Fathom-Search-4B: Scaling DeepSearch Reasoning
Capabilities via RL

Shreyas Singh* Kunal Singh*f
Fractal Al Research Fractal Al Research
shreyas.singh@fractal.ai kunal.singh@fractal.ai
Pradeep Moturi*

Fractal Al Research
pradeep.moturi@fractal.ai

Abstract

We present Fathom-Search-4B, a 4B-parameter, tool-using LLM trained to perform
evidence-based DeepSearch over heterogeneous sources (HTML, PDFs, blogs).
Our approach combines three advances. First, DUETQA, a 5K example dataset
generated via multi-agent self-play, enforces live-web dependence, post-2024
recency, and diversity beyond Wikipedia. Second, we introduce RAPO, a zero-
overhead extension of GRPO that stabilizes multi-turn RL via prompt-level pruning
of saturated items, reward-aware advantage scaling to preserve gradient magnitude,
and a per-prompt replay buffer that restores variance. Third, we design a steerable
step-level reward that labels each tool call as exploration, verification, or redundant,
allowing explicit control over search breadth, cross-source verification depth, and
overall tool-use horizon; this reliably extends effective trajectories beyond 10+
tool calls when warranted. The agent operates with a goal-conditioned retrieval
stack (search selection + targeted page querying), improving signal-to-noise versus
snippet-only or greedy retrieval. Evaluated on DeepSearch benchmarks (e.g.,
SimpleQA, FRAMES, WebWalker, Seal0, MuSiQue) and out-of-domain reasoning
suites (HLE, AIME-25, GPQA-Diamond, MedQA), Fathom-Search-4B attains
state-of-the-art results among open models, with large gains on retrieval-heavy
tasks and strong transfer to STEM/medical QA.

https://github.com/Fractal AIResearchLabs/Fathom-DeepResearch

1 Introduction

Large Language Models (LLMs) have demonstrated promising results across a diverse set of tasks,
such as mathematical reasoning, code generation [9, 13} 24} 23]]. Despite these advancements, they
remain prone to factual inaccuracies/hallucinations as they rely on static internal knowledge acquired
during pretraining. Real world information is continually evolving and getting updated. Given the
high cost of pretraining LLMs, it is not pragmatic to rely solely on repeated pretraining to update their
knowledge. A potential solution to this problem involves enabling LLMs to interface with external
knowledge systems.

Retrieval-augmented generation (RAG) has become the standard framework for open-domain QA,
where LLMs generate answers conditioned on retrieved context. However, these pipelines rely on

“Equal contribution.
"Project lead.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions
in Large Language Models.

https://github.com/FractalAIResearchLabs/Fathom-Search

Accuracy vs Average Response Length Accuracy vs Average Tool Calls

Fathom-Search-Stage2 Fathom-Search-Stage2
<

Websailor-38

Search-o1(Qwen3-48) zerosearc h-78
A

Quen3-a8

7500 10000 12500 15000 17500 s T
Average Response Length Average Tool Calls (per question)

Figure 1: Accuracy vs Response length and Accuracy vs Number of Tool calls plot, demonstrating
the long horizon tool interaction ability of Fathom-Search-4B, compared to its contemporaries.

—— GRPO 3 — GRPO
GradNorm nAro Entropy Riio

Figure 2: Comparison of policy entropy and gradient norm during RLVR training. GRPO exhibits
rapid entropy collapse and diminished gradient norms due to sparse rewards, whereas RAPO sustains
exploration and stronger updates via targeted updates

structured, static corpora and predictable input formats conditions rarely met in real-world search
tasks. In contrast, recent efforts [26} |13} [25] have focused on instilling tool-mediated DeepSearch
reasoning capabilities in LLMs that involve free-form web queries, parsing heterogeneous/noisy
outputs, and synthesizing multi-step reasoning chains. The core principle underlying this approach
is to concentrate training efforts on developing the model’s ability to autonomously and effectively
access and leverage external information sources (search engines). Rather than directly incorporating
factual content into the model parameters, this method emphasizes teaching the model how to
navigate, comprehend, and utilize relevant information from vast digital information landscapes for
complex-information seeking tasks. This distinction makes DeepSearch fundamentally more difficult
than traditional RAG and a necessary precursor to the next scaling milestone in search augmented
language model capabilities: DeepResearch Agents

However, scaling DeepSearch capability faces three key challenges: (i) the lack of high-quality,
verifiable, scalable training dataset creation pipeline , (ii) algorithmic instability in multi-turn rein-
forcement learning (RL) with tools , and (iii) lazy tool calling behavior which hinders scaling deep
information exploration and retrieval capabilities

