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ABSTRACT

Diffusion-based denoising models have demonstrated impressive performance in
probabilistic forecasting for multivariate time series (MTS). Nonetheless, existing
approaches often model the entire data distribution, neglecting the variability in
uncertainty across different components of the time series. This paper introduces
a Diffusion-based Decoupled Deterministic and Uncertain (D3U) framework for
probabilistic MTS forecasting. The framework integrates non-probabilistic fore-
casting with conditional diffusion generation, enabling both accurate point predic-
tions and probabilistic forecasting. D3U utilizes a point forecasting model to non-
probabilistically model high-certainty components in the time series, generating
embedded representations that are conditionally injected into a diffusion model.
To better model high-uncertainty components, a patch-based denoising network
(PatchDN) is designed in the conditional diffusion model. Designed as a plug-and-
play framework, D3U can be seamlessly integrated into existing point forecasting
models to provide probabilistic forecasting capabilities. It can also be applied
to other conditional diffusion methods that incorporate point forecasting mod-
els. Experiments on six real-world datasets demonstrate that our method achieves
over a 20% improvement in both point and probabilistic forecasting performance
in MTS long-term forecasting compared to state-of-the-art (SOTA) probabilistic
forecasting methods. Additionally, extensive ablation studies further validate the
effectiveness of the D3U framework.

1 INTRODUCTION

Multivariate time series (MTS) are prevalent in real-world applications. Probabilistic MTS forecast-
ing is widely used as a decision support in domains such as finance (Wiese et al., 2020), healthcare
(Teng et al., 2020) and power energy (Nowotarski & Weron, 2018). Recently, autoregressive mod-
els (Rasul et al., 2021; Li et al., 2022; Tashiro et al., 2021) have achieved significant success in
short-term forecasting tasks within the field of deep learning-based probabilistic time series fore-
casting. Nonetheless, the low generation efficiency of autoregressive models over long sequences
limits their application in long-term forecasting tasks. To address this challenge, non-autoregressive
approaches have started to gain attention. Shen & Kwok (2023) proposes a non-autoregressive dif-
fusion model, introducing two novel conditioning mechanisms to achieve high-quality long-term
time series forecasting. Li et al. (2024a) designs a non-autoregressive framework that integrates a
conditional diffusion process with a Transformer model to enable distributional forecasting for MTS
data. Shen et al. (2024) decomposes time series into multiple scales, incorporating them into both
the forward and reverse processes of the diffusion model, enabling probabilistic forecasting through
non-autoregressive denoising.

However, the aforementioned methods pay less attention to the differences in uncertainty across
various components of time series data. We provide two case studies to analyze these differences:

(1) The first case study focuses on two representative point forecasting models (Liu et al., 2022;
Nie et al., 2023). The input series is first decomposed into trend, seasonal, and residual compo-
nents, denoted as XT , XS , and Xr, respectively (see Appendix B.1 for details on the decomposition
method). Each model is then trained using both the original series X and the series with the residual
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component removed, XT +XS , while keeping all other model parameters and settings unchanged.
The model performances under both conditions are compared in Fig. 1a.

(2) In the second case study, a patch-based vector quantization (VQ) model (Zhao et al., 2024)
is employed to further analyze the uncertainty of the residual component. Specifically, the VQ
model is first trained using XT +XS . Subsequently, several patches are randomly selected from the
training set and input into the trained VQ model in two forms: without decomposition (X) and with
decomposition (XT +XS), to observe their quantization distributions. The Kullback-Leibler (KL)
divergence between the quantization distribution and a uniform distribution is used as a measure of
data uncertainty. A larger KL divergence indicates that the input sequence is better quantized and
more likely to exhibit lower uncertainty. Several examples are illustrated in Fig. 1b
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(a) Case study 1.
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(b) Case study 2.

Figure 1: Differences in modeling difficulty and uncertainty across different components of time
series. (a) Both models show no significant changes in predictive performance after the removal of
residual components. ’All’ indicates training with the original series, while ’T+S’ indicates training
without the residual component. Results are averaged from all prediction lengths {96,192,336,720}.
(b) Quantization distribution comparison of time series patches. KDL denotes the KL divergence.
’All’ means containing residuals, ’T+S’ means no residuals.

The results of the above case studies provide two key insights:

• From the perspective of series decomposition, point forecasting models exhibit varying
capabilities in modeling XT , XS , and Xr. When only the trend and seasonal components
are retained as input, the performance of these models does not significantly degrade and,
in some cases, even improves. This suggests that the models are less effective at modeling
the residual component compared to the trend and seasonal components.

• The difficulty in modeling the residual component appears to be related to the uncertainty
it contains. Experiments using VQ-based point forecasting models show that the residual
information increases the complexity of quantizing the input series. By randomly selecting
five batches of data from the ETTm1 and Traffic datasets, the quantization distribution of all
patches within each batch is analyzed. Results reveal that over 57% and 56% of the patches
in the two datasets, respectively, exhibit worse quantization performance after the residual
component is reintroduced. This suggests that the residual component of time series data
tends to contain more uncertainty than the trend and seasonal components.

Based on insights from the aforementioned case studies, we propose a Diffusion-based Decoupled
Deterministic and Uncertain (D3U) framework for long-term MTS probabilistic forecasting. The
D3U framework leverages pre-trained point forecasting models for non-probabilistic modeling of
high-certainty components in the data, while employing a diffusion-based generative model to cap-
ture the probabilistic distribution of high-uncertainty components. The D3U framework offers a key
advantage: The pre-trained point forecasting model provides strong point forecasting capabilities
for the overall framework and generates useful representations of high-certainty components, which
serve as conditional information for the diffusion denoising model. This enhances the diffusion
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Figure 2: An illustration of the proposed D3U framework. The framework consists of two main
components: the conditioning network and the conditional Denoising Diffusion Probabilistic Model
(DDPM). The conditioning network is responsible for modeling the high-certainty components of
the data, providing condition information for the reverse process of the conditional DDPM. The
conditional DDPM focuses on modeling the distribution of the high-uncertainty components.

model’s ability to capture the data distribution. Additionally, the pre-trained model can be frozen
during training, thereby reducing the overall computational cost.

Our contributions are summarized as follows:

1. Motivated by the phenomenon observed in case studies that point forecasting models ex-
hibit varying capabilities in modeling the deterministic and uncertain components of time
series, we propose a novel complementary modeling approach that combines point fore-
casting models and probabilistic forecasting models from the perspective of decoupling the
deterministic and uncertain components of time series data. Specifically, point forecast-
ing models and probabilistic forecasting models are used to model the high-certainty and
high-uncertainty components of time series data, respectively.

2. We propose D3U, a long-term MTS probabilistic forecasting framework based on the com-
plementary modeling. D3U leverages a pre-trained point forecasting model to learn the
high-certainty components and injects valuable representations of these components as
conditional information into the reverse process of a conditional DDPM, aiding it in per-
forming probabilistic forecasting on the high-uncertainty components. The final prediction
combines the probabilistic forecast with the non-probabilistic forecast from the point fore-
casting model, enabling D3U to achieve accurate data distribution modeling while main-
taining strong point forecasting performance. D3U is a plug-and-play framework that can
be seamlessly integrated with existing point forecasting models and diffusion-based long-
term forecasting models, improving both point and probabilistic forecasting capabilities.

