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Abstract

Understanding the dynamics of optimization in deep learning is increasingly im-
portant as models scale. While stochastic gradient descent (SGD) and its variants
reliably find solutions that generalize well, the mechanisms driving this general-
ization remain unclear. Notably, these algorithms often prefer flatter or simpler
minima—particularly in overparameterized settings. Prior work has linked flat-
ness to generalization, and methods like Sharpness-Aware Minimization (SAM)
explicitly encourage flatness, but a unified theory connecting data structure, op-
timization dynamics, and the nature of learned solutions is still lacking. In this
work, we develop a linear stability framework that analyzes the behavior of SGD,
random perturbations, and SAM—particularly in two-layer ReLU networks. Cen-
tral to our analysis is a coherence measure that quantifies how gradient curvature
aligns across data points, revealing why certain minima are stable and favored
during training. (Code are available in: https://github.com/changwk1001/
Stability_Analysis_and_Simplicity-Bias.git)

1 Introduction

Modern deep networks often achieve low training error even in extreme overparameterized settings,
yet they generalize surprisingly well. A key question is why the particular solutions found by
standard training procedures tend to generalize, when many other parameter configurations could fit
the training data but fail on test data. A body of work has suggested that stochastic gradient descent
(SGD) implicitly favors solutions associated with flat minima (i.e. wide, low-curvature regions of the
loss) which correlate with better generalization [Keskar et al., 2017, Hochreiter and Schmidhuber,
1997]. Recent algorithms like Sharpness-Aware Minimization (SAM) explicitly optimize for flatness
and further improve generalization [Foret et al., 2021]. A complementary line of reasoning posits an
implicit simplicity bias in overparameterized neural networks: given a choice of multiple functions
that fit the training data, SGD tends to find those that rely on simpler or more “intuitive” features,
rather than complex or idiosyncratic ones. Empirical evidence shows that neural networks often
learn the most predictive yet simplest patterns in the data first, and may entirely ignore more complex
features if the simple ones already suffice [Arpit et al., 2017, Shah et al., 2020]. This built-in
Occam’s razor has been offered as an explanation for why DNNs do not overfit even when they could
in principle memorize the training set [Valle-Pérez et al., 2019].
Both the flat-minima hypothesis and the simplicity bias hypothesis provide important clues to
neural network generalization. Yet it remains unclear how these perspectives connect, and what
underlying mechanism drives this preferential selection of solutions by SGD. In particular, why
should an algorithm like SGD prefer flat minima or feature-simple solutions in the first place? And
how do modifications to the optimizer — such as adding random noise or using Sharpness-Aware
Minimization (SAM) [Foret et al., 2021] — alter these preferences? Intriguingly, recent empirical
evidence further suggests that even among multiple minima of equal overall flatness, SAM can
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exhibit an additional implicit bias favoring those solutions that generalize better [Andriushchenko
et al., 2023, Wen et al., 2023a, Springer et al., 2024]. This calls for a unified theoretical framework
to explain which minima are favored by different training dynamics and why.
Towards this goal, we analyze the linear stability of different optimization methods around minima
of the loss landscape to gain insight into which minima are attractors for the dynamics. Crucially,
we focus on a notion of data coherence [Dexter et al., 2024] that captures how similar or aligned
the contributions of different training examples are to the local curvature of the loss. This measure
serves as a bridge between data geometry and the stability of minima: intuitively, solutions where
many examples share common “directions” in parameter space (high coherence) are more stable
under SGD dynamics, whereas