1.1 Motivation

(1) Training instability of GRPO in multi-turn tool interaction: RLVR (Reinforcement Learning
with verifiable rewards) algorithms such as GRPO [22] have demonstrated early promise in aligning
LLMs with sparse reward signals for single-turn reasoning tasks, particularly in structured domains
like Math/STEM [22, [34]. However, it struggles to scale to multi-turn tool-augmented environments.
External tool interaction response induces distribution shift from the models set token generation
patterns this leads to decoding instability and malformed generations that further accelerate entropy
collapse [32]]. Sparse rewards lead to group saturation and degenerate advantage normalization,
while synchronous pipelines amplify stragglers and tie optimization progress to system latency. The
non-stationary reward landscape of the live web further introduces oscillatory gradients that interact
poorly with trajectory-only credit assignment and KL regularization.

(2) RLVR training fails to scale multi-turn tool interaction beyond 5-6 turns : (a) Correctness-
only sparse rewards do not scale to long-horizon tool calling With a single end-of-episode correctness
signal, training shows early gains (format adherence, basic tool calling competence) followed by
rapid entropy collapse [2} the policy converges to short, myopic traces of roughly 5/6 tool calls
irrespective of task difficulty due to sparse, delayed credit assignment and the lack of step-level
signals for rewarding useful intermediate behaviors in incorrect trajectories. (b) RL amplifies SFT
priors, limiting control over the cognitive behaviors of the policy [1]: Tool-use RL typically relies on
an SFT cold start to elicit basic tool competence [13]]; [6] RL then amplifies pre-existing cognitive
behaviors seeded by SFT [[7]]. Standard RLVR affords limited control over exploration and verification
strategy, so cold-start trajectory quality disproportionately shapes downstream behavior and restricts
deeper, more economical search.

(3) Limited training data characterized by high and hard-to-reduce intrinsic information
uncertainty:

Training datasets such as TriviaQA [[L1l], and multi-hop variants like 2WIKI[S8]], and HotpotQA
[35]] represent problems where solutions can often be found through minimal set queries or even
from a model’s parametric knowledge alone. These datasets do not expose models to the real-
world retrieval challenges posed by noisy, heterogeneous data sources like, PDFs, Online forums
, Youtube etc. Recent synthetic efforts [26, |13} 27] attempt to bridge this gap by simulating realistic
search behavior. For instance, WebSailor’s[13]] SailorFog-QA constructs ambiguous queries using
obfuscated subgraphs of entity graphs, while SimpleDeepResearcher [27] issues multi-stage search-
summarize-generate tool calls over raw HTML. Despite their innovation, these pipelines remain
expensive, brittle, and time-consuming. They rely on handcrafted heuristics, graph expansion, or
multi-stage LLM orchestration, limiting scalability, topical diversity, and adaptability to new domains.

1.2 Our Contributions

To this end, we introduce a post-training recipe to create state-of-the-art DeepSearch enabled reasoning
model, Fathom-Search-4B. We enlist our key contributions below:

* Multi-agent self-play dataset. We build DUETQA, a 5K-example dataset created through
multi-agent self-play, designed to require live web search to answer its queries.

» Two-stage RL-zero training. We introduce a two-stage RL-Zero training framework that
provides coarse control over the exploration and verification strategies developed by the
model.

* RAPO (GRPO extension). We propose RAPO, a zero-overhead modification of GRPO that
stabilizes multi-turn RL through dataset pruning, advantage scaling, and replay buffers. [I]

* Steerable step-level reward. We design a novel step level reward that enables fine-grained
control over long-horizon tool use, which scales tool use beyond 20+ calls

2 Methodology

We describe the methodology underlying Fathom-Search, a tool-using LLM that leverages live web-
search capabilities to do evidence based reasoning in a multi-turn tool interaction setting, achieving
long-horizon tool use (> 20 calls) when warranted. These capabilities arise from a combined approach
of: (i) a curated synthetic data pipeline tailored to search-tool augmented reasoning, (ii) targeted
upgrades to GRPO to effectively adapt it to multi-turn tool interaction, and (iii) a two-stage training
regimen with reward shaping to expand the tool-use horizon in a steerable manner.