3. Within the D3U framework, we design a patch-based denoising network, PatchDN, to en-
hance the diffusion model’s ability to represent the high-uncertainty components in time
series data. Our method demonstrates excellent probabilistic forecasting performance and
competitive point forecasting capabilities across six real-world datasets.
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2 BACKGROUND

2.1 UNCERTAINTY IN POINT FORECASTING MODELS

Point forecasting models are non-probabilistic models in nature. Given a time series input X , these
models directly learn a mapping from the input space to the output space, providing the conditional
expectation of the prediction target, E(Ŷ |X) := F (X), where F (·) is a parameterized function and
Ŷ is the model’s output. We analyze the input series from the perspective of time series decompo-
sition (Petropoulos et al., 2022), decomposing it as follows: X = Xnf + ϵX , where ϵX represents
the inherent noise in X , and Xnf is the ideal noise-free time series. Further decomposition of Xnf

yields XT +XS , where XT and XS represent the trend and seasonal components, respectively. In
an ideal scenario, the inherent noise ϵX corresponds to the residual component, XR. However, in
practice, it is not possible to fully separate ϵX from X , nor to obtain purely trend and seasonal com-
ponents. Therefore, we decompose the residual as follows: XR = Xr + ϵ′X , where Xr represents
the non-noise component of the series after removing the evident trend and seasonal information,
and ϵ′X is the noise component of ϵX , excluding the noise that remains in XT and XS .

The prediction error of a point forecasting model, ∥Y − Ŷ ∥, includes both the error caused by insuf-
ficient modeling of XT , XS , and Xr, as well as the error due to the inherent noise ϵ′X . Therefore,
∥Y − Ŷ ∥ can be viewed as a combination of aleatoric uncertainty and epistemic uncertainty (Li
et al., 2022), encompassing a majority of the uncertainty information in the sequence that is difficult
for point forecasting models to capture.

2.2 PATCH IN TIME SERIES FORECASTING MODELS

In recent years, advancements in natural language processing (NLP) (Radford et al., 2019) and com-
puter vision (CV) (Dosovitskiy et al., 2020) have inspired the development of many patch-based
time series forecasting models. Nie et al. (2023); Zhang & Yan (2023) segment input time series
into subseries-level patches and encode them as embedded representations for long-term forecast-
ing tasks. Zhou et al. (2023) further employs GPT-2 as a tokenizer to generate discrete embedded
representations of patches. Jin et al. (2023); Chang et al. (2023) propose methods to align time
series patches with pre-trained large language models (LLMs), improving the discrete representa-
tions of time series. The use of patches for long-term forecasting has gained widespread consensus,
as patches are more effective at extracting local semantic information. However, current diffusion-
based probabilistic forecasting models for time series (Shen & Kwok, 2023; Li et al., 2024a) pri-
marily focus on pointwise modeling of time series data in the design of the denoising network.

2.3 DIFFUSION-BASED PROBABILISTIC TIME SERIES FORECASTING

Diffusion-based probabilistic models (Sohl-Dickstein et al., 2015) have recently gained prominence
as a potent method in generative modeling. The DDPM (Ho et al., 2020), a widely known diffusion
model, is extensively applied in probabilistic generation tasks. DDPM consists of two primary
processes: the forward (diffusion) process and the reverse (denoising) process. Given an input
vector y0, the forward process gradually adds zero-mean Gaussian noise into y0 following a Markov
chain over K steps:

q(y1:K |y0) :=
K∏

k=1

q(yk|yk−1), q(yk|yk−1) := N (yk;
√
1− βk y

k−1, βkI), k = 1, . . . ,K, (1)

where βk is a small positive constant denoting the variance of the Gaussian noise added at step k.

In practice, yk can be sampled directly from y0 in a single step:

q(yk|y0) = N (yk;
√
ᾱk y0, (1− ᾱk)I), yk =

√
ᾱk y0 +

√
1− ᾱk ϵ, (2)

where ᾱk :=
∏k

i=1 αi with αi := 1− βi, and ϵ is noise sampled from N (0, I).

The reverse process aims to recover the original data y0 from the noisy sample yk through a denois-
ing procedure. This process is formulated as a Markov chain with learned transitions, where the
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noise is progressively removed at each step:

pϕ(y
0:K) := p(yK)

K∏
k=1

pϕ(y
k−1|yk), pϕ(yk−1|yk) := N (yk−1;µϕ(y

k, k),Σϕ(y
k, k)) (3)

The variance Σϕ(y
k, k) is typically fixed as σ2

kI, while the mean µϕ(y
k, k) is parameterized by

a neural network with parameters ϕ. This network is generally used for noise estimation or data
prediction. Once the model is trained, samples can be iteratively drawn from the reverse process
pϕ(y

k−1|yk) to reconstruct y0.

3 PROPOSED METHOD

In this section, we present D3U, a novel diffusion-based probabilistic MTS forecasting framework
that decouples the deterministic and uncertain components of the MTS data. As illustrated in Fig. 2,
D3U consists of two main parts: a pre-trained point forecasting model (conditioning network) and a
patch-based conditional DDPM.

Given a history MTS data x1:H ∈ RC×H and the corresponding prediction target y1:L ∈ RC×L,
where H and L denote the lookback window size and forecast window size, respectively. C denotes
the number of variables in the MTS data. We use the conditioning network, denoted as fθ, to obtain
the conditional expectation ŷ := E(ŷ|xh; θ) ∈ RC×L for the high-certainty components, where
xh can either be the xT + xS or directly the original series x1:H . The specific choice depends
on the modeling preferences and capabilities of the point forecasting model. We assume that the
prediction error of fθ, ∥y− ŷ∥, contains most of the high-uncertainty components that are difficult to
model using a point forecasting model. The conditional DDPM is used to model these components’
distribution pϕ(y − ŷ|fenc(xh);ϕ) , where ϕ denotes the parameters of the denoising network gϕ.
Here, fenc denotes the encoder of fθ and pϕ(y − ŷ|fenc(xh)) is the conditional probability density
function of y − ŷ. fenc injects information from xh as a condition into gϕ. The final prediction is
ŷg + ŷ, where ŷg is sampled from pϕ.

3.1 CONDITIONING NETWORK

In the D3U framework, one of the primary roles of the conditioning network is to extract useful
information from xh to effectively guide the denoising process in the conditional DDPM. Drawing
inspiration from advancements in image generation (Rombach et al., 2022; Radford et al., 2021),
the conditioning network is implemented as a pre-trained, well-established point forecasting model,
such as NSformer (Liu et al., 2022) or PatchTST (Nie et al., 2023). Moreover, existing MTS con-
ditional DDPM models (Shen & Kwok, 2023; Li et al., 2024a) typically utilize ŷ as the conditional
input for the denoising network. However, this approach may overlook valuable intermediate fea-
tures, particularly in long-term forecasting tasks. Experimental results demonstrate that leveraging
fenc(xh) as the guiding signal provides more effective guidance, improving the denoising process
and enhancing prediction accuracy.

