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Abstract. We propose to apply a 2D CNN architecture to 3D MRI im-
age Alzheimer’s disease classification. Training a 3D convolutional neural
network (CNN) is time-consuming and computationally expensive. We
make use of dynamic image technology to transform the 3D MRI image
volume into a 2D image to use as input to a 2D CNN. We show our
proposed CNN model achieves 9.5% better Alzheimer’s disease classi-
fication accuracy than the baseline 3D models. We also show that our
method allows for efficient training, requiring only 20% of the train-
ing time compared to 3D CNN models. The code is available online:
https://github.com/xxx/xxx.

Keywords: Dynamic image, 2D CNN, MRI image, Alzheimer’s Disease

1 Introduction

Alzheimer’s disease (AD) is the sixth leading cause of death in the U.S. [1]. It
heavily affects the patients’ families and U.S. health care system due to medi-
cal payments, social welfare cost, and salary loss. Since AD is irreversible, early
stage diagnosis is crucial for helping slow down disease progression. Currently,
researchers are using advanced neuroimaging techniques, such as magnetic res-
onance imaging (MRI), to identify AD. MRI technology produces a 3D image,
which has millions of voxels. Figure 1 shows example slices of Cognitive Unim-
paired (CU) and Alzheimer’s disease (AD) MRI images.

CU Dynamic 
image of CU AD Dynamic 

image of AD

Fig. 1. The MRI sample slices of the CU and AD participants and the corresponding
dynamic images. The first row images label are CU and the second row images label
are AD.
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With the promising performance of deep learning in natural image classi-
fication, convolutional neural networks (CNNs) show tremendous potential in
medical image diagnosis. Due to the volumetric nature of MRI images, the nat-
ural deep learning model is a 3D convolutional neural network (3D CNN) [10].
Compared to 2D CNN models, 3D CNN models are more computationally expen-
sive and time consuming to train due to the high dimensionality of the input.
Another issue is that most current medical datasets are relatively small. The
limited data makes it difficult to train a deep network that generalizes to high
accuracy on unseen data. To overcome the problem of limited medical image
training data, transfer learning is an attractive approach for feature extraction.
However, pre-trained CNN models are mainly trained on 2D image datasets.
There are few suitable pre-trained 3D CNN models. In our paper, We propose
to apply dynamic images [3] to convert a 3D MRI volume into a 2D image over
the height dimension. Thus, we can use a 2D CNN architecture for 3D MRI
image classification. The main contributions of our work are following:

– We propose to apply a CNN model that transforms the 3D MRI volume
image into 2D dynamic image as the input of 2D CNN. Incorporating with an
attention mechanism, the proposed model significantly boosts the accuracy
of the Alzheimer’s Disease MRI diagnosis.

– We conduct the preliminary experiments on an efficient network [9] as the
feature extractor. Under appropriate network design, our method has the
potential for mobile applications of 3D medical image diagnosis.

– We analyze the effect of skull MRI images on the dynamic image method,
showing that the applied dynamic image method is sensitive to the noise
introduced by the skull. Skull striping is necessary before using the dynamic
image technology.

2 Related Work

Learning-based Alzheimer’s disease (AD) research can be mainly divided into
two branches based on the type of input: (1) manually selected region of inter-
est (ROI) input and (2) whole image input. With ROI models [6] [14], manual
region selection is needed to extract the interest region of the original brain
image as the input to the CNN model, which is a time consuming task. It is
more straightforward and desirable to use the whole image as input. Korolev
et al. [11] propose two 3D CNN architectures based on VGGNet and ResNet,
which is the first study to prove the manual feature extraction step for Brain
MRI image classification is unnecessary. Their 3D models are called 3D-VGG
and 3D-ResNet, and are widely used for 3D medical image classification study.
Cheng et al. [4] proposes to use multiple 3D CNN models trained on MRI im-
ages for AD classification in an ensemble learning strategy. They separate the
original MRI 3D images into many patches (n=27), then forward each patch to
an independent 3D CNN for feature extraction. Afterward, the extracted fea-
tures are concatenated for classification. The performance is satisfactory, but the
computation cost and training time overhead are very expensive. Yang et al. [18]
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uses the 3D-CNN models of Korolev et al. [11] as a backbone for studying the
explainability of AD classification in MRI images by extending class activation
mapping (CAM)[20] and gradient-based CAM[16] on 3D images. In our work,
we use the whole brain MRI image as input and use 3D-VGG and 3D-ResNet
as our baseline models.