2.1 DuetQA: A synthetic Deep-search dataset, generated via multi-agent self play

To address the aforementioned challenges in Section 1., we develop a self-supervised dataset construc-
tion framework designed to yield verifiable, search-dependent, multi-hop QA pairs. This pipeline
serves as the basis for generating DUETQA, a dataset tailored for training agentic deepsearch models.
The design goals are: Live web-search dependency: for each QA pair (¢, a), the question is unan-
swerable without search by enforcing that at least one hop contains information post—2024-01-01
(i.e., for a model M, P(a | ¢, Muosearch) < P(a | ¢, Miearch)); Diverse source domains: questions

Search-Tool Calls Distribution (Correct Answers)

Ours FRAMES Musique SimpleQA

o
3
@
3
@
3
o
3

a®
i
ww
oy
&R
a®
i
NI
S
32

u=330 n=
= 5=369 " = o=

IS
S
IS
S
IS
S
IS
S

% of Samples
% of Samples
% of Samples
% of Samples

=

N
S

20

1||l-.¥_) HH‘ ‘Hﬂﬂmm " n Hﬂﬂmnn ______ L Hﬂnw_,

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 16 18 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 15 17
Number of Search Calls Number of Search Calls Number of Search Calls Number of Search Calls

N
S

Figure 3: Distribution of search-call counts issued by 03 over correctly answered questions per
benchmark, comparing DuetQA with other prominent benchmarks. DuetQA shows strict live-web-
search dependence: 03[17] solves close to 0 questions DuetQA items without issuing a search call.

require querying beyond Wikipedia (e.g., online PDFs, news outlets, government filings, academic
blogs, discussion forums); and Steerable theme control: each example is grounded in k € [5, 7]
sampled themes Tample C 7, where 7 is a manually curated taxonomy of 200 + themes covering
a broad range of topics. We generate questions using two frontier web search enabled LRMs, M,
(03) and M (O4-mini) [17], acting as proxy web-crawling agents that produce QA pairs and as
independent verifiers to that ensure question solvability; a third model, M3 (GPT-40), is a non-search
model used for controlled paraphrasing/obfuscation of questions and as a baseline verifier without
search.

Mixture of Themes mode. To ensure thematic diversity in the generated question while also
guaranteeing recency and search dependence, we sample Tgampie ~ Uniform(7") with | Tgmpie| = &,
k € {5,6,7}. Foreacht € Tsample> the generator (either M or My) issues live queries to retrieve
recent and/or obscure facts, with the constraint that at least one fact references information post—2024-
01-01. The generator then composes a multi-hop question g by logically chaining the k facts—one
hop per theme—into a coherent reasoning path

Seeded Question mode. To approximate real-world query distribution and logical chaining patterns
observed in hard multi-hop questions, we construct a seed bank of 100 questions (50% manu-
ally authored; 50% from BrowseComp [30]). For each seed ¢y, we sample candidate themes
{t1,...,tx} C T with k € {3,4,5} and rewrite ¢o into a new question ¢ by integrating one or more
sampled themes that satisfy the obscurity/recency constraints while preserving the seed’s multi-hop
scaffold / logical chaining patterns.

Data obfuscation To remove surface cues that let models short-circuit the intended multi-hop
reasoning, we apply a dedicated obfuscation pass after question generation. Using the non-search
model M3 (GPT-40) under an in-context learning setup with exemplars, we paraphrase the question
to mask intermediate hops. Concretely, M3 softens exact anchors in each hop by (i) converting
specific dates to coarse intervals (“March 2025” — “early 2025”), (ii) mapping precise numerics to
qualitative magnitudes (“1%” — “negligible”), (iii) replacing named entities with indirect descriptors
(“University of Florida” — “a major southeastern university”), and (iv) embedding causal/comparative
pivots as descriptors rather than explicit connectors. These edits suppress shortcut signals without
altering the underlying facts that must be recovered via search.

Multi-agent Verification After the obfuscation pass, we validate that each QA pair remains
both answerable and search-dependent. We retain (g, a) only if the two search-enabled LRMs are
able to answer the question correctly while a strong non-search baseline fails, i.e., M§¥h(q) =
METN (q) = a £ ME4eh(g). This post-obfuscation check enforces correctness via cross-model
agreement and certifies that web retrieval is necessary; it also filters cases where paraphrasing either
leaked the answer or inadvertently made the item unsolvable.

2.2 Agentic Reinforcement Learning

In this section, we formulate multi-turn, tool-augmented RL with LLM policies. Let x € X’ be an
input sampled from a data distribution D, and let 7 denote the set of available tools. The policy

LLM Ty interacts with tools to produce a reasoning trajectory R interleaved with tool-call feedback,
followed by a final textual answer y. We include a reference policy m..¢ for KL regularization, a
verifiable reward function r (parameterized LLM as judge), and a KL weight 8 > 0. We optimize a
KL-regularized expected reward:

max Bpop, (R y)~mo - 2:7) {%(%R, y)] — BDkulm(Roy [T) || Teet (Roy [2 T)]. - (D)

