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ABSTRACT

Variational Autoencoder (VAE) based frameworks have achieved the state-of-the- 1

art performance on the unsupervised disentangled representation learning. A re- 2

cent theoretical analysis shows that such success is mainly due to the VAE im- 3

plementation choices that encourage a PCA-like behavior locally on data sam- 4

ples. Despite this implied model identifiability, the VAE based disentanglement 5

frameworks still face the trade-off between the local orthogonality and data re- 6

construction. As a result, models with the same architecture and hyperparameter 7

setting can sometimes learn entangled representations. To address this challenge, 8

we propose a simple yet effective VAE ensemble framework consisting of multi- 9

ple VAEs. It is based on the assumption that entangled representations are unique 10

in their own ways, and the disentangled representations are “alike” (similar up to a 11

signed permutation transformation). In the proposed VAE ensemble, each model 12

not only maintains its original objective, but also encodes to and decodes from 13

other models through pair-wise linear transformations between the latent repre- 14

sentations. We show both theoretically and experimentally, the VAE ensemble 15

objective encourages the linear transformations connecting the VAEs to be triv- 16

ial transformations, aligning the latent representations of different models to be 17

“alike”. We compare our approach with the state-of-the-art unsupervised disen- 18

tangled representation learning approaches and show the improved performance. 19

1 INTRODUCTION 20

Disentangled representation learning aims to capture the semantically meaningful compositional 21

representation of data (Higgins et al., 2018; Mathieu et al., 2018), and is shown to improve the 22

efficiency and generalization of supervised learning (Locatello et al., 2019), reinforcement learning 23

(Watters et al., 2019), and reasoning tasks (van Steenkiste et al., 2019). The current state-of-the- 24

art unsupervised disentangled representation learning deploy the Variational Autoencoder (VAE) 25

(Kingma & Welling, 2013; Rezende et al., 2014). The main challenge is to reduce the trade-off 26

between learning a disentangled representation and reconstructing input data. Most of the recent 27

works extend the original VAE objective with carefully designed augmented objective to address 28

this trade-off (Higgins et al., 2017; Burgess et al., 2017; Kim & Mnih, 2018; Chen et al., 2018; 29

Kumar et al., 2017). A recent study in (Locatello et al., 2018) compared these methods and showed 30

that their performance is sensitive to initialization and hyperparameter setting of the augmented 31

objective function. 32

Recently, Duan et al. (Duan et al., 2019) developed an unsupervised model selection method named 33

Unsupervised Disentanglement Ranking (UDR) to address the challenge of hyperparameter search 34

and model selection. UDR leverages the finding in (Rolinek et al., 2019) that the implementation 35

choices of VAE encourage a local PCA-like behavior locally on data samples. As a result, disen- 36

tangled representations by VAEs are “alike” as they are similar up to signed permutation transfor- 37

mations. On the contrary, the entangled representations by VAEs are “unique” as they are similar 38

at least up to non-degenerate rotation matrices. UDR uses multiple models trained with different 39

initializations and hyperparameter settings, and builds a similarity matrix measuring the pair-wise 40

similarity between the latent variables from different models. A higher score is given to the model 41

that can match its representations to many others models. The results show close match between 42

UDR and commonly used supervised metrics, as well as the performance of downstream tasks using 43

the latent representations. 44
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Inspired by the findings from these studies, we propose a simple yet effective VAE ensemble frame-45

work to improve the disentangled representation by VAE. The proposed VAE ensemble consists of46

multiple VAEs. The latent variables in every pair of these models are connected through linear lay-47

ers to force the latent representations in the ensemble to be similar up to a linear transformation.48

We show that the VAE ensemble objective encourages these pair-wise linear transformations to con-49

verge to trivial transformations, making latent representations of different VAEs in the ensemble to50

be “alike”, thus disentangled. In this paper, we make the following contributions: (1) We introduce51

a simple yet effective VAE ensemble framework to improve the disentangled representation learning52

using the original VAE. (2) We show in theoretical analysis that the linear transformations connect-53

ing the latent representations of the individual models in the ensemble tend to converge to trivial54

transformations thus encourage disentangled representation, and verify this result with experiments.55

(3) We evaluate our approach using the original VAE model, and show the improved state-of-the-art56

performance across different datasets.57

2 RELATED WORK58

Variatioanl Autoencoder is a deep directed probabilistic graphical model consisting of an encoder59

and a decoder (Kingma & Welling, 2013; Rezende et al., 2014). The encoder qφ(z|x) maps the60

input data x ∈ Rn to a probabilistic distribution as the latent representation z ∈ Rd, and the decoder61

qθ(x|z) maps the latent representation to the data space noted as qθ(x|z), where φ and θ represent62

model parameters. The VAE objective is to maximize the marginalized log-likelihood of data. Direct63

optimization of this objective is not tractable and it is approximated by the evidence lower bound64

(ELBO) as:65

LV AE = Eqφ(z|x)[log qθ(x|z)]−KL(qφ(z|x) ‖ p(z)), (1)

In practice, the first term is estimated by reconstruction error. The second term is the Kullback-66

Leibler divergence between the posterior qφ(z|x) and the prior p(z) commonly chosen as an67

isotropic unit Gaussian p(z) ∼ N (0, I).68

Disentangled representation by VAE has achieved the state-of-the-art performance (Higgins et al.,69

2017; Burgess et al., 2017; Kim & Mnih, 2018; Chen et al., 2018; Kumar et al., 2017), despite the70

fact that the VAE objective only models the marginal distribution of the data instead of the desired71

joint distribution over data and latent variables. The reason for this success is the implementation72

choices of the VAE framework (Rolinek et al., 2019). In practice, the latent variables in VAE often73

work in “polarized” modes. The “passive” mode is defined by µ2
j (x)� 1 and σ2

j (x) ≈ 1, while the74

“active” mode is defined by σ2
j (x)� 1. The “passive” latent variables closely approximate the prior75

and have little effect on the decoder. The “active” latent variables, on the other hand, are closely76

related to both the per sample KL loss and the decoder output. The “polarized regime” enables a77

reformulated VAE objective showing that VAEs optimize a trade-off between data reconstruction78

and orthogonality of the linear approximation of decoder Jacobian locally around a data sample.79

