68 facial landmarks as the driving signal for
expression transfer, such sparse representations often fail to capture complex facial expressions ac-
curately, making it difficult to faithfully transfer expressions from the driving video to the reference
image. Inspired by X-Dyna (Chang et al., 2025), we instead propose to directly use the raw facial
image as a more expressive input. However, in many driving frames, the face occupies only a small
region of the image. To ensure the model can access high-resolution facial features, we utilize the
InsightFace to detect the face and then enlarge and center it. The resulting image is used as the Face
Cue. The generated pose cue and face cue are not aligned to the spatial position of the reference
identity, which may hinder the model’s training process. To address this, we introduce an auxiliary
signal for pose and face alignment. Specifically, we apply the alignment strategy from StableAnima-
tor (Tu et al., 2024) to the pose and face masks in the driving video, aligning their spatial layout and
scale with that of the reference identity. To prevent potential information leakage during training,
we further apply a grid-based softening operation on the pose mask, blurring the mask boundaries
while retaining the coarse silhouette. These aligned pose and face masks together form the Location
Cue.

Effect of Low-Pass Filtering on Pose Cues. To better illustrate the effect of the low-pass filter,
Figure 7 visualizes a foreground frame before and after filtering in both the spatial and frequency do-
mains. We first convert the segmented RGB frame to grayscale, which removes chromatic informa-
tion but preserves most structural and textural details. Applying the low-pass filter in the frequency
domain smooths fine textures on the hair and clothing while maintaining the global silhouette and
coarse shading. This can be clearly seen from the zoomed-in patches, where high-frequency wrin-
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kles and fabric patterns are noticeably attenuated in the filtered result. The log-magnitude Fourier
spectra of the grayscale and filtered images further confirm this behavior: the filtered spectrum
exhibits a strong concentration of energy around the low-frequency center and a substantial reduc-
tion of high-frequency components. These observations show that the pose cue indeed suppresses
high-frequency appearance details while preserving the body structure required for motion control.

Color Gray Filtered Gray Gray Spectrum
Filtered  

Spectrum

Figure 7: From left to right: original foreground color frame, grayscale frame with zoomed-in
local patches, low-pass filtered grayscale frame with corresponding patches, and the log-magnitude
Fourier spectra of the grayscale and filtered images. The spatial zooms reveal that fine hair and
clothing textures are smoothed while the global body shape is preserved, and the spectra show that
high-frequency components are strongly attenuated after low-pass filtering.

Learning Spatial Alignment from Pseudo Cues. To learn robust spatial alignment, we do not
directly use the raw outputs of StableAnimator Tu et al. (2024) or MimicMotion Zhang et al. (2024)
as driving cues. First, we generate spatially aligned pseudo driving videos by selecting pseudo
reference images whose body scale and location are close to the original driving videos, ensuring
that these methods produce high-quality motion with only mild or no pose alignment. Then, af-
ter foreground segmentation, we apply additional scaling and translation to the segmented person
to synthetically create spatially misaligned pseudo pose cues, while the Location Cue (pose and
face masks) is extracted from the original driving video and remains aligned with the reference im-
age. Training on such pairs of misaligned pseudo pose cues and aligned Location Cues explicitly
teaches DirectAnimator to recover spatial alignment from the Location Cue, rather than inheriting
any alignment behavior from StableAnimator or MimicMotion.

Foreground-based Spatial Alignment at Inference Time. Inspired by the global similarity align-
ment in StableAnimator Tu et al. (2024), we align the driving sequence to the reference image di-
rectly at the foreground-mask level, without relying on skeleton keypoints. Let M ref ∈ {0, 1}H×W

be the binary foreground mask of the reference image and Mt ∈ {0, 1}H×W be the foreground
mask of the t-th driving frame. For each mask M , we compute the tight person bounding box

B = [xmin, xmax, ymin, ymax],

and define its center and height as

c(B) =
(
(xmin + xmax)/2, (ymin + ymax)/2

)⊤
, h(B) = ymax − ymin.