Dynamic images where first applied to medical imagery by Liang et al. [13] for
breast cancer diagnosis. The authors use the dynamic image method to convert
3D digital breast tomosynthesis images into dynamic images and combined them
with 2D mammography images for breast cancer classification. In our work, we
propose to combine dynamic images with an attention mechanism for 3D MRI
image classification.

3 Approach

We provide a detailed discussion of our method. First, we summarize the high-
level network architecture. Second, we provide detailed information about the
dynamic image method. Next, we show our classifier structure and attention
mechanism. Finally, we discuss the loss function used for training.

3.1 Model Architecture

…

3D MRI 2D Dynamic 
image

Dynamic image 
Module

Pre-trained
CNN

Attention
Module

FC Layers

Positive

Negative

Fig. 2. The architecture of our 2D CNN model.

Figure 2 illustrates the architecture of our model. The 3D MRI image is
passed to the dynamic image module to transform the 3D MRI image volume
into a 2D dynamic image. We apply transfer learning for feature extraction
with the dynamic image as the input. We leveraged a pre-trained CNN as the
backbone feature extractor. The feature extraction model is pre-trained with the
ImageNet dataset [5]. Because we use a lower input resolution than the resolution
used for ImageNet training, we use only a portion of the pre-trained CNN. The
extracted features are finally sent to a small classifier for diagnosis prediction.
The attention mechanism, which is widely used in computer vision community,
can boost CNN model performance, so we embed the attention module in our
classifier.
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3.2 Dynamic Image

The dynamic image method [7] [3] was originally proposed for video action recog-
nition. For a video with T frames I1, ..., IT , the method compresses the whole
video into one frame by temporal rank pooling. The compressed frame is called a
dynamic image. The construction of the dynamic image is based on Fernando et
al [7]. The authors use a ranking function to represent the video. ψ(It) ∈ <d is a
feature representation of the individual frame It of the video. Vt = 1

t

∑t
τ=1 ψ(Iτ )

is the temporal average of the feature up to time t. Vt is measured by a ranking
score S(t|d) =< d, Vt >, where d ∈ <d is a learned parameter. By accumulating
more frames for the average, the later times are association with larger scores,
e.g q > t→ S(q|d) > S(t|d) , which are constraints for the ranking problem. So
the whole problem can be formulated as a convex problem using RankSVM:

d∗ = ρ(I1, ..., It; τ) = argmin
d

E(d) (1)

E(d) =
λ

2
||d||2 +

2

T (T − 1)
×
∑
q>t

max{0, 1− S(q|d) + S(t|d)} (2)

In Equation (2), the first term is a quadratic regularization used in SVMs, the
second term is a hinge-loss counting incorrect rankings for the pairs q > t.

The RankSVM formulation can be used for dynamic image generation, but
the operations are computationally expensive. Bilen et al. [3] proposed a fast
approximation for dynamic images:

ρ̂(I1, ..., It;ψ) =

T∑
t=1

αt · It (3)

where, αt = 2t − T − 1 is the coefficient associated to frame It. We take this
approximate dynamic image strategy in our work for 3D MRI volume to 2D
image transformation. In our implementation, the z-dimension of 3D MRI image
is equal to temporal dimension of the video.

3.3 Classifier with Attention Mechanism

The classifier is a combination of an attention mechanism module and a basic
classifier. Figure 3 depicts the structure of attention mechanism, which includes
four 1 × 1 convolutional layers. The first three activation functions of convo-
lutional layers are ReLU, the last convolutional layer is attached with softmax
activation function. The input feature maps I ∈ RH×W×C are passed through
the four convolutional layers to calculate attention mask S ∈ RH×W×1. We ap-
ply element-wise multiplication between the attention mask and input feature
maps to get the final output feature map O ∈ RH×W×C . Our basic classifier
contains three fully connected (FC) layers. The output dimensions of the three
FC layers are 512, 64, and 2. Dropout layers are used after the first two layers
with dropout probability 0.5.
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HxWxC HxWx512 HxWx256 HxWx64 HxWx1

1x1 conv
ReLU

1x1 conv
ReLU

1x1 conv
ReLU

1x1 conv
Softmax

Attention 
Mask

Input 
feature

Output 
feature

HxWxC

Fig. 3. The attention mechanism structure in our CNN model.