In the following content, we consistently use SparseVQ (Zhao et al., 2024) as the conditioning
network. SparseVQ is a Transformer-based time series model that integrates VQ (Van Den Oord
et al., 2017) with patching techniques, demonstrating strong predictive performance on MTS data.

3.2 CONDITIONAL DDPM AND PATCH DENOISING NETWORK

3.2.1 CONDITIONAL DDPM FOR RESIDUAL DISTRIBUTION MODELING

In D3U, the conditional DDPM is employed to model the distribution of residual components in the
prediction target. In practice, the prediction error of the conditioning network is used as the residual:

r01:L := y − ŷ = y − fθ(xh) (4)
Given the input residual components r01:L ∈ RC×L and the condition c = fenc(xh), the conditional
DDPM performs residual prediction by modeling the following distribution:

pϕ
(
r0:K1:L | c

)
= pϕ

(
rK1:L

) K∏
k=1

pϕ
(
rk−1
1:L | rk1:L, c

)
(5)
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The reverse process at step k is defined as:
pϕ(r

k−1
1:L | rk1:L, c) = N (rk−1

1:L ;µϕ(r
k
1:L, k | c), σ2

kI), (6)
The mean µϕ(r

k
1:L, k | c) is parameterized as:

µϕ(r
k
1:L, k | c) =

√
αk(1− ᾱk−1)

1− ᾱk
rk1:L +

√
ᾱk−1βk

1− ᾱk
rϕ(r

k
1:L, k | c), (7)

where rϕ is predicted by a patch-based denoising network gϕ that models the distribution of r01:L.
The learnable parameters ϕ are optimized by minimizing the following loss function:

Lr = Er01:L,ϵ,k,c

[
∥r01:L − rϕ(r

k
1:L, k | c)∥2

]
. (8)

Next, we present the design of an effective denoising network gϕ.

3.2.2 PATCH-BASED DENOISING NETWORK

To better represent MTS data, we design a patch-based denoising network (PatchDN). PatchDN
adopts a simple channel-independent (CI) setting (Nie et al., 2023; Woo et al., 2024; Goswami
et al., 2024).

Patching : Specifically, the residual data r01:L is firstly divided into equilong patches. Let P repre-
sent the patch length, and S the stride, i.e., the non-overlapping portion between consecutive seg-
ments. The generated sequence is denoted as rkp ∈ RC×N×P , where C and N represent the number

of variables and patches, respectively, N =
⌊
(H−P )

S

⌋
+ 2 (Nie et al., 2023). Next, these patches

will undergo the Patch Embedding: patches are projected into the latent space through a linear layer
Wp ∈ RP×D, and fixed transformer’s sinusoidal positional embeddings Wpos ∈ R1×N×D(Vaswani,
2017) are added to incorporate positional information. After Patch Embedding, the representation
can be expressed as:

rkPE = Patch Embedding(rk1:L) ∈ RC×N×D. (9)
Time Embedding: As in (Shen & Kwok, 2023; Li et al., 2024a), the representation of the diffusion
steps is obtained using the transformer’s sinusoidal position embedding (Vaswani, 2017), followed
by two fully connected layers to project it into the latent space.

Condition Injection: In the reverse process, effectively incorporating conditional information can
guide the model to gradually denoise and generate time series samples that align with the given con-
ditions. The patch-based denoising network adopts a CI strategy, making the recovery of different
scales across variables particularly important. We aim to leverage conditional information to apply
fine-grained control over the scaling and shifting of different dimensions, thereby improving the
recovery of noise-free time series samples.

In the field of CV, FiLM (Feature-wise Linear Modulation) (Perez et al., 2018) is an effective tech-
nique that incorporates conditional information by dynamically adjusting the mean and variance in
normalization layers, such as batch normalization and layer normalization. Similarly, the DiT model
(Peebles & Xie, 2023) has demonstrated the effectiveness of this approach in generating high-quality
image samples. Inspired by this design, we also introduce conditional information by controlling the
scale and shift parameters of the adaptive layer normalization (AdaLN) layers in the Transformer
encoder. Unlike the DiT model, which adjusts based on the batch dimension, the AdaLN layers in
PatchDN dynamically adjust each variable dimension to handle the non-stationarity and heterogene-
ity commonly found in time series data. The process can be described as follows:

h = pk + Reshape(c) ∈ RC×1×D. cscale, cshift = Linear(h) ∈ RC×1×D, (10)

AdaLN( rkPE , h) = cscaleLayerNorm( rkPE ) + cshift ∈ RC×N×D, (11)

where pk denotes the representation of diffusion step k.

Encoder and Decoder: Patches are processed by a series of Transformer encoders. Each encoder
layer consists of multi-head self-attention and feed-forward networks. Finally, a flatten layer fol-
lowed by a linear layer serves as the decoder, outputting the reconstructed r01:L. Each encoder layer
can be represented as follows:

rkPE = AdaLN( rkPE +Multi Attn( rkPE )) ∈ RC×N×D, (12)

rkPE = AdaLN( rkPE + Feed Forward( rkPE )) ∈ RC×N×D. (13)
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4 EXPERIMENTS

4.1 DATA AND EXPERIMENTAL SETTING

Datasets: Six real-world MTS datasets are selected, each exhibiting distinct temporal dynamics, are
selected: ETTm1, ETTm2, Weather, Solar-Energy, Electricity, and Traffic. Further details can be
found in Appendix D.1.

Metrics: The performance of probabilistic forecasting is evaluated using the Continuous Ranked
Probability Score (CRPS) and CRPSsum, for both the proposed model and baseline models. Ad-
ditionally, point forecasting performance is assessed using Mean Squared Error (MSE) and Mean
Absolute Error (MAE). Detailed descriptions of these metrics can be found in Appendix E.

Baselines: Seven well-acknowledged long-term MTS forecasting models are carefully selected as
baselines, including: (1) point forecasting methods: NSformer (Liu et al., 2022), TimesNet (Wu
et al., 2023), DLinear (Zeng et al., 2023), PatchTST (Nie et al., 2023), and SparseVQ (Zhao et al.,
2024); (2) probabilistic forecasting methods: TimeGrad (Rasul et al., 2021), CSDI (Tashiro et al.,
2021), TimeDiff (Shen & Kwok, 2023), and TMDM (Li et al., 2024a). Detailed descriptions of
these models can be found in Appendix D.2.

Implementation details: In the experiments, the lookback window size H and prediction length L
are set to 96 and 192, respectively. The diffusion process is configured with 100 steps, using a linear
noise schedule where β1 = 10−4 and βK = 0.02. A total of 100 samples are used to approximate
the estimated distribution. All experiments are implemented using PyTorch (Paszke et al., 2019) and
executed on an NVIDIA RTX A6000 48GB GPU. Further implementation details are provided in
Appendix D.3. Unless otherwise stated, the point forecasting model used in the D3U framework is
SparseVQ.

