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Abstract

The concept of dimension is essential to grasp the complexity of data. A naive approach
to determine the dimension of a dataset is based on the number of attributes. More so-
phisticated methods derive a notion of intrinsic dimension (ID) that employs more complex
feature functions, e.g., distances between data points. Yet, many of these approaches are
based on empirical observations, cannot cope with the geometric character of contempo-
rary datasets, and do lack an axiomatic foundation. A different approach was proposed by
V. Pestov, who links the intrinsic dimension axiomatically to the mathematical concentra-
tion of measure phenomenon. First methods to compute this and related notions for ID
were computationally intractable for large-scale real-world datasets. In the present work,
we derive a computationally feasible method for determining said axiomatic ID functions.
Moreover, we demonstrate how the geometric properties of complex data are accounted for
in our modeling. In particular, we propose a principle way to incorporate neighborhood
information, as in graph data, into the ID. This allows for new insights into common graph
learning procedures, which we illustrate by experiments on the Open Graph Benchmark.

1 Introduction

Contemporary real-world datasets employed in artificial intelligence are often large in size and comprised of
complex structures, which distinguishes them from Euclidean data. To consider these properties appropri-
ately is a challenging task for procedures that analyze or learn from said data. Moreover, with increasing
complexity of real-world data, the necessity arises to quantify to which extent this data suffer from the
curse of dimensionality. The common approach for estimating the dimension curse of a particular dataset is
through the notion of intrinsic dimension (ID) (Bac & Zinovyev, 2020; Granata & Carnevale, 2016; Pestov,
2007). There exists a variety of work on how to estimate the ID of datasets (Facco et al., 2017; Levina &
Bickel, 2004; Costa et al., 2005; Gomtsyan et al., 2019; Bac & Zinovyev, 2020). Most approaches to quantify
the ID are based on distances between data points, assuming the data to be Euclidean. A multitude of works
base their modeling on the manifold hypothesis (Cloninger & Klock, 2021; Gomtsyan et al., 2019), which
assumes that the observed data is embedded in a manifold of low dimension (compared to the number of
data attributes). The ID then is an approximation of the dimension of this manifold. Pestov (2000) pro-
posed a different concept of intrinsic dimension by linking it to the mathematical concentration of measure
phenomenon. His modeling is based on a thorough axiomatic approach (Pestov, 2007; 2008; 2010) which
resulted in a novel class of intrinsic dimension functions. In contrast to the manifold hypothesis, Pestov’s ID
functions measure to which extent a dataset is affected by the curse of dimensionality, i.e., to which extent
the complexity of the dataset hinders the discrimination of data points. Yet, to compute said ID functions is
an intractable computational endeavor. This limitation was overcome in principle by an adaptation to geo-
metric datasets (Hanika et al., 2022). However, two limitations persisted: First, the computational effort was
found to remain quadratic in the number of data points, which is insufficient for datasets of contemporary
size; second, it is unclear how to account for complex structure, such as in graph data.

With this in mind, we propose in the present work a default approach for computing the intrinsic dimension
of geometric data, such as graph data, as used in graph neural networks. To do this, we revisit the compu-
tation of the ID based on distance functions (Hanika et al., 2022) and overcome, in particular, the inherent
computational limitations in the works by Pestov (2007) and Hanika et al. (2022). In detail, we derive a
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novel approximation formula and present an algorithm for its computation. This allows us to compute ID
bounds for datasets that are magnitudes larger than in earlier works. That equipped with, we establish a
natural approach to compute the ID of graph data.

We subsequently apply our method to seven real-world datasets and relate the obtained results to the
observed performances of classification procedures. Thus, we demonstrate the practical computability of
our approach. In addition, we study the extent to which the intrinsic dimension reveals insights into the
performance of particularly classes of Graph Neural Networks. Our code will be publicly available.

2 Related Work

In numerous works, the intrinsic dimension is estimated using the pairwise distances between data
points (Chévez et al., 2001; Grassberger & Procaccia, 2004). More sophisticated approaches use distances to
nearest neighbors (Facco et al., 2017; Levina & Bickel, 2004; Costa et al., 2005; Gomtsyan et al., 2019). All
these works have in common, that they assume the data to be Euclidean and that they favor local properties.

Recent work has drawn different connections between intrinsic dimension (ID) and modern learning theory.
For example, Cloninger and Klock (Cloninger & Klock, 2021) show that functions of the form f(z) = g(¢(x)),
where ¢ maps into a manifold of lower dimension, can be approximated by neural networks. On the other
hand, Wojtowytsch and Weinan (Wojtowytsch & E, 2020) prove that modern artificial neural networks
suffer from the curse of dimensionality in the sense that gradient training on high dimensional data may
converge insufficiently. Additional to these theoretical results, there is an increasing interest of empirically
estimating the ID of contemporary learning architectures. Chunyuan et al (Li et al., 2018) study the ID
of neural networks by replacing high dimensional parameter vectors with lower dimensional ones. Their
approach results in a non-deterministic ID. More recent works studied ID in the realm of geometric data and
their standard architectures. Ansuini et al (Ansuini et al., 2019) investigate the ID for convolutional neural
networks (CNN). In detail, they are interested to which extent the ID changes at different hidden layers and
how this is related to the overall classification performance. Another work (Pope et al., 2020) associates an
ID to popular benchmark image datasets. These two works on ID estimators do solely rely on the metric
information of the data and do not consider any geometric structure of image data.