3.4 Loss Function

In previous AD classification studies, researchers mainly concentrated on binary
classification. In our work, we do the same for ease of comparison. The overall loss
function is binary cross-entropy. For a 3D image I with label l and probability
prediction p(l|I), the n sample loss function is:

loss(l, I) = − 1

n

n∑
i=1

[lilog(p(l|I)i) + (1− li)log(1− p(l|I))i] (4)

where the label l = 0 indicates a negative sample and l = 1 indicates a positive
sample.

4 Evaluation

We use the publicly available dataset from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [2] for our work. Specifically, we trained CNNs with the data
from the “spatially normalized, masked, and N3-corrected T1 images” category.
The brain MRI image size is 110× 110× 110. Since a subject may have multiple
MRI scans in the database, we use the first scan of each subject to avoid data
leakage. The total number of data samples is 100, containing 51 CU samples and
49 AD samples.

The CNNs are implemented in PyTorch. We use five-fold cross validation to
better evaluate model performance. The batch size used for our model is 16.
The batch size of the baseline models is 8, which is the maximum batch size of
the 3D CNN model trained on the single GTX-1080ti GPU. We use the Adam
optimizer with beta1 = 0.9 and beta2 = 0.999. The learning rate is 0.0001. We
train for 150 epochs. To evaluate the performance of our model, we use accuracy
(Acc), the area under the curve of Receiver Operating Characteristics (ROC),
F1 score (F1), Precision, Recall and Average Precision (AP) as our evaluation
metrics.

4.1 Quantitive Results

High quality feature extraction is crucial for the final prediction. Different pre-
trained CNN models can output different features in terms of size and effective
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receptive field. We test different pre-trained CNNs to find out which CNN models
perform best as our feature extractor. Table 1 shows various CNN models and
the corresponding output feature size.

Table 1. The different pre-trained CNN model as feature extractors and the output
feature sizes

CNN model Output feature size

AlexNet [12] 256 × 5 × 5
VggNet11 [17] 512 × 6 × 6
ResNet18 [8] 512 × 7 × 7
MobileNet v2 [15] 1280 × 4 × 4

Since our dynamic image resolution is 110× 110× 3, which is much smaller
than the ImageNet dataset resolution: 256 × 256 × 3, we use only part of the
pre-trained CNN as the feature extractor. Directly using the whole pre-trained
CNN model as feature extractor will cause the output feature size to be too
small, which decreases the classification performance. In the implementation,
we get rid of the maxpooling layer of each pre-trained model except for the
MobileNet v2 [15], which contains no maxpooling layer. Also, because there is
a domain gap between the natural image and medical image we set the pre-
trained CNN models’ parameters trainable, so that we can fine tune the models
for better performance.

Table 2. The performance results of different backbone models with dynamic image
as input

Model Acc ROC F1 Precision Recall AP

AlexNet 0.87 0.90 0.86 0.89 0.83 0.82
ResNet18 0.85 0.84 0.84 0.86 0.81 0.79
MobileNet v2 0.88 0.89 0.87 0.89 0.85 0.83
VggNet11 0.91 0.92 0.91 0.88 0.93 0.86

When analyzing MRI images using computer-aided detectors (CADs), it is
common to strip out the skulls from the brain images. Thus, we first test the pro-
posed method using the MRI with the skull stripped. Our proposed model takes
dynamic images (Dyn) as input, VGG11 as feature extractor, and a classifier
with the attention mechanism: Dyn+V GG11 +Att. The whole experiment can
be divided into three sections: the backbone and attention section, the baseline
model section, and the pooling section. In the backbone and attention section, we
use 4 different pre-trained models and test the selected backbone with and with-
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Table 3. The performance results of different 2D and 3D CNN models

Model Acc ROC F1 Precision Recall AP

3D-VGG [11] 0.80 0.78 0.78 0.82 0.75 0.74
3D-ResNet [11] 0.84 0.82 0.82 0.86 0.79 0.78