4.2 RESULTS

4.2.1 MAIN RESULT

In this section, our method integrates SparseVQ (Zhao et al., 2024) and PatchDN within the D3U
framework, where SparseVQ functions as the conditioning network and PatchDN serves as the de-
noising network. Table 1 highlights the outstanding performance of our method in point forecasting,
achieving a 28% improvement in MSE and a 21% improvement in MAE compared to the current
state-of-the-art (SOTA) probabilistic MTS long-term forecasting method, TMDM (Li et al., 2024a).
Additionally, our method’s point forecasting capabilities are on par with the SOTA point forecasting
models across four datasets. Compared to the SparseVQ model, our method demonstrates either
superior or comparable point forecasting performance across all datasets, with particularly notable
improvements in the Solar and Traffic datasets.

Table 1: Performance comparison on six real-world datasets based on MSE and MAE. The
best/second results are highlighted in bold/underline, respectively. Lower MSE and MAE values
indicate better performance. SparveVQ is used as the point forecasting model in the D3U (ours).

Model Dataset ETTm1 ETTm2 Weather Solar-Energy Electricity Traffic
Method MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Point
forecasting

NSformer(2022b) 0.440 0.430 0.277 0.343 0.226 0.270 0.266 0.270 0.191 0.295 0.653 0.360

TimesNet(2023) 0.374 0.387 0.249 0.309 0.219 0.261 0.296 0.318 0.184 0.289 0.617 0.336

DLinear(2023) 0.380 0.389 0.284 0.362 0.237 0.296 0.320 0.398 0.196 0.285 0.598 0.370

PatchTST(2023) 0.370 0.390 0.251 0.312 0.223 0.258 0.259 0.321 0.205 0.307 0.463 0.311

SparseVQ(2024) 0.363 0.380 0.242 0.302 0.225 0.258 0.256 0.286 0.182 0.267 0.480 0.300

iTransformer(2024) 0.377 0.391 0.250 0.309 0.221 0.254 0.233 0.261 0.164 0.255 0.418 0.284

Probabilistic
forecasting

TimeGrad(2021) 1.716 1.057 1.385 0.732 0.885 0.551 1.211 1.004 0.645 0.723 0.932 0.807

CSDI(2021) 0.867 0.690 1.291 0.576 0.842 0.523 0.848 0.818 0.553 0.795 0.921 0.678

TimeDiff(2023) 0.796 0.577 0.284 0.342 0.277 0.331 1.169 0.936 0.730 0.690 1.465 0.851

TMDM(2024) 0.607 0.558 0.524 0.493 0.244 0.286 0.295 0.317 0.222 0.329 0.721 0.411

ours 0.363 0.386 0.241 0.302 0.222 0.264 0.237 0.270 0.179 0.267 0.468 0.299
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Table 2 presents the superior probabilistic forecasting performance of our model, showing a 40%
improvement in CRPS and a 5% improvement in CRPSsum compared to TMDM. In the subsequent
ablation studies, we analyze the contributions of the D3U framework and the design of PatchDN to
the improvements in long-term forecasting performance.

Table 2: Performance comparisons on six real-world datasets regarding CRPS and CRPSsum. The
best/second results are highlighted in bold/underline. Lower CRPS and CRPSsum values indicate
better performance. SparveVQ is used as the point forecasting model in the D3U (ours).

Model Dataset ETTm1 ETTm2 Weather Solar-Energy Electricity Traffic
Method CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum

Probabilistic
Forecasting

TimeGrad(2021) 0.665 0.996 0.785 1.051 0.482 0.503 0.783 1.167 0.503 1.452 0.657 1.683

CSDI(2021) 0.773 0.852 0.625 0.782 0.508 0.465 0.649 0.681 0.465 0.823 0.612 1.275

TimeDiff(2023) 0.454 0.846 0.316 0.180 0.293 0.400 0.900 1.164 0.475 0.594 0.671 0.823

TMDM(2024) 0.429 0.633 0.380 0.226 0.226 0.292 0.375 0.267 0.446 0.137 0.552 0.179
ours 0.285 0.574 0.243 0.141 0.207 0.283 0.186 0.266 0.202 0.160 0.232 0.186

4.2.2 ABLATION STUDY

To further demonstrate the advantages of the D3U framework, we modify the TMDM model to
incorporate the D3U framework. Specifically, the NSformer (Liu et al., 2022) used in TMDM,
which is originally co-trained with the denoising network, is replaced by a pre-trained NSformer
model with identical parameter settings. In the D3U framework, the pre-trained NSformer pre-
dicts the deterministic component and provides guiding information, while the diffusion model’s
denoising network, responsible for modeling the residual distribution, employs an MLP network
with consistent parameter settings. The experimental setup ensures full consistency between the
training and evaluation processes. Table 3 highlights the superior performance of the D3U frame-
work, where both point and probabilistic forecasting capabilities are significantly improved across
all datasets compared to the original TMDM. TMDM models the overall data distribution, while
the D3U framework explicitly decouples the deterministic and uncertain components of the data,
requiring the modeling of only the high-uncertainty component. This reduces the complexity of the
distribution and allows the DDPM to achieve stable probabilistic forecasting with fewer sampling
steps (Appendix A).

Table 3: Performance promotion by applying D3U to TMDM.

Mode TMDM TMDM (D3U)
Datasets MSE MAE CRPS CRPSsum MSE MAE CRPS CRPSsum

ETTm1 0.607 0.558 0.429 0.633 0.441 0.432 0.324 0.616
ETTm2 0.524 0.493 0.380 0.226 0.317 0.399 0.302 0.147
Weather 0.244 0.286 0.226 0.292 0.215 0.267 0.196 0.273

Solar-Energy 0.295 0.317 0.375 0.267 0.269 0.299 0.328 0.260
Electricity 0.222 0.329 0.446 0.137 0.216 0.328 0.381 0.157

Traffic 0.721 0.411 0.552 0.179 0.678 0.402 0.472 0.207

PatchDN design: In all ablation experiments examining the design of PatchDN, SparseVQ serves
as the conditioning network, providing guidance to the denoising network. In the comparative ex-
periments, Table 4 shows that replacing the PatchDN denoising network in the D3U framework with
the MLP network from TMDM or the UNet network from TimeDiff results in a decrease in both
point and probabilistic forecasting performance. This demonstrates that PatchDN exhibits a stronger
capability in modeling the high-uncertainty component.

In PatchDN, two typical variants are designed for incorporating conditional information: the cross-
attention method and the in-context method. Detailed descriptions of these two variants can be
found in Appendix A. Table 4 shows that, compared to these two variants, the FiLM method per-
forms better in both point and probabilistic forecasting. However, the second-best results in this
experiment are also achieved by these two variants, prompting further analysis of the FLOPs and
inference time for all three mechanisms. Table 5 demonstrates that the FiLM method has lower
computational complexity and inference time compared to the other two, which explains its superior
overall performance.
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To further demonstrate the rationality behind the design of D3U, two variants of the framework are
created. The first variant uses the ground truth as the starting point for the conditional DDPM, i.e.,
r0 = y. Experimental results show a significant decline in prediction performance. Compared to
D3U, modeling the entire data distribution using the same diffusion steps and sample sizes proves
to be more challenging, resulting in degraded probabilistic forecasting performance and an inability
to ensure accurate point forecasting. The second variant uses the final prediction output ŷ of the
conditioning network as guidance for the conditional DDPM. Experimental results also reveal a sig-
nificant drop in prediction performance, suggesting that the encoder’s output from a well-designed
point forecasting model contains more beneficial information for guiding the denoising network.