This PCA-like behavior near data points encourages an identifiable disentangled latent space by80

VAE. Furthermore, it was suggested that finding an appropriate “polarized regime” is dependent81

on the initialization and the hyperparameter tuning of the state-of-the-art approaches. In this study,82

we show that the proposed VAE ensemble aligns the “polarized regime” of individual VAE models83

towards the disentangled representation.84

Model selection In practice, we often observe neural networks achieve similar performance with85

different internal representations when trained with the same hyperparameters (Raghu et al., 2017;86

Wang et al., 2018; Morcos et al., 2018). For the unsupervised disentanlged representation, as dis-87

cussed in (Locatello et al., 2018; Duan et al., 2019), we often observe high variance in the perfor-88

mance from the model trained with the same architecture and hyperparameter setting. This poses89

a challenge for choosing the model in practice. Duan et al. (2019) proposed Unsupervised Disen-90

tanglement Ranking (UDR) to address this challenge. The extensive empirical evaluations on UDR91

using both the supervised metric measurement and the performance of downstream tasks validates92

its effectiveness. They also confirm that disentangled representations are “alike” and entangled rep-93

resentations are unique in their own ways. The proposed VAE ensemble leverages this finding.94

Identifiable VAE Built on the recent breakthroughs in nonlinear Independent Component Analy-95

sis (ICA) literature (Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019), Khemakhem et96

al. show that the identification of the true joint distribution over observed and latent variables is97
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Figure 1: The proposed VAE ensemble consists of multiple original VAE models. The encoders
of the VAEs in the ensemble generate input encoding that can be linearly transformed among each
other. The decoders of the VAEs in the ensemble reconstruct the input data from both their corre-
sponding encoder and the linearly transformed encodings from other encoders. The x and y axis
of the circles on the left hand side of the plot represent two generative factors as an example. The
aligned arrows with x and y axis show a model with disentangled representation and unaligned ones
show a model with entangled representation.

possible up to very simple transformations (Khemakhem et al., 2019). They proposed identifiable 98

VAE (iVAE) that requires a factorized prior distribution over the latent variables conditioned on an 99

additionally observed variable, such as a class label or almost any other observation. We believe the 100

proposed VAE ensemble is related to such framework where the latent representation from one VAE 101

model can be regarded as the auxiliary observations for another. 102

Ensemble learning The idea of ensemble learning is to combine multiple learning models (poten- 103

tially weak learners) to improve the task performance or robustness over a single model (Schapire, 104

1990). It achieves the improved performance by averaging the bias, reducing the variance thus pre- 105

venting the over-fitting (Drucker et al., 1994; Breiman, 1996). Early works in neural networks have 106

used the ensemble learning to achieve top performance in the related competition (Krizhevsky et al., 107

2012; Simonyan & Zisserman, 2014). In this work, we apply the ensemble learning to enforce the 108

alignment among the latent representations of different models. This results in latent representations 109

that are similar among each other in the ensemble up to a trivial transformation. 110

3 THE VAE ENSEMBLE FRAMEWORK 111

As illustrated in Figure 1, the proposed VAE ensemble consists of n original VAE models with the 112

same architecture but different initializations. It also consists of n× (n−1) linear layers connecting 113

the latent representations of every two VAE models. Each model in the ensemble maintains its 114

original VAE objective as Eq. 1. In addition, l2 loss is used to force mapping between latent 115

representations via pair-wise linear layers (cross-model linear transformation). The decoder of each 116

VAE model generates the input reconstruction from not only their corresponding encoder (within- 117

model reconstruction), but also the linearly transformed encodings from other encoders (cross-model 118

reconstruction). Overall, the VAE ensemble is trained with the following objective: 119

L(θ,φ) =

n∑
i=1

n∑
j=1

Eqφij(zij |x)[log qθj(x|zij)]−
n∑
i=1

KL(qφii(zii|x) ‖ p(zii))

− γ
n∑
i=1

n∑
j=1

Eqφij(zij |x) ‖zjj − zij‖
2
,

(2)
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where n is the number of models in the ensemble; φ := (φij) is the encoders parameters where φij120

represents the encoder of VAEi and its associated linear layer mapping the latent representation from121

VAEi to VAEj (notice that φii represents the encoder parameters of VAEi only and its associated122

linear transformation can be be regarded as an identity transformation); θ := (θi) represents the de-123

coder parameters of VAEi; and zjj represents the latent representation of VAEj while zij represents124

the linearly transformed latent representation from VAEi to VAEj . γ is a hyperparameter to balance125

the effect of the estimation error between the latent representaitons. p(zii) ∼ N (0, I) is assume to126

be the prior as defined in the original VAE objective.127

Comparing to the original VAE objective in Eq. 1, the objective of each individual VAE model in128

the ensemble, L′V AE , can be written as:129

L′V AE(θ, φ) = LV AE(θ, φ) +

n−1∑
j=1

{
Eqφj(zj |x)[log qθ(x|zj)]− γEqφj(zj |x) ‖zj − z‖

2
}

︸ ︷︷ ︸
Ensemble Regularization

,
(3)

where n is the number of models in the ensemble, φj stands for the parameters of the encoder and130

its linear transformation layers from other VAEs, and zj represents the linear transformed latent131

representation of the encoding from other encoders.132

In this form, the VAE ensemble regularizes each VAE model with additional terms on the encoder133

as γEqφj(zj |x) ‖zj − z‖
2, and on the decoder as

∑n
j=1 Eqφj(zj |x)[log qθ(x|zj)]. These regulariza-134

tions directly constrain the latent representations among different VAE models in the ensemble to135

be similar. In particular, for a given input data, ‖zj − z‖2 encourages the encoders to generate136

similar encodings up to the linear transformations; and
∑n
j=1 Eqφj(zj |x)[log qθ(x|zj)] emphasizes137

the similar effect on the data reconstruction from the latent variables such that the decoders can138

reconstruct the input data with both the original encoding z and the linearly transformed encoding139

zj . As we shall discuss in the next section, together these regularizations encourage similar latent140

representation up a trivial transformation by different models in the ensemble.141