Our approach allows to incorporate such underlying geometric structures while incorporating the mathe-
matical phenomenon of measure concentration (Gromov & Milman, 1983; Milman, 1988; 2010). Linking
this phenomenon to the occurrence of the dimension curse was done by Pestov (Pestov, 2000; 2007; 2008;
2010). He based his considerations on a thorough axiomatic approach using techniques from metric-measure
spaces. The resulting ID functions unfortunately turn out to be practically incomputable. In contrast, Bac
and Zinovyev (Bac & Zinovyev, 2020) investigate computationally feasible ID estimators that are related to
the concentration phenomenon. Yet, their results elude a comparable axiomatic foundation. Our modeling
for the ID of large and geometric data is based on Hanika et al. (2022). We build on their axiomatization
and derive a computationally feasible method for the intrinsic dimension of large-scale geometric datasets.

3 Intrinsic Dimension

Since our work is based on the formalization from Hanika et al. (2022), we shortly revisit their modeling
and recapitulate the most important structures. Based on this, we derive and prove an explicit formula to
compute the ID for the special case of finite geometric datasets. This first result is essential for Section 4.

Let D = (X, F,u), where X is a set and F C R¥ is a set of functions from X to R, in the following
called feature functions. We require that sup, ,cx dr(z,y) < oo, where dp(z,y) = sup;cp |f(z) — f(y)|-
If (X,dp) constitutes a complete and separable metric space such that p is a Borel probability measure on
(X,dr), we call D a geometric dataset (GD). The aforementioned properties are satisfied when it holds that
0 < |X|,|F| < oo and that F' can discriminate all data points, i.e., dp(z,y) > 0 for all z,y € X with x # .

Two geometric datasets Dy = (Xl,El,Ml),DQ = (Xa, Fy, p2) are isomorph if there exists a bijection
¢ : X1 — Xy such that Fy 0 ¢ = Fy and ¢.(iu1) = pa, where ¢.(u1)(B) == pi(¢~*(B)) is the push-
forward measure and the closures are taken with respect to point-wise convergence. From this point on we
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identify a geometric dataset with its isomorphism class. The triple ({0}, R, v{}) represents the trivial geo-
metric dataset. The axiomatization from Hanika et al. (2022) requires inter alia that any ID function maps
a geometric dataset to oo if and only if this dataset is trivial. We omit repeating the other axioms, as well
as convergence properties of geometric datasets, for which we refer the reader to the original work (Hanika
et al., 2022), and focus on the therein derived ID function.

Essential for the following is the concept of partial diameter (Gromov, 1999). Given o € (0,1) and a Borel
probability measure p on R, we define PartDiam(p, 1 — o) := inf{diam(B) | B C R Borel, u(B) > 1 — a},
where diam(B) := sup,, yc 5 |a—b|. Based on this the observable diameter of a geometric dataset D = (D, F, 1)
with respect to a € (0, 1) is defined via ObsDiam(D, —«) := sup ;¢ p PartDiam(f. (1), 1 —a). The idea behind
both notions with respect to our GD is to consider for computations only those parts of a dataset that have
at least a certain portion of the data with respect to the given measure.

Therefore, a high observable diameter indicates that the feature functions are able to discriminate points of
a set with a chosen minimal amount of measure. As an intrinsic dimension function should reflect the extent
to which data points are concentrated, it is thus useful to compute the observable diameter for varying values
1 — a. The following intrinsic dimension function (Hanika et al., 2022) accounts for this. Given a geometric
dataset D = (X, F, u), the intrinsic dimension (ID) of D is

a(D) = AD? where A(D) ::/0 ObsDiam(D, —a) da. (1)

In other words, lower values of intrinsic dimensionality correspond to geometric datasets with points that
can be better discriminated by the given set of feature functions. This intrinsic dimension function is, in
principle, applicable to a broad variety of geometric data, such as metric data, graphs or images. This
applicability arises from the possibility to choose suitable feature functions which reflect the underlying data
structure. The appropriate choice of feature functions is part of Section 5.

3.1 Intrinsic Dimension of Finite Data

We want to apply Equation (1) to real-world data. In the following, let D = (X, F,v) such that 0 < | X| < oo
and 0 < |F| < oo and let v be the normalized counting measure on X, i.e., v(M) = % for M C X. In

this case, it is possible to compute the partial diameter and Equation (1), as we show in the following. Let
a € (0,1) and let ¢, == [|X|(1—a)]. The following arguments were already hinted in previous work (Hanika
et al., 2022), yet not formally discussed or proven.

Lemma 3.1. For f € F it holds that

PartDiam(f.(v),1 — a) = |J\Eﬁi:ria Jnax, |f(z) — f(y)l-

Proof. Tt holds that

PartDiam(f.(v), 1—a) = inf{diam(B) | B C R Borel, v(f~(B)) > 1 — a}
= inf{diam(B) | B C R Borel,|{x € X | f(z) € B}|>cu}.