Unlike conventional RL over pure text rollouts, agentic RL interleaves tool feedback into the reasoning
process. We decompose the joint sampling as where R = {Rt}ﬁzl is the reasoning trajectory of

length t%, interleaved with tool-call responses, and y = {yt}iil is the final answer of length ¢,,.
Each reasoning step ¢ can be viewed as a tuple

trR ty
PRy |z T) = [HPQ(Rt | R<t7$;7)} : [Hpa(l/t | y<t,R793§T)}, Ri = (1, ¢, 00).
t=1 t=1
(@)

where ¢, is a latent “think” segment generated by the policy model enclosed in within the
<think></think>, ¢; € 7T represents the chosen tool and its arguments enclosed within
<tool_call></tool_call> tags and o, is the “response” returned by the environment enclosed
in the <tool_response></tool_response>, based on the ReAct template.

Optimization via GRPO. In practice, we optimize (I)) with a token-level clipped surrogate. For a
prompt-group of G sampled rollouts with scalar rewards { R; }& ,, we define group-relative advan-

tages in
Ri—p <
i i — BR
Aig = “on BRrR = ZR]', OR = % Z(Rj — pr)2. 3)
j=1 j=1

and and minimize the clipped loss as defined in (@)

Q=

11 ¢ (05t | ®, Hi—1)
Lanpo =53 7 Somin[ris Aie, clip(rie 1= 14) Ayy], iy = —20e L BT
GRPO = ; T ;mm rig Aig, clip(rig, 1—€, 14€) A; Tit (o T)
“)
where the trajectory level reward in multi-turn RLVR setting is defined as follows
r, = aRZf_ormat + (1 _ a)]_zlaimswer7 = [O, 1] (5)

Specifically, the format score RI°™2% verifies whether the rollout trajectory follows the ReAct
template; the answer score R¥"*%°" uses an LLM-as-judge to determine whether the final prediction
matches ground truth.

2.3 Agentic Tool Design

We provide our policy model access to two tools for goal-conditioned web retrieval and reading.
At step t, the agent emits R, = (¢¢, ¢t, 0¢), Where ¢ is latent think content, ¢; is a tool call with
arguments, and oy is the tool response.

search_urls (web search). The tool takes as input a natural language query ¢ and returns a
ranked list of triples (u, title, snippet) using a live search engine. The policy uses this to identify
promising sources and optionally select a URL u for opening in the next step. The tool is invoked as
follows: <tool_call>{name: search_urls, args: {query: gq}}</tool_call>

query_url (goal-conditioned page reading). Given a goal g and a URL w, the tool leverages an
LLM to return targeted evidence-backed response that address g. This tool enables precise grounding
of facts and targeted querying of web-pages. Compared to the injestion of entire web-page into
the policy model’s trajectory, this tool minimizes noise and increases recall. The tool is invoked as
follows: <tool_call>{name: query_url, args: {goal: g, url: u}}</tool_call>

Tra;eciory [7
T
4 el @ @ @
’ | Epoch-(k+1)....

Aéy}anﬁée &diﬁ

(Batase pruing |

“Good Groups": std(rewards) > O W istaitta Araiectory bank b We swap ot an ncrrect trfectory with a After each epoch the questions with all
ry bank by
“Bad Groups": std(rewards) = O ; 4 correct trajectory from the bank correct rallouts are pruned fror
storing one correct trace per question, (if it exists) dataset
QL ond Q2 semoved from gooip adwintage late the trajectory bank by the Since all Q2 trajectories lead fo wrong
selculation 030 G403 arae adventoss correct rollout for Q2 wehn it gets the answer we substitute one of the incorrect

Q1, Q3, Q5 will be pruned for next
epoch

g P
ssled by s foctorof /2 5/ L5 correct answer for the first fime Trajectories with a correct one

Figure 4: Visualzation of key ideas adapted by RAPO to stabalize GRPO training in multi-turn
tool interaction scenarios. In-order (L-geR): i.) Advantage Scaling (Batch level), ii.) Trajectory
Replacement(Group Level), & iii.) Dataset Pruning(Epoch Level)

2.4 RAPO: Reward Aware Policy Optimization

RAPO is a lightweight extension of GRPO that stabilizes multi-turn, tool-augmented training by
mitigating the challeneges mentioned in Section. 1. Let o be the within-group reward standard
deviation from (3); a group is Good if oz > 0 and Bad if o = 0. As Bad groups become more
prevalent, either because all rollouts for a prompt converge to the correct answer (prompt saturation)
or because multi-turn cascading of errors drive all rollouts to failure, the batch increasingly spends
compute on rollouts that carry no advantage signal, causing the effective gradients to shrink, hence
destabilizing updates. RAPO applies three targeted modifications (on top of GRPO to counter
precisely these effects with zero additional rollout cost.

