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Abstract

Neural networks have proven effective in constructing surrogate models for1

parametric partial differential equations (PDEs) and for approximating high-2

dimensional quantity of interest (QoI) surfaces. A major cost is training such3

models is collecting training data, which requires solving the target PDE for a4

variety of different parameter settings. Active learning and experimental design5

methods have the potential to reduce this cost, but are not yet widely used for train-6

ing neural networks, nor do there exist methods with strong theoretical foundations.7

In this work we provide evidence, both empirical and theoretical, that existing active8

sampling techniques can be used successfully for fitting neural network models9

for high-dimensional parameteric PDEs. In particular, we show the effectiveness10

of “coherence motivated” sampling methods (i.e., leverage score sampling), which11

are widely used to fit PDE surrogate models based on polynomials. We prove12

that leverage score sampling yields strong theoretical guarantees for fitting single13

neuron models, even under adversarial label noise. Our theoretical bounds apply to14

any single neuron model with a Lipschitz non-linearity (ReLU, sigmoid, absolute15

value, low-degree polynomial, etc.).16

1 Introduction17

In recent years, neural networks have proven broadly useful in accelerating the numerical solution of18

partial differential equations (PDEs). In applications to parametric PDEs, one use of neural networks19

is in developing surrogate models and approximations for quantity-of-interest (QoI) surfaces (for use20

e.g. in parameter optimization or uncertainty quantification) [Tripathy and Bilionis, 2018, Zhang21

et al., 2019, Khoo et al., 2021, O’Leary-Roseberry et al., 2022]. In these applications, the goal is22

to approximate a high-dimensional function mapping PDE input parameters to scalar values. A23

significant cost in training neural network approximations to such functions is the collection of24

training data: each training point collected requires solving the PDE for a different set of parameters25

chosen e.g. on a grid or at random [Adcock et al., 2022a, Cohen and DeVore, 2015] for more details.26

One possible approach to reducing the cost of collecting training data is to employ active learning or27

experimental design methods to more intelligently choose training examples. Such methods have28

been employed successful in QoI approximation and surrogate modeling approaches based on more29

traditional models, like polynomials and sparse or structured polynomials [Chkifa et al., 2018, Cohen30

and DeVore, 2015, Adcock et al., 2022b, Hampton and Doostan, 2015b]. However, with some31

exceptions, there has been significantly less work in applying active learning methods to training32

neural network models for parametric PDEs [Lye et al., 2021, Pestourie et al., 2020]. Moreover, in33

contrast to active learning approaches for more traditional functions families, most existing methods34

are heuristic, and not supported by strong theoretical guarantees.35
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2 Our Approach36

We take a step towards developing theoretically sound active learning methods for approximating37

parametric PDEs with neural networks by focusing on the special case of “single neuron” or “single38

index” models1. Such models take the form g(x) = f(〈w,x〉), where f is a scalar non-linearity, and39

w is a set of weights [Pinkus, 1997, 2015, Yehudai and Ohad, 2020, Rao et al., 2017, Candès, 2003].40

Single neuron models are studied in machine learning theory as tractable examples of single-layer41

neural networks [Diakonikolas et al., 2020, Goel et al., 2017]. However, even these simple models42

are known to be adept at modeling a variety of physical phenomena [Constantine et al., 2016] and for43

that reason can already be used effectively in building PDE surrogate models and QoI approximations44

for use in uncertainty quantification, model-driven design, and data assimilation [O’Leary-Roseberry45

et al., 2022, Constantine et al., 2017, Cohen et al., 2012, Le Maître and Knio, 2010, Lassila and46

Rozza, 2010, Binev et al., 2017]. As such, they serve as a natural starting point for our work.47

We frame the problem of actively learning single neuron models in the agnostic learning or adversarial48

noise setting. For a given distribution D on Rd × R, a random vector (x, y) sampled from D, and49

non-linearity f : R → R, our goal is to approximately minimizes the expected squared error50

Ex,y∼D (f(〈w,x〉)− y)
2. Formally, for an error parameter ∆, we want to return some w̃ such that:51

Ex,y∼D (f(〈w̃,x〉)− y)
2 ≤ min

w
Ex,y∼D (f(〈w,x〉)− y)

2
+ ∆.