We have to show that

inf{diam(B) | B C R Borel, |{z € X | f(z) € B}| > ¢o} =
min{ max |f(z) = /()| | M C X, |M]| > ca}. @)

“<:” We show that {diam(B) | B C R Borel, [{z € X | f(z) € B}| > ¢o} 2 {maxg yerm | f(z) — f(y)| | M C
X, |M| > cq}. Let z :=max, yenr | f(z) — f(y)| such that M C X with [M| > ¢,. Without loss of generality
we assume that

Ve e X : (Gmi,me € M : f(mq) < f(x) < f(mg) = z € M).
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Let b := maxgen f(x), a == mingep f(z), then M
{diam(B)|B C R Borel,|{zx € X|f(z) € B}| > ca}-

“>:” Let B C R be Borel with [{x € X | f(z) € B} > ¢,. Furthermore, let M = {z € X | f(z) € B}.
It holds that diam(B) = sup, ,cp |z — y| > max, yen [f(x) — f(y)| because of the choice of M. As B was
chosen arbitrarily, it follows “>7.

{zr € X | f(x) € [a,b]}. Hence, z = b—a €

Finally, we need that

min{ max |f(z) = f)l | |M] 2 ca} = min{;gg)& [f(@) = f)l [ [M] = ca}.

“<” follows directly from the fact that {max, year |f(2)—f(y)| | M| > ca} 2 {maxg yen |f(z)—f(y)| | |M] =
Co}. “>7 follows from the fact that for every |M| > ¢, and for every N C M with |[N| = ¢, the following

equation holds: sup, e [f(2) = f(y)| = sup, yen [f(2) = f(y)]- H

This lemma allows for a more tractable formula for the computation of the partial diameter of a finite GD.
That in turn enables the following theorem.

Theorem 3.2. It holds that

|X]

|X| Zmax min max |f(z) — f(y)|. (3)

feF MCX zyeM
|M|=k

Proof. Let g : (O 1) = R, o maxyepr minysc x,|ar|=c, MaxXz yenr | f(x) — f(y)|. Because of Lemma 3.1 we

know that A(D fo ) da. The function g is a step function which can be expressed for each « € (0,1)
via

Z]l EFETQRE 1«)( a)max min max [f(z) — f(y)|

feF MCX zyeM
[M|=k

almost everywhere. Hence, Equation (3) follows from the definition of the Lebesgue-Integral with the fact
that miny e x,|arj=1 maxe yenr | f(2) — f(y)] = 0. O

3.2 Computing the Intrinsic Dimension of Finite Data

In this section we will propose an algorithm for computing the ID based on Equation (3). For this, given a
finite geometric dataset D, we use the shortened notations ¢, (D) = minysc x| ar|=r Maxz yenr [ f(2) = f(y)]
and ¢ (D) == maxsep ¢k, r(D). Then, Equation (3) can be written as

|X] |X]

= 31 2 ) = [ 2 e P W

The straightforward computation of Equation (4) is hindered by the task to iterate through all subsets
M C X of size k. This yields an exponential complexity with respect to | X| for computing A(D). We can
overcome this towards a quadratic computational complexity in |X| using the following concept.

Definition 3.3. (Feature Sequence) For a feature f € F let lyp € RIXI be the increasing sequence of all

values f(x) forx € X. We calllyp = (l{’D llfx?) the feature sequence of f.

Using these sequences, the following lemma allows us to efficiently compute ¢y, ¢(D).
Lemma 3.4. For ke {2,...,|X|}, f € F and l; p, it holds that

(D) € (LD =10 1 {0, |X|—k}}.
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Algorithm 1: The pseudocode to compute A(D) for a finite geometric dataset D = (X, p, F).

Input : Finite geometric dataset D = (X, u, F).
Output: A(D)
forall f in F do
| Compute feature sequence I p.
A(D)=0
forall k in {2,...,|X|} do
forall f in F do
L bk, (D) = minjcqo,.... | x|k} l,{fj — l{l@.
A(’D)-ﬁ- = maXfcF ¢k’f('D)
A(D) = HAD)
return A(D)

Proof. Choose M C X with |[M| = k such that ¢y (D) = maxy yenm |f(2) — f(y)| holds. Furthermore, let

M= (1)7,... 1)) be the increasing sequence of values f(m) for m € M and let j € {0,...,|X|— k} such
that (M = l{ﬁ. Since M is an ordered sequence of which each element is also an element of the ordered
sequence ¢ p, it holds that lg/f > l,];fj and thus l,]c” — l{w > ljfﬁ — lffl. There is an N C X with size k
such that max, yen |f(z) — f(y)| = l,]:’f; - lifl. Since M C X is of size k such that max, yenr |f(z) — f(y)]
is minimal, it follows I} — M = max, yen |f(2) — f(y)| < max, yen |f(2) — f(y)| = li’g - lﬁfl, hence
On,5 (D) = maxy yers | f(2) = F(y)| = 1 — 1)1 =15 — 1. O

To sum up, Lemma 3.4 enables the efficient computation of ¢ (D) via a sliding window, i.e., by using

only pairs of elements (l{@,li’_@). The algorithm based on this is shown in Algorithm 1. We want to

provide a brief description of the most relevant steps. In Line 4 we iterate through the sizes of X by

setting k € {2,...,]|X|} in order to eventually compute ¢ (D) in Lines 6 and 7. For this we also need
to iterate over all f € F (Line 5) to compute the necessary values of ¢ y(D) in Line 6. For a given
f e Fke{l,... |X|}, Line 6 consumes |X| — k + 1 subtraction operations. Assuming that computing

feature values can be done in constant time, the runtime for computing A(D) from the feature sequences is
O(|F] Z‘,i'z | X|—k+1) = O(F| Zfill_l k) = O(|F||X|?). The creation of all feature sequences requires

O(|F||X|1log(|X|)) computations , which is negligible compared to the aforementioned complexity. Thus,
Algorithm 1 has quadratic complexity with respect to | X|. Therefore, Algorithm 1 is a straightforward and
easy to implement solution for the computation of the ID. However, its quadratic runtime is obstructive for
the application in large scale data problems, which raises the necessity for a modification. We will present

such a modification in the following section.