We also introduce the hyperparameter γ to balance the trade-off between these two regularizations:142

higher value forces closer mapping between the encoders and reduce the cross-model reconstruction143

error of the decoders; lower value relaxes the mapping between the encoders and increases the cross-144

model reconstruction error of the decoders. As we show in Section 5, both components are important145

and balancing the trade-off between them is important as the ensemble size increases.146

Computational complexity It is a common practice to train a number of seeds per hyperparameter147

setting for the current state-of-the-art unsupervised disentanglement VAE models (Locatello et al.,148

2018; Duan et al., 2019). Comparing to training n original VAEs, the proposed VAE ensemble149

requires additional n × (n − 1) linear layers. While this addition does not increase the size of the150

model much, the estimation of the linear transformations loss and the cross-model reconstruction151

losses grow with n× (n− 1), which may be computationally expensive especially when n is large.152

That being said, the results in Section 5 show that the VAE ensemble achieves more stable results153

comparing to the current state-of-the-art models. Also, its computation is highly parallelisable.154

4 THEORETICAL JUSTIFICATION155

In this section, we present the theoretical analysis on why the proposed VAE ensemble can improve156

the disentangled representation. We start with analysing the l2 objective in Eq. 2 of the pair-wise157

liner transformations in the VAE ensemble, and show that: (1) the pair-wise linear transformations158

encourage similar “polarized” regime (see Sec. 2) among the VAEs in the ensemble; (2) the linear159

transformations are close to the orthogonal transformations. Based on these two properties, we then160

discuss how the cross-model reconstructions by the VAE ensemble encourage learning a disentan-161

gled representation over its entangled counterpart.162

4.1 THE EFFECT OF LINEAR TRANSFORMATION BETWEEN LATENT REPRESENTATIONS163

Let VAEi and VAEj be two different VAE models in the ensemble, and Mji be the linear trans-164

formation that maps the latent representation of a given input x by VAEj to the one by VAEi, as165
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zj(x) ∼ N (µj(x), diag(σj(x)2)) to zi(x) ∼ N (µi(x), diag(σi(x)2)). In the following we re- 166

move the input notation from the VAE latent representations for simplicity (i.e. zj(x) is simplified 167

as zj), while keeping in mind that the analysis is based on the local latent representation of a given 168

input x. 169

For VAEj , the l2 term of the VAE ensemble loss in Eq. 2 aims to find Mji and zj that minimize 170

E ‖zi −Mjizj‖2, where the expectation is over the stochasticity of VAEj . We can write zi and zj 171

as zi = µi + εi and zj = µj + εj , where εi ∼ N (0, diag(σ2
i )) and εj ∼ N (0, diag(σ2

j )). Hence 172

using bias-variance decomposition, the l2 term can be written as: 173

min
Mji,zj∼N (µj ,diag(σ2

j ))
E ‖zi −Mjizj‖2

= min
Mji,zj∼N (µj ,diag(σ2

j ))

{
‖µi −Mjiµj‖2 + E

zj

‖Mjiµj −Mjizj‖2 + E
zi

‖µi − zi‖2
}

= min
Mji,zj∼N (µj ,diag(σ2

j ))

{
‖µi −Mjiµj‖2 + E

zj

‖Mjiµj −Mjizj‖2
}

+ C1

= min
Mji,zj∼N (µj ,diag(σ2

j ))

{
‖µi −Mjiµj‖2 + E

εj
‖Mjiεj‖2

}
+ C1

(4)

where the constant C1 arises from the fact E
zi

‖µi − zi‖2 does not depend on Mji and zj. Eq. 4 con- 174

sists of a deterministic component of ‖µi −Mjiµj‖2 and a stochastic component of E
εj
‖Mjiεj‖2. 175

The deterministic component can be minimized by adjusting the parameters in VAEj such that its 176

mean encoding µj is optimized for any given Mji. This simplifies our analysis to focus on the 177

stochastic component. Between Mji and εj in this stochastic component, we separately optimize 178

one while having the other fixed. 179

We start with fixed Mji and optimizing for εj ∼ N (0, diag(σ2
j )). Notice that σ2

j is associated with 180

VAEj objective. In (Rolinek et al., 2019), the VAE objective is reformulated into the deterministic 181

reconstruction, the stochastic reconstruction and the KL loss. The last two components define the 182

stochastic loss of VAE. It is formulated as: 183

min
V,σ2

j

∑
X

E
εj∼N (0,diag(σ2

j ))
‖Dεj‖2 s.t.

∑
X

LKL = C1, (5)

where X represents the dataset, D represents the local linear approximation of the Jacobian of the 184

decoder with singular value decomposition as D = UΣV T . Furthermore, the KL loss LKL = 185
1
2

∑d
k=1(µ2

jk +σ2
jk− log σ2

jk− 1) can be simplified as L≈KL = 1
2

∑
k∈“active”(µ2

jk− log σ2
jk− 1) 186

based on the “polarized” regime of VAE. (Rolinek et al., 2019) shows that σ2
j act as the precision 187

control allowed for each latent variable where more influential ones receive more precision. Com- 188

bining the stochastic loss of the linear transformation in Eq. 4 and the stochastic loss of the original 189

VAE in Eq. 5, the overall stochastic loss on σ2
j can be formulated as: 190

min
σ2
j

E
εj∼N (0,diag(σ2

j ))
[‖Mjiεj‖2 + ‖Dεj‖2] s.t.