Max. + VGG11 0.80 0.77 0.80 0.78 0.81 0.73
Avg. + VGG11 0.86 0.84 0.86 0.83 0.89 0.79
Max. + VGG11 + Att 0.82 0.76 0.82 0.80 0.83 0.75
Avg. + VGG11 + Att 0.88 0.89 0.88 0.85 0.91 0.82

Ours 0.92 0.95 0.91 0.97 0.85 0.90

out the attention mechanism. Based on the performance shown in Table 2, we
choice VGG11 as the backbone model. In the baseline model section, we compare
our method with two baselines, namely 3D-VGG and 3D-ResNet. Table 3 shows
the performance under different CNN models. The proposed model achieves
9.52% improvement in accuracy and 15.20% better ROC over the 3D-ResNet. In
the pooling section: we construct two baselines by replacing the dynamic image
module with the average pooling (Avg.) layer or max pooling (Max.) layer. The
pooling layer processes the input 3D image over the z-dimension and outputs the
same size as the dynamic image. Comparing with the different 3D-to-2D con-
version methods under the same configuration, the dynamic image outperforms
the two pooling methods.

4.2 Pre-processing Importance Evaluation

Table 4. The performance results of different 2D and 3D CNN models on the MRI
image with skull.

Model Acc ROC F1 Precision Recall AP

3D-VGG [11] 0.78 0.62 0.77 0.80 0.75 0.72
Ours 0.63 0.52 0.63 0.62 0.64 0.57

In this section, we show results using the raw MRI image ( including skull )
as input. We perform experiments on the same patients’ raw brain MRI image
with the skull included to test the performance of our model. The raw MRI im-
age category is “MT1,GradWarp,N3m”. The image size of the raw MRI image
is ”176× 256× 256”. Figure 4 illustrates the dynamic images of different partic-
ipants’ MRI brain images with the skull. The dynamic images are blurrier than
the images under skull striping processing. This is because the skull variance
can be treated as noise in the dynamic image. Table 4 shows the significant per-
formance decrease when using 3D Brain MRI images with skull. Figure 4 shows
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Fig. 4. The original MRI image with skull and its correspond dynamic image. The first
row shows the MRI sample slice of a CU participant and the dynamic image over the
z-dimension pooling. The second row shows the MRI sample slice of an AD participant
and its corresponding dynamic image.

a visual representation of how the dynamic images are affected by including the
skull in the image. In this scenario, the model can not sufficiently diagnose the
different groups. A potential cause of this decrease if performance is that the
dynamic image module is a pre-processing step, and the module is not trainable.
We believe an end-to-end, learnable approximation for dynamic images would
improve performance.

4.3 Models Training time

Table 5. The total 150 epochs training time of different CNN models.

Training time(s)

3D-VGG [11] 2359
3D-ResNet [11] 3916
Ours 414

Another advantage of the proposed model is faster training. We train all of
our CNN models for 150 epochs on the same input dataset. Table 5 shows the
total training time of the different 2D and 3D CNN models. Compared with
the 3D-CNN networks, the proposed model trains in about 20% of the time.
Also, due to the higher dimension of the 3D convolutional layer, the number
of parameters of the 3D convolutional layer is naturally higher than the 2D
convolutional layer. By applying the MobileNet [9] or ShuffleNet [19] in medical



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#
ECCV

#

ECCV-20 submission ID 9

image diagnosis, there is potential for mobile applications. We used MobileNet for
our experiments. We used the MobileNet v1 achitecture as the feature extractor
and obtained 84.84% accuracy, which is similar in accuracy to the 3D ResNet.

5 Conclusions

We proposed to apply the dynamic image method to convert 3D Brain MRI
images into 2D dynamic images as the inputs for a pre-trained 2D CNN. The
proposed model outperforms a 3D CNN with much less training time and im-
proves 9.5% better performance than the baselines. We trained and evaluated
on MRI brain imagery and found out that brain skull striping pre-processing
is useful before applying the dynamic image conversion. We used an offline dy-
namic image module in our experiments, but we believe it would be interesting
to explore a learnable dynamic image approximation in the future. We showed
that combining the dynamic image with pre-trained efficient networks, and found
that they performed similarly to the 3D CNN model.
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