4 Intrinsic Dimension for Large-Scale Data

In order to speed up the computation of the ID we modify Algorithm 1 with regard to the accuracy of the
result. Hence, we settle for an efficiently computable approximation of the ID. To give an overview over the
necessary steps, we will

1. approximate the ID by replacing {2,...,|X|} in Line 4 of Algorithm 1 with a smaller subset S C
{2,...,]X]|}, which we represent by S = {s1,...,s}. For all k &, we will use {¢s,,..., s} to
estimate ¢. This will eventually lead to two approximations of the ID, an underestimation and an
overestimation.

2. compare the upper and lower approximation to provide an error bound of these approximations with
respect to the exact ID. This error bound can be computed without knowing the exact ID.
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Algorithm 2: The pseudocode to compute A, _ (D), As 4 (D), A(D) for a finite GD D = (X, u, F).

Input : Finite GD D = (X, u, F'), support sequence s = (2 = s1,..., 8 = |X|), exact (Boolean)
Output: A, _(D), A, +(D), A(D)

forall f in F' do

L Compute feature sequence ¢ p.

A(D)=0

S0 = 1

¢So (D> =0

forall i in {1,...,(} do // Iterate over support sequence indices
forall f in F do

L ¢s,,5(D) = minje{o,...,\X|—si}l£;Ej —l{ﬁ- // Compute ¢, (D) with Lemma 3.4

¢s,(D) = maxser ¢s,,f (D)
Fs, , ={f€F|¢s 5(D)>ds (D)} // Compute Fy, , for Lemma 4.6
A(D)+ = ¢5,(D)

A, _(D) = ﬁ(A(D) + Zi;i sicj<sii 9s:(D)) // Compute lower ID from Definition 4.2

A 4+ (D) = ﬁ(A(D) + Zi;i D sicj<siis @i (D)) // Compute upper ID from Definition 4.2

// Approximation finished. Continue with exact computation, if desired.
if ezact then
forall ¢ in {1,...1} do

forall s; < j < s;11 do // Iterate through all indices between two support elements
forall f in F§, do // Only iterate through F,, because of Lemma 4.6
| ¢s,.4(D) = min; 1P _fb
si,f J€{0,...,| X |—si} sit+J 1+5-
¢;(D) =max({¢; (D) | f € Fi} U{os,}) // Use Lemma 4.6
A(D)+ = ¢,(D)

A(D) = ﬁA(D)
| return A; (D), A (D), A(D)
return A, _ (D), A, +(D)

3. argue how, the computation of the exact ID can be sped up knowing knowledge about ¢, (D) for
all s; € S. For this, we will in particular show that we can replace for all k € {2,...,| X[} \ M the
set I’ with a subset F', see Line 5-6 of Algorithm 1.

4. derive a formula which estimates the amount of computation cost which is saved by using only
subsets of F' for the computation of the ID. This information can be used to estimate and decide
whether the exact computation of the ID is computational feasible for a specific dataset.

The ensuing algorithm is shown in Algorithm 2. The underlying theory that justifies it is presented in the
following.

Theorem 4.1. For m >n > 2 and f € F it holds that ¢m, (D) > ¢n, (D) and ¢, (D) > ¢y (D).

Proof. The second inequality follows directly from the first one. Since per definition ¢, (D) =
minasc x| m|=m MaXe yers | f(2) — f(y)] and also ¢, r(D) = minycx |nj=n MaXy yen | f(z) — f(y)], we need
to show that for each M C X with |M| = m there exist N C X with [N| =n and max, yen |f(z) — f(y)| >
maxg yen | f(z) — f(y)|. It is sufficient to show that for n = m — 1. Choose 1,22 € M such that
maxy yenm | f(x) — f)| = |f(z1) — f(z2)]. As | M| > 2 we find x3 € M \ {z1,22}. Let N := M\ {z3}. It
holds that max, yeny |£(x) — F(5)] = |f(21) — f(@2)] = maxs yen 1£(z) — F). 0
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4.1 Computing Intrinsic Dimension via Support Sequences

Equipped with Theorem 4.1, we can bound A(D) and thus the intrinsic dimension through computing ¢,
forafew 2 =351 <s3--- <8 =|X|.

Definition 4.2. (Support Sequences and Upper / Lower ID) Let s = (2 = s1,...,81-1,8 = | X]|) be a strictly
increasing, finite sequence of natural numbers. We call s a support sequence of D. We additionally define

1 -1
R DI ED DD D)
i=1

i=1 5;<j<si41

l -1
8D = [To@+ X X 6ua)

=1 5;<j<S;41

and call accordingly 0s (D) = %(D)z the lower intrinsic dimension of D and 0s +(D) : the

_ 1
ot = A._(D)2
upper intrinsic dimension of D.

The governing idea is for ¢ € {1,...,l} and j with s; < j < s;41 to substitute ¢;(D) with ¢, (D) or
¢s,,. (D). With Theorem 4.1 this results in lower and upper bounds for A(D) and thus for the intrinsic ID.
By comparing upper and lower bounds, we can approximate the ID and estimate the approximation error.
Corollary 4.3. For support sequences s holds A; _ (D) < A(D) < As (D) and 05— (D) < 9(D) < 05 +(D).

