
Janus: Dual-Server Multi-Round Secure Aggregation
with Verifiability for Federated Learning

Lang Pu 1 Jingjing Gu 1 Chao Lin 2 Xinyi Huang 3

Abstract

Secure Aggregation (SA) is a cornerstone of
Federated Learning (FL), ensuring that user up-
dates remain hidden from servers. The advanced
Flamingo (S&P’23) has realized multi-round ag-
gregation and improved efficiency. However, it
still faces several key challenges: scalability is-
sues with dynamic user participation, a lack of
verifiability for server-side aggregation results,
and vulnerability to Model Inconsistency Attacks
(MIA) caused by a malicious server distributing
inconsistent models. To address these issues, we
propose Janus, a generic SA scheme based on
dual-server architecture. Janus ensures security
against up to n − 2 colluding clients (where n
is the total client count), which prevents privacy
breaches for non-colluders. Additionally, Janus is
model-independent, ensuring applicability across
any FL model without specific adaptations. Fur-
thermore, Janus introduces a new cryptographic
primitive, Separable Homomorphic Commitment,
which enables clients to efficiently verify the cor-
rectness of aggregation. Finally, extensive ex-
periments show that Janus not only significantly
enhances security but also reduces per-client com-
munication and computation overhead from loga-
rithmic to constant scale, with a tolerable impact
on model performance.

1. Introduction
Traditional machine learning relies on centralized training,
where the entire dataset is stored in a single central location

1College of Computer Science and Technology, Nan-
jing University of Aeronautics and Astronautics, Nanjing,
China 2College of Computer and Cyber Security, Fujian Normal
University, Fuzhou, China 3College of Cyber Security, Jinan Uni-
versity, Guangzhou, China. Correspondence to: Jingjing Gu <
gujingjing@nuaa.edu.cn>, Chao Lin < linchao91@fjnu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

and directly accessible by the server. However, users are gen-
erally unwilling to share their raw data, particularly when
it involves sensitive information, such as medical records,
photographs, or confidential business information. Feder-
ated Learning (FL) (McMahan et al., 2017) is a distributed
learning framework proposed to protect user privacy by en-
abling collaborative model training without exposing private
data, thus encouraging greater user participation. Unfortu-
nately, it has been demonstrated that an adversary can invert
a single model update to reveal sensitive information about
the target user’s local dataset (Hitaj et al., 2017; Nasr et al.,
2019; Zhu et al., 2019).

Secure Aggregation (SA) (Bonawitz et al., 2017) is designed
to enhance privacy by preventing the adversary from access-
ing individual update. SA has been regarded as one of the
most robust defenses against gradient inversion and infer-
ence attacks (Huang et al., 2021). Most existing SA schemes
rely on the double-mask technique, which involves time-
consuming secret sharing and key agreement. BBSA (Bell
et al., 2020) optimizes the communication graph to re-
duce time-consuming operations and significantly improve
overall efficiency. However, it remains limited to single-
round aggregation. In contrast, FL typically requires mul-
tiple rounds of aggregation to achieve model convergence.
Although the protocol can be executed multiple times to
support multi-round aggregation, the setup phase must be
re-run in each round to maintain privacy. Consequently, the
server must interact with all clients every round, leading to
heavy communication overhead and reduced efficiency.

Recently, the state-of-the-art Flamingo (Ma et al., 2023)
eliminates the re-setup in each round, which supports multi-
round SA based on the BBSA. It also optimizes the commu-
nication graph to improve the system’s performance by intro-
ducing a set of decryptors to handle part of the computation.
Although Flamingo demonstrates significant advantages in
efficiency and functionality, it also has the following limita-
tions. Firstly, the complicated setup procedures of Flamingo
limit its practicality in dynamic environments where users
frequently join or leave. Secondly, the server can exploit
the Model Inconsistency Attacks (MIA) (Pasquini et al.,
2022), which result from a malicious server distributing
inconsistent models to infer users’ local datasets. Lastly,

1

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

Table 1. Comparison of SA Constructions

Scheme Input Privacy Multi-round Verifiability Dynamic Versatility NS⋆ Efficience‡ MIA
SecAgg (Bonawitz et al., 2017) ✓ ✗ ✗ ✗ ✗ 1 ✗

BBSA (Bell et al., 2020) ✓ ✗ ✗ ✗ ✗ 1 ✗

VeriFL (Guo et al., 2020) ✓ ✗ ✓ ✗ ✗ 1 ✗

ELSA (Rathee et al., 2023) ✓ ✗ ✗ ✗ ✗ 2 ✗

Flamingo (Ma et al., 2023) ✓ ✓ ✗ ✗ ✗ 2† ✗

Janus ✓ ✓ ✓ ✓ ✓ 2 ✓

✓ Support, ✗ No support. Versatility: A generic construction. ⋆ Number of servers. † The decryptors of this construction can
be abstracted to a server. ‡ More black parts in the circle indicate better efficiency, and the theoretical support comes from the
computation efficiency analysis in Table 2.

users cannot verify if the server correctly performed the
aggregation or omitted data.

MIA stems from the reliance on a single server, which is
common due to its simplicity. The single-server architecture
inherently has access to the aggregated results, thereby ex-
posing the system to potential MIA (Pasquini et al., 2022).
Specifically, the server distributes carefully crafted parame-
ters to non-target users, which can trigger the dying-ReLU
effect that causes non-target users to generate zero gradients
during aggregation. As a result, the aggregated gradient
effectively reveals the target user’s gradient. This attack
affects not only double-mask schemes but also all schemes
in which the server has access to the aggregation results.
Cryptographic signatures can prevent this by allowing users
to verify the consistency of received aggregated models.
However, they incur heavy computation and require users
to negotiate the consistency of the received information,
placing a large burden on the system.

Fortunately, our research indicates that preventing MIA re-
quires limiting the server’s access to the final aggregation re-
sults. To achieve this, we propose a dual-server architecture:
one server handles the collection and aggregation of masked
gradients, while the other manages the aggregation of all
masks. Our method ensures the privacy of non-colluding
users remains uncompromised, even in the presence of col-
lusion between the servers and up to n− 2 users, where n is
the total number of users. The malicious server has access
only to the aggregated ciphertext of two uncolluding clients,
which prevents the extraction of individual gradients. If a
single server were compromised, individual privacy would
remain intact due to the secure cryptographic primitives that
prevent unauthorized access to private data.

The dual-server assumption is feasible in real-world contexts
involving entities with different interests, such as banks and
other financial institutions, or hospitals and other healthcare
organizations. They are motivated to collaborate for the ben-
efit of users and avoid collusion. Similarly, in the Flamingo
scheme, the decryptors can also be regarded as one server,
forming a dual-server architecture together with the aggrega-
tion server. This approach ensures security while leveraging

the practical willingness of institutions to cooperate for SA.

However, the dual-server architecture still faces the same
challenge as Flamingo: the inability to efficiently verify the
aggregation results. Specifically, a malicious server may
perform incorrect collection or aggregation of masked gra-
dients or masks. The server may choose faster but less
accurate computations to save resources, which can result
in incorrect aggregation results. Since servers are often
semi-trusted, they could also deliberately mishandle some
gradients or falsify aggregation results, misleading users
about the training results (Hahn et al., 2021). Most existing
schemes achieve verifiable aggregation through homomor-
phic hashing and homomorphic signatures (Guo et al., 2020;
Xu et al., 2019). However, these time-consuming operations
introduce significant overhead to the system, resulting in
low efficiency. Moreover, errors in aggregation could arise
from malicious client submissions, yet current methods fail
to enforce strong client-side commitments.

To address these challenges, we introduce a new crypto-
graphic primitive called separable homomorphic commit-
ment (SHC), which ensures both server-side integrity and
client-side data accuracy in the dual-server setting. Specifi-
cally, our main contributions are summarized as follows.

• Firstly, Janus is the first generic construction of SA
based on dual-server architecture, which is well-
suited for multi-round aggregation in FL without time-
consuming re-setup. By requiring only the servers’
public keys, our design eliminates the overhead associ-
ated with heavy communication graphs, such as com-
plete graphs or k-regular graphs. Additionally, Janus
relies on lightweight components, which significantly
improves system efficiency.

• Secondly, the conceptual development of a new cryp-
tographic primitive (SHC) for a dual-server architec-
ture to jointly achieve verifiability and enhance pri-
vacy. SHC is a homomorphic commitment scheme
that supports the separation of messages and random
components. It ensures that aggregation results remain
invisible to servers, preventing malicious servers from
launching MIA. Additionally, we identify a blueprint

2

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

that SHC can be instantiated to provide novel verifica-
tion methods for aggregation results.

• Lastly, we implemented an instantiation for Janus and
evaluated it with similar classical schemes via exten-
sive experiments on different models and datasets.
The results show that Janus outperforms in terms of
both computation and communication. It reduces
per-client overhead from the logarithmic scale of
current advanced methods to a constant scale. Ta-
ble 1 demonstrates that Janus surpasses other state-
of-the-art schemes in terms of security, efficiency,
and functionality.

2. Preliminaries
2.1. Traditional Cryptographic Commitments

Commitments (Pedersen, 1991) provide the cryptographic
cornerstone for integrity and trust in various secure schemes.
It enables participants to commit to values without compro-
mising the underlying confidential information. Typically, a
non-interactive secure commitment scheme consists of the
following three algorithms.

(1) CSetup(1λ)→ pp. The system initialization algo-
rithm takes as input a security parameter λ, and outputs
the public parameter pp for the commitment scheme.

(2) Commit(pp, v, r) → c. The commitment generation
algorithm takes as input a message v from the message
space Mpp and a random number (blinder) r in the
randomness spaceRpp, and outputs the commitment c
in the commitment space Cpp.