Importantly, in the agnostic setting, we make no assumption that y = f(〈w∗,x〉) for some ground-52

truth parameter vector w∗, nor do we assume it equals f(〈w∗,x〉) plus mean-centered noise. This is53

in contrast to the “realizable” setting, studied in some prior work [Tyagi and Cevher, 2012, Cohen54

et al., 2012] and in classical work on optimal experimental design [Pukelsheim, 2006]. The agnostic55

setting is more challenging, but also more appropriate for PDE applications, where the function being56

approximated is usually not itself of the form f(〈w,x〉). It has become the standard in work on57

active learning for functions not based on neural networks [Chkifa et al., 2018, Cohen and DeVore,58

2015, Adcock et al., 2022b, Hampton and Doostan, 2015b]).59

For simplicity, we consider the case when D is a uniform distribution over n points in Rd. This is60

essentially without loss of generality, since any continuous distribution can be approximated by the61

uniform distribution over a sufficient large finite sample of x values. In this case, we have:62

Problem 1 (Single Neuron Regression). Given a matrix X ∈ Rn×d and query access to a vector of63

labels, y ∈ Rn, for a given function f : R→ R, find a vector w ∈ Rd to minimize ‖f(Xw)− y‖2264

using as few queries from y as possible.65

When f is an identity function, Problem 1 reduces to active least squares regression, which has66

received a lot of recent attention in computer science and machine learning. In the agnostic setting,67

state-of-the-art results can be obtained via “coherence motivated” sampling, also known as “leverage68

score” or “effective resistance” sampling [Avron et al., 2019, Cohen and Migliorati, 2017, Rauhut69

and Ward, 2012, Hampton and Doostan, 2015a, Erdélyi et al., 2020, Musco et al., 2022]. The idea70

behind such methods is to collect samples from y randomly but non-uniformly, using an importance71

sampling distribution based on the rows of X. More “unique” rows are selected with higher probability.72

Formally, rows are selected with probability proportional to their statistical leverage scores:73

Definition 1 (Statistical Leverage Score). The leverage score, τi(X) of the ith row, xi of a matrix,74

X ∈ Rn×d is equal to:75

τi(X) = xTi (XTX)−1xi = max
w∈Rd

[Xw]2i

‖Xw‖22

We always have that 0 ≤ τi ≤ 1. The leverage score of a row is large (closer to 1) if that row has76

large inner product with some vector in Rd in comparison to all other rows in the matrix X. This77

means that the particular row is important in formulating the row space of X. It can be shown that78

when X has d columns leverage score sampling yields a sample complexity of O(d log d/+ d/ε) to79

find ŵ satisfying ‖Xŵ − y‖22 ≤ (1 + ε) minw ‖Xw − y‖22. This is optimal up to the log d factor80

[Chen and Price, 2019]. Our main contribution is to establish that, when combined with a novel81

regularization strategy, leverage scores sampling simultaneously yields theoretical guarantees for our82

more general Problem 1 for a broad class of non-linearities f . We only require that f is L-Lipschitz83

1These functions are also called “ridge functions” or “plane waves” in some communities.
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for some constant L, a property that holds for most non-linearities used in practice (ReLU, absolute84

value, low-degree polynomials, etc.). Specifically, in the Appendix A we prove:85

Theorem 1 (Main Result). Let X ∈ Rn×d be a data matrix and y ∈ Rn be a label vector. Let f be86

an L-Lipschitz non-linearity with f(0) = 0 and let OPT = minw ‖f(Xw)− y‖22. Let S ∈ Rm×n87

be a sampling matrix with rows selected with probability proportional to the leverage scores of X.88

Let ŵ solve the following constrained optimization problem involving the sampled labels Sy:89

ŵ = arg min
w:‖SXw‖22≤

1
ε·L2 ‖S(y‖22

‖Sf(Xw)− Sy‖22. (1)

As long as m = O
(
d2 log(d/ε2)

ε4

)
, then for a fixed constant C, with probability > 9/10,90

‖f(Xŵ)− y‖22 ≤ C ·
(
OPT + εL2‖Xw∗‖22

)
.