∑
k

− log σ2
jk = C2, (6)

where σ2
jk is the kth element of σ2

j . Here we further simplify LKL with the L≈KL up 191

to additive constants C2 when µj is fixed. In addition to the precision control of σ2
j on 192

VAEj , this objective also aims to find an optimal distribution of σ2
j that aligns the “polarized 193

regime” among different VAEs. To see why, let ck be the kth column of Mji, we then have 194

E ‖Mjiεj‖2 =
∑
k ‖ck‖

2
σ2
jk. The Arithmetic-Mean–Geometric-Mean (AM/GM) inequality sug- 195

gests that
∑
k ‖ck‖

2
σ2
jk ≥ n

(∏
k ‖ck‖

2
σ2
jk

)1/n
= n

(∏
k ‖ck‖

2
)1/n

exp(−C), where the equal- 196

ity is achieved when ‖cm‖2 σ2
jm = ‖cn‖2 σ2

jn for any m 6= n. This suggests that latent variables 197

with high ‖ck‖2 mapping from zj to zi will have smaller variance. Hence, these latent variables in zj 198

are encouraged to stay in the “active” mode. On contrary, the latent variables that do not share sim- 199

ilar generative factors between zj and zi will be assigned larger variance, and being pushed towards 200

the “passive” mode. 201
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Now we fix the optimal distribution of σ2
j , and optimize for Mji. Since εj ∼ N (0, diag(σ2

j )), this202

objective can be understood as optimally rotating the latent space of VAEj such that the stochastic203

component in Eq. 4 is minimized. Specifically, we have the following objective:204

min
Mji

‖Mjiεj‖2 = min
R

∥∥MjiR
T εj
∥∥2 (7)

where R is an orthogonal transformation. Let c′k be the kth column of MjiR. Similar as before, the205

AM/GM inequality suggests
∥∥MjiR

T εj
∥∥2 =

∑
k ‖c′k‖

2
σ2
jk ≥

∏
k ‖c′k‖

2
exp(−C3). Hadamard’s206

inequality suggests that
∏
k ‖c′k‖

2 ≥ |det(MjiR)|, and the equality is satisfied when c′ks are pair-207

wise orthogonal. This can be understood from the geometric perspective where
∏
k ‖c′k‖

2 gives an208

upper bound on Volume(
{
MjiR

Tx : x ∈ [0, 1]d
}

). As a result, the optimization of Mji will lead to209

an orthogonal transformation. Together the optimization of Eq. 6 and Eq. 7 encourages the align-210

ment of the “polarized regime” among different models under orthogonal linear transformations.211

They force different models in the ensemble to capture the same mixture of the generative factors.212

In the next section, we discuss the effect of the cross-model reconstruction in the VAE ensemble that213

encourages the disentangled representation over the entangled ones.214

4.2 THE EFFECT OF CROSS-MODEL RECONSTRUCTION215

In an entangled representation, each latent variable captures a mixture of generative factors in its216

unique way. Since different generative factors typically have different effects on data variations217

(Duan et al., 2019), the orthogonal transformation from one entangled representation zj to another218

one zi introduces different encoding variance. Some of the transformed latent variables in Mjizj219

carry larger variance comparing to the corresponding ones in zi. This discrepancy leads to larger220

cross-model reconstruction of VAEi than the within model reconstruction. This error forces both221

VAEi and VAEj to adjust their representations until the effect on the data reconstruction by indi-222

vidual latent variables matches between Mjizj and zi. The process applies to all models in the223

ensemble and eventually leads to a one-to-one mapping of latent variables between different mod-224

els, where Mji becomes a trivial transformation (signed permutation matrix). In particular, if one of225

the models in the VAE ensemble learns a disentangled representation, other models in the ensemble226

will converge to it. This is because the orthogonal transformation from an entangled representation227

to a disentangled representation introduces larger cross-model encoding variance due to the mixture228

of different generative factors in the former, thus a larger cross-model reconstruction by the disen-229

tangled model. On contrary, the orthogonal transformation from a disentangled representation to an230

entangled representation would not introduce larger cross-model encoding variance than the within231

model encoding, thus similar cross-model reconstruction as within model reconstruction by the en-232

tangled model. Such a gap encourages the entangled representations to align with the disentangled233

representation. We illustrate the geometric interpretation of such a case in Appendix C.234

From these discussions, we conclude that the VAE ensemble encourages different individual mod-235

els to capture similar generative factors, thus learn representations that are “alike” up to a trivial236

transformation. In the next section, we verify these analytic results with experiments.237

5 EXPERIMENTS238

Our experiments are designed to confirm the discussions in the previous sections. Particularly we239

ask the following questions: Q1: Do the linear transformations in the ensemble converge to trivial240

transformation? Q2: Do the VAEs in the ensemble work in similar “polarized” regime? Q3: Does241

VAE ensemble improve the unsupervised disentangled representation learning, and what is the ef-242

fect of ensemble size? Q4: What are the effects of the cross-model reconstruction loss, the linear243

transformation loss and the hyperparameter γ in the VAE ensemble objective?244

We analyze the inner working of the proposed VAE ensemble using the benchmark dSprite dataset245

(Matthey et al., 2017) with fully known generative processes, and the real-world CelebA dataset (Liu246

et al., 2015) with unknown generative process. Furthermore, for dSprites dataset, we compare our247

results with the original VAE model and the state-of-the-art disentanglement VAE models including248

β-VAE (Higgins et al., 2017), FactorVAE (Kim & Mnih, 2018), TC-VAE (Chen et al., 2018) and249

DIP-VAE (Kumar et al., 2017). We use two widely used supervised metrics including FactorVAE250

metric (Kim & Mnih, 2018) and DCI Disentanglement scores (Eastwood & Williams, 2018) as the251
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Figure 2: Comparing the DtO of linear transformations in the VAE ensemble (γ=10) with the one
between well-trained individual VAEs, as well as the well-trained individual state-of-the-art VAE
models. The latent dimension for all models is set to 10 and evaluated on the dSprite dataset.

quantitative measurements. They are shown to correlate with other common supervised metrics 252