Dataset pruning. We remove prompts at the end of every epoch that are effectively solved to avoid
spending compute on groups that produce no training signal. This early-exit rule boosts throughput
and implicitly induces a curriculum: as training progresses, the active set concentrates on harder
prompts

G
SolveRate(q) = Z [R; > 0], prune if SolveRate(q) > 0.9 (6)

Advantage scaling. When the proportion of Bad groups increase in a batch the magnitude of
gradient norm decreases, as these Bad groups contribute no gradient signal. This causes the total
gradient norm across the batch to collapse, causing ineffective and unstable training updates.To
preserve the overall gradient magnitude, we reweight the token-level advantages of Good groups
inversely by their batch frequency:
< G
Ay =
vt Ggood
This preserves the magnitude of gradient updates without incurring additional rollout computation
costs as done in DAPO, which effectively keeps regenerating trjectories untill it fills a batch with
Good groups.

'Ai7t7 Ggood = #{UR > O} @)

Replay buffer. To rescue Bad groups with all failed rollouts for a prompt, we keep a per-prompt
buffer B with the most recent successful rollout o* (where R(g, 0*) > 0). If the current group for ¢
fully fails, we overwrite one of uniformly sampled rollout of the group with o*:

(jNUniform{l,...,G}, 0; <—0*). ®)

This guarantees at least one successful trajectory in the group, restoring variance (cr > 0) and
enabling RAPO’s relative advantage computation to penalize failed completions. Beyond gradient

recovery, the successful trajectory also anchors the group with a high-quality, low-entropy reference,
improving stability in the presence of distributional drift.

2.5 Steerable Step-Level Reward Design for Search Tools

We design a novel Steerable Step-Level Reward that alleviates the challenges faced by RLVR training
in the multi-turn, tool-interaction setting using vaniila reward (3)) as described in Section 1. The
reward enables us to steer (i) how much the agent uses tools and (ii) how it allocates cognition to
exploration and verification. Starting from the vanilla RLVR objective in (5), we make the correctness
branch R¥"5%°" depend on novelty-aware labels assigned by a GPT-4.1 LLM-as-judge to each call c;

in R = {(¢¢,cs, 00}, as follows:

search_urls € {
UNIQUESEARCH: (semantically new query on unseen entities/facets),
REDUNDANTSEARCH: (near-duplicate of a prior query; overlapping results) }

query_url € {
EXPLORATION: (first read of a new URL),
VERIFICATION: (cross-source check on a different URL for an existing claim; allowed B, times),
REDUNDANTQUERY: (further checks beyond B,)}

From the LLM-as-Judge tool call classificaiton we form tallies as follows:

NunigS, TlredS; Tlexplore; Tlverify; TlredQ; ThunigQ = Mexplore + Nverify T = |R‘ . (9)
and define the following aggregates:

Treds + Thred
p = %‘EQ, Ag = NunigS — MredS AQ = NMunigQ — MredQ- (10)

Using these summaries we define our Steerable Step-Level Reward as:

o Rfermat 4 max((1 — a)(1 - p), 0.5), if Ranswer — 1,
o= (11)

. . A .
o Riermat 4 ¢y min(1, é—;) + ¢ min(1, C—g), if Ranswer — (),

Weset @« = 0.1 and ¢; = c2 = 0.2 (¢1+c2 = 0.4), to ensure any incorrect rollout has r; < 0.5, while
any correct rollout has r; > 0.5, which ensures incorrect trajectories never get rewarded more than
the correct ones. We set c;=cy, to allow equal weight to search_urls (Ag) and query_url (Ag).

Steerability. We expose three primary knobs: (i) Cs and (ii) Cg set the saturation thresholds
for creditable novelty in search_urls and query_url, respectively. Increasing C's and/or Cg
raises the novelty caps, enabling more steps to earn credit when they introduce genuinely new
evidence; decreasing them compresses trajectories. (iii) The per-claim verification budget B,
controls verification depth: higher B,, permits multiple creditable cross-checks per claim, promoting
verification. For our experiments we set B, = 1 allowing 1 cross-check per claim, additionally we set
CS =8 and CQ = 16.

2.6 Training Recipe

We build our reinforcement learning with verifiable rewards (RLVR) framework on top of RECALL [3]].
For web search, we use the Serper API [21]], and implement a retrieval toolchain leveraging Jina-Al
together with open-source components such as TRAFILTURA and CRAWL4 Al Training is carried
out in two stages.