The sampling matrix referenced in Theorem 1 is formally defined as follows:91

Definition 2 (Importance Sampling Matrix). Let p1, . . . , pn ∈ [0, 1] be a given set of probabilities92

(so that
∑
i pi = 1). A matrix S is an m×n importance sampling matrix if each of its rows is chosen93

to equal 1√
m·pi · ei with probability proportional to pi.94

Theorem 1 mirrors previous results in the linear setting, and in constrast to some prior work on95

agnostically learning single neuron models, does not require any assumptions on X [Diakonikolas96

et al., 2022, Tyagi and Cevher, 2012]. In addition to multiplicative error C, it has an additive error97

term of εL2‖Xw∗‖22, which we believe is necessary. Similar additive error terms arise in related98

work on leverage score sampling for problems like logistic regression [Munteanu et al., 2018, Mai99

et al., 2021]. On the other hand, we believe the d2 dependence in our bound is not necessary, and100

should be improvable linear in d. The ε is also likely improvable.101

We note that the assumption f(0) = 0 in Theorem 1 is without loss of generality. If f(0) is non-zero,102

we can simply solve a transformed problem with y′ = y − f(0) and f ′(x) = f(x)− f(0). Finally,103

we note that while (1) is inherently a non-convex problem, it can be solved easily in practice using104

standard methods (e.g. projected gradient or stochastic gradient decent).105

3 Experimental Results106

Leverage score sampling is already used as an active learning strategy in PDE surrogate modeling107

and is simple and computationally efficient to implement [Cohen and DeVore, 2015]. We applied108

the method to several synthetic problems, as well as a test problem on approximating a differential109

equation QoI surface. For all problems, leverage score sampling significantly outperforms the110

standard approach of choosing data uniformly at random from X. For the synthetic data problems111

we let X either contain 105 random Gaussian vectors in two dimensions (Gaussian data), or the112

coordinates of 105 values in [−1, 1]2 (uniform data). We also added a column of all 1’s to allow113
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Figure 1: The three figures show the median relative error for learning the two-dimensional single
neuron models ReLU(0.4x1+0.4x2−0.4), (−0.3x1+0.1x2+0.1)2, and ReLU(0.4x1+0.4x2−0.6)
corrupted with Gaussian noise η1 ∼ N (0, 0.05), η2 ∼ N (0, 0.05) and η3 ∼ N (0, 0.1). In all cases
our active leverage score sampling method outperforms naive uniform sampling.
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(a) True Quantity of Interest. (b) Approximation based on uni-
formly sampled training data.

(c) Approximation based on
leverage-score samples.

Figure 2: Plot of single neuron model fit to a QoI (maximum displacement) for a parametric ODE
modeling a driven harmonic oscillator; see Equation 2. The ODE involves two free parameters: a
spring constant k and a driving frequency ω. 200 training points were collected via uniform sampling
(the standard approach) and our active leverage score sampling method. Evidently, leverage score
sampling provides a better fit. Comparable accuracy from the uniform sampling method would require
considerably more samples, and thus higher computational complexity to obtain those samples.