Denote by Bref the bounding box of M ref and by Bt the bounding box of Mt, with centers cref =
c(Bref) and ct = c(Bt), and heights href = h(Bref) and ht = h(Bt). We first estimate a global
isotropic scale s by matching the person height over the whole driving sequence:

st =
href

ht
, s = mediant(st), (9)

and then align the centers by a single 2D translation vector t ∈ R2:

c̄ =
1

T

T∑
t=1

ct, t = cref − s c̄. (10)

This yields a global similarity transform in the image plane,

T (x) = sx+ t, x ∈ R2, (11)
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which is shared by all driving frames. We obtain the aligned foreground masks M̃t by warping each
Mt with the inverse transform T −1:

M̃t(x) = Mt

(
T −1(x)

)
, ∀x ∈ {1, . . . ,W} × {1, . . . , H}. (12)

In other words, the foreground person region in each driving frame is resized and shifted so that its
location and scale are spatially aligned with the reference foreground region, while keeping a single,
temporally stable similarity transform for the entire driving sequence.

A.3 MORE DETAILS FOR SAME2X TRAINING STRATEGY

The pseudo driving cues play a central role in the cross-ID training stage. They enable us to simulate
diverse driving conditions for a given reference identity without relying on manually annotated or
true cross-ID pairs. By leveraging motion and expression signals extracted from same-ID videos,
these pseudo cues provide semantically meaningful supervision while avoiding identity leakage. In
this section, we detail the process for generating pseudo driving cues used in the cross-ID training
stage of our Same2X strategy. We generate two types of cues: pseudo pose cues and pseudo face
cues.

To generate pseudo pose cues for the cross-ID training stage, we leverage StableAnimator (Tu et al.,
2024) and MimicMotion (Zhang et al., 2024), two of the most competitive human image animation
methods to date. In addition to the data used for same-ID training, we collect an extra set of 1,000
images featuring diverse identities as the pseudo reference set. For each driving video sampled
from the same-ID training set, we randomly select 0 to 3 images from the pseudo reference set as
reference images. Using these pairs, we generate animated videos via the above animation models,
followed by manual filtering to ensure quality. The filtered results serve as pseudo driving videos.
We then apply foreground segmentation and low-pass filtering to obtain the corresponding pseudo
pose cues. Each pseudo driving cue thus preserves the same motion pattern as the original driving
video but appears with a different identity and background. These samples can be interpreted as
synthetic cross-ID driving signals for training, enabling the model to simulate cross-ID scenarios
during training.

However, both StableAnimator and MimicMotion rely on skeleton maps to drive animation, which
often results in inaccurate facial expressions compared to those in the original driving video. To
address this limitation and obtain higher-fidelity facial dynamics, we adopt the face reenactment
method Face-Adapter (Han et al., 2024) to generate candidate facial animations. We then select
the most visually consistent and expressive results for further processing. Face reenactment aims
to transfer facial expressions and head motion from a source video to a target identity, while pre-
serving the target’s appearance and identity traits. In our case, pseudo reference images are used
as target identities, and the driving videos serve as source inputs. We first crop the face regions
from both inputs and apply Face-Adapter to transfer expressions from source to target. The result-
ing face regions are then centered and enlarged to construct the pseudo face cues, which provide
complementary supervision for facial animation in the cross-ID training stage.

For the Location Cue, we directly reuse the cues generated during the same-ID training stage. This is
feasible because, in the cross-ID training stage, the reference images are sampled from the same-ID
training data, and the driving signals (pseudo driving cues) are synthesized using driving videos from
the same-ID stage. As a result, the pose and face alignment remain perfectly consistent, allowing us
to reuse the same-ID location cues without additional processing. Figure 8 shows visual examples
of the generated pseudo driving cues.