Definition 4.4 (Approximation Error). For a support sequence s the (relative) approximation error of 9(D)
with respect to s is given by
95+ (D) — 95— (D)

95, (D)

E(s,D) ==

With the computation of the upper and lower ID it is possible to bound the error with respect to the ID
(D). The following corollary can be deduced from Corollary 4.3 and Definition 4.4.

Corollary 4.5. For a support sequence s the following statements hold:

0s,+(D)—0(D) 9(D)—0s,—(D
1. maX{ +(3()D) ( ), (6)5—(D)( )}7§ E(&D)

2. max{|0, - (D) — (D)1, |0(D) — ,,_ (D)} < |0+ (D) — 0, _ (D).

For a given support sequence s, Corollary 4.5 gives us an upper bound for the error when 05 4 (D) or d, _ (D)
are used to approximate O(D) without knowing O(D). Hence, we can compute (a lower bound) for the
accuracy when approximating the ID with Definition 4.4. As we can see in Section 5.1 and Section 5.3,
comparable small support sequences lead to sufficient approximations. Support sequences can also be used
to shorten the computation of the exact intrinsic dimension as the following lemma shows.

Lemma 4.6. Let s = (2 = s1,...,8 = |X]|) be a support sequence. Furthermore, leti € {1,...,1—1} and
let j € N with s; < j < sip1. Let Fs, :={f € F | ¢g,,, . 1(D) > ¢s5,(D)}. Then it holds that

¢;(D) = max({¢; s(D) | f € Fo,} U{¢s,(D)}).

Proof. “>” follows from Theorem 4.1 and the definition of ¢;(D). “<” holds because for f € F'\ Fj, it holds
that ¢; (D) < ¢s,.,,7(D), due to Theorem 4.1, and ¢, , (D) < ¢4, (D), due to the construction of Fy,. [

Hence, given a specific j, it is possible to compute ¢;(D) using a subset of F. Based on the particular GD
D, this fact can considerably speed up the computation of the ID of D, as we will see in Section 5.

An algorithm to approximate and compute the ID through support sequences is depicted in Algorithm 2.
This algorithm takes as input a GD D and a chosen support sequence s. A reasonable choice for support
sequences is discussed in Section 5.1. The output is A, _ (D), As (D), and A(D), if desired (Line 14). From
Line 1 to Line 13, the feature sequences as well as the lower and upper ID are computed. Line 15 to Line 21
cover the exact computation of the intrinsic dimension.
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Table 1: Statistics of all datasets used in this work.

‘ Nodes Edges Attributes
PubMed 19,717 88, 648 500
Cora 2,708 10, 556 1,433
CiteSeer 3,327 9,104 3,703
ogbn-arxiv 169, 343 1,166,243 128
ogbn-products 2,449,029 61,859,140 100
ogbn-mag 1,939,743 21,111,007 128
ogbn-papers100M | 111,059,956 1,615,685,872 128

4.2 Estimating Computational Costs

Let s = (s1,...,8;) be a support sequence. After the computation of Fy,,...,Fs,, we can estimate how
much computation steps we can avoid in order to compute 9(D) with Algorithm 2 compared to Algorithm 1.
Together with the error function E(s), this estimation can help us to decide if it is desirable to compute
the exact value O(D) or leave it at d; (D) and 05,4 (D). This is done in the following manner. For a
specific f € F, Lemma 3.4 shows that the computation of ¢, ¢(D) requires | X| —k+ 1 different subtractions
and to keep the minimum value. Hence, the cost for computing A(D) and therefore 9(D) via Algorithm 1
can be estimated via O(|F| ZL)i|2(|X\ —k+1) = O(F| Z‘k)i'l_l k) = O(|F|(M)) However, if we
use Algorithm 2, we solely have the cost to compute ¢;,. For all values j with s; < j < s;41, our cost
estimation is |F;|(|X| — j + 1). Hence, for a given support sequence s = (sy,...,$;), we can estimate how
many computations are saved using the following notions.

We address the naive computation costs for computing the ID of a GD with

| X]? — 1 X]

C(D) = [FI(=

).

In contrast, for a support sequence s = (s1,...,s;) of D, the computation costs are

1 -1
CD) = (FIY X s+ D+ S IR, S [X|—j+1. (6)
k=1 k=1

SE<J<Sk41

Hence, the saved costs of s are

Once we have computed ¢, (D) and F;, depending on the saved costs, we can decide to discard the support
sequence or to continue further computations with it. Furthermore, using the error estimation, we can decide
to compute the exact ID or to settle with the approximation.

5 Intrinsic Dimension of Real-World Graph Data

Graph data is of major interest in the realm of geometric learning and beyond. In the following, a graph
dataset D = (X,G) consists of an undirected, unweighted graph G = (V, E), where V = {v1,...,v,}
is a finite set of vertices, £ C (‘2/) and X € R"*% is a d-dimensional attribute matriz. The row-vector
X =(Xi1,...,X;q) is called the attribute vector of v;.