(3) Reveal(pp, v, c, r) → b. The revealing commitment
algorithm takes as input a message v, a commitment
c, and a blinder r. If it accepts, then the output b = 1;
otherwise, b = 0.

Normally, a secure commitment scheme must satisfy the
following three properties.

• Completeness. It ensures that if both the committer and
the verifier follow the protocol correctly, the verifier
will always accept the decommitment (Reveal).

Pr

 CSetup(1λ)→ pp;
Commit(pp, v, r)→ c;
Reveal(pp, v, c, r) = 1

 = 1. (1)

• Hiding. During the commitment phase, the verifier can-
not infer the committed value from the commitment. It
can ensure that the committed value remains confiden-
tial until it is revealed. For any v1, v2 of equal length,
and any r, the following probability distributions are
computationally indistinguishable.

{Commit(pp, v1, r)→ c1}
c
≈

{Commit(pp, v2, r)→ c2}.
(2)

• Binding. After the commitment is made, the committer
cannot change the committed value. It can prevent the
committer from cheating by ensuring the immutability
of the commitment. There exists a negligible func-
tion negl(λ) such that for all non-uniform Probabilistic
Polynomial Time (PPT) adversaries A,

Pr


CSetup(1λ)→ pp;
A(pp)→ (c, r, v1, v2) :

Reveal(pp, c, v1, r1) = 1∧
Reveal(pp, c, v2, r2) = 1∧

v1 ̸= v2

 ≤ negl(λ). (3)

2.2. Masking-based Secure Aggregation

The One-Time Pad (OTP) is a type of classical encryption
that achieves perfect secrecy (Katz & Lindell, 2014). Specif-
ically, a formal OTP scheme usually contains the following
main algorithms.

(1) Masking(x, k)→ x̂. The masking algorithm takes as
input a secret message x and a private key k, and out-
puts the encryption result x̂.

(2) UnMasking(x̂, k)→ x. The unmasking algorithm
takes as input an encrypted message x̂ and a private
key k, and outputs the plain message x.

SA is designed to prevent centralized servers from accessing
individual updates. Due to its simplicity and efficiency, OTP
is commonly used in mask-based SA for FL. Users apply
OTP-based masking to their updates before uploading to the
central server. There are several variants of SA to address
different threat models and system requirements. We focus
on masking-based aggregation schemes (Bonawitz et al.,
2017). Specifically, let U be a set of users, where each user
ui ∈ U holds a private update xi. In masking-based SA,
each ui adds a pair-wise additive mask to get the masked
vector yi as follows.

yi = xi +
∑

uj∈U :i<j

PRG(si,j)−
∑

uj∈U :i>j

PRG(sj,i), (4)

where the pseudorandom generator (PRG) can randomly
generate a sequence number based on the random seed si,j .
Note that the masks will be removed when all masked input
updates Yi =

∑
ui∈U yi are aggregated as follows.

Yi =
∑
ui∈U

(xi +
∑
i<j

PRG(si,j)−
∑
i>j

PRG(sj,i)). (5)

Obviously, we have Yi =
∑

ui∈U xi. To deal with
dropped users during the execution, the Shamir secret shar-
ing scheme (Shamir, 1979) is used to share seeds among
all users. The Diffie-Hellman (DH) key exchange proto-
col (Diffie & Hellman, 1976) is used to negotiate the seeds

3

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

si,j for each pair of users (ui, uj) ∈ U . Note that for large-
scale FL applications, the above scheme is not effective. For
a n-user FL system, it takes O(n2) communication rounds
to run the pairwise DH key exchange protocol.

2.3. Model Inconsistency Attacks

At a high level, a Model Inconsistency Attack
(MIA) (Pasquini et al., 2022) works by sending a
correct model to the target user while distributing crafted
ones to non-target users. These crafted model parameters
are designed to suppress non-target users’ contributions,
effectively driving their next-round updates to zero. As a
result, the aggregated model primarily reflects the target
user’s update, breaking the privacy guarantees of SA.
Formally, a malicious server A intends to obtain raw
data about the model update of a target user Utar,t. It
can elaborately distribute constructed parameters θi,t to
the non-target users {U \ Utar,t} and then send normal
parameters θtar,t to the target user, where θi,t ̸= θtar,t
and U denotes the set of all users. This can trigger the
dying-ReLU (Lu et al., 2019), where the dead layer cannot
generate any gradient. Therefore, the non-target user ends
up generating tampered model updates ∆

θi,t
Di,t

, where the
Di,t is the local data of Ui,t. Since the parameters of Utar,t

are real, it generates a valid update ∆θtar,t

Dtar,t
on its local data

Dtar,t in round t. These tampered model updates enable A
to obtain the model updates ∆θtar,t

Dtar,t
of Ûtar,t in plaintext.

Specifically, the final result of SA (denoted as
∑

) is as
follows,

A
∑
(∆

θ1,t
D1,t

, ...,∆
θi−1,t

Di−1,t
,∆

θtar,t

Dtar,t
,∆

θi+1,t

Di+1,t
, ...,∆

θn,t

Dn,t
)

= A
∑
(0, ..., 0,∆

θtar,t

Dtar,t
, 0, ..., 0) = ∆

θtar,t

Dtar,t
.

(6)

Once A gets the update ∆
θtar,t

Dtar,t
, it can get sensitive infor-

mation about Dtar,t by executing gradient inversion attacks
or inference attacks.

3. Methods
Notations. In this section, we design Janus, a generic
privacy-enhanced multi-round SA scheme through a dual-
server architecture, where SHC is the core cryptography for
verifiability. To facilitate understanding, we first present
a new primitive SHC, followed by elaborating on the con-
struction of Janus. Let

⊙
denote the consecutive operation

of ⊙. Specifically,
⊙n

i=1 xi = x1 ⊙ x2... ⊙ xn, where
the ⊙ indicates addition or multiplication depending on the
specific scheme. T is the total number of rounds required
for the model to converge and t denotes the current round.
Let n users participate in the FL training, where users are
denoted by Ut = {Ui,t, i ∈ [1, n]}. All users negotiate
a model architecture and train the model locally on their
private data setsDi,t. There are three types of entities in our

system, which are the aggregation server S0, the assistant
server S1, and users. We assume that each user Ui,t ∈ Ut
holds a private update xi,t of dimension m. For simplicity,
we assume that the elements of xi,t and

∑
Ui,t∈Ut

xi,t are
in ZR for R.

3.1. Separable Homomorphic Commitment

Definition 3.1. (Separable Homomorphic Commitment,
SHC). We define a secure SHC scheme as a cryptographic
protocol that enables secure and flexible commitments.
It consists of a set of algorithms denoted by a tuple of
(Setup,Commit,Se,PCommit,Reveal). The formal syntax
of each algorithm is described as follows.

(1) Setup(1λ) → pp. A PPT initialization algorithm
takes as input a security parameter λ, and outputs a
public parameter pp.

(2) Commit(pp,m, r) → c. A PPT commitment algo-
rithm takes as input a public parameter pp, a message
m, and a random number r, and outputs a complete
commitment c = (cm, cr), where cm is associated with
m and cr is related to the random number (blinder) r.

(3) Se(pp, c, cr) → cm. A Decisional Polynomial Time
(DPT) separation algorithm takes as input a public
parameter pp, a complete commitment c, and a blinder-
related part cr, and outputs the message-related com-
mitment cm.

(4) PCommit(pp,m) → cm. A DPT commitment algo-
rithm takes as input a public parameter pp, a message
m, and outputs the message-related commitment cm.

(5) Reveal(pp, c,m, r)→ {1/0}. A DPT revealing com-
mitment algorithm takes as input the public parameter
pp, the complete commitment c, the message m, and
the random blinder r, and outputs 1 if the m is the
valid committed message of c and 0 otherwise.

The SHC can separate the message-related part and com-
pare it with the aggregated results to ensure the correctness
of the aggregation. Therefore, two servers independently
aggregate the different components of the commitments
in the following Janus. In addition to the completeness,
binding, and hiding properties of traditional commitment
schemes discussed in Section 2, SHC offers the following
two additional properties.

• Separability. The complete commitment c can be di-
vided into two parts c = (cm, cr), where cm is the part
associated with the commitment message m and cr is
related to the random blinder r. It can use cr to extract
from the complete commitment c only the part that is
relevant to m. Taking the classic Pedersen commit-
ment (Pedersen, 1991) as an example, the complete

4

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

commitment is c = hrgm. Given cr = hr, cm = gm,
cm can be computed through c/cr. Furthermore, the
cm can be calculated through PCommit(m, pp) = gm,
where g is a public parameter.

• Homomorphism. Homomorphism plays a key role
in enabling secure aggregation. Define the space of
message and blinder as Mc,Rc respectively. For
∀(m0, r0), (m1, r1) ∈Mc ×Rc, we have

Commit(m0 +m1; r0 + r1) =

Commit(m0; r0) · Commit(m1; r1).
(7)

SHC’s flexible design not only supports SA in FL but also
enables seamless adaptation to a wide range of applications
that demand both privacy and verifiability. These applica-
tions include, but are not limited to, the following scenarios:
(1) medical data federation where SHC enables verifiable
auditing; (2) dual-server e-voting systems needing verifi-
able tallying; and (3) secure outsourced computation with
input/output validation.

3.2. The Proposed Janus

Janus tackles the challenges of dynamic user participation,
verifiability, and resistance to MIA that are not addressed in
the state-of-the-art Flamingo (S&P’23). Specifically, it has
the following three key high-level technical ideas:

(1) Dual-server architecture and dynamic user participation.
Janus involves two servers, S0 and S1. Server S0 is respon-
sible for aggregating the masked updates, while server S1

handles the aggregation of values associated with the com-
mitments. The dual-server architecture prevents the servers
from accessing the final aggregation results, thus effectively
avoiding attacks such as model reversal and MIA, which
are serious privacy leakage in a traditional single-server.
Furthermore, there is no need to re-establish complex com-
munication graphs when users join or leave. New users can
participate in the new training process by simply generat-
ing their own public/private keys and obtaining the servers’
public keys.