A.4 POSE AND EXPRESSION EVALUATION METRICS

To comprehensively evaluate pose and facial expression transfer, we combine identity-based met-
rics with landmark-based geometric metrics. Face Identity Similarity (FIS) measures how well the
identity of the reference image is preserved in the generated images. Concretely, we extract face em-
beddings from generated and reference images using ArcFace (Deng et al., 2019) and compute the
average cosine similarity between corresponding pairs. Face Temporal Similarity (FTS) measures
how temporally consistent the facial appearance remains within a generated video. We compute face
embeddings for each frame using ArcFace and average the cosine similarity between embeddings of
adjacent frames. Pose Landmark Consistency (PLC) measures how closely the generated body pose
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Figure 8: Examples of pseudo driving cues.

follows the driving pose. On the TikTok and Unseen test sets, we extract 2D body keypoints from
both the driving and generated videos using DWpose, and compute the normalized distance between
corresponding body landmarks. Facial Landmark Consistency (FLC) measures how accurately fa-
cial expressions and mouth shapes are transferred from the driving video. Similarly, we extract 2D
facial keypoints from driving and generated frames and compute the normalized distance between
corresponding facial landmarks.

Taken together, FIS/FTS and PLC/FLC offer a complementary view of model behavior: the former
focuses on identity preservation and temporal smoothness, while the latter directly evaluates the
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geometric accuracy of pose and facial expression transfer. We report PLC and FLC in Table 2
and use them, alongside FIS/FTS and qualitative visualizations, to assess DirectAnimator on both
TikTok and Unseen.

A.5 MORE VISUALIZATION RESULTS

More Qualitative Comparison. In Figure 9, we present more comprehensive comparison results,
where the artifacts produced by baseline methods are highlighted with yellow bounding boxes for
clarity. Specifically, in the first row, MimicMotion Zhang et al. (2024) fails to capture fine facial de-
tails, while StableAnimator Tu et al. (2024), driven by an erroneous skeleton map, produces incorrect
hand structures. In the second row, both MimicMotion and StableAnimator generate unnatural wrist
structures, with wrist contours extending beyond the forearm. By contrast, our method faithfully
reproduces anatomically correct wrist details. Moreover, StableAnimator exhibits temporal incon-
sistency in accessory generation: the bracelet is absent in the second row but reappears in the third
row. In the fourth row, our approach achieves superior identity preservation, producing faces more
consistent with the reference image. The fifth and sixth rows show that nearly all baselines struggle
with body rotations, manifesting in structural errors and poor temporal coherence. We attribute this
to the inherent limitations of skeleton map-based driving signals. In contrast, our method leverages
the newly proposed driving cues, enabling more stable generation under such challenging scenarios.
Finally, the seventh row demonstrates the stronger expression transfer capability of our model, with
generated facial expressions that align more closely with those in the driving frames.

These comparisons clearly demonstrate that the proposed DirectAnimator outperforms existing
methods across multiple dimensions, including structural fidelity, identity preservation, and tem-
poral consistency. In particular, our method exhibits superior robustness and realism in scenarios
involving complex body poses and expression changes, providing a more reliable solution for pose-
free human image animation.

More Animation Results. In Figure 10, we present the animation results of DirectAnimator. The
first row demonstrates the model’s capability in pose alignment: even when the driving frame and
the reference image differ significantly in scale and position, DirectAnimator is able to generate
high-quality animations. The second row highlights the strength of identity preservation, where the
generated video frames maintain strong consistency with the reference image in the facial region
and avoid distributional biases, faithfully retaining the phenotypic traits of the subject. The third
row illustrates the model’s advantage in expression transfer, as the generated animations closely
replicate the fine-grained facial expressions of the driving frame. Finally, the fourth row shows
that DirectAnimator provides more robust modeling of complex motion structures: the generated
video frames preserve the correct occlusion relationships between the two arms, whereas skeleton
map-based approaches often confuse such relationships and degrade animation quality. These results
demonstrate that DirectAnimator consistently achieves superior performance across key dimensions,
including pose alignment, identity preservation, expression transfer, and complex motion modeling.