Table 4: MSE, MAE and CRPS scores for different variants of the proposed method.

Ablation Study Mode
(fθ + gϕ)

ETTm1 Solar-Energy Traffic
MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS

Denoise Network SVQ+MLPa 0.372 0.396 0.294 0.330 0.313 0.242 0.525 0.331 0.297
SVQ+UNetb 0.385 0.410 0.301 0.267 0.266 0.219 0.469 0.301 0.289

Structure Design SVQ+ PatchDN(CAttn)
c 0.370 0.390 0.295 0.237 0.281 0.193 0.483 0.307 0.240

SVQ+ PatchDN(InC)
d 0.366 0.385 0.290 0.238 0.271 0.187 0.486 0.315 0.244

Framework Design SVQ+ PatchDN(All)
e 0.859 0.699 0.516 0.348 0.302 0.251 0.687 0.396 0.302

SVQ+ PatchDN(ŷ)
f 0.408 0.421 0.312 0.259 0.301 0.241 0.479 0.308 0.251

Ours 0.361 0.385 0.284 0.236 0.270 0.186 0.468 0.299 0.232
1 SVQ is the abbreviation for SparseVQ.
2 a means the MLP serves as the denoising network in the TMDM model and consists of four linear layers; b means the UNet, used as the

denoising network in the TimeDiff model, is built using a convolutional neural network-based UNet architecture.
3 c marks PatchDN based on the cross-attention method; d marks PatchDN based on the in-context method.
4 e marks the framework variant that models the entire data distribution; f marks the framework variant that employs ŷ as the guidance.

Table 5: Comparison of FLOPs and Inference Time with the Two Variants (100 samples).

Mode ETTm1 Solar-Energy Traffic
#FLOPS

(G)
Inference time

(min)
#FLOPS

(G)
Inference time

(min)
#FLOPS

(G)
Inference time

(min)

SVQ+ PatchDN(CAttn)
a 4.933 0.094 20.69 0.446 130.0 0.452

SVQ+ PatchDN(InC)
b 4.632 0.065 20.94 − 131.7 0.336

Ours 3.569 0.050 15.74 0.238 99.03 0.299
1 SVQ is the abbreviation for SparseVQ.
2 a marks PatchDN based on the cross-attention method; b marks PatchDN based on the in-context method.
3 − indicates an out-of-memory (OOM) error on a 48GB GPU.

Framework generality: The D3U framework is designed as a plug-and-play solution that can be
seamlessly integrated into existing point forecasting models. The conditioning network is replaced
with NSformer, PatchTST, and SparseVQ, respectively. As shown in Table 6, applying the D3U
framework improves each model’s point forecasting capabilities, while also providing them with
probabilistic forecasting abilities.

Table 6: Performance promotion by applying the proposed framework to point forecasting models.

Dataset ETTm1 Solar-Energy Traffic
Method MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS

NSformer 0.440 0.430 − 0.266 0.270 − 0.653 0.360 −
NSformer (D3U) 0.436 0.427 0.317 0.268 0.272 0.202 0.657 0.367 0.284

PatchTST 0.370 0.390 − 0.259 0.321 − 0.463 0.311 −
PatchTST (D3U) 0.387 0.405 0.299 0.233 0.281 0.221 0.452 0.297 0.234

SparseVQ 0.363 0.380 − 0.256 0.286 − 0.480 0.300 −
SparseVQ (D3U) 0.361 0.385 0.284 0.237 0.270 0.185 0.475 0.309 0.232
1 − means that point forecasting models do not have probabilistic forecasting abilities. The CRPS value

degrades to the Normalized Mean Square Error (NMAE), which is omitted here.

4.3 RETHINK OF UNCERTAINTY MODELING IN D3U

In the previous two sections, extensive experiments have validated the effectiveness of the D3U
framework. However, some results in Table 2 and Table 3 suggest that D3U may face challenges
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in uncertainty modeling when applied to MTS data with extremely high variable dimensions (e.g.,
Electricity, Traffic), particularly reflected in CRPSsum. This issue is related to the composition of
uncertainty in the prediction error. As discussed in Section 2.1, the prediction error of the point fore-
casting model primarily consists of epistemic uncertainty and aleatoric uncertainty (Gawlikowski
et al., 2023). In practice, a relatively simple yet effective approach is adopted by approximating the
high-uncertainty components using the prediction error, y − ŷ. However, it is observed that higher
epistemic uncertainty tends to result in wider probabilistic prediction intervals, which subsequently
impacts the model’s performance as measured by CRPSsum. As shown in Fig. 3, when the point
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Figure 3: Cases of probabilistic prediction intervals with different uncertainty compositions.

forecasting model effectively models the deterministic components, the prediction error is mainly
composed of aleatoric uncertainty, resulting in more accurate prediction intervals for probabilistic
forecasting. Conversely, epistemic uncertainty becomes dominant when the point forecasting model
struggles with the deterministic components, leading to wider prediction intervals. Therefore, em-
ploying a more powerful point forecasting model can effectively mitigate this issue. As shown in
Table 7, after replacing the conditioning network from SparseVQ with iTransformer, the D3U frame-
work achieved significant improvement in the CRPSsum metric. This also suggests that a potential
direction for improving the D3U framework in future work would be to explore better methods for
separating and addressing epistemic uncertainty and aleatoric uncertainty.

Table 7: Performence comparison of different point forecasting models employed by the D3U frame-
work.

Mode Electricity Traffic
MSE MAE CRPS CRPSsum MSE MAE CRPS CRPSsum

SparseVQ+PatchDN 0.179 0.267 0.202 0.160 0.469 0.299 0.232 0.186

iTransformer+PatchDN 0.168 0.261 0.195 0.151 0.421 0.290 0.222 0.169

5 CONCLUSION

In this paper, we introduce the D3U framework for probabilistic long-term MTS forecasting. D3U
decouples the deterministic and uncertain components of time series, leveraging pre-trained point
forecasting models to model the high-certainty components, while employing a DDPM to perform
probabilistic forecasting on the high-uncertainty components. As a plug-and-play framework, D3U
can be seamlessly integrated into existing point forecasting models to enable probabilistic forecast-
ing. To better capture the high-uncertainty components, PatchDN is designed within the conditional
DDPM. Comprehensive experiments on six real-world MTS datasets demonstrate the outstanding
probabilistic forecasting performance and competitive point forecasting capability of the proposed
method.
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A APPENDIX: EXPERIMENTS

Details of PatchDN Variants: 1. Cross-attention method: conditional information serve as keys and
values in the attention mechanism, guiding the model to adaptively model the input patches (Li et al.,
2024b). 2. In-context method: the conditional information is treated as part of the input sequence to
the Transformer encoder, processed alongside other patch embeddings (Bao et al., 2023).