(2) Lightweight components and efficient aggregation.

Janus removes the requirement for users to share masking
values with neighbors and avoids the costly peer-to-peer key
negotiation required by the advanced Flamingo and BBSA.
Instead, it applies OTP to mask the updates and encrypts the
masking values through lightweight public key encryption.
Then, each user only needs to send one message to S0 and
one to S1, respectively. As a result, regardless of the number
of users in the system, the computation overhead on each
user remains constant.

(3) Verifiability and privacy enhancement. The separabil-
ity of SHC enables users to locally validate the aggregated

�𝑥𝑥𝑖𝑖,𝑡𝑡 ← Masking(𝑥𝑥𝑖𝑖,𝑡𝑡 , 𝑠𝑠𝑘𝑘𝑖𝑖,𝑡𝑡)
𝐶𝐶𝑇𝑇𝑖𝑖,𝑡𝑡 ← Enc(𝑝𝑝𝑘𝑘𝑠𝑠, 𝑠𝑠𝑘𝑘𝑖𝑖,𝑡𝑡)

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

(𝑐𝑐𝑖𝑖,𝑡𝑡 , 𝑐𝑐𝑖𝑖,𝑟𝑟) ← Commit(𝑥𝑥𝑖𝑖,𝑡𝑡 , 𝑟𝑟𝑖𝑖,𝑡𝑡)

(�𝑋𝑋𝑡𝑡 ,𝐶𝐶𝑟𝑟)

(𝑆𝑆𝐾𝐾𝑡𝑡 ,𝐶𝐶𝑡𝑡)

𝑋𝑋𝑡𝑡 ← UnMasking(�𝑋𝑋𝑡𝑡 , 𝑆𝑆𝑆𝑆𝑡𝑡)
𝐶𝐶𝑚𝑚 ← Se(𝐶𝐶𝑡𝑡 ,𝐶𝐶𝑟𝑟)
𝐶𝐶𝑚𝑚∗ ← PCommit(𝑋𝑋𝑡𝑡 , 𝑝𝑝𝑝𝑝𝑐𝑐)
𝐶𝐶𝑚𝑚 𝐶𝐶𝑚𝑚∗ ?

𝑆𝑆0

�𝑋𝑋𝑡𝑡 = ⨀𝑖𝑖=1
𝑛𝑛 �𝑥𝑥𝑖𝑖,𝑡𝑡

𝐶𝐶𝑟𝑟 = ⨀𝑖𝑖=1
𝑛𝑛 𝑐𝑐𝑖𝑖,𝑟𝑟

(𝑐𝑐𝑖𝑖,𝑟𝑟 , �𝑥𝑥𝑖𝑖,𝑡𝑡)

𝑆𝑆1

(𝑐𝑐𝑖𝑖,𝑡𝑡 ,𝐶𝐶𝑇𝑇𝑖𝑖,𝑡𝑡)

𝑠𝑠𝑠𝑠𝑖𝑖,𝑡𝑡 ← Dec(𝑠𝑠𝑘𝑘𝑠𝑠,𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡)
𝑆𝑆𝑆𝑆𝑡𝑡 = ⨀𝑖𝑖=1

𝑛𝑛 𝑠𝑠𝑠𝑠𝑖𝑖,𝑡𝑡
𝐶𝐶𝑡𝑡 = ⨀𝑖𝑖=1

𝑛𝑛 𝑐𝑐𝑖𝑖,𝑡𝑡

Figure 1. The Workflow of Janus. S0 is the aggregation server and
S1 is the assistant server. It is worth noting that S0 and S1 do not
need to interact throughout the process.

values, ensuring verifiability. In addition, its binding prop-
erty prevents users from denying previously sent malicious
messages when subsequent misbehavior is detected. This
is a feature not available in other advanced schemes. Given
the hiding of the SHC and the confidentiality of public key
encryption, neither S0 nor S1 can access the received secret
information. Combined with our dual-server architecture,
higher security can be achieved.

Figure 1 shows the workflow of Janus. Subsequently,
we provide a detailed description of Janus, noting that
it is a generic construction. Thus, we assume the
underlying public key encryption scheme is ΠE =
(Setup, KeyGen,Enc,Dec), the OTP scheme is ΠO =
(Masking, unMasking), and the SHC scheme is ΠS =
(Setup,Commit,Se,PCommit,Reveal), in which the setup
parts of these schemes are completed in the Setup phase
of Janus by default. Furthermore, Appendix B presents
the tasks of each entity in different phases and provides
an instantiation of the generic scheme to demonstrate its
practicality. Specifically, Janus consists of the following
four phases.

(1) Setup. The objective of this phase is to determine the
public parameters pp and specific cryptographic schemes,
which ensure that subsequent schemes work properly. All
participants are given the security parameter λ. Then the
public parameters pp are generated based on λ, including
those used in the setup phase and public parameters gener-
ation in ΠE ,ΠO,ΠS . Each user will generate their private
keys ski,t for the OTP. Server S1 will generate its pub-
lic/private keys (pks, sks) and publish its public key to other
participants. Subsequent communications between the users
and the servers are encrypted with their respective public
keys by default.

(2) Masking and Report. Ui,t masks its local update
xi,t through Masking(xi,t, ski,t) to get the masked update

5

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

Table 2. Comparison of Performance Analysis

Scheme
Computation Communication

Client Server Client Server
SecAgg (Bonawitz et al., 2017) O(n2 +md) O(dn2)) O(n+m) O(n2 +mn)

BBSA (Bell et al., 2020) O(A2 + lA) O(n(A2 + lA)) O(A2 + l) O(n(A2 + l))

VeriFL (Guo et al., 2020) O(n) O(n+ l) O(n) O(1) +O(n)
ELSA (Rathee et al., 2023) O(1 + l) O(n+ nl) O(1) O(n)

Flamingo (Ma et al., 2023)
R: O(L2) O(n+ L2)

R: O(l +A+ L2) O(L3 + n(l + L+A))
D: O(L2 + δAn+ (1− δ)n+ ϵn2) D: O(L2 + L+ δAn+ (1− δ)n)

Janus O(1 + l) O(n+ nl) O(1) O(n)
∗ Let n,L,A denote the total number of clients, the number of decryptors, and the upper bound number of neighbors of a client,
respectively, where A = logn in BBSA. l denotes the dimension of the update. δ denotes the dropout rate, respectively. ϵ is the
parameter of graph generation. R and D denote regular client and decryptor, respectively.

x̂i,t. Subsequently, Ui,t encrypts the ski,t using the pub-
lic key of S1 through Enc(pks, ski,t) to get the cipher-
text CTi,t. To enable subsequent verifiability, Ui,t gen-
erates a separable commitment to its local update xi,t using
Commit(xi,t, ri,t), where ri,t is a random blinder. The re-
sulting commitment ci,t can be separated into two parts:
(ci,r, ci,m), where ci,r is the commitment of blinder; and
ci,m is the commitment of local update. Then Ui,t sends
(x̂i,t, ci,r) to the aggregation server S0 and (ci,t, CTi,t) to
the assistant server S1.

(3) Collection and Aggregation. In this phase, S0 and S1

will complete aggregation of users updates. Specifically,
S0 will aggregate the masked input updates from all users
via X̂t =

⊙n
i=1 x̂i,t = x̂1,t ⊙ x̂2,t ⊙ ... ⊙ x̂n,t. Then S0

computes Cr =
⊙n

i=1 ci,r = c1,r ⊙ c2,r ⊙ ... ⊙ cn,r. S0

sends (X̂t, Cr) to all users. X̂t contains the updated ag-
gregated values, and Cr serves to validate the aggregated
result in round t. S1 first decrypts the ciphertext to get
the ski,t via Dec(sks, CTi,t). Then it can aggregate the⊙n

i=1 ski,t = sk1,t ⊙ sk2,t ⊙ ... ⊙ skn,t = SKt. Fur-
thermore, it computes the aggregated commitment value⊙n

i=1 ci,t = c1,t ⊙ c2,t ⊙ · · · ⊙ cn,t = Ct, which enables
subsequent users to verify the aggregation performed by S0.
Finally, S1 sends (SKt, Ct) to all users.

(4) UnMasking and Verification. Users compute the final
update and verify the aggregated result based on the values
received from S0 and S1. Specifically, Ui,t gets the final
aggregation result through Xt = UnMasking(X̂t, SKt),
where the Xt is the final aggregation result of the round
t. To verify the correctness of the aggregation result, Ui,t

extracts the commitment value related to the updates through
Cm = Se(Ct, Cr). Ui,t then calculates the commitment
value, which is only related to the updates through C∗

m =
PCommit(Xt, ppc), where the ppc is the public parameter
of the underlying SHC. Finally, Ui,t compares whether C∗

m

and Cm are equal. If the two values are equal, the aggregated
result is accepted as valid. Otherwise, it is rejected, and Ui,t

terminates the subsequent training.

4. Evaluation
4.1. Theoretical Analysis

Janus offers enhanced security compared to state-of-the-art
schemes. As detailed in Appendix C, we provide a formal
security analysis demonstrating that Janus is resistant to
MIA and achieves multi-round security. A key advantage
of Janus over schemes like Flamingo and BBSA lies in
its ability to complete each aggregation round with fewer
interactions. In these advanced schemes, additional com-
munication with neighboring nodes is required to eliminate
masks or perform decryption. By contrast, Janus signifi-
cantly reduces interaction complexity. Furthermore, given
that core operations such as commitments and encryptions
are of constant complexity O(1), Janus achieves superior
efficiency by maintaining a constant interaction count re-
gardless of the number of users.