Stage 1. We train with RAPO for 10 epochs on our curated DUETQA dataset, comprising 4,988
high-quality QA instances. The setup uses a constant learning rate of 1 x 10~% with the Adam
optimizer (81 = 0.9, B2 = 0.95), batch size 32, mini-batch size 16, 5 rollouts per group, and
top-p = 1.0 sampling. Each rollout is capped at 32 tool-interaction steps, with each step limited to
8,192 output tokens. The vanilla reward ((3)) is used to instill correct tool-calling behavior and strict
format adherence.

Stage 2. We continue RLVR training for an additional 2 epochs under the same hyperparameter
settings. For Stage 2, we construct a mixed dataset by combining DUETQA, with math data from S1
dataset [15]], and the training split of MUSIQUE [28]]. This combined pool is adversarially filtered
against the Stage-1 checkpoint, yielding 5,077 instances. From MUSIQUE, we retain only questions
requiring at least three reasoning hops to ensure sufficient compositional depth. For this stage, we
adopt the Steerable Step-Level Reward ((TT)) to extend the tool-use horizon beyond 20 calls in a
stable manner.

We use the Qwen3-4B model [33]] as the base, which supports a maximum context length of 40,960
tokens; we utilize the full window during training. A higher sampling temperature of 1.4 is applied to
Qwen3 models, consistent with prior findings [2]. All experiments are conducted on a single node
with 8 xH100 GPUs.

3 Experiments

3.1 Baselines

We benchmark our models against leading open-source DeepSearch agents with public checkpoints:

Jan-nano [4] is a Qwen3-4B model post-trained on MuSiQue using staged DAPO to sequentially
improve tool use, answer quality, and context handling with simulated search/query tools. Ze-
roSearch [26]] fine-tunes Qwen2.5-3B/7B-Instruct via response finetuning (RFT) with an LLM
simulating search APIs. We evaluate both sizes at temperature 0. Search-o1 [14] is training-free,
combining search + query tools and returning the first fully scraped page; we use its default settings
(temp. 0.7, repetition penalty 1.05). R1-Searcher [25] fine-tunes Qwen2.5-7B-Base on HotpotQA
and 2WikiMultiHopQA, using GPT-40-mini to query webpages (Wikipedia-only in the original).
We run with temp. 0.7. WebSailor [13] is RL-trained on curated web-crawl data with cold-start
finetuning followed by DUPO. It separates search/query, with Qwen2.5-72B-Instruct as the query
LLM. For closed-source comparison, we include [[17, [16]]. All baselines are tested under dynamic
multi-step reasoning with context windows of 32,768 (Qwen2.5) or 40,960 (Qwen3, run in “thinking
mode”). Metrics are Pass@1 scores judged by GPT-4.1-mini. We evaluate across 10 benchmarks:
5 in-domain DeepSearch tasks and 4 general reasoning tasks. DeepSearch benchmarks stress re-
trieval and reasoning over multi-hop, heterogeneous sources: SimpleQA [29] (4,326 single-hop
web questions), FRAMES [12] (824 2-3 hop diverse-format queries), WebWalkerQA [31]] (680
multi-page traversal tasks), Seal0 [18]] (111 noisy/conflicting queries), and MuSiQue [28] (2,417
Wikipedia multi-hop questions). General reasoning benchmarks probe out-of-domain generaliza-
tion: HLE [19]] (2,500 mixed-subject questions), AIME-25 [[1] (30 olympiad-level math problems),
GPQA-Diamond [20] (198 “Google-proof” expert science MCQs), and MedQA [10] (1,266 medical
licensing exam questions).

3.2 Results

Fathom-Search sets new state-of-the-art on Deep Search benchmarks. As evident from Table
Fathom-Search-Stage-2 outperforms all prior open baselines across parameter classes. In the <4B
tier, it achieves 52.1% on DeepSearch and 53.8% on General Reasoning, +24.6 pp and +4.0 pp
jump over Qwen3-4B +Search. We highlight around 100% gain in specific hard benchmarks like
FRAMES, WebWalker and more than 3x on Seal(). We also get higher results than II Search 4B
across all benchmarks. Fathom-Search-Stage-2 also outperforms works on top of larger Qwen2.5-7B
like ZeroSearch-7B and R1-Searcher-7B.

Generalization across domains. Unlike most models that drop on out-of-distribution tasks, Fathom-
Search generalizes well. On GPQA-D and MedQA, Fathom-Search-Stage-2 achieves 60.1% and
75.4% , surpassing WebSailor-3B and ZeroSearch-3B by +23-25 pp. This reflects strong transfer
despite no domain-specific finetuning.