Learning from such data is often done via graph neural networks. The idea is to extend common multi-layer
perceptrons by a so called neighborhood aggregation, where internal representations of graph neighbors are
combined at specific layers. In earlier works, neighborhood aggregation is done at multiple layers (Kipf &
Welling, 2017; Hamilton et al., 2017; Velickovic et al., 2018). Due to scalability, recent approaches perform
multiple iterations of neighborhood aggregation as a preprocessing step and then use the aggregated features
as combined input (Rossi et al., 2020; Sun & Wu, 2021; Zhang et al., 2021). These methods have the form
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Figure 1: Example of an k-hop geometric dataset with k& = 1. Given are a graph and an attribute matrix
X. Then, the normalized adjacency matrix A and then AX are computed. The feature set F' consists of the
coordinate projections of X and AX. In the figure, every column after “F =" represents one f € F. Note,
that in this example the normalization factor ﬁ is 1.

X = (X, AX, A2X .. , AkX) where A is a transition matriz that is derived from the graph structure. The
most common choice for such a matrix is the normalized adjacency matrix, i.e., A; ; = (y/deg(v;) deg(v;))~*
if v; € N(v;) and A; j = 0 else. Here, N (v;) = {v; € V | {vs,v;} € E}U{v;} is the set of neighbors of v; and
deg(v;) = |N(v;)] is the node degree of v;. Motivated by this, we propose to study the intrinsic dimension
of real-world graph datasets with the help of the following geometric datasets.

Definition 5.1. Let k € N and A be the normalized adjacency matriz of a graph dataset D. Furthermore,
let dax = MaXje(1,... gy MAX; ke(1,...n} | Xij — Xk,j|. We call the set

1 A .
FD,k = {’Uil—> 7(AmX)ZJ ‘ m € {0,71{3},] € {1,,d}}

dIIlaX

the k-hop feature functions of D. Let v be the normalized counting measure on V. If there exist for each
vi, v € V with v; # v; elements m € {0,...,k},j € {1,...,d}} such that 2—(A™X); ; # 72— (A" X))y,
then Dy, = (V, Fp ,v) is a GD. We call it the k-hop geometric dataset of D.

Basic statistics of all seven graph datasets considered in the following sections are depicted in Table 1. The
statistics for Cora, PubMed and CiteSeer were taken from PyTorch Geometric !. The statistics of the
OGB datasets were taken from the Open Graph Benchmark. 2 An example of a k-hop geometric dataset
is depicted in Figure 1. It is well-known that the normalized adjacency matrix A e R™™ of a graph has a
spectral radius of 1. As A is symmetric, this yields ||Az — Ay|| < ||z — y|| for 2,y € R™. The significance
of this property is for the respective computations, however, limited, since it primarily leads to insights of
the behavior of the columns of X under multiplication with powers of A. In contrast, the attribute vectors
of the vertices are represented via the rows. Moreover, we may point out that we are not considering the
euclidean distances between attribute vectors, but differences between coordinate values. Thus, the spectral
radius of A does not provide direct insights into Fp j.
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Figure 2: Errors and saved costs for different lengths of the support sequence.

5.1 Choosing Support Sequences

Algorithm 2 relies on a proper choice for a support sequence s. To choose a reasonable s, two properties
have to be considered. Namely, the length of the support sequence and the spacing of the elements in the
sequence. Regarding the second point, we decided to use a sequence with log scale spacing. To get such a
support sequence, we first choose a geometric sequence § = (s1,...s;) of length [ from |X| to 2. We derive
the final support sequence s from s’ = (|| X|+2—s1],..., [|X|+2 — s;]) by removing duplicated elements.

In the following, we study the error and the saved costs for different lengths [ of the support sequence.
Here, for a geometric dataset, we investigate how E(s,D) and SC(s) vary for s chosen with [ € {|0.001
|X]], [0.002%|X]|],...,|0.05%|X]||}. Hereifl = |r«|X|], we call r € R the relative support size of the resulting
support sequence s. We experiment with common benchmark datasets, namely ogbn-arxiv, ogbn-mag
and ogbn-products from the Open Graph Benchmark (Hu et al., 2020; 2021). Since for ogbn-mag only a
subset of vertices is equipped with attribute vectors, we generate the missing vectors via metapath2vec (Dong
et al., 2017). The results are depicted in Figure 2.

5.1.1 Results

For all datasets, low errors and high saved costs can be reached with a remarkably short support sequence.
With relative support sizes of under 0.015 all datasets are approximated with an accuracy of over 99%.
Furthermore, the saved costs for sequences with comparable relative support sizes is over 0.98. It stands
out, that for the larger datasets ogbn-mag and ogbn-products, shorter sequences (relative to the size of
the dataset) lead to lower errors and higher saved costs then for ogbn-arxiv. Our results further indicate,
that a relative support size between 0.01 and 0.02 is a reasonable range for maximizing the saved costs. For
longer support sequences, the saved cost decrease while the error does not change dramatically, at least for
the 2-hop geometric datasets of ogbn-mag and ogbn-products.

Thttps://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.
Planetoid
?https://ogb.stanford.edu/docs/nodeprop
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5.2 Neighborhood Aggregation and Intrinsic Dimension

We study how the choice of k affects the intrinsic dimension value of the k-hop geometric dataset. For this,
we compute the intrinsic dimension for k£ € {0,1,...,5} for six datasets: the three datasets mentioned above
and PubMed, Cora and CiteSeer (Yang et al., 2016), which we retrieved from PyTorch Geometric (Fey
& Lenssen, 2019). Furthermore, we train GNNs which use the feature functions of k-hop geometric datasets
as information for training and inference. This allows us to discover connections between the ID of specific
datasets with respect to the considered feature functions and the performance of classifiers, which rely on
these feature functions. For this, we train SIGN models (Rossi et al., 2020) for & € {0,...,5}. Implementation
details and parameter choices can be found in Appendix A.1.