(Locatello et al., 2018). For example, FactorVAE metric and β-VAE metric (Higgins et al., 2017) 253

capture similar notions, while DCI Disentanglement and Mutual Information Gap (MIG) (Chen 254

et al., 2018) capture similar notions. In addition, DCI Disentanglement is closely related to the 255

unsupervised model selection method UDR (Duan et al., 2019). For CelebA dataset, we show the 256

latent traversal visulization as a qualitative measurement in Appendix E. We provide the details of 257

the experiments in Appendix D. 258

Q1: We use the Distance to Orthogonality (DtO) (Rolinek et al., 2019) to check if the linear trans- 259

formations in the ensemble converge to a signed permutation matrix during training. DtO is the 260

Frobenius norm of the difference between a matrix M and its closest signed permutation matrix 261

P (M). It is solved with mixed-integer linear programming (MILP) formulation. The details on 262

DtO can be found in Appendix B. In Figure 2, we show the DtO estimation of the linear transfor- 263

mations in the VAE ensemble of different ensemble size for the dSprite dataset. We show the mean 264

and standard deviation of DtO across all linear transformations over 10 different runs. Furthermore, 265

we compare these results with a baseline measurement where DtO is estimated for the linear trans- 266

formations between the mean latent representations of well-trained individual models. Specifically, 267

we use ten well-trained individual models and report the mean and standard deviation of the DtO 268

estimations. As seen in the figure, the VAE ensemble models with different ensemble size all ap- 269

proach to trivial transformations between the individual models, while other VAE models do not 270

have such property. In Fig. 6, we show that during training, the VAE ensemble remains maintains 271

low DtO while the original VAEs do not have such property. A similar result for models trained on 272

the CelebA dataset with different latent dimensions is shown in Fig. 7. Further discussion on these 273

results are provided in Appendix E. 274

Q2: To check if the models in the VAE ensemble work in similar “polarized” regime, we estimate 275

the relative error between LKL and L≈KL as ∆ = LKL−L≈KL
LKL

for each latent variable. Smaller ∆ 276

indicates closer matching between LKL and L≈KL of a latent variable, thus more “active”. Figure 277

3(a) and 3(b) show log(∆) of the 10 latent variables of individual models in VAE E2 and VAE E3 278

with different γ settings trained on the dSprite dataset. The results show that individual models 279

in the ensemble do work in similar ”polarized regime’. In Figure 3(a), we also compare the VAE 280

ensemble with the β-VAE where β = 4. This setting was found previously to be the optimal setting 281

for the dSprite data for β-VAE (Higgins et al., 2017). We see that the VAE ensemble encourages 282

more “active” latent variables than β-VAE. When we compare Fig. 3(a) and 3(b), we see that as 283

the ensemble size increases, individual models are forced to have more “active” latent variables by 284

decomposing the generative factors. This can be observed in the latent traversals shown in Appendix 285

E. The dSprites dataset contains five ground truth generative factors. The VAE E2 models can 286

have up to eight “active” latent variables depending on input, and these representations capture a 287

decomposition of the ground truth generative factors. 288
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(a) (b)

Figure 3: The “polarized regime” comparison between models in the VAE ensemble. The latent
dimension is set to 10 and the results are over 10 runs of training on the dSprite dataset. (a) The
“polarized regime” comparison by log(LKL−L≈KL

LKL
) of each latent variable of the two models in

VAE E2 as well as β-VAE model. (b) Similar to (a) but for the three models in VAE E3.

FactorVAE Metric
Individual Model VAE Ensemble (VAE E)

VAE 0.635±0.083 γ=1 γ=5 γ=10
β-VAE (β=4) 0.665±0.089 VAE E2 0.711±0.106 0.736±0.085 0.741±0.086
FactorVAE (γ=40) 0.764±0.075 VAE E3 0.794±0.030 0.792±0.075 0.821±0.066
DIP-VAE-I (λod=5) 0.638±0.108 VAE E4 0.833±0.037 0.790±0.038 0.800±0.078
DIP-VAE-II (λod=5) 0.676±0.122 VAE E5 0.828±0.016 0.786±0.051 0.739±0.085
TC-VAE (β=4) 0.808±0.079

DCI-Disentanglement Metric
Individual Model VAE Ensemble (VAE E)

VAE 0.143±0.033 γ=1 γ=5 γ=10
β-VAE (β=4) 0.198±0.076 VAE E2 0.176±0.043 0.243±0.029 0.201±0.037
FactorVAE (γ=40) 0.253±0.072 VAE E3 0.214±0.064 0.236±0.051 0.311±0.060
DIP-VAE-I (λod=5) 0.049±0.017 VAE E4 0.240±0.059 0.223±0.045 0.251±0.038
DIP-VAE-II (λod=5) 0.106±0.032 VAE E5 0.242±0.032 0.244±0.039 0.196±0.050
TC-VAE (β=4) 0.303±0.052

Table 1: Comparison between the proposed VAE ensemble, the original VAE, and the current state-
of-the-art disentangled VAE models. We report the mean and standard deviation of the FactorVAE
metric and and DCI Disentanglement scores over 10 runs trained on the dSprite data.

Q3: In Table 1, we compare the disentangled representation performance between the proposed289

VAE ensemble and the state-of-the-art models. For the VAE ensemble, we report the performance290

of the first model in the ensemble. We also report the results for the VAE ensemble with different291

ensemble size and γ values. As shown in the table, the VAE ensemble significantly improves the292

performance over the original VAE model. In many settings, the VAE ensemble achieves similar293

or better performance over the state-of-the-art models. In Table 2, we evaluate the consistency294

among the models in the ensemble by reporting the standard deviation of the evaluation metrics295

using different models in the same ensemble. The small values confirm that different models in296

the ensemble learn similar latent representations. Furthermore, Table 1 shows the joint effect of297

ensemble size and γ setting. When γ = 1, the performance of VAE ensemble increases as the298

ensemble size increases, indicated by the higher mean and smaller variance of both the FactorVAE299

and DCI Disentanglement metrics. This behavior is consistent with the characteristic of ensemble300

learning where the increase in performance becomes smaller as the size of ensemble increases.301

However, as γ increases, having larger ensemble size can reduce the performance. We believe this302
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γ VAE E2 VAE E3 VAE E4 VAE E5

FactorVAE Metric
(γ=1) 0.0019 0.0090 0.0048 0.0081
(γ=5) 0.0058 0.0064 0.0089 0.0163
(γ=10) 0.0060 0.0046 0.0147 0.0139

DCI-Disent Metric
(γ=1) 0.0024 0.0026 0.0028 0.0036
(γ=5) 0.0037 0.0054 0.0049 0.0040
(γ=10) 0.0013 0.0024 0.0041 0.0042

Table 2: The comparison between individual models in the same ensemble. We report the average
of the standard deviation of the metrics by individual models in the ensemble across 10 runs.