Competing with closed source models. Fathom-Search-Stage-2 outperforms GPT-40 +search on
prominent benchmarks like SimpleQA, FRAMES, WebWalker, HLE and GPQA-Diamond. We
are 18.4 absolute pp higher on WebWalker and 7 points on Seal0 and GPQA-Diamond each. We
are also 2x more accurate on hard general reasoning benchmark HLE.

Table 1: Main results. Accuracy (%) on DeepSearch benchmarks SimpleQA, FRAMES, WebWalker,
SealO, Musique and general reasoning benchmarks HLE, AIME-25, GPQA-D, MedQA. ‘Avg’ is the
unweighted mean within each block. Bold/italics denote best/second-best per benchmark.

DeepSearch Benchmarks General Reasoning Benchmarks

Model SimpleQA° FRAMES WebWalker Seal) Musique Avg HLE AIME-25 GPQA-D MedQA Avg
Closed-source Models

GPT-40 (without search) 34.7 524 32 72 34.0 263 23 71.0 53.0 88.2 53.6
03 (without search) 49.4 432 14.0 14.0 48.9 339 203 88.9 85.4 95.4 725
GPT-40 (with search) 84.4 63.7 31.6 15.3 37.5 46.5 43 71.0 53.0 88.2 54.1
03 (with search) 96.0 86.8 57.0 49.5 51.2 68.1 274 88.9 85.4 95.4 74.3
Open-source Models

Qwen-2.5-7B 3.96 16.5 2.1 1.4 6.2 60 12 10 33.0 61.2 24.7
Qwen-2.5-7B + Search 50.8 233 10.1 3.0 13.6 202 24 10 335 62.0 253
Qwen3-4B 3.8 14.7 2.6 2.1 9.0 64 42 65.0 55.1 71.0 48.8
Qwen3-4B + Search 67.7 272 17.5 6.2 18.7 275 62 65.0 559 72.0 49.8
ZeroSearch-3B 51.9 11.3 8.7 7.1 13.8 18.6 34 10.0 14.6 51.0 17.3
ZeroSearch-7B 753 30.0 182 6.2 20.6 30.1 42 10.0 293 575 22.8
Search-R1-7B 58.8 37.0 1.8 1.4 19.1 236 2.1 10.0 333 56.5 25.5
ol-search (Qwen3-4B) 57.5 26.8 10.8 5.5 153 232 34 40.0 30.5 53.7 319
WebSailor-3B 87.1 44.4 52.2 9.0 274 440 74 40.0 455 51.3 36.0
Jan-Nano-128K 83.2 43.4 33.7 6.2 23.9 38.1 6.1 53.3 51.0 65.4 44.0
Jan-Nano-32K 80.7 36.1 25.0 6.2 214 339 55 60.0 374 66.0 422
II-Search-4B 88.2 58.7 40.8 17.1 31.8 473 74 60.0 51.5 72.1 47.8
Fathom-Search-4B (Stage-1) 88.1 57.2 39.0 19.8 313 471 6.7 60.0 55.6 75.4 49.4
Fathom-Search-4B (Stage-2) 90.0 64.8 50.0 22.5 33.2 521 95 70.0 60.1 75.4 53.8

Table 2: Effect of swapping the Query-LLM for a fixed RAPO-trained search policy. Using GPT-
4.1-mini as the reader yields consistent gains, especially on the retrieval-heavy WebWalkerQA
benchmark.

Query LLM SimpleQA FRAMES WebWalkerQA GPQA-D

Qwen3-4B Stage-1 (RAPO)
Qwen3-4B 85.1 56.3 35.8 55.1
GPT-4.1-mini 86.6 57.2 39.0 56.6

On the Choice of query LLM Table [2| presents an evaluation of two prominent query LLM
configurations: (i) search-ol: using the same model as the policy model (i.e., Qwen3), and (ii)
using a stronger API-based LLM such as GPT-4.1-mini. The comparison is conducted under a
fixed RAPO-trained policy model. Across all benchmarks, API-based querying of webpages with
GPT-4.1-mini yields marginal yet consistent improvements over smaller models like Qwen3.

4 Conclusion

We introduce Fathom-Search-4B and a practical post-training recipe that jointly tackles reward-
sparsity, optimization instability, and shallow tool use in web-grounded reasoning. Our DUETQA
multi-agent self-play corpus, two-stage RL-Zero training with RAPO, and steerable step-level rewards
stabilize multi-turn learning and reliably extend tool use beyond 10 steps, fostering disciplined
exploration and verification. The resulting agent attains state-of-the-art results on DeepSearch
benchmarks while transferring competitively to STEM and medical evaluations, with ablations
validating the gains from goal-conditioned retrieval and stronger reader LLMs. We view this as a
concrete, scalable step toward dependable, autonomous DeepResearch agents.