Notably, Janus is designed to be highly client-friendly, with
system overhead independent of the number of users—a
major limitation of previous schemes. Users only need
two interactions with the servers before going offline, min-
imizing computation and communication demands. As a
result, the aggregation process remains robust and accurate,
even in the presence of user disconnections or dropouts. To
highlight the efficiency of Janus, we focus on a single ag-
gregation round. A detailed comparison of communication
and computation overhead with other advanced schemes is
presented in Table 2.

Computation Cost. The computation cost of each user con-
sists of: (1) masking the local update via OTP; (2) encrypt-
ing the key of OTP by public key encryption; (3) committing
the local update by SHC; (4) unmasking the global aggre-
gation result; (5) separating message-only commitments
from the full commitment; and (6) calculating the commit-
ment value based on the unmasking result and comparing
whether it is equal to the separated commitment value to
complete the verification. All the above operations take only
O(1). Therefore, the computation overhead of each user is
constant. The computation cost of S0 mainly consists of

6

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

(a) M N I S T (C N N)

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

(b) C I F A R (C N N)

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

(c) C I F A R - 1 0 0 (C N N)

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

(d) M N I S T (M L P)

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

(e) C I F A R (M L P)

Mo
del

 Ac
cur

acy

R o u n d

 N o - S A
 J a n u s
 B B S A
 V e r i F L
 E L S A
 F l a m i n g o

(f) C I F A R - 1 0 0 (M L P)

Figure 2. Test accuracy across different datasets and models.

aggregating the masking updates from users and the com-
mitment of random numbers, which both take O(n). Thus,
the total computation overhead grows linearly with the num-
ber of users. For S1, the computation cost consists of: (1)
decrypting the ciphertext of the private key of OTP; (2) ag-
gregating the private keys for masking; and (3) aggregating
the complete commitments for subsequent verification of
the aggregation result from S0. All above operations take
O(n). Overall, the overhead of servers grows linearly with
the number of clients, which takes O(n).

Communication Cost. Each user only needs to send one
masked message to S0 and one encrypted commitment to
S1. As a result, each user incurs a constant communication
overhead. S0 will send the aggregation result of the masking
updates to all users, which takes O(n). S1 sends both the
aggregated OTP key and the full commitment to all users,
which also incurs O(n) communication overhead. S1 sends
both the aggregated OTP key and the full commitment to
all users, which also incurs O(n) communication overhead.
Overall, the communication overhead on the server side
scales linearly with respect to the number of users.

4.2. Experiments

To assess the practical performance of Janus, we carried
out comprehensive experiments focusing on both effective-
ness and efficiency. We further compared it with several
representative advanced schemes. Our experimental setup
includes a 13th Gen Intel(R) Core(TM) i7-13700KF 3.40

GHz processor with 32.0 GB of RAM, a 64-bit Windows 11
operating system, and an RTX 4070Ti GPU display adapter.

Datasets and Models. MNIST consists of 70,000 grayscale
handwritten digit images (60,000 for training, 10,000 for
testing), each 28x28 pixels. We simulated an environment
with 100 users, each holding 600 local training samples. The
global model for MNIST is a fully connected network with
layers of size (784, 256, 10). CIFAR-10 includes 60,000
color images across 10 classes (50,000 training, 10,000
testing), using a CNN architecture with a batch size of
10, a learning rate of 0.001, and 100 training epochs. We
employed SGD as the optimizer, with each user applying
SGD once per global epoch.

Baselines. We implemented the original FL (No-SA),
where the server aggregates plain updates in each train-
ing (McMahan et al., 2017). BBSA (Bell et al., 2020)
optimizes the communication graph of the first mask-
based SA scheme (Bonawitz et al., 2017). Meanwhile,
Flamingo (Ma et al., 2023) introduces multi-round aggrega-
tion; VeriFL (Guo et al., 2020) achieves verifiability; and
ELSA (Rathee et al., 2023) improves efficiency of the sys-
tem. Additionally, Flamingo, VeriFL, and BBSA are de-
signed to wait for messages from at least t out of n users.
To handle user dropouts, we reconstruct the communication
graph using only the responsive clients, resulting in better
performance than the original approach.

Model Performance. To comprehensively evaluate the
impact of the SA on the model training effectiveness, our

7

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

N o - S A J a n u s B B S A V e r i F L E L S A F l a m i n g o0

2

4

6

8

1 0

N o - S A J a n u s B B S A V e r i F L E L S A F l a m i n g o2

4

6

8

1 0

1 2

1 4

1 6

1 8

N o - S A J a n u s B B S A V e r i F L E L S A F l a m i n g o4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

N o - S A J a n u s B B S A V e r i F L E L S A F l a m i n g o0

2

4

6

8

1 0

N o - S A J a n u s B B S A V e r i F L E L S A F l a m i n g o4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

N o - S A J a n u s B B S A V e r i F L E L S A F l a m i n g o2

4

6

8

1 0

1 2

1 4

1 6

1 8

Ru
nni

ng
Tim

e (
sec

)

S c h e m e

 P e r c l i e n t
 S e r v e r
 T o t a l

(a) M N I S T (C N N)

Ru
nni

ng
Tim

e (
sec

)

S c h e m e

 P e r c l i e n t
 S e r v e r
 T o t a l

(b) C I F A R (C N N)

Ru
nni

ng
Tim

e (
sec

)

S c h e m e

 P e r c l i e n t
 S e r v e r
 T o t a l

(c) C I F A R - 1 0 0 (C N N)

Ru
nni

ng
Tim

e (
sec

)

S c h e m e

 P e r c l i e n t
 S e r v e r
 T o t a l

(d) M N I S T (M L P)

Ru
nni

ng
Tim

e (
sec

)

S c h e m e

 P e r c l i e n t
 S e r v e r
 T o t a l

(e) C I F A R (M L P)

Ru
nni

ng
Tim

e (
sec

)

S c h e m e

 P e r c l i e n t
 S e r v e r
 T o t a l

(f) C I F A R - 1 0 0 (M L P)

Figure 3. Computation overhead across different datasets and models.

experiments are carried out on different datasets and models.
We conducted the training with 100 users and compared the
test accuracy of our Janus with advanced schemes as shown
in Figure 2. The experimental results lead to the following
conclusions. The final test accuracy after model conver-
gence differs only slightly between Janus and the compared
schemes. The No-SA baseline achieves the highest accuracy,
with Janus closely trailing. Notably, Janus is not limited
to specific models or datasets. These results confirm its
practicality and effectiveness in preserving accuracy under
secure aggregation.

Specifically, on the MNIST dataset, No-SA achieves 94.1%
test accuracy with CNN, while Janus reaches 93.18%. With
MLP, No-SA reaches 85.04%, and Janus achieves 83.95%.
Compared to other SA schemes, Janus maintains competi-
tive accuracy. On the CIFAR dataset, No-SA achieves 77.8%
with CNN and 72.8% with MLP, while Janus achieves
75.94% and 71.6%, respectively. Janus achieves test ac-
curacy close to the No-SA baseline across different models
and datasets.

Computation Overhead. Since masking-based schemes
are vulnerable to user dropouts, we take this into account
when implementing BBSA, VeriFL, and Flamingo. Specifi-
cally, we simulated a 10% user dropout rate. However, the
waiting time to handle dropouts is typically much longer
due to the complexity and variability of practical environ-
ments. Moreover, it is important to note that Flamingo
inherently supports multi-round aggregation, while other

schemes lack this capability. To enable multi-round ag-
gregation, we adapted them by repeatedly executing the
single-round protocol to simulate multi-round aggregation.
Although this approach is feasible, it introduces a consid-
erable amount of additional computation overhead. This
further highlights the advantages of our Janus, which is
natively designed to support multi-round aggregation with-
out incurring such overhead, thus demonstrating superior
efficiency and scalability.

As shown in Figure 3, we compare the time overhead of dif-
ferent schemes, focusing on the completion time for a single
aggregation round. Note that, given the structural differ-
ences between these schemes, the comparison includes only
the stages that contribute significantly to the overall time
consumption in each case. The computation overhead intro-
duced by SA is within a practical and acceptable range,
demonstrating its practicality in real-world applications.
More importantly, Janus incurs significantly lower over-
head, particularly on the user side, which enhances overall
efficiency. This advantage stems from the use of lightweight
cryptographic primitives that avoid costly operations such
as secret sharing and Diffie-Hellman key exchange, thereby
reducing the computation burden on users and contributing
to its superior performance.

5. Conclusion
In this paper, we introduce a new cryptographic primitive,
termed separable homomorphic commitment. Building on

8

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

this, we propose Janus, a generic dual-server multi-round
secure aggregation scheme for federated learning. Specif-
ically, Janus effectively tackles critical challenges, includ-
ing dynamic user participation, verifiability, and resistance
to model inconsistency attacks that are not considered in
the advanced Flamingo. It significantly enhances security
while simultaneously improving system efficiency, notably
reducing per-user communication and computation over-
head from logarithmic to constant scale with a tolerable
impact on model accuracy. Both theoretical analysis and
experimental evaluations consistently demonstrate its supe-
rior performance. Future work may focus on integrating
Janus with advanced privacy-preserving techniques and de-
signing secure mechanisms to detect and mitigate user-level
poisoning attacks.

Acknowledgements
The authors would like to thank the reviewers and area
chair for their constructive feedback and support to improve
this paper. This work was supported in part by the National
Natural Science Foundation of China under Grant 62425205,
Grant U21A20466, and Grant 62372108.

Impact Statement
This paper presents work whose goal is to advance the field
of privacy-preserving Federated Learning. There are many
potential societal consequences of our work, none of which
we feel must be specifically highlighted here.

References
Addanki, S., Garbe, K., Jaffe, E., Ostrovsky, R., and Poly-

chroniadou, A. Prio+: Privacy preserving aggregate statis-
tics via boolean shares. In International Conference on
Security and Cryptography for Networks, pp. 516–539.
Springer, 2022.