Figure 4: Ablation study to understand the effect of cross-model reconstruction and linear transfor-
mation in the VAE ensemble objective using the FactorVAE metric. (w.o. CR - without cross-model
reconstruction loss; w.o. LT - without linear transformation loss; org - original VAE ensemble loss)

is due to the increased difficulty of balancing between the cross-model and within model objectives 303

of VAE ensemble for larger ensembles. The reduced alignment of the latent representations among 304

different models can also be seen in Table 2 where difference in the performance among individual 305

models in the ensemble increases as ensemble size increases. 306

Q4: We conduct the ablation study to further understand the effect of the linear transformation loss 307

and the cross-model reconstruction loss in the VAE ensemble objective. As shown in Fig. 4, remov- 308

ing either component leads to a lower FactorVAE metric for the VAE ensemble. Without the linear 309

transformation loss, the performance of VAE ensemble decreases significantly across different en- 310

semble sizes. Without the cross-model reconstruction loss, the performance of VAE ensemble also 311

decreases but the gap becomes smaller as γ increases. This matches the discussion in Section 3 that 312

higher γ forces closer mapping between the encoders and reduce the cross-model reconstruction er- 313

ror of the decoders. However, this also reduces the effect of cross-model reconstruction as discussed 314

in Section 4.2. A similar result is also found for the DCI Disentanglement metric as shown in Fig. 315

8 in Appendix E. Overall, the results from the ablation study confirms the importance of both the 316

linear transformation loss and the cross-model reconstruction loss in the VAE ensemble objective. 317

6 CONCLUSION 318

In this study, we propose a simple yet effective VAE ensemble framework consisting of multiple 319

original VAEs to learn disentangled representation. The individual models in the ensemble are 320

connected through linear layers that regularize both encoders and decoders to align the latent repre- 321

sentations to be similar up to a linear transformation. We show in theory that the regularization by 322

the VAE ensemble forces the linear transformations to be trivial transformations and show improved 323

performance on the unsupervised disentangled representation learning. The theoretical discussion 324

in Section 4 is based on the original VAE objective, and our experiments also focus on the ensemble 325

with original VAE. We believe such framework can be extended to other disentangled VAE models, 326

or even a mixture of different VAE models, as long as the regularization by the ensemble does not 327

conflict with the augmented objective of these models. 328
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A TECHNICAL LEMMAS402

In this section, we give the lemmas used in the theoretical discussion in Section 4.403

Lemma 1. (Jensen’s inequality) If g(x) is a convex transformation on x, then this convex transfor-404

mation of a mean g[E(x)] is less than or equal to the mean of the convex transformed value E[g(x)];405

it is a simple corollary that the opposite is true of concave transformations.406

Lemma 2. (AM-GM inequality) As an extension of Jensen’s inequality, given a list of non-negative407

real numbers x1, x2, . . . , xn, the arithmetic mean of this list 1
n

∑n
i=1 xi is greater than or equal408

to the geometric mean of the same list (
∏n
i=1 xi)

1
n ; and further, the equality holds if and only if409

x1 = x2 = · · · = xn.410

Lemma 3. (Hadamard’s inequality). if M is the matrix having columns ci, then |det(M)| ≤411 ∏n
i=1 ‖ci‖; and the equality in Hadamard’s inequality is achieved if and only if the vectors are412

orthogonal.413

B DISTANCE TO ORTHOGONALITY (DTO)414

In this section, we introduce the detail of Distance to Orthogonality (DtO) that is used in our exper-415

iment to check if the linear transformations in the VAE ensemble approach trivial transformations.416

This measurement is also used in (Rolinek et al., 2019) for a similar purpose. DtO is the Frobe-417

nius norm of the difference between a square matrix M and its closest signed permutation matrix418

P (M). Finding P (M) can be formulated as a mixed-integer linear programming (MILP) problem419

as following:420

min
P

∑
i,j

|Mi,j − P (M)i,j |

s.t. P (M)i,j ∈ {−1, 0, 1} , ∀(i, j)∑
i

|Pi,j | = 1, ∀j∑
j

|Pi,j | = 1, ∀i

(8)

By introducing new variables P+
i,j , P

−
i,j ∈ {0, 1} and Di,j = |Mi,j − P (M)i,j |, we can reformulate421

the above optimization problem as:422

min
P

∑
i,j

Di,j

s.t. (P+
i,j − P

−
i,j)−Mi,j ≤ Di,j , ∀(i, j)

Mi,j − (P+
i,j − P

−
i,j) ≤ Di,j , ∀(i, j)∑

i

(P+
i,j + P−i,j) = 1, ∀j∑

j

(P+
i,j + P−i,j) = 1, ∀i

(9)

Using this optimization formulation, DoT of a given matrix M ∈ Rn×n is defined as:423

DoT =
1

n2

∑
i,j

|Mi,j − P (M)i,j | (10)
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Figure 5: Geometric interpretation of the cross-model reconstruction between a disentangled repre-
sentation space and an entangled representation space.