5.2.1 Baseline Estimator

To investigate to which extent our ID function surpasses established ID estimators with respect to estimating
the discriminability of a dataset, we also compute all ID values with the Maximum Likelihood Estimator
(MLE) ID (Levina & Bickel, 2004). This estimator is commonly used in the realm of deep learning (Pope
et al., 2020; Ma et al., 2018a;b). For our experiments, we use the corrected version proposed by MacKay
& Ghahramani (2005). Note, that the MLE is only applicable to datasets X € R? and is thus not able to
respect the neighborhood aggregated feature functions. Hence, we incorporate the neighborhood information
of a k-hop dataset by concatenating feature vectors with the neighborhood aggregated feature vectors. Due
to performance reasons, only subsets of the data points are considered For ogbn-mag and ogbn-products.
More details to our usage of the MLE are discussed in Appendix A.2.

5.2.2 Results

We find that one iteration of neighborhood aggregation always leads to a huge drop of the ID when using
our ID function. However, consecutive iterations only lead to a small decrease. For the datasets from
OGB, some iterations lead to no drop of the ID dimension at all. For ogbn-mag, only the first iteration
significantly decreases the ID, for ogbn-products, only the first two iterations are relevant for decreasing
the ID. It stands out, that for ogbn-arxiv, the second and third iteration lead to no significant decrease,
but the fourth and fifth do. The results for PubMed stand out. Here, the second iteration of neighborhood
aggregation leads to a comparable decrease as the first one.

Considering the classification performances, the first iteration is again the key factor, leading to a significant
increase in accuracy. As for the ID, the PubMed dataset behaves differently than the other datasets: the
second iteration of neighborhood aggregation leads to a comparable increase in accuracy as the first.

The MLE ID behaves different. Here, no pattern of the first iteration of aggregation being the key for
decreasing the data complexity is observed. For some datasets, the first rounds of feature aggregation may
even increase the intrinsic dimension. To sum up, our results indicate that our ID is a better indicator for
classification performance then the MLE ID.

5.3 Approximation of Intrinsic Dimension on Large-Scale Data

To demonstrate the feasibility of our approach, we use it to approximate the ID of the well known, large
scale ogbn-mag-papers100M data. For this, we construct the support sequence as in Section 5.1 with
1 =100.000. The results are depicted in Table 3. On our Xeon Gold System with 16 cores, approximating the
ID of a k-hop geometric dataset build from ogbn-mag-papers100M is possible within a few hours. While
the ID drops for every iteration of neighborhood aggregation, the decrease becomes smaller. The ID of the
different k-hops can be differentiated by the approximation, i.e., 9s,—(D;) > 05,4 (Dit1) for i € {0,...,4}. It
stands out, that even for such a short support sequence (compared to the size of the dataset), the observed
error is remarkably low. In detail, we can approximate the ID with an accuracy of over 99.95%. It is further
remarkable, that the error does not change significantly for different k. We observed this effect also for
the other datasets. Our results on ogbn-papers100M indicate, that with short support sequences, we can
sufficiently approximate the ID of large-scale graph data.
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Table 2: Intrinsic dimension and performances on classification tasks. In the upper table, we display IDs
for all k-hop geometric datasets for k& € {0,...,5}. In the middle table, we display the ID estimated by the
MLE baseline. In the lower table we display mean and standard derivations for test accuracy of a standard
SIGN model on the classification tasks which belongs to the dataset.

k-hop
Dataset 0 ! 2 3 4 5
PubMed 2542.3425 2336.6611 2077.5821 2077.0953 2077.0886 2077.0848
Cora 6.2523 3.8324 3.6689 3.6627 3.6624 3.6623
CiteSeer 22.3337 11.3166 10.2347 9.8134 9.5491 9.3795
ogbn-arxiv 83.9160 31.4731 31.4731 31.4730 30.7370 30.3767
ogbn-products 1,169,323.2496  1,169,044.4736  1,169,044.2216  1,169,044.2216 ~ 1,169,044.2216 1,169, 044.2216
ogbn-mag 2,311.3509 2,284.0290 2,284.0290 2,284.0290 2,284.0290 2,284.0290
k-hop
m 0 1 2 3 4 5
PubMed 24.4623 24.7303 23.3924 22.2779 21.3495 20.5642
Cora 30.6049 28.1785 19.9316 10.8186 9.2970 8.6155
CiteSeer 58.9593 26.5031 16.5556 12.0495 9.3171 7.9572
ogbn-arxiv 16.2948 19.8571 18.9068 18.2265 17.4905 16.9325
ogbn-products 2.8694 4.7542 4.7950 4.7659 4.6943 4.6687
ogbn-mag 30.7024 33.2848 31.5140 30.4844 29.9080 29.5956
k-hop
W 0 1 2 3 4 5
PubMed .6850 4+ .0145 7191 +.0123 7378 £+ .0362 7565 £+ .0165 7615 £+ .0160 7571 £+ .0234
Cora .5329 +.0120 7223 +.0117 7766 £ .0045 7870 £+ .0076 7917 £+ .0084 7951 £+ .0047
CiteSeer 14975 4+ .0075 .6165 £+ .0160 .6530 £ .0101 .6677 £ .0074 .6695 £ .0085 .6734 £ .0080
ogbn-arxiv .5341 + .0090 .6572 £ .0052 .6903 £ .0056 6917 £ .0074 .6901 £ .0083 .6890 £ .0051
ogbn-products .5969 + .0016 .7204 £+ .0017 .7590 £+ .0017 .7660 £+ .0014 7678 £+ .0022 7687 +.0019
ogbn-mag 2712 +.0020 .3635 +.0029 .3879 £+ .0030 .3959 £+ .0029 .3983 £+ .0050 4012 £+ .0040

Table 3: Approximation of intrinsic dimension for oghn-papers100M.