for a bias term. We select a ground truth w∗ and let y = f(Xw∗) + g, where g is a vector of114

mean-centered Gaussian noise. We ran 100 trials of leverage score and uniform sampling for various115

sample sizes and report median error in Figure 1. We computed ŵ by finding the optimal weights116

to fit our subsampled data – we found that the constraint in (1) could be dropped without hurting117

the performance of leverage score sampling. For the small synthetic problems we used brute force118

search to optimize weights to ensure a true minimum was found. Evidently, leverage scores sampling119

outperforms the standard approach of uniform sampling in all cases.120

For the test problem, we considered a second-order ODE modeling a damped harmonic oscillator121

with a sinusoidal force applied, which leads to the following set of parametric equations:122

d2x

dt2
(t) + c · dx

dt
(t) + k · x(t) = f · cos(ωt), x(0) = x0,

dy

dt
(0) = x1. (2)

Here, x is the oscillators displacement, t is time, and c, k, f, ω are parameters. The choice of123

parameters will significantly impact the final solution. For example, if the frequency term ω is close124

to the resonant frequency of the oscillator, we expect the driving force to lead to large oscillations.125

We took as our QoI the maximum oscillator displacement after 20 seconds, approximating this value126

for all k and ω in the rectangle U = [1, 3]× [0, 2]. We chose to approximate the QoI (which is always127

positive) using a function of the form ReLU(p(k, ω)), where p is a degree 12, two variate polynomial.128

This was accomplished by setting X to be a Vandermonde matrix evaluated at a grid of values on129

[1, 3]× [0, 2]. We fit the QoI to this single neuron function using gradient descent implemented with a130

standard adaptive step-size, again dropping the constraint in (1). Results are show in Figures 2 and 3.131

(a) Relative Error (b) Uniform Random Samples (c) Leverage Score Samples

Figure 3: The left plot shows sample complexity vs. relative error (median and interquartile range) for
fitting the QoI visualized in Figure 2. Leverage score sampling gives roughly an order of magnitude
improvement over over uniform sampling. The right plots visualize uniform vs. leverage score
sampling for selecting example parameter vectors from the box [1, 3] × [0, 2]. Our leverage score
method tends to sample more heavily near the perimeter of the box to fit the single neuron model.
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A Appendix240

Notation. Throughout, we use bold lower-case letters for vectors and bold upper-case letters for241

matrices. We let ei denote the ith standard basis vector (all zeros, but with a 1 in position i). The242

dimension of ei will be clear from context. For a vector y ∈ Rn, ‖y‖2 = (
∑n
i=1 y

2
i )1/2 denotes243

the Euclidean norm. Bd(r) denotes a ball of radius r centered at 0, i.e. Bd(r) = {x ∈ Rd : ‖x‖ ≤244

r}. For a fixed matrix X, unobserved target vector y, and non-linearity f , we let OPT denote245

‖f(Xw∗)− y‖22 where w∗ = arg minw ‖f(Xw)− y‖2.246

As mentioned, our main result is based on sampling by the leverage scores τ1(X), . . . , τn(X) of247

a matrix X ∈ Rd×n. For any full-rank d × d matrix R, we have that τi(XR) = τi(X). This is248

clear from Definition 1 and implies that τi only depends on the column span of X. In our proofs,249

this property will allow us to easily reduce to the setting where X is assumed to be orthonormal.250

Finally, we will use the following well-known fact about using leverage score sampling to construct a251

“subspace embedding” for a matrix X.252

We first state an intermediate result on the solution ŵ to (1) that will be used in our main proof.253

Claim 1. With probability 49/50 probability, for a fixed constant C > 0,254

‖Sf(Xŵ)− Sy‖22 ≤ C ·
(
OPT + εL2‖Xw∗‖22

)
.

Proof. Consider the case when ‖SXw∗‖22 ≤ 1
εL2 ‖Sy‖22. Then w∗ satisfies the constraint of255

the above optimization problem so we have that ‖Sf(Xŵ) − Sy‖22 ≤ ‖Sf(Xw∗) − Sy‖22 ≤256

C · OPT . The last inequality follows with probability 49/50 via Markov’s inequality since257

E
[
‖Sf(Xŵ)− Sy‖22

]
= ‖f(Xw∗) − y‖22 = OPT . On the other hand, if it is not the case258

that ‖SXw∗‖22 ≤ 1
εL2 ‖Sy‖22, then we have that ‖Sy‖22 ≤ εL2 · ‖SXw∗‖22. In this second case, we259

can plug in the zero vector to the above minimization problem (it clearly satisfies the constraint) and260

conclude again that:261

‖Sf(Xŵ)− Sy‖22 ≤ ‖Sf(X0)− Sy‖22 = ‖Sy‖22 ≤ εL2‖SXw∗‖22 ≤ 2εL2‖Xw∗‖22.