Diffusion Steps: Fig. 4 illustrates the sensitivity of three time series probabilistic forecasting models
to diffusion steps. Due to the decoupling advantage of the D3U framework, which reduces the
complexity of distribution modeling, the figure shows that PatchDN achieves optimal performance
at 70 steps on the ETTm1 dataset and 50 steps on the Weather dataset. Compared to other models,
PatchDN exhibits lower sensitivity to diffusion steps.

Prediction Strategy: Table 8 presents a comparison of different prediction strategies. In low-
dimensional datasets, the strategy of predicting ϵϕ typically performs better, whereas in high-
dimensional datasets, the strategy of predicting rϕ tends to be more effective. This may be due to
the fact that high-dimensional time series datasets contain more highly irregular noise components,
making it more challenging to estimate the diffusion noise ϵϕ.

Table 8: Quantitative comparison of different prediction strategy.

Mode ETTm1 ETTm2 Weather Solar-Energy Electricity Traffic
MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS

rϕ 0.363 0.386 0.285 0.251 0.318 0.243 0.227 0.279 0.207 0.237 0.270 0.186 0.179 0.267 0.202 0.469 0.299 0.229
ϵϕ 0.363 0.382 0.286 0.241 0.302 0.236 0.222 0.264 0.203 0.254 0.276 0.186 0.184 0.269 0.201 0.481 0.298 0.229

B APPENDIX: SERIES DECOMPOSITION

B.1 SERIES DECOMPOSITION

In this paper, a moving average is applied to the input sequence to obtain the component XT , which
contains trend information. The amount of trend information retained in XT is controlled by the
moving average kernel k (Wu et al., 2021; Zeng et al., 2023):

XT = AvgPool(X; k) (14)
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Figure 4: The impact of different number of diffusion steps K.

For the seasonal component, a Fourier layer based on Fourier bases is employed (Yuan & Qiao,
2024). The number of retained frequency components is controlled by the Fourier factor f :

XS = Layer FFT(X −XT ; f) (15)

The residual component is defined as:

XR := X −XT −XS (16)

B.2 SERIES DECOMPOSITION EXPERIMENTS

As mentioned in Section 3, the input of the conditional network, xh, can either use the original time
series x or the xT + xS . Table 9 presents the impact of different kinds of xh on the forecasting
performance of two point forecasting models (NSformer, PatchTST) and their D3U versions.

Table 9: The impact of different types of xh on the point forecasting model and its D3U version’s
forecasting performance. ’All’ means using the original series x as input. ’K* F*’ means using the
xT + xS as input. For example, ’K3’ denotes a moving average kernel k = 3 in Eq. 14 and ’F2’
denotes a Fourier Factor f = 2.0 in Eq. 15. In this experiment, the lookback window size H is 96
and the prediction length L is 192.

Type of xh All K3 F2 K7 F2 K7 F1 K15 F1
Dataset Metric MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS

NSformer 0.440 0.430 — 0.435 0.430 — 0.438 0.431 — 0.439 0.430 — 0.448 0.432 —

NSformer(D3U) 0.436 0.427 0.317 0.436 0.431 0.321 0.429 0.426 0.317 0.428 0.427 0.315 0.453 0.432 0.323

PatchTST 0.370 0.390 — 0.374 0.393 — 0.375 0.393 — 0.375 0.393 — 0.374 0.392 —ETTm1

PatchTST(D3U) 0.387 0.405 0.299 0.381 0.400 0.294 0.386 0.403 0.295 0.385 0.402 0.296 0.376 0.394 0.289
NSformer 0.226 0.270 — 0.218 0.263 — 0.225 0.268 — 0.227 0.270 — 0.232 0.272 —

NSformer(D3U) 0.233 0.281 0.209 0.226 0.275 0.207 0.237 0.283 0.212 0.245 0.282 0.213 0.240 0.284 0.212

PatchTST 0.223 0.258 — 0.224 0.258 — 0.224 0.259 — 0.225 0.259 — 0.226 0.260 —Weather

PatchTST(D3U) 0.236 0.293 0.218 0.224 0.267 0.205 0.236 0.288 0.215 0.224 0.267 0.206 0.225 0.264 0.206
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C APPENDIX: TRAINING STRATEGY EXPERIMENTS

The D3U framework freezes the parameters of the pre-trained point forecasting model, which re-
duces the number of trainable parameters and the overall training time. To demonstrate this advan-
tage, we conducted experiments with three additional training configurations: (1)D3U with series
decomposition (DCP), denoted as D3U-DCP: the inputs of the point prediction model and the dif-
fusion model are xT + xS and xR := x − xT + xS , respectively. (2) D3U-FT: fine-tuning the
pre-trained point forecasting model while training the diffusion model, and (3) D3U-FS: training
the entire model from scratch without using the pre-trained point forecasting model. The details
of the experimental results are shown in Table 10. The results indicate that, on most datasets, the
fine-tuned and from-scratch training configurations do not show significant differences compared
to the original D3U. However, the training approach using the frozen pre-trained model results in
the minimum number of training parameters and the shortest training time. In these three schemes,
D3U-DCP performs the worst. We think the reason for this result is that DCP provides a coarse
approach to separating the high-certainty and high-uncertainty components of time series data. As
shown in the experimental results of Table 9, the effectiveness of DCP is highly dependent on the
choice of hyperparameters k and f . Therefore, we do not consider DCP a reliable approach for
extracting high-certainty or high-uncertainty components in all cases. In the setup we adopt in the
paper, the undecomposed data x is used as the input to the point forecasting model, and the predic-
tion error y − ŷ from the point forecasting model is used as the input to the diffusion model. As
analyzed in Section 2.1, the prediction error of the point forecasting model primarily consists of two
types of uncertainty: aleatoric uncertainty and epistemic uncertainty. Thus, the prediction error is a
reasonable approximation of the high-uncertainty component in the time series data that is difficult
for the point forecasting model to capture. Details of the number of training parameters and the
training time for the different training modes are presented in Table 11.

Table 10: MSE, MAE and CRPS scores for different training framework variants of the proposed
method. D3U-DCP: The inputs to the point prediction model and the diffusion model are xT + xS

and xR := x − xT + xS , respectively. D3U-FT: Fine-tuning the point forecasting model while
training the diffusion model. D3U-FS: Training the entire model from scratch.