C GEOMETRIC INTERPRETATION OF THE EFFECT OF CROSS-MODEL 424

RECONSTRUCTION 425

Given a disentangled and entangled latent representation space, Fig. 5 illustrates the effect of the 426

cross-model reconstruction by VAE ensemble. The left part shows the orthogonal transformation 427

from a disentangled representation to an entangled space, and the right part shows the transfor- 428

mation in the opposite direction. As shown in the figure, the orthogonal transformation from the 429

disentangled representation to the entangled space does not introduce larger variance than the en- 430

tangled representation. Hence, we can expect similar cross-model reconstruction and within model 431

reconstruction. However, the transformation from the entangled representation to the disentangled 432

space introduces larger variance (yellow shaded area over blue area on the right) than the disentan- 433

gled representation. This leads to larger cross-model reconstruction by the disentangled model. 434

D MODEL ARCHITECTURE AND TRAINING DETAILS 435

We conducted our experiments, including training and evaluating the current state-of-the- 436

art disentanglement models as well as evaluating the proposed VAE ensembles, using the 437

disentanglement lib 1 open-source library (Locatello et al., 2018). 438

Table 3 shows the encoder and the decoder architecture of the VAE model used in our experiments. 439

This architecture is the same as the one used in the original β-VAE Higgins et al. (2017). 440

Encoder Decoder
Input 64×64 binary/RGB image Input Rd

4×4 conv, 32 ReLu, stride 2, pad 1 FC d×256, ReLu
4×4 conv, 32 ReLu, stride 2, pad 1 4×4 upconv, 64 ReLu, stride 1
4×4 conv, 64 ReLu, stride 2, pad 1 4×4 conv, 64 ReLu, stride 2, pad 1
4×4 conv, 64 ReLu, stride 2, pad 1 4×4 conv, 32 ReLu, stride 2, pad 1

4×4 conv, 256 ReLu, stride 1 4×4 conv, 32 ReLu, stride 2, pad 1
FC 256 × (2×d) 4×4 conv, nc , stride 2, pad 1

Table 3: Encoder and Decoder architecture, d: dimension of the latent representation; nc: number
of input image channel (For dSprites dataset nc = 1, for CelebA dataset nc = 3).

Table 4 shows the hyperparameters setting used throughout the experiments. These parameters are 441

fixed for all the experiments. 442

E ADDITIONAL EXPERIMENTAL RESULTS 443

In this section, we present the additional results including the DtO and “polarized regime” analysis 444

on the models trained on the CelebA dataset similar to the ones conducted on dSprite dataset in 445

Section 5; the ablation results with DCI-Disentanglement metric and the DtO estimation; and the 446

1https://github.com/google-research/disentanglement_lib
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Parameter value
Batch size 64

Latent dimension 10
Optimizer Adam

Adam: beta1 0.9
Adam: beta2 0.999
Learning rate 1e-4

Table 4: Hyperparameters setting.

(a) (b)

Figure 6: Characteristics of the linear transform between latent representations. The latent dimen-
sion is set to 10 and the results are over 10 runs of training on the dSprite dataset. (a) Comparing
the DtO of linear transformations in the VAE ensemble (γ=10) and the one between original VAEs.
(b) VAE ensemble (γ=10) with different ensemble size all achieve small DtO of the linear transfor-
mations between the models.

latent traversal of the trained model on both dSprite and CelebA dataset along with further discuss447

the effect of VAE ensemble on the latent representation.448

E.1 CHARACTERIZATION OF THE LINEAR TRANSFORMATION IN VAE ENSEMBLE449

In Figure 6, we show the DtO estimation of the linear transformations in the ensemble during train-450

ing for the dSprite dataset. We report the mean and standard deviation of DtO across all linear451

transformations over 10 different runs. Furthermore, we compare these results with a VAE baseline452

where DtO is estimated for the linear transformations between original VAEs. Specifically, we train453

ten different VAEs separately and estimate the DtO of the pairwise linear transformation among454

these models during training. Similarly we report the mean and standard deviation of these DtO es-455

timations. As seen in the figure, the VAE ensemble models with different ensemble size all approach456

to trivial transformations between the individual models, while the original VAEs do not have such457

property. A similar result is also found in models trained for CelebA dataset. Similar to the results458

in Figure 6, we observe decreased DtO of the linear transformations in the VAE ensemble during459

training.460

We also compare models trained with different latent dimension size. We observe decreased DtO461

as the latent dimension of the model increases in Figure 7. This is because, as discussed in the462

main paper, the VAE ensemble encourages more “active” latent variables. Models with higher latent463

dimension likely to learn a decomposition of generative factors. As a result, the alignment of the464

latent variable between different models are easier thus the linear transformations between the latent465

representations is closer to the trivial transformation. On the contrary when there are less latent466

variables in the model than the generative factors, some of the latent variables will capture more467

than a single generative factor. As a result, the one-to-one mapping between the latent variables of468

different models will not lead to a trivial transformation.469
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Figure 7: Distance to Orthogonality (DtO) measurement of the linear transforms between latent
representations in VAE E2 during training on the CelebA dataset. We also compare models with
different latent dimensions of 10, 16 and 32 and the results are averaged over 5 runs. In the figure
legend, we use “VAE Ei nd γ = g” to represent VAE Ensemble (VAE E) model with i individual
VAE models, n latent dimensions and γ value equal to g.

In Figure 9 and Figure 10, we show the “polarized regime” estimation for models in VAE E2 and 470

VAE E3 trained for CelebA datasets, respectively. Similar to the results in Figure 3, individual 471

models in the VAE ensemble tend to have similar ‘polarized regime”, and higher γ enforces the “po- 472

larized regime” by separating “passive” latent variables from the “active” ones. When we compare 473

between VAE E2 and VAE E3, we observe increased “active” latent variables similar to the result 474

on dSprite dataset in Section 5. More importantly, as discussed earlier, latent variables in a model 475

with limited latent dimensions need to capture more than a single generative factor, especially for 476

a complicated real-world dataset such as CelebA. This makes the linear transformation between the 477

latent representations less trivial. As the latent dimension size grows, such constraint is relaxed and 478

the linear transformations are closer to trivial. 479

These additional results confirm the conclusion in Section 5: (1) as the ensemble size increases, 480

DtO increases due to the difficulty of aligning the latent representations among different models; 481

(2) as the model latent dimension increases, DtO decreases due to the increased model capacity, and 482

encourages the one-to-one mapping between latent variables in different models; (3) hyperparameter 483