The last inequality follows from the subspace embedding inequality from Lemma 1. Not also above262

that we used above that f(X0) = f(0) = 0.263

With Claim 1 in place, we are ready to prove our main result.264

Proof of Theorem 1. First note that, without loss of generality, we can assume that X has orthonormal265

columns. In particular, if X is not orthonormal, we can write it as X = QR where Q ∈ Rn×rank(X)266

has orthonormal columns and R is a square full-rank matrix. The leverage scores of Q are equal to267

those of X. Moreover, any solution ŵ to (1) has a corresponding solution Rŵ to the minimization268

problem if X were replaced by Q. So solving the above problem is equivalent to first explicitly269

orthogonalizing X and solving the same problem.270
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Next, we use the fact that for any vectors a and b, ‖a + b‖22 ≤ 2‖a‖22 + 2‖b‖22 to bound:271

‖f(Xŵ)− y‖22 ≤ 2 ‖f(Xŵ)− f(Xw∗)‖22 + 2 ‖f(Xw∗)− y‖22
≤ 2 ‖f(Xŵ)− f(Xw∗)‖22 + 2OPT. (3)

We focus on bounding the first term. To do so, we first observe that, thanks to the constraint imposed272

in (1), the norm of ŵ can be bounded. In particular, we claim that with probability 49/50,273

‖ŵ‖22 ≤
100

εL2
· ‖y‖22. (4)

To see that this is the case, note that under our assumption that X is orthogonal, we have ‖ŵ‖22 =274

‖Xŵ‖22. We can bound ‖Xŵ‖22 as follows:275

‖Xŵ‖22 ≤ 2 ‖SXŵ‖22 (Lemma 1)

≤ 2
1

ε · L2
‖Sy‖22 (From the constraint in (1))

≤ 100

ε · L2
‖y‖22 (Markov’s inequality)

In the last inequality, we used that E[‖Sy‖22] = ‖y‖22, which holds regardless of the choice of276

probabilities used to construct S. Since ŵ lies in B(R), where R = 100
εL2 · ‖y‖22, we can apply Lemma277

3 to conclude that, as long as m ≥ cd
2 log(1/ε)

ε2 ,278

‖f(Xŵ)− f(Xw∗)‖22 ≤ 2 ‖Sf(Xŵ)− Sf(Xw∗)‖22 + ε‖y‖22 + ε2L2 ‖Xw∗‖22
≤ 4 ‖Sf(Xŵ)− Sy‖22 + 4 ‖Sf(Xw∗)− Sy‖22 + ε‖y‖22 + ε2L2 ‖Xw∗‖22
≤ 4 ‖Sf(Xŵ)− Sy‖22 + C ·OPT + ε‖y‖22 + ε2L2 ‖Xw∗‖22 .

As in the proof of Claim 1, the last inequality follows with probability 49/50 via Markov’s inequality279

since E
[
‖Sf(Xŵ)− Sy‖22

]
= ‖f(Xw∗)− y‖22 = OPT .280

Next we apply Claim 1 to bound ‖Sf(Xŵ)− Sy‖22 ≤ O
(
OPT + εL2‖Xw∗‖22

)
. So overall, we281

conclude that for a constant C,282

‖f(Xŵ)− y‖22 ≤ C ·
(
OPT + εL2‖Xw∗‖22 + ε‖y‖22

)
. (5)

By triangle inequality, we have that ‖y‖2 =≤ 2OPT + 2‖f(Xw∗)‖22 ≤ 2OPT + 2L2‖Xw∗‖22.283