N\o 1 2 3 4 5

0s—(D) | 282.2380 171.7385 148.3323 137.7662 128.2751 125.3418
0s,+(D) | 282.3387 171.7997 148.3852 137.8153 128.3208 125.3864
E(s,D) | 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

6 Conclusion and Future Work

We presented a principle way to efficiently compute the intrinsic dimension (ID) of geometric datasets.
Our approach is based on an axiomatic foundation and accounts for underlying structures and is therefore
especially tailored to the field of geometric learning. We proposed a novel speed up technique for an algorithm
which has quadratic complexity with respect to the amount of data points. This enabled us to compute the
ID of several real-world graphs with up to millions of nodes. Equipped with this ability, we shed light on
connections of classification performances of graph neural networks and the observed intrinsic dimension for
common benchmark datasets. Finally, using a novel approximation technique, we were able to show that
our method scales to graphs with over 100 million nodes and billions of edges. We illustrated this by using
the well-known ogbn-papers100M dataset.

Future work includes the identification of suitable feature functions for other domains, such as learning on text
or image data. Incorporating the structure of such datasets into the computation of intrinsic dimensionality
is an open research problem. Another promising research direction is to investigate how the ID of datasets
could be manipulated. Since our investigations suggest connections between a low ID and high classification
performances, this has the potential to enhance learning procedures.
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A Appendix

A.1 Setup of SIGN classifiers

For PubMed, Cora and CiteSeer, we train on the classification task provided by Pytorch Geometric (Fey
& Lenssen, 2019) which was earlier studied by Yang et al (Yang et al., 2016). All Open Graph Benchmark
datasets are trained and tested on the official node property prediction task.> Our goal is not to find optimal
classifiers but to discover connections between the choice of k, the ID and classifier performance. Thus,
we omit excessive parameter tuning and stick to reasonable standard parameters. For all tasks, we use a
simple SIGN model with one hidden inception layer and one classification layer. For PubMed, CiteSeer
and Cora, we use batch sizes of 256, hidden layer size of 64 and dropout at the input and hidden layer
with 0.5. The learning rate is set to 0.01. All these parameters were taken from Kipf and Welling (Kipf
& Welling, 2017). For ogbn-arxiv, ogbn-mag and ogbn-products, we stick to the parameters from the
SIGN implementations on the OGB leaderbord. For ogbn-arxiv, we use a hidden dimension of 512, dropout
at the input with 0.1 and with 0.5 at the hidden layer. For ogbn-mag, we use a hidden dimension of 512, do
not dropout at the input and use dropout with 0.5 at the hidden layer. For ogbn-products, we use a hidden
dimension of 512, input dropout of 0.3 and hidden layer dropout of 0.4. For all ogbn tasks, the learning
rate is 0.001 and the batch-size 50000. For all experiments, we train for a maximum of 1000 epochs with
early stopping on the validation accuracy. Here, we use a patience of 15. These are the standard parameters
of Pytorch Lightning.* For all models, we use an Adam optimizer with weight decay of 0.0001. We report
mean test accuracies over 10 runs. The intrinsic dimensions and the test accuracy are shown in Table 2.

A.2 Details on Baseline ID Estimator

To use the MLE ID, we have to convert the k-hop geometric dataset (V, Fp y,v) of graph data D = (X, G),

where X EAR"Xd into a real-valued feature matrix X. This done by concating the rows of X with the rows
of AX,...A*X ie., X € R™*(F+1d with

A“__{Xi,j jed{l,....d},
.3 T

(A"X),s j=nd+] for ne{l,....k},je{l,...d}.

The MLE is given via

. 1 d(X;, Ni(X;))
MLE(X) = ——— log(—————%% 7
)= i 2 2 G w ) "
where d is the euclidean metric and N;(X;) is the j-th nearest neighbor of X; with respect to the euclidean

metric. Thus, the MLE depends on a parameter [, which we set to 5.
We implement the MLE by using the NearestNeighbors class of scikit-learn (Pedregosa et al., 2011) and then
building the mean of all log(%) with i € {1,...,n} and j € {1,...,5}. Here, we skip all elements

where d(X;, N;(X;)) = 0. This can happen, when X has duplicated rows, representing data points with
equal attribute vectors.

For ogbn-mag and ogbn-products, computing Equation (7) is not possible due to performance reasons.
Here, we sample 169, 343° indices I C {1,...,n} and only compute

o1 —, d(X;, N(X;))
MLE(X) := WD ;glog(m).

Shttps://ogb.stanford.edu/docs/nodeprop/
4https://www.pytorchlightning.ai/
5This is the amount of nodes of ogbn-arxiv, the largest network for which the full computation was feasible.
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