γ does not affect DtO significantly, but plays an important role on separating “active” and “passive” 484

latent variables, especially when the latent dimension is large enough. 485

Furthermore, we believe the DtO measurement of the linear transformation in VAE ensemble could 486

be a useful indicator for latent dimension size. As shown in Figure 7 and Figure 9, when the latent 487

dimension is sufficient for a given dataset, the DtO of the linear transformation is small and some 488

latent variables are pushed to “passive” mode. 489

E.2 ABLATION STUDY 490

Similar to the ablation result shown in Section 5, here we show the same ablation study using the DCI 491

Disentanglement metric in Fig. 8(a) as well as the DtO measurement 8(b). Similar as the results of 492

the FactorVAE metric in Fig. 4, removing either component leads to a lower DCI Disentanglement 493

metric for the VAE ensemble. Without the linear transformation loss, the performance of VAE 494

ensemble decreases significantly across different ensemble sizes. Fig. 8(b) shows that for VAE 495
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(a) Comparison on the DCI-Disentanglement score

(b) Comparison on the Distance to Orthogonality (DtO)

Figure 8: Ablation study to understand the effect of cross-model reconstruction and linear transfor-
mation in the VAE ensemble objective using the DCI Disentanglement metric and DtO. (w.o. CR -
without cross-model reconstruction loss; w.o. LT - without linear transformation loss; org - original
VAE ensemble loss)

ensemble without the cross-model reconstruction, the linear transformations among models are close496

to a trivial transformation (signed permutation). This implies the orthonormal transformation of the497

linear transformations. This result further supports our intuitive justification in Appendix C that the498

cross-model objective encourages entangled models to align to disentangled models. Indeed, we see499

that adding the cross-model reconstruction can further reduce the DtO of the linear transformations500

among the models in the ensemble.501

E.3 LATENT TRAVERSAL502

In this section we show the latent traversal of models trained on both dSprites and CelebA datasets.503

For a fixed input image, to extract the latent traversal we change the value of a single latent variable504

zi in the corresponding encoding, and observe the generated output image to understand the effect505

of zi. The range of the value are usually chosen to be from -3 to 3 due to the standard Gaussian506

prior.507

In Figure 11, we show the latent traversal for both VAE E2 and a single VAE model with 10 latent508

dimensions trained on dSprites dataset. Three images as shown in the last column of each block509
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are used as input. Both models are able to capture certain generative factors of the data including 510

position, shape, rotation and scale. In Section 5, we argue that the representation by VAE ensemble 511

encourages more “active” latent variables, thus can capture a decomposition of the ground truth gen- 512

erative factors. Especially from the “polarized regime” estimation in Figure 3, we observe that some 513

latent variables in the VAE ensemble are in-between “active” and “passive” modes. This suggests 514

that the VAE ensemble model generates input-dependent factors based on the input complexity. In 515

Figure 11, we observe this behavior highlighted with color boxes. The traversal on the second la- 516

tent variable z2 shows that an ellipse shape does not lead to an “active” latent variable. However, 517

both heart and square shape lead to an “active” latent variable that changes the output. In contrast, 518

the single VAE model does not have such behavior where the “active” modes are consistent across 519

different input data. 520

In Figure 12 and Figure 13, we show the latent traversal for both VAE E2 and a single VAE model 521

with 16 latent dimensions trained on CelebA dataset, respectively. In this real-world dataset, the 522

generative factors are unknown. We observe different factors including background, azimuth, gen- 523

der, hair style being captured by both models. Similar as before, the single VAE model maintains 524

similar “active” mode for all latent variables where similar traversal patterns are observed for both 525

input images. However, VAE E2 shows semantically consistent but input-dependent “active” mode. 526

This is translated into different traversal effects and more realistic and sharper images by VAE E2, 527

especially for the first input image that is less common in the dataset. We believe this is important 528

towards a meaningful compositional latent representation learning. 529

Overall, the latent traversal results in this section confirm the findings on the inner working of the 530

VAE ensemble shown in the previous section as well as the discussion in Section 5. 531

17



Under review as a conference paper at ICLR 2021

(a) VAE E2 with latent dimension of 32, CelebA data.

(b) VAE E2 with latent dimension of 16, CelebA data.

(c) VAE E2 with latent dimension of 10, CelebA data.

Figure 9: The “polarized regime” comparison between models in VAE E2. The results are over 5
runs of training on the CelebA dataset.
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(a) VAE E3 with latent dimension of 32, CelebA data.

(b) VAE E3 with latent dimension of 16, CelebA data.

(c) VAE E3 with latent dimension of 10, CelebA data.

Figure 10: The “polarized regime” comparison between models in the VAE E3 on the CelebA
dataset.

19



Under review as a conference paper at ICLR 2021

(a) VAE E2

(b) Single VAE

(c) β- VAE

(d) FactorVAE

Figure 11: Latent traversal on three different input images using VAE E2, a single VAE and the
state-of-the-art VAE models with 10 dimensional latent representation. The three input images are
ellipse, heart and square shapes as shown in the last column.
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(e) DIP-VAE-I

(f) DIP-VAE-II

(g) TC-VAE

Figure 11: (cont.) Latent traversal on three different input images using VAE E2, a single VAE and
the state-of-the-art VAE models with 10 dimensional latent representation. The three input images
are ellipse, heart and square shapes as shown in the last column.
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Figure 12: Latent traversal on two different input images of CelebA dataset using VAE E2 with
latent dimension of 16.
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Figure 13: Latent traversal on two different input images of CelebA dataset using a single VAE with
latent dimension of 16.

23


	Introduction
	Related Work
	The VAE Ensemble Framework
	Theoretical Justification
	The Effect of Linear Transformation between Latent Representations
	The Effect of cross-model Reconstruction

	Experiments
	Conclusion
	Technical Lemmas
	Distance to Orthogonality (DtO)
	Geometric Interpretation of the Effect of Cross-model Reconstruction
	Model Architecture and Training Details
	Additional Experimental Results
	Characterization of the Linear Transformation in VAE Ensemble
	Ablation Study
	Latent Traversal