Using this fact and plugging (5) into (3) yields the theorem.284

A.1 Concentration Bounds285

In our main proof, we use several concentration results that follow from leverage score sampling. The286

first is a standard “subspace embedding” for a matrix X.287

Lemma 1 (Subspace Embedding (see e.g. Theorem 17 in Woodruff [2014]). Given X ∈ Rn×d with288

leverage scores τ1, . . . , τn, let pi = τi/
∑
i τi. Let S ∈ Rm×n be a sampling matrix constructed as in289

Definition 2 using the probabilities p1, . . . , pn. For any 0 < γ < 1, as long as m ≥ c · d log(d/δ)/γ2290

for some fixed constant c, then with probability 1− δ we have that simultaneously for all w ∈ Rd,291

(1− γ)‖Xw‖22 ≤ ‖SXw‖22 ≤ (1 + γ)‖Xw‖22.

Lemma 1 establishes that, with high probability, leverage score sampling preserves the norm of any292

vector Xw in the column span of X. This guarantee can be proven using an argument that reduces to293

a matrix Chernoff bound [Spielman and Srivastava, 2011] and is a critical component in previous294

active learning guarantees for leverage score sampling when fitting linear functions [Sarlos, 2006].295

Our next two lemmas establish similar results to Lemma 1, but for preserving the norm of non-linear296

ridge functions involving X.297

Lemma 2. Let f : R→ R be an L-Lipschitz activation function applied entrywise to the vector Xw298

and let S ∈ Rm×n be an importance sampling matrix chosen with probabilities p1, . . . , pn where299
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pi = τi(X)/ rank(X). As long as m ≥ 3d log(2/δ)
ε2 , then for any fixed pair of vectors w1,w2 ∈ Rd,300

with probability ≥ 1− δ,301

‖f(Xw1)− f(Xw2)‖22 − εL
2 ‖Xw1 −Xw2‖22 ≤ ‖Sf(Xw1)− Sf(Xw2)‖22

≤ ‖f(Xw1)− f(Xw2)‖22 + εL2 ‖Xw1 −Xw2‖22 .

Proof. Let xi denote the ith row of X and let u = f(Xw1)−f(Xw2) and v = Xw1−Xw2. Since302

f is L-Lipschitz, for every i ∈ [n], we have that303

ui = |f(〈xi,w1〉)− f(〈xi,w2〉)|i ≤ L · |〈xi,w1〉 − 〈xi,w2〉|i ≤ Lvi. (6)

Let ji ∈ [n] be the index of the row from X selected by the ith row in S. We have that ‖Su‖22 =304 ∑m
i=1

u2
ji

m·pji
, where pji = τji(X)/ rank(X). We thus have that E ‖Su‖22 = ‖u‖22. Moreover, we305

can bound the variance in each term of the sum. In particular, we have that:306

Var

[
u2ji
pji

]
≤ E

(u2ji
pji

)2
 =

n∑
k=1

u4k
p2k
· pk =

n∑
k=1

L4v4k rank(X)

τk(X)
.

In the last step we have used the upper bound from (6), and the fact that pk = τk(X)/ rank(X).307

From the definition of leverage scores (Definition 1), and the fact that v lies in the span of X, we308

have that τk(X) ≥ v2k
‖v‖22

. So we can further upper bound the variance as follows:309

Var

[
u2ji
pji

]
≤ L4 ·

n∑
k=1

v2k‖v‖22 rank(X) = L4 · ‖v‖42 · rank(X) ≤ L4 · d‖v‖42.

Moreover, we have that with probability 1,
u2
ji

pji
≤ maxk L

2 · v
2
k rank(X)
τk(X) ≤ L2 · d‖v‖22.310

Finally, applying Bernstein’s to the sum ‖Su‖22 = 1
m

∑m
i=1

u2
ji

pji
, we have that:311

Pr
[∣∣‖Su‖22 − ‖u‖22∣∣ ≥ t/m] ≤ 2 exp

(
− t2/2

m · L4 · d‖v‖42 + t · L2 · d‖v‖22/3

)
.