Bell, J. H., Bonawitz, K. A., Gascón, A., Lepoint, T., and
Raykova, M. Secure single-server aggregation with (poly)
logarithmic overhead. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 1253–1269, 2020.

Ben-Itzhak, Y., Möllering, H., Pinkas, B., Schneider, T.,
Suresh, A., Tkachenko, O., Vargaftik, S., Weinert, C.,
Yalame, H., and Yanai, A. Scionfl: Efficient and robust
secure quantized aggregation. In 2024 IEEE Conference
on Secure and Trustworthy Machine Learning (SaTML),
pp. 490–511. IEEE, 2024.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-

preserving machine learning. In proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 1175–1191, 2017.

Bonawitz, K., Salehi, F., Konečnỳ, J., McMahan, B.,
and Gruteser, M. Federated learning with autotuned
communication-efficient secure aggregation. In 2019
53rd Asilomar Conference on Signals, Systems, and Com-
puters, pp. 1222–1226. IEEE, 2019.

Brunetta, C., Tsaloli, G., Liang, B., Banegas, G., and
Mitrokotsa, A. Non-interactive, secure verifiable aggre-
gation for decentralized, privacy-preserving learning. In
Australasian Conference on Information Security and
Privacy, pp. 510–528. Springer, 2021.

Chen, H. and Vikalo, H. Recovering labels from local
updates in federated learning. In Proceedings of the 41st
International Conference on Machine Learning, pp. 7346–
7372, 2024.

Corrigan-Gibbs, H. and Boneh, D. Prio: Private, robust,
and scalable computation of aggregate statistics. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pp. 259–282, 2017.

Diffie, W. and Hellman, M. E. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, 22(6),
1976.

Fereidooni, H., Marchal, S., Miettinen, M., Mirhoseini, A.,
Möllering, H., Nguyen, T. D., Rieger, P., Sadeghi, A.-
R., Schneider, T., Yalame, H., et al. Safelearn: Secure
aggregation for private federated learning. In 2021 IEEE
Security and Privacy Workshops (SPW), pp. 56–62. IEEE,
2021.

Fernández, J. D., Menci, S. P., Lee, C., and Fridgen, G.
Secure federated learning for residential short term load
forecasting. CoRR, abs/2111.09248, 2021.

Gao, J., Hou, B., Guo, X., Liu, Z., Zhang, Y., Chen, K.,
and Li, J. Secure aggregation is insecure: Category in-
ference attack on federated learning. IEEE Transactions
on Dependable and Secure Computing, 20(1):147–160,
2021.

Garov, K., Dimitrov, D. I., Jovanović, N., and Vechev, M.
Hiding in plain sight: Disguising data stealing attacks in
federated learning. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Gehlhar, T., Marx, F., Schneider, T., Suresh, A., Wehrle,
T., and Yalame, H. Safefl: Mpc-friendly framework for
private and robust federated learning. In 2023 IEEE
Security and Privacy Workshops (SPW), pp. 69–76. IEEE,
2023.

9

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

Guo, X., Liu, Z., Li, J., Gao, J., Hou, B., Dong, C., and
Baker, T. Verifl: Communication-efficient and fast ver-
ifiable aggregation for federated learning. IEEE Trans-
actions on Information Forensics and Security, 16:1736–
1751, 2020.

Guo, Y., Polychroniadou, A., Shi, E., Byrd, D., and Balch,
T. Microfedml: Privacy preserving federated learning
for small weights. IACR Cryptol. ePrint Arch., 2022:714,
2022.

Hahn, C., Kim, H., Kim, M., and Hur, J. Versa: Verifiable
secure aggregation for cross-device federated learning.
IEEE Transactions on Dependable and Secure Comput-
ing, 20(1):36–52, 2021.

Hitaj, B., Ateniese, G., and Perez-Cruz, F. Deep models
under the gan: information leakage from collaborative
deep learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pp. 603–618, 2017.

Huang, Y., Gupta, S., Song, Z., Li, K., and Arora, S. Evalu-
ating gradient inversion attacks and defenses in federated
learning. In Advances in Neural Information Processing
Systems, volume 34, pp. 7232–7241, 2021.

Katz, J. and Lindell, Y. Introduction to Modern Cryptogra-
phy, Second Edition. CRC Press, 2014.

Lu, L., Shin, Y., Su, Y., and Karniadakis, G. E. Dying relu
and initialization: Theory and numerical examples. arXiv
preprint arXiv:1903.06733, 2019.

Ma, Y., Woods, J., Angel, S., Polychroniadou, A., and Rabin,
T. Flamingo: Multi-round single-server secure aggrega-
tion with applications to private federated learning. In
2023 IEEE Symposium on Security and Privacy (SP), pp.
477–496. IEEE, 2023.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Mohassel, P. and Zhang, Y. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pp. 19–38. IEEE,
2017.

Nasr, M., Shokri, R., and Houmansadr, A. Comprehen-
sive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and feder-
ated learning. In 2019 IEEE symposium on security and
privacy (SP), pp. 739–753. IEEE, 2019.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,
M., Malek, M., and Huba, D. Federated learning with

buffered asynchronous aggregation. In International Con-
ference on Artificial Intelligence and Statistics, pp. 3581–
3607. PMLR, 2022.

Pasquini, D., Francati, D., and Ateniese, G. Eluding secure
aggregation in federated learning via model inconsistency.
In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2429–2443,
2022.

Pedersen, T. P. Non-interactive and information-theoretic
secure verifiable secret sharing. In Annual International
Aryptology Conference, pp. 129–140. Springer, 1991.

Rathee, M., Shen, C., Wagh, S., and Popa, R. A. Elsa:
Secure aggregation for federated learning with malicious
actors. In 2023 IEEE Symposium on Security and Privacy
(SP), pp. 1961–1979. IEEE, 2023.

Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz,
M., and Backes, M. Ml-leaks: Model and data inde-
pendent membership inference attacks and defenses on
machine learning models. In Proceedings of the 26th
Annual Network and Distributed System Security Sympo-
sium (NDSS), 2019.

Sandholm, T., Mukherjee, S., and Huberman, B. Safe:
secure aggregation with failover and encryption. ACM
Transactions on Modeling and Performance Evaluation
of Computing Systems, 10(1):1–28, 2025.

Shamir, A. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE Symposium on Security and Privacy
(SP), pp. 3–18. IEEE, 2017.

So, J., Güler, B., and Avestimehr, A. S. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure fed-
erated learning. IEEE Journal on Selected Areas in Infor-
mation Theory, 2(1):479–489, 2021.

So, J., He, C., Yang, C.-S., Li, S., Yu, Q., E Ali, R., Guler,
B., and Avestimehr, S. Lightsecagg: a lightweight and
versatile design for secure aggregation in federated learn-
ing. In Proceedings of Machine Learning and Systems,
volume 4, pp. 694–720, 2022.

So, J., Ali, R. E., Güler, B., Jiao, J., and Avestimehr, A. S.
Securing secure aggregation: Mitigating multi-round pri-
vacy leakage in federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pp. 9864–9873, 2023.

Stevens, T., Skalka, C., Vincent, C., Ring, J., Clark, S., and
Near, J. Efficient differentially private secure aggregation

10

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

for federated learning via hardness of learning with errors.
In 31st USENIX Security Symposium (USENIX Security
22), pp. 1379–1395, 2022.

Tsaloli, G., Liang, B., Brunetta, C., Banegas, G., and
Mitrokotsa, A. Deva: Decentralized, verifiable secure
aggregation for privacy-preserving learning. In Interna-
tional Conference on Information Security, pp. 296–319.
Springer, 2021.

Wang, H., Xu, H., Li, Y., Xu, Y., Li, R., and Zhang, T. Fed-
cda: Federated learning with cross-rounds divergence-
aware aggregation. In The Twelfth International Confer-
ence on Learning Representations, 2023.

Wu, D., Bai, J., Song, Y., Chen, J., Zhou, W., Xiang, Y.,
and Sajjanhar, A. Fedinverse: Evaluating privacy leak-
age in federated learning. In The twelfth International
Conference on Learning Representations, 2024.

Xu, G., Li, H., Liu, S., Yang, K., and Lin, X. Verifynet:
Secure and verifiable federated learning. IEEE Transac-
tions on Information Forensics and Security, 15:911–926,
2019.

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy
risk in machine learning: Analyzing the connection to
overfitting. In 2018 IEEE 31st Computer Security Foun-
dations Symposium (CSF), pp. 268–282. IEEE, 2018.

Yueqi, X., Fang, M., and Gong, N. Z. Fedredefense: Defend-
ing against model poisoning attacks for federated learning
using model update reconstruction error. In Forty-first
International Conference on Machine Learning, 2024.

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu,
Y. Batchcrypt: Efficient homomorphic encryption for
cross-silo federated learning. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pp. 493–506,
2020a.

Zhang, X., Fu, A., Wang, H., Zhou, C., and Chen, Z.
A privacy-preserving and verifiable federated learning
scheme. In ICC 2020-2020 IEEE International Confer-
ence on Communications (ICC), pp. 1–6. IEEE, 2020b.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradi-
ents. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, pp. 14774–
14784, 2019.

Zhuang, H., Yu, M., Wang, H., Hua, Y., Li, J., and Yuan,
X. Backdoor federated learning by poisoning backdoor-
critical layers. In The Twelfth International Conference
on Learning Representations, 2024.

11

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

A. Related Works
The primary objective of federated learning is to preserve the privacy of local data while enabling its effective use in training
the global model. This section reviews the works related to Janus.