Training
Mode

ETTm1 ETTm2 Weather Solar-Energy Electricity Traffic
MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS MSE MAE CRPS

D3U-DCP 0.395 0.405 0.330 0.251 0.312 0.265 0.228 0.268 0.240 0.294 0.324 0.272 0.275 0.377 0.280 0.790 0.510 0.391

D3U-FT 0.368 0.388 0.286 0.253 0.322 0.247 0.222 0.271 0.202 0.217 0.259 0.169 0.174 0.266 0.197 0.535 0.292 0.224

D3U-FS 0.364 0.386 0.284 0.248 0.317 0.243 0.230 0.284 0.210 0.220 0.262 0.172 0.177 0.266 0.199 0.516 0.304 0.233

D3U 0.363 0.386 0.285 0.241 0.302 0.243 0.222 0.264 0.207 0.237 0.270 0.186 0.179 0.267 0.202 0.468 0.299 0.232

Table 11: Trainable parameters and training time for different training framework variants of the
proposed method. D3U-DCP: The inputs to the point prediction model and the diffusion model are
xT + xS and xR := x − xT + xS , respectively. D3U-FT: Fine-tuning the point forecasting model
while training the diffusion model. D3U-FS: Training the entire model from scratch.

Training
Mode

ETTm1 ETTm2 Weather Solar-Energy Electricity Traffic
Trainable

Parameters
(M)

Training
time

(s/batch)

Trainable
Parameters

(M)

Training
time

(s/batch)

Trainable
Parameters

(M)

Training
time

(s/batch)

Trainable
Parameters

(M)

Training
time

(s/batch)

Trainable
Parameters

(M)

Training
time

(s/batch)

Trainable
Parameters

(M)

Training
time

(s/batch)

D3U-DCP 1.659 4.972 1.659 4.962 3.024 14.069 1.322 79.627 2.166 204.020 3.495 319.429

D3U-FT 7.380 7.471 7.380 7.493 4.825 18.106 3.504 105.355 10.249 306.249 6.467 341.098

D3U-FS 7.380 7.552 7.380 7.471 4.825 18.050 3.504 105.139 10.249 306.112 6.467 340.347

D3U 1.659 4.567 1.659 4.621 3.024 13.712 1.322 76.627 2.166 198.587 3.495 316.330

D APPENDIX: IMPLEMENTATION DETAILS

D.1 BENCNMARK DATASETS

For our experiments, we use ETTm1, ETTm2, Weather, Solar-Energy, Electricity and
Traffic open-source datasets, with their properties listed in Table 12. Following the methodolo-
gies of Wu et al. (2021) and Zhou et al. (2022), the datasets are split chronologically into training,
validation, and test sets. A 6:2:2 ratio is used for ETTm1 and ETTm2, while a 7:1:2 ratio is applied
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for Weather, Solar-Energy, Traffic, and Electricity. The dataset can be obtained through the links
below.

(i) ETTm1,ETTm2: https://github.com/zhouhaoyi/ETDataset.

(ii) Weather: https://www.bgc-jena.mpg.de/wetter/.

(iii) Solar-Energy:https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014.

(iv) Electricity:https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014.

(v) Traffic: http://pems.dot.ca.gov/

Table 12: Detailed information of the datasets used in our benchmark, including data frequency,
number of time series (dimension), context length, and prediction length. Dataset size indicates the
total number of time points in the train, validation, and test splits, respectively.

Dataset Dimension Frequency Dataset Size Context length Prediction length

ETTm1,ETTm2 7 15 Min (34465, 11521, 11521) 96 192
Weather 21 10 Min (36792, 5271, 10540) 96 192

Solar-Energy 137 10 Min (36601, 5161, 10417) 96 192
Electricity 321 1 Hour (18317, 2633, 5261) 96 192

Traffic 862 1 Hour (12185, 1757, 3509) 96 192

D.2 BASELINES IN MAIN EXPERIMENTS

The code and descriptions of the baseline methods can be obtained from the following sources.

(i) NSformer: a novel framework that enhances Transformer models for time series forecasting
by integrating Series Stationarization to unify input statistics and De-stationary Attention
to recover intrinsic non-stationary information.
Code: https://github.com/thuml/Nonstationary_Transformers

(ii) TimesNet: a task-general backbone for time series analysis that transforms 1D time series
into 2D tensors to effectively model complex temporal variations through adaptive multi-
periodicity discovery and a parameter-efficient inception block.
Code: https://github.com/thuml/TimesNet

(iii) DLinear: a simple one-layer linear model for long-term time series forecasting that out-
performs sophisticated Transformer-based models by effectively preserving temporal rela-
tions.
Code: https://github.com/cure-lab/LTSF-Linear

(iv) PatchTST: an efficient Transformer-based model for multivariate time series forecasting
that utilizes segmentation into subseries-level patches and channel independence.
Code: https://github.com/yuqinie98/patchtst

(v) SparseVQ: a novel approach for time series analysis that utilizes sparse vector quantization
and Reverse Instance Normalization to address distribution shifts and noise, replacing the
Feed-Forward layer to enhance computational efficiency and reduce overfitting.
Code: https://anonymous.4open.science/r/Sparse-VQ-DC28

(vi) TimeGrad: an autoregressive model for multivariate probabilistic time series forecasting
which samples from the data distribution at each time step by estimating its gradient.
Code: https://github.com/microsoft/ProbTS

(vii) CSDI: a novel time series imputation method that utilizes score-based diffusion models
conditioned on observed data.
Code: https://github.com/microsoft/ProbTS
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(viii) TimeDiff: a non-autoregressive diffusion model for time series prediction that leverages
innovative conditioning mechanisms—future mixup and autoregressive initialization.
Code: There is no publicly available code; we obtained the code by emailing the author.

(ix) TMDM: combines conditional diffusion processes with transformers to enable precise dis-
tribution forecasting in multivariate time series while effectively incorporating uncertainty.
Code: https://github.com/LiYuxin321/TMDM

D.3 IMPLEMENTATION DETAILS

To accelerate the inference of the DDPM, DPM-Solver (Lu et al., 2022) is employed, allowing the
number of denoising steps to be empirically reduced to fewer than 20. The proposed model is trained
using the Adam optimizer with a learning rate of 10−4. Following the parameter settings outlined in
Li et al. (2024a), early stopping is applied after 15 epochs without improvement, with a maximum
of 100 training epochs. Table 13 presents the hyperparameters of the SparseVQ+PatchDN model for
both training and testing across each dataset. The conditioning network is the SparseVQ model, with
the primary hyperparameters being encoder layers, d model, d ff, num codebook, and
codebook size. The hyperparameters for PatchDN are consistent across all datasets, consisting
of a single-layer Transformer encoder with 8 heads and a latent space dimension of 128.

Table 13: Hyper-parameter values for the SparseVQ+PatchDN Model.

Dataset
Diffusion

Train
batch size

Diffusion
Test

batch size

Condition
network

encoder layers

Condition
network
d model

Condition
network

d ff

Condition
network

num codebook

Condition
network

codebook size
ETTm1,ETTm2 128 64 2 512 512 1 256

Weather 128 64 2 256 512 1 256
Solar-Energy 64 16 2 256 512 1 1000

Electricity 64 8 2 512 512 2 256
Traffic 16 2 3 256 256 2 512

E APPENDIX: METRICS

E.1 METRICS FOR POINT FORECASTING

Mean Squared Error (MSE). MSE is calculated as the average of the squared differences between
the predicted values and the actual values, defined mathematically as:

MSE =
1

C × L

C∑
c=1

L∑
l=1

(rcl − r̂cl )
2, (17)

where C represents the number of variates, L denotes the length of the series, and rcl and r̂cl indicate
the ground-truth value and the predicted value, respectively.