A.6 FAILURE CASES

We visualize and analyze several failure cases of DirectAnimator under challenging conditions. The
corresponding videos are available on our project page. First, when the driving video contains
mild motion blur, the generated frames often lose fine details in the affected regions. This issue is
especially pronounced in hand articulation, as shown in Case 1 of Figure 11. Second, when the driv-
ing video exhibits severe motion blur to the extent that human structure becomes ambiguous, such
as during fast gymnastic movements, the generated animation may produce anatomically incorrect
poses, as illustrated in Case 2. Third, low video quality also degrades performance. For example,
poor lighting conditions as in Case 3(1) or low spatial resolution as in Case 3(2) make it difficult to
accurately infer the subject’s motion, resulting in noticeably lower animation quality.

A.7 LIMITATIONS AND FUTURE WORK

While DirectAnimator demonstrates strong performance across various benchmarks, several limi-
tations remain. First, since we use raw pixels from the driving video as the driving signal, motion
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blur in the input frames can affect the model’s ability to learn clean and precise features. As a re-
sult, the model may reproduce motion blur artifacts in the generated outputs, particularly under fast
or low-light conditions. Second, the visual fidelity is still bounded by the capacity of the under-
lying generative backbone. In some challenging cases, we occasionally observe imperfect identity
preservation and noticeable artifacts, especially for fine-grained texture details. Third, our method
still relies on an explicit location cue to guide pose alignment during training. In contrast, humans
naturally learn motion patterns through implicit alignment without requiring explicit location cues.
Inspired by this observation, future work will explore removing the explicit pose alignment step.
By improving training paradigms and incorporating larger and more diverse datasets, we aim to
enable the model to learn implicit pose alignment in an end-to-end fashion, bringing HIA methods
closer to human-level reasoning. In future work, we also plan to enhance the pseudo cue generation
process through more robust motion synthesis and automated quality filtering. Improving hand ani-
mation fidelity is another priority, potentially by integrating specialized hand pose estimators. Since
DirectAnimator and Same2X are model-agnostic, another promising direction is to combine them
with larger and higher-resolution video generation backbones, which we expect will further improve
texture sharpness, clothing details, and identity preservation.

B ETHICS STATEMENT

This work focuses on advancing human image animation through diffusion-based models. All train-
ing data were collected from publicly available sources, with user identities anonymized or obscured
to ensure privacy protection. No personally identifiable information or sensitive attributes were used.
Our method is designed for applications such as virtual avatars and creative content generation. Nev-
ertheless, we acknowledge the potential for misuse in producing misleading or non-consensual con-
tent. To mitigate these risks, we encourage responsible use aligned with the ICLR Code of Ethics,
and we explicitly discourage any application of our model that infringes upon personal rights or
violates legal and ethical standards.

C REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure reproducibility of our work. The main paper and appendix
describe the model architecture, Driving Cue construction, and Same2X training strategy in detail.
Implementation details, datasets, baselines, evaluation metrics, and ablation studies are also pro-
vided. In addition, we include the source code in the appendix files and provide an anonymous
project page to facilitate independent verification of our results.

D LLM USAGE STATEMENT

In this work, GPT-5 was utilized as a tool for language refinement. Specifically, the model was
employed to improve the clarity, coherence, and readability of the manuscript. While GPT-5 played
a important role in enhancing the presentation of the text, it was not involved in the ideation, ex-
perimental design, or data analysis processes. All content generated by the model was thoroughly
reviewed and revised to ensure adherence to academic integrity and the originality of the work.
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Figure 9: Qualitative comparisons with baseline methods, highlighting artifacts and showing the
superiority of DirectAnimator in structural fidelity, temporal consistency, and expression transfer.
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Figure 10: Animation results of DirectAnimator, demonstrating (1) pose alignment, (2) identity
preservation, (3) expression transfer, and (4) complex motion modeling.
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Figure 11: Failure cases of DirectAnimator. Case 1 shows loss of detail under mild motion blur,
particularly in hands. Case 2 demonstrates structural distortion when motion blur obscures body
configuration. Case 3 includes two subcases: inaccurate motion transfer under poor lighting (3(1))
and under low resolution (3(2)).
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