Masking-based SA. Masking is a classic encryption based on OTP (Katz & Lindell, 2014). (Bonawitz et al., 2017) designed
the first SA scheme (SecAgg) which using pairwise masks to hide individual inputs for FL. However, SecAgg involves
a complete communication graph, which incurs heavy computation and communication overhead for each user linear in
the number of participants. Subsequently, (Bell et al., 2020) replaced that with a k-regular graph of logarithmic degree,
which greatly improved the efficiency while maintaining the security. (Stevens et al., 2022) replaced the standard mask with
learning with errors mask and used verifiable secret sharing to prevent malicious users from distributing incorrect shares.
(Sandholm et al., 2025) arranged the users in the system in the form of a ring chain, and the efficiency has been significantly
improved. Additionally, the user dropout problem can be effectively solved. Most masking-based schemes require double
masking in order to solve the problem of dropout. (Bonawitz et al., 2019) combined the random rotation technique to
actively adjust the quantisation range of the model in order to reduce the model volume. To reduce the communication
overhead, TurboAgg (So et al., 2021) divided n users into n/ log n groups and then used a multi-group loop structure for
subsequent aggregation.

MPC-base SA. Multi-Party Computation (MPC) enables distrustful parties to jointly compute a target function while
preserving privacy, which perfectly aligns with the SA. (Mohassel & Zhang, 2017) designed a scheme using secure two-
party computation and proposed MPC-friendly alternatives to non-linear functions. Prio (Corrigan-Gibbs & Boneh, 2017)
employed a novel technique known as SNIPs (Secret-shared Noninteractive Proofs), enabling servers to collaboratively verify
a shared proof of correctness with minimal communication overhead. Prio+ (Addanki et al., 2022) replaced zero-knowledge
proofs with Boolean secret sharing and share conversion protocols, boosting user-side performance. SAFELearn (Fereidooni
et al., 2021) employed MPC to enable SA, resisting inference attacks with just two communication rounds while eliminating
trusted third parties. (Gehlhar et al., 2023) proposed an MPC-based FL framework that combines SA with poisoning-resistant
techniques, achieving privacy and robustness. (Ben-Itzhak et al., 2024) introduced the ScionFL, which efficiently handles
quantized inputs while providing robustness against malicious clients and supporting various 1-bit quantization schemes.

Attacks that Bypass SA. Most existing schemes expose the aggregation results to both users and the server. However,
this design introduces a potential vulnerability: a malicious server may exploit this visibility to circumvent the secure
aggregation. (Pasquini et al., 2022) proposed model inconsistency attacks, where a malicious server can distribute different
parameters to targeted and non-targeted users. This can trigger dying-ReLU and make the input of non-target users be
zero. (So et al., 2023) noticed that when the trained model begins to converge, the user model changes little between one
training step and the next. A malicious server can infer the updates of a user who participated in the previous round but
did not participate in the subsequent round from the aggregation results. (Gao et al., 2021) proposed a scheme that can
launch a category inference attack even in the presence of SA. To avoid this type of attack, when the users receive the model
parameters, they need to verify whether the received parameters are consistent or not, and terminate the training if they
are not. But this will increase the system overhead. (Fernández et al., 2021) applied differential privacy on the aggregated
model to hide the aggregation results.

Server-side Attacks and Defenses. Membership inference attacks pose a potential threat from the server side in FL.
Specifically, an adversary can determine whether some specific data records are part of the local training dataset of a
target user only by accessing the model updates, either through a black-box or white-box approach. (Yeom et al., 2018)
proposed the first label-based attack, which aims at predicting whether an instance is in the local data of the target user. The
attacker leverages the target model’s inferior performance on the test dataset to carry out the attack. (Chen & Vikalo, 2024)
proposed a general method that allows the server to recover user training labels, applicable to various FL algorithms without
assumptions on activation functions or batch label composition. (Shokri et al., 2017) designed an attack with partial output
knowledge in a black-box scenario. Furthermore, (Salem et al., 2019) improved a new attack by using the maximum value of
the model output confidence. (Zhuang et al., 2024) introduced layer substitution analysis, a novel technique for identifying
layers that are critical for backdoor injection, making it well-suited for FL attacks. This technique enabled the development
of two layer-wise backdoor attack strategies that implant backdoors into key layers and bypass advanced defenses without
degrading main task accuracy.

Meanwhile, (Bonawitz et al., 2017) proposed the first SA scheme to compute the sum of model updates hiding personal infor-
mation. Subsequently, a great deal of research has centred around SA. Techniques such as homomorphic encryption (Zhang
et al., 2020a), differential privacy (Stevens et al., 2022), and multi-party computation (Bell et al., 2020) are used to construct

12

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

SA schemes to protect user privacy from attack by malicious servers. Cryptography-based SA aims to prevent attacks by
hiding model updates from potential adversaries. Preserving the confidentiality of individual contributions, significantly
reduces the risk of sensitive information leakage.

Recently, (Yueqi et al., 2024) identified a limitation in existing model poisoning attacks defenses: reliance on cross-client
or global information, which leads to performance degradation or when there is a large number of malicious users. A
crucial distinction between model poisoning attacks and benign model updates is then established by determining whether
the update can be approximately reconstructed using distilled local knowledge. (Wu et al., 2024) proposed FedInverse, a
framework designed to evaluate whether FL models are susceptible to model inversion attacks and quantify the associated
data-leakage risks. (Garov et al., 2024) showed that all existing malicious server attacks can be identified through systematic
checks. Furthermore, essential requirements for practical malicious server attacks were systematically established.

Verifiability. In addition, a malicious server may return incorrect aggregation results to gain unfair advantages or undermine
system integrity. Such behavior poses serious security risks, as it can mislead users who rely on the aggregated outputs.
Therefore, verifiable SA is necessary to ensure correct aggregation. (Zhang et al., 2020b) verified the aggregation result via
homomorphic encryption and homomorphic hash function. Additionally, (Xu et al., 2019) verified masking-based SA using
the same technique. (Guo et al., 2020) proposed a verification scheme that focuses on high-dimensional inputs. (Brunetta
et al., 2021) proposed a non-interactive verifiable SA protocol, which requires users to create a tag for each input shares. In
contrast, (Tsaloli et al., 2021) proposed a scheme that requires only a single tag for each user.

Multi-round Setting and Dynamic Joining. Model convergence in FL typically requires multiple rounds of training, with
each round contributing incrementally to the overall performance of the global model. However, most existing state-of-the-art
SA schemes are designed to support only a single round of aggregation. Beyond protecting user privacy in a single round
of training, existing research has also explored privacy concerns that arise cumulatively over multiple rounds of training.
(Nguyen et al., 2022) and (So et al., 2022) proposed two new schemes support asynchronous aggregation. (Guo et al., 2022)
designed a multi-round SA protocol for reusable secrets, and it is mainly oriented towards scenarios with small inputs (the
input vector with small values).

Recently, (Ma et al., 2023) proposed Flamingo, which has no restrictions on input value. (So et al., 2023) mitigated the
privacy leakage involved in multi-round aggregation through client selection. Furthermore, the existing schemes do not
support dynamic joining. Flamingo assumes that the set of all clients participating in the training is fixed before the training
starts and some subset is selected from n in each round t. Therefore, Flamingo does not support the user to dynamically add
in the training process. Most existing schemes require reconstructing the communication graph upon user join or departure,
and performing key negotiation with all other users, leading to significant communication and computation overhead. In
addition, (Wang et al., 2023) explored cross-round aggregation of local models and proposed FedCDA, a novel method that
constructs the global model by aggregating local updates from multiple rounds based on minimum divergence. To improve
efficiency, FedCDA incorporates an approximation strategy to reduce the overhead of model selection.

B. Detailed Janus and Its Instantiation
Figure 4 gives the full generic construction of Janus. Furthermore, an efficient instantiation of Janus is provided, where the
underlying SHC is instantiated by Pedersen commitment, the public key encryption is realized via ElGamal, and the OTP
employs normal addition encryption. Specifically, Janus consists of the following four phases.

Setup. This phase determines the public parameters of the system. Firstly, all participants agree on the security parameter
λ. The public parameters of the cryptographic primitives are then generated based on λ. Define a tuple (p, q, g, h), where
p is a randomly chosen prime of length |q| = λ + δ, with δ being a specified constant; q is a prime divisor of p − 1
such that q = (p − 1)/γ, where γ is a specified small integer; and g, h are random generators of Z∗

p with order q. Ui,t

generates its public/private keys (pki, ski) = (gski (mod p), ski), where the ski ∈ Z∗
p. S1 generates its public/private

keys (pks, sks) = (gsks (mod p), sks) where the sks ∈ Z∗
p. Then S1 and Ui,t publish their public keys to all entities while

keeping their private keys secretly.

Masking and Report. Each user Ui,t trains local data Di,t to get the update xi,t for round t. Ui,t masks the up-
dated vector by x̂i,t = Masking(xi,t, ski,t) = xi,t + ski,t (mod p), where ski,t ∈ Z∗

p . Then Ui,t encrypts the

ski,t via CTi,t = Enc(pks, ski,t) = (gki,t (mod p), ski,t · pk
ki,t
s (mod p)). Furthermore, Ui,t commits the xi,t via

ci,t = Commit(xi,t, ri,t) = gxi,thri,t (mod p), where the ri,t ∈ Z∗
p and (ci,r, ci,m) = (hri,t (mod p), gxi,t (mod p)).

13

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

1. Setup.
– All parties get the security parameter λ.

– This phase generates the public parameter pp of the system, which contains the specific commitment, one-time pad,
and public key encryption.

– The assitant server S1 generates its public/private keys (pks, sks) and publishes its public key to all users.

– Each user generates its public/private keys (pki, ski) and publish its public key to servers S0 and S1. Subsequent
user-server interactions are via public key encryption by default.

2. Masking and Report.
– Each user computes x̂i,t ← Masking(ski,t, xi,t), where the ski,t is the private key generated by user Ui,t in round t.