Mean Absolute Error (MAE). MAE measures the average magnitude of the errors in a set of
predictions, without considering their direction. It is calculated as:

MAE =
1

C × L

C∑
c=1

L∑
l=1

|rcl − r̂cl |. (18)

E.2 METRICS FOR PROBABILISTIC FORECASTING

Continuous Ranked Probability Score (CRPS). The CRPS (Matheson & Winkler, 1976) quanti-
fies the difference between the cumulative distribution function (CDF) F of the predicted probabil-
ities and the CDF of the observed outcomes r, represented as:

CRPS =

∫
R
(F (z)− I{r≤z})

2 dz, (19)
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where I{r≤z} is the indicator function that equals one if r ≤ z and zero otherwise. As a proper
scoring function, CRPS achieves its minimum when the predictive distribution F matches the true
data distribution. Using the empirical CDF F̂ (z) = 1

n

∑n
i=1 I{Ri ≤ z}, CRPS can be computed

from simulated samples of the conditional distribution pθ(rt|ht).

CRPSsum. CRPSsum extends CRPS to multivariate time series. Specifically, CRPSsum is defined
as:

CRPSsum = Et[CRPS(F−1
sum,

∑
i

rti)], (20)

where F−1
sum is obtained by summing the samples across dimensions and then ordering them to derive

the quantiles.

F APPENDIX: FORECAST SHOWCASES

F.1 CASE STUDY

To demonstrate the superiority of the proposed method, Fig. 5 visualizes the ground truth and pre-
dictions of time series across two dimensions in the ETTm1 and Weather datasets, along with the
50% and 90% prediction intervals. The results show that the proposed method achieves higher point
forecasting accuracy (median prediction, represented by the dark green line) compared to the other
two models, and demonstrates a stronger capability in estimating the distribution of the time series.
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Figure 5: More comparison of prediction intervals for the ETTm1 and Weather Datasets. The black
line representing the test set ground-truth.

F.2 DENOISING PROCESS SHOWCASES

To clearly demonstrate the generation process of time series data, Fig. 6, Fig. 7 and Fig. 8 illustrate
the denoising process (aka reverse process) of time series data across two dimensions in the ETTm1,
Electricity, and Traffic datasets, from diffusion step 100 (start point of denoising process) to step 0
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(end point of denoising process). The results indicate that at diffusion step 100, point prediction
models can provide prior knowledge to diffusion models, ensuring predictions oscillate near the
true values rather than gradually denoising from pure Gaussian noise. This effectively reduces the
difficulty of denoising. As the steps decrease, the width of the 50% and 90% prediction intervals
gradually narrows, achieving accurate point prediction precision at step 0 (denoted by the median
prediction in dark green lines) and effectively estimating the distribution of time series data.
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(a) ETTm1 0th dimension.
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(b) ETTm1 2th dimension.

Figure 6: Visualization of the Denoising Process of ETTm1 from Diffusion Step 100 to Step 0.
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(a) Electricity 138th dimension.
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(b) Electricity 139th dimension.

Figure 7: Visualization of the Denoising Process of Electricity from Diffusion Step 100 to Step 0.

F.3 PREDICTION RESULTS VISUALIZATION

To further illustrate the predictive performance of the D3U framework, Fig. 9, Fig. 10, Fig. 11,
Fig. 12, Fig. 13, Fig. 14 and Fig. 15 present the outputs of the point prediction model, the
probabilistic prediction model (provided by the mean of its samples), the overall prediction results
of the framework, and the corresponding ground truth values.

These figures show that incorporating the results of probabilistic prediction enhances the overall
accuracy of the model’s predictions. This improvement stems from the D3U framework’s diffu-

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Diffusion Step 100

obser ations
median prediction
90.0% prediction inter al
50.0% prediction inter al

0 50 100 150 200 250 300
−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Diffusion Step 80

obser ations
median prediction
90.0% prediction inter al
50.0% prediction inter al

0 50 100 150 200 250 300
−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Diffusion Step 60

obser ations
median prediction
90.0% prediction inter al
50.0% prediction inter al

0 50 100 150 200 250 300
−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Diffusion Step 40

obser ations
median prediction
90.0% prediction inter al
50.0% prediction inter al

0 50 100 150 200 250 300
−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Diffusion Step 20

obser ations
median prediction
90.0% prediction inter al
50.0% prediction inter al

0 50 100 150 200 250 300
−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Diffusion Step 0

obser ations
median prediction
90.0% prediction inter al
50.0% prediction inter al

(a) Traffic 300th dimension.
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(b) Traffic 410th dimension.

Figure 8: Visualization of the Denoising Process of Traffic from Diffusion Step 100 to Step 0.

sion model effectively capturing the distribution of components with high-uncertainty in the data.
Additionally, the mean of the diffusion model’s samples, denoted as Avg(ŷg), exhibits noticeable
periodicity. Visualizing these samples further reinforces this conclusion. If we treat the time series
as a signal, the true distribution of the prediction error p(y − ŷ|t) is inherently a time-dependent
random variable, i.e., a stochastic process. Therefore, if the diffusion model successfully learns the
distribution of p(y − ŷ|t), it should also model an inherently time-dependent distribution. Fig. 9b,
Fig. 10b, Fig. 11b, Fig. 12b, Fig. 13b, Fig. 14b and Fig. 15b illustrate 100 samples generated from
the distribution learned by the diffusion model. The range covered by these samples reflects the
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Figure 9: Visualization of the Predictions of Eletricity (139th dimension). This case illustrates a
scenario with relatively low epistemic uncertainty. Probabilistic prediction: the mean of the diffusion
model’s samples.

uncertainty of the data—the wider the range, the higher the uncertainty. It is evident that the range
of coverage exhibits clear periodicity over time and narrows significantly at time steps with lower
prediction errors (lower uncertainty). This demonstrates that within the D3U framework, the diffu-
sion model effectively captures the distribution of prediction errors rather than merely introducing
time-independent randomness into the point prediction results.
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Figure 10: Visualization of the Predictions of Eletricity (140th dimension). This case illustrates a
scenario with relatively low epistemic uncertainty. Probabilistic prediction: the mean of the diffusion
model’s samples.
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Figure 11: Visualization of the Predictions of Solar (30th dimension). This case illustrates a sce-
nario with relatively high epistemic uncertainty. Probabilistic prediction: the mean of the diffusion
model’s samples.
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Figure 12: Visualization of the Predictions of Solar (50th dimension). This case illustrates a sce-
nario with relatively high epistemic uncertainty. Probabilistic prediction: the mean of the diffusion
model’s samples.
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Figure 13: Visualization of the Predictions of Traffic (20th dimension). Probabilistic prediction: the
mean of the diffusion model’s samples.
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Figure 14: Visualization of the Predictions of Traffic (77th dimension). Probabilistic prediction: the
mean of the diffusion model’s samples.
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Figure 15: Visualization of the Predictions of Traffic (300th dimension). Probabilistic prediction:
the mean of the diffusion model’s samples.
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