References
[1] AIME. Aime problems and solutions, 2025, 2025.

[2] Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for
scaling reinforcement learning on advanced reasoning models, 2025.

[3] Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z.
Pan, Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. Research: Learning
to reason with search for llms via reinforcement learning, 2025.

Table 3: Ablation on using GRPO as the training algorithm for Stage-1 compared to RAPO shows
RAPO?’s superior performance on DeepSearch tasks.

(4]
(5]

(6]

(71

(8]

(9]

[10]

Algorithm SimpleQA FRAMES WebWalkerQA Seal(
Qwen3-4B Stage-1 (GRPO) 87.8 552 33.8 14.41
Qwen3-4B Stage-1 (RAPO) 88.1 572 39.0 19.8

Alan Dao and Dinh Bach Vu. Jan-nano technical report, 2025.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. FE. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang
Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao
Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang,
and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, and
Zhicheng Dou. Agentic reinforced policy optimization, 2025.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman.
Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective
stars, 2025.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a
multi-hop QA dataset for comprehensive evaluation of reasoning steps. In Proceedings of the
28th International Conference on Computational Linguistics, pages 6609—6625, Barcelona,
Spain (Online), December 2020. International Committee on Computational Linguistics.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
disease does this patient have? a large-scale open domain question answering dataset from
medical exams. Applied Sciences, 11(14):6421, 2021.

10

[11] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. triviaga: A Large Scale
Distantly Supervised Challenge Dataset for Reading Comprehension. arXiv e-prints, page
arXiv:1705.03551, 2017.

[12] Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler,
Shyam Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of
retrieval-augmented generation, 2024.

[13] Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin,
Baixuan Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi
Wu, Yong Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. Websailor: Navigating
super-human reasoning for web agent, 2025.

[14] Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
and Zhicheng Dou. Search-ol: Agentic search-enhanced large reasoning models. CoRR,
abs/2501.05366, 2025.

[15] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple
test-time scaling, 2025.

[16] OpenAl. Hello gpt-40, 2024.
[17] OpenAl. Introducing openai 03 and 04-mini, 2025.

[18] Thinh Pham, Nguyen Nguyen, Pratibha Zunjare, Weiyuan Chen, Yu-Min Tseng, and Tu Vu.
Sealqa: Raising the bar for reasoning in search-augmented language models. arXiv preprint
arXiv:2506.01062, 2025.

[19] Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, et al. Humanity’s last exam,
2025.

[20] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

[21] Serper.dev. Serper.dev — ai-powered search api.

[22] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024.

[23] Kunal Singh, Sayandeep Bhowmick, Pradeep Moturi, and Siva Kishore Gollapalli. NO STRESS
NO GAIN: STRESS TESTING BASED SELF-CONSISTENCY FOR OLYMPIAD PRO-
GRAMMING. In ICLR 2025 Workshop: VerifAl: Al Verification in the Wild, 2025.

[24] Kunal Singh, Ankan Biswas, Sayandeep Bhowmick, Pradeep Moturi, and Siva Kishore Golla-
palli. Sbsc: Step-by-step coding for improving mathematical olympiad performance, 2025.

[25] Huatong Song, Jinhao Jiang, Yinggian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
learning, 2025.

[26] Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan
Zhang, Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of 1lms
without searching, 2025.

[27] Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai,
Jia Deng, Wayne Xin Zhao, Zheng Liu, et al. Simpledeepsearcher: Deep information seeking
via web-powered reasoning trajectory synthesis. arXiv preprint arXiv:2505.16834, 2025.

[28] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique:
Multihop questions via single-hop question composition, 2022.

11

[29] Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
John Schulman, and William Fedus. Measuring short-form factuality in large language models.
arXiv preprint arXiv:2411.04368, 2024.

[30] Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents, 2025.

[31] Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
Yulan He, Deyu Zhou, Pengjun Xie, and Fei Huang. Webwalker: Benchmarking Ilms in web
traversal, 2025.

[32] Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An.
Simpletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. arXiv
preprint arXiv:2509.02479, 2025.

[33] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, et al. Qwen3 technical
report, 2025.

[34] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement, 2024.

[35] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhut-
dinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop
question answering. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2018.

12

	Introduction
	Motivation
	Our Contributions

	Methodology
	DuetQA: A synthetic Deep-search dataset, generated via multi-agent self play
	Agentic Reinforcement Learning
	Agentic Tool Design
	RAPO: Reward Aware Policy Optimization
	Steerable Step-Level Reward Design for Search Tools
	Training Recipe

	Experiments
	Baselines
	Results

	Conclusion