– Each user encrypts the private key in OTP CTi,t ← Enc(pks, ski,t), where the pks is the public key of the assistant
server S1.

– Each user generates the commitment ci,t = (ci,r, ci,m) ← Commit(xi,t, ri,t), where the ri,t is the blinder and
ci,r, ci,m is the commitment parts of blinder and message respectively.

– Each user sends (x̂i,t, ci,r) and (CTi,t, ci,t) to S0 and S1, respectively.

3. Collection and Aggregation.
– S0 collects the messages (x̂i,t, ci,r) from users and parses as xi,t and ci,r.

– Then S0 computes the
⊙n

i=1 x̂i,t = X̂t and
⊙n

i=1 ci,r = Cr.

– S0 sends the X̂t and Cr to all users.

– S1 collects the messages (CTi,t, ci,t) from users and parses as CTi,t and ci,t.

– S1 decrypts the ski,t ← Dec(CTi,t, sks) and computes
⊙n

i=1 ski,t = SKt.

– S1 computes the
⊙n

i=1 ci,t = Ct.

– S1 sends the SKt and Ct to all users.

4. UnMasking and Verification.
– Each user receives the message from S0 and S1, then it decrypts the ciphertext as Cr and X̂t using its private key ski.

– Each user unmasks the aggregation via Xt ← UnMasking(SKt, X̂t).

– Each user computes the commitment about the input updates via Cm ← Se(Ct, Cr).

– Each user generates the commitment via C∗
m ← PCommit(Xt, PPc), which is related to the updates. PPc is the

public parameter of the commitment scheme. Then Ui,t compares C∗
m

?
= Cm. If it is equal, then the aggregation

result completed by S0 is correct, otherwise, it is invalid. Once the aggregation results are found to be incorrect, users
will terminate the subsequent training.

Figure 4. Detailed Construction of Janus.

Finally, Ui,t sends {ci,r, x̂i,t} and {ci,t, CTi,t} to S0 and S1, respectively.

Collection and Aggregation. Subsequently, S0 receives the message from Ui,t. Then it computes
⊙n

i=1 x̂i,t = x̂1,t + x̂2,t +

... + x̂n,t = X̂t and
⊙n

i=1 ci,r = hr1,thr2,t ...hn,t (mod p) = Cr. Then S0 sends Cr and X̂t to all users. When the S1

receives the message from Ui,t. It first decrypts ski,t = Dec(sks, CTi,t) = ski,t · pk
ki,t
s (gk

sks
i,t)−1 (mod p). Subsequently,

it computes
⊙n

i=1 ci,t = c1,tc2,t...cn,t (mod p) = Ct. Then it computes
⊙n

i=1 ski,t = sk1,t + sk2,t + ...+ skn,t = SKt.
Finally, S1 sends the Ct and SKt to all users.

Unmasking and Verfication. When Ui,t receives the message from S0 and S1. Firstly, Ui,t computes the aggregation result
via Xt = Unmasking(X̂t, SKt) = X̂t − SKt. To verify the validity of the aggregation results, Ui,t separates the parts

14

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

of the commitments that are only relevant to the input updates by Se(Ct, Cr) = Cm. Then Ui,t makes a commitment to
the aggregation result from S0 via PCommit(Xt, ppc) = gX̂t (mod p) = C∗

m, where ppc is the public parameters of the
underlying SHC. Eventually, Ui,t checks whether C∗

m
?
= Cm holds. If so, it indicates that the aggregated result X̂t from

S0 is correct; otherwise, the result is deemed invalid. Ui,t will refuse to accept the results of the aggregation and abort the
subsequent training.

Correctness. The correctness of this instantiation is guaranteed as long as all entities follow the protocol honestly, ensuring
that each user obtains both the correct aggregation result and valid verification. It is not hard to prove this due to the
correctness of the underlying public key encryption, OTP, and SHC. Specifically, we assume that the aggregation server S0

receives all masked-input and performs Janus correctly, the following condition holds.

n⊙
i=1

x̂i,t = x̂1,t + x̂2,t + ...+ x̂n,t

= x1,t + ski,t + x2,t + sk2,t + ...+ xn,t + skn,t

=

n⊙
i=1

xi,t +

n⊙
i=1

ski,t

= Xt + SKt,

(8)

where the
⊙n

i=1 ski,t is computed by S1. The final aggregation result is
⊙n

i=1 xi,t =
⊙n

i=1 x̂i,t −
⊙n

i=1 ski,t = Xt. If the
validation passes, the following condition holds.

Ct = gx1,thr1,tgx2,thr2,t ...gxn,thrn,t

= gx1,t+x2,t+...+xn,thr1,t+r2,t+...+rn,t ,

Cr = hr1,t+r2,t+...+rn,t ,

Cm = Ct/Cr = gx1,t+x2,t+...+xn,t ,

C∗
m = gXt .

(9)

If the aggregation result Xt from S0 is correct, then the C∗
m = Cm always holds.

C. Security Analysis
In this section, we intend to demonstrate the security of our generic construction. We first give the threat model and prove
that our Janus can protect the privacy of users’ local updates and the aggregated updates. Finally, we give the security proof
of single-round and multi-round respectively.

C.1. Threat Model

All users agree to publish the final results of model aggregation only to each user, but not to the servers, in order to resist
MIA. These users share a common interest in both soundness—ensuring they receive the correct global model aggregation
updates from untrusted servers—and the confidentiality of local model updates from each other and the servers.

The specific assumptions in our paper are as follows: S0 and S1 will not collude but may perform incorrect aggregation.
Janus also allows for up to n − 2 clients to collude. Specifically, even if the servers aggregate incorrect results, Janus
provides verifiability, which enables us to detect such behavior and mitigate the associated risks.

If the server colludes with up to n− 2 clients, it can only obtain the additive result of the remaining two uncolluding clients.
This result is an aggregation of two encrypted or obfuscated values, making it impossible to recover each uncolluding
user’s specific gradient information. This ensures that the colluding entities cannot initiate an MIA or access the private
information of the remaining two non-colluding clients. When n− 2 clients collude, this assumption is even weaker, as the
absence of server involvement further limits the accessible information, making it even harder to extract useful data.

If only a single server is corrupted, this does not compromise individual user privacy. For instance, with server S0, as long
as the underlying encryption algorithm is secure, the server cannot access the user-submitted private data without the user’s
private key. Similarly, for server S1, the security of the underlying SHC ensures that its hiding properties prevent S1 from

15

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

obtaining any private information. In conclusion, the assumptions of our scheme are reasonable and well-supported. In
addition, we assume the channel between each user and the servers is secure, which allows each entity to authenticate the
incoming messages and prevent outsiders from injecting their responses. Furthermore, we assume that there is no collusion
between all entities in the system. Our security proofs are based on this threat model.

C.2. Privacy from Users

In the “honest but curious” setting, each user will honestly adhere to the protocol but attempt to infer the local gradients
of clients and the aggregated gradients. Therefore, we can use the standard simulation proof for multi-party computation
protocols to demonstrate the privacy of our generic construction. We first consider privacy protection against honest-but-
curious clients who hold their own local gradients and have access to the global gradients. Specifically, let Π denote the
proposed Janus involving n users C1, C2, ..., Cn and two servers S0 and S1. Each user holds a local update gradient xi, and
Janus securely computes the aggregated global update X . All participants may attempt to infer additional information, the
Π satisfies the following privacy guarantee:

• For each honest-but-curious user Ci, the user learns nothing beyond its own local gradient xi and the final global
aggregated gradient X . Formally, for each Ci, there exists a PPT simulator Si such that:

{ViewΠ(Ci)} ≈ {Si(xi, X)}, (10)

where ViewΠ(Ci) denotes the view of Ci during the real execution of Π, xi is the Ci’s local updates and X is the
final global aggregated result.

• For S0 and S1, they learn nothing beyond the masked aggregated results and the aggregated results of masks. This can
ensure they will learn nothing about the final global aggregated gradient X , thus resisting the MIA. Formally, for S0

and S1, there exists a PPT simulator Sserver such that:

{ViewΠ(S0, S1)} ≈ {Sserver(X̂, CT)}, (11)

where ViewΠ(S0, S1) denotes the view of two servers during the real execution of Π, X̂ is the masked aggregation
result, and CT is the ciphertext of masks.

Given any subset U ⊆ C of the users, where the C is the set of all users in the system (|C| = m). Let the
REALC,λ

U ({(x̂i,t)}i∈C , (c1,r, c2,r...cm,r)) be a random variable representing the ioint view of the users in U . This suggests
that all these honest but curious clients learned the aggregation of the gradients of all clients and their own gradients.

Functionality Fs

Parties: users 1, . . . , N from St and two servers S0 and S1.
Parameters: corrupted rate η, number of participating training clients per-round n.

• Fs receives a set of corrupted parties C from the adversary A, where the |C|/|St| ≤ η.

• For each round t:

1. Fs receives a set of N clients St and updates xi,t from clients i ∈ {St \ C}.
2. Fs sends St to A and requests a set Mt. Fs computes the Xt =

⊙
i∈{Mt\C} xi,t if Mt ⊆ St and continues; otherwise Fs

sends abort to all honest participants.
3. There are two scenarios based on whether the servers are corrupted by A as follows.

– Corrupted: Fs outputs Xt to all the participants corrupted by A.
– Not corrupted: Fs requests a mask SKt from A and outputs Xt

⊙
SKt to S0.

Figure 5. Ideal functionality for Janus.

C.3. Single-Round Security

Theorem C.1. (Security of Janus) Let the security parameter be λ and n be the number of users for aggregation in each
round. Assuming the existence of secure OTP, SHC, and public key encryption. Our generic construction can securely

16

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

realize the ideal functionality Fs under the presence of a static adversary controlling η fraction of n users (and the server
S1) as shown in Figure 5.