Setting m = 3d log(2/δ)
ε2 and t = m · ε‖v‖22 · L2 and plugging in we have:312

Pr
[∣∣‖Su‖22 − ‖u‖22∣∣ ≥ εL2‖v‖22

]
≤ 2 exp

(
−

1
2m

2ε2‖v‖42L4

m · L4 · d‖v‖42 +mεL4 · d‖v‖42/3

)
≤ δ.

This completes the bound.313

Lemma 3. Given X, f , and y, let w∗ = arg minw ‖f(Xw) − y‖22 and let R be a fixed radius.314

Let S ∈ Rm×n be an importance sampling matrix chosen with probabilities p1, . . . , pn where315

pi = τi(X)/ rank(X). As long as m ≥ cd
2 log(1/ε)

ε2 for ε < 1 and fixed constant c, then with316

probability 49/50,317

‖f(Xŵ)− f(Xw∗)‖22 ≤ 4 · ‖Sf(Xŵ)− Sf(Xw∗)‖22 + ε2L2R2 + ε2L2‖Xw∗‖22

for all ŵ ∈ Bd(R).318

Proof. Let N be an (εR)-net in the Euclidean norm on B(R). I.e. for every v ∈ B(R), there should319

be some point z ∈ N such that ‖z−v‖2 ≤ εR. It is well known that such anN exists with cardinality320

|N | ≤
(
1 + 2

ε )
)d

(see e.g. Lemma 5.2 in Vershynin [2012]). Applying Lemma 2 with δ = 1
50|N | and321

combining with a union bound, we conclude that as long as m ≥ cd
2 log(1/ε)

ε4 for a fixed constant c,322

then with probability 49/50, for all z ∈ N ,323

‖f(Xz)− f(Xw∗)‖22 ∈
[
‖Sf(Xz)− Sf(Xw∗)‖22 ± ε

2L2‖Xz−Xw∗‖22
]
. (7)

9



Now, let z∗ be the closest point to ŵ in N . I.e., z∗ = arg minz∈N ‖z− ŵ‖2. Applying (7) and the324

fact that for any two vectors a,b, ‖a + b‖22 ≤ 2‖a‖2 + 2‖b‖22, we have:325

‖f(Xŵ)− f(Xw∗)‖22 ≤ 2 ‖f(Xz∗)− f(Xw∗)‖22 + 2 ‖f(Xŵ)− f(Xz∗)‖22
≤ 2 ‖Sf(Xz∗)− Sf(Xw∗)‖22 + 2ε2L2‖Xz∗ −Xw∗‖22 + 2 ‖f(Xŵ)− f(Xz∗)‖22
≤ 4 ‖Sf(Xŵ)− Sf(Xw∗)‖22 + 4 ‖Sf(Xz∗)− Sf(Xŵ)‖22 + 2ε2L2‖Xz∗ −Xw∗‖22

+ 2 ‖f(Xŵ)− f(Xz∗)‖22
≤ 4 ‖Sf(Xŵ)− Sf(Xw∗)‖22 + 4 ‖f(Xz∗)− f(Xŵ)‖22 + 6ε2L2‖Xz∗ −Xw∗‖22+

+ 2L2‖Xŵ −Xz∗‖22
≤ 4 ‖Sf(Xŵ)− Sf(Xw∗)‖22 + 4L2 ‖Xz∗ −Xŵ‖22 + 6ε2L2(R+ ‖Xw∗‖2)2+

+ 2L2‖Xŵ −Xz∗‖22
≤ 4 ‖Sf(Xŵ)− Sf(Xw∗)‖22 + 4ε2L2R2 + 12ε2L2R2 + 12‖Xw∗‖22 + 2ε2L2R2.

Combining terms and adjusting constants on ε yields the bound.326
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