REAL
Fs,Ft

sum

Π,A (λ, n, xSt) ≈ IDEAL
Ft

sum

Fs,S (λ, n, xMt). (12)

Proof. We first prove the security of a single-round aggregation. Our generic scheme (denoted as Π) securely realizes the
ideal functionality F t

sum (Figure 6) in the random oracle model. We can find from the ideal function F t
sum that it is the Mt

sent by the adversary A that determines the actual result. We assume the A controls a set of clients and denote the set of
corrupted clients as C.

Event 1. We start with the servers not being corrupted by the A. Now, we first build a simulator S in the ideal world,
running A as a subroutine. Specifically, the simulation for round t is as follows.

1. S receives a set Mt from the adversary A.

2. S acquires Zt from the F t
sum.

3. Masking and Report. S interacts with A as in the masking and report phase and acts as honest users in i ∈ {Mt \ C}
with the masked updates x′

i,t such that the Zt =
⊙

i∈{Mt\C} x
′
i,t. Here the input update x′

i,t and the mask ski,t are
generated by S.

4. Collection and Aggregation. In this phase, S interacts with A, where A performs as an honest participant in the
collection and aggregation of Π.

5. UnMasking and Verfication. S interacts with A as honest participants in the unmasking and verfication phase.

6. In the above steps, if all honest participants would abort in the protocol in this round of aggregation, then S sends
abort to F t

sum. Finally, A outputs the value at random and terminates this aggregation.

Functionality F t
sum

Parties: users from St and two servers.
Parameters: corrupted rate η.

• F t
sum receives a set of corrupted participants C from the adversary A and xi,t from clients i ∈ {St \ C}.

• Fs sends St to A and requests a set Mt. Fs computes the Zt =
⊙

i∈{Mt\C} xi,t if Mt ⊆ St and continues; otherwise Fs sends
abort to the all honest participants.

• For each round t:

1. Fs receives a set of N clients St and updates xi,t from clients i ∈ {St \ C}.
2. Fs sends St to A and requests a set Mt. Fs computes the Zt =

⊙
i∈{Mt\C} xi,t if Mt ⊆ St and continues; otherwise Fs

sends abort to the all honest participants.
3. There are two scenarios based on whether the servers are corrupted by A as follows.

– Corrupted: Fs outputs Xt to all the participants corrupted by A.
– Not corrupted: Fs requests a mask SKt from A and outputs Zt

⊙
SKt to S0.

Figure 6. Ideal functionality for Report and Collection in round t.

We construct a series of hybrid execution programs from the real world to the ideal world.

Hybrid 1. The view of A in the real-world execution is the same as the ideal world, when S has actual inputs from honest
participants {xi,t}, i ∈ St \ C including the individual masks ski,t and the SKt.

Hybrid 2. S does not use the actual masks in OTP between honest participants. It generates a random mask sk′i,t from the
{0, 1}λ, then it computes the corresponding OTP ciphertext as x̂′

i,t. We argue the view ofA in this hybrid is computationally
indistinguishable from the previous hybrid 1 as follows.

Firstly, the mask ski,t is computed from the space RC of the OTP, and the mask sk′i,t is randomly sampled in the ideal
world. Let the Mt denote the set of users chosen by A in the ideal world. A in the ideal and real world can observes

17

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

Masking(xi,t, ski,t) beteween a user i /∈ Mt and a user i ∈ Mt. This indistinguishability stems from the selection of
random masks in the specific underlying OTP. Secondly, A can observe the ciphertexts generated from the sk′i,t. The
distribution of the ciphertexts is computationally indistinguishable from what A observes in the real world, assuming the
security of the underlying OTP.

Hybrid 3. In this hybrid, instead of using OTP with actual personal mask ski,t randomly selected from the spaceRC , S
uses masks randomly sampled from {0, 1}λ. Before the proof, we model the generation of masks as a random oracle OR

(see more details in the prior work (Bonawitz et al., 2017)). For ∀i ∈ {Mt \ C}, the S samples sk′i,t randomly and programs
OR as sk′i,t = x̂i,t ⊘ xi,t, where the x̂i,t is observed in the real world and the ⊘ denotes the inverse operation of ⊙. From
the perspective of A, the distributions of x̂i,t in this hybrid and the previous one are statistically indistinguishable.

Additionally, A learns the sk′i,t in the clear for i ∈Mt in the real and ideal world. The distributions of sk′i,t are identical.
However, A learns nothing about sk′i,t for i /∈Mt in both worlds because of the semantic security of the underlying OTP.
From the view of A, this hybrid is computationally indistinguishable from the previous hybrid.

Hybrid 4. In this hybrid, instead of controlling the random oracle as in the previous hybrid, S will program the random
oracle OR as sk′i,t = x̂ ⊘ x′

i,t. Specifically, the x′
i,ts are chosen such that

⊙
i∈{Mt\C} xi,t =

⊙
i∈{Mt\C} x

′
i,t. From the

view of A, this hybrid is the same as the previous one, which can be derived from Lemma 6.1 of the prior work (Bonawitz
et al., 2017).

Hybrid 5. Similar to the previous operation, this hybrid replaces the mask of honest participants with the result from the
random oracle. S will abort if the A would cheat by sending invalid masked updates to S. In the phase of unmasking and
verification, theA would cheat by sending different Mt to F t

sum. S will simulate the following protocol (see as Lemma C.2)
and output whatever the protocol outputs. It is identical to the previous hybrid by doing this.

The final hybrid precisely represents the execution of the ideal world. The aforementioned events indicate that our system is
secure in the ideal world with a single round process.

Event 2. In this event, the server is not corrupted by A, the whole simulation is the same as Event 1, except that the S will
program the masks added by the A in each step.

We complete the proof that for any single round t, the protocol Π always securely realizes the ideal functionality F t
sum in

the presence of a static malicious adversary.

Lemma C.2. Assume there exists a PKI and a secure signature scheme, there are 3ζ participants with at most ζ colluding
malicious participants. Specifically, each party has an input bit of 0 or 1 from a server. There exists a one-round protocol
enabling each honest participant to determine whether the server sent the same value to all honest participants.

Proof. When an honest participant receives at least 2ζ messages with the same value, it indicates that the server has sent the
same value to all honest participants. In the given system, the threshold of 2ζ identical messages can only be met if a large
majority of honest participants have received the same value. Specifically, let the total number of participants in the system
be n = th + tm, where th denotes the number of honest participants and tm denotes the number of malicious participants.
For security and consistency in distributed protocols, the parameter ζ is set such that th > 2ζ. When an honest participant
receives no fewer than 2ζ identical messages, it can confidently be concluded that at least ζ + 1 of these messages were sent
by distinct honest participants, ensuring consistency of the message content. Hence, it can be inferred that the server has
broadcast the same value to all honest participants.

Conversely, if an honest participant receives fewer than 2ζ messages with the same value, this suggests that the server may
have sent different messages to different participants during the communication process. Since the number of identical
messages received by honest participants falls short of forming a consensus of 2ζ, it implies that the server may have
engaged in malicious behavior by sending inconsistent messages to various honest participants. To ensure the security
and consistency of the protocol, the honest participant will abort the protocol execution. This abort mechanism effectively
prevents potential security threats and data integrity issues that could arise due to inconsistent messages from the server.

C.4. Multi-round Security

Our threat model assumes the corrupted rate is η, which means that A controls η · n clients throughout the total T rounds.
In order to prove the security of the multi-round scheme on the basis of the above single-round security proof. The mask
ski,t computed from OR of the underlying SHC ΠC . Let ∆t denote the distribution of the adversary’s view A in the single

18

Janus: Dual-Server Multi-Round Secure Aggregation with Verifiability for Federated Learning

round t, and let T be the total number of rounds required for model convergence. If there exists an adversary B, and two
rounds of aggregation t1, t2 ∈ [0, T], where B can distinguish between ∆t1 and ∆t2 , then we can construct an adversary A
breaks the security of the underlying ΠC . Let the challenger in the security game of ΠC as S . Specifically, there exists two
worlds (b = 0 or 1) for the OR game. S uses a random function when b = 0. When b = 1, S executes the actual protocol
ΠC . Then we build the A as follows. On input t1, t2 from B, the A asks for ski,t for all honest participants in the round t1
and t2. A can compute the masked updates from the Π prescribed. It generates two views ∆t1 ,∆t2 and sends them to the B.
Finally, A outputs whatever B outputs as the answer.

C.5. Resisting MIA

The MIA is effective primarily because the server is aware of the final aggregated result. If the server can manipulate the
parameters sent to different clients, it can introduce inconsistencies that influence the model training process. The key to
resisting this attack is to ensure that all clients start with the same initial model parameters. This uniformity can be achieved
through two main approaches: using a public bulletin board where the initial parameters are posted for everyone to see, or
through mutual agreement among clients to verify that the parameters they receive are indeed consistent across the network.
The public bulletin board approach suffers from centralized dependency, information leakage, and scalability issues, while
the mutual agreement method has high communication complexity, scalability limitations, and is vulnerable to Sybil attacks.
Both methods face challenges in maintaining consistency and security as the number of clients increases.

A significant advancement introduced by Janus is its novel design where the aggregation results are made visible only to the
users. In Janus, each user computes the final result locally, rather than relying on the server. As a result, even if the server
S0 distributes inconsistent model parameters to different users, it remains unaware of the actual aggregated model. This
paradigm shift ensures that the servers cannot gain insight into the final result, thus preventing them from launching MIA.

Additionally, we assume that S0 and the users will not collude. In other words, the server cannot conspire with any users
to manipulate the aggregation process. By decentralizing the aggregation computation and keeping the final result private
among the users, Janus effectively mitigates the risk of a successful MIA. This approach not only enhances the security of
the federated learning framework but also reinforces the privacy and trustworthiness of the system by limiting the server’s
influence over the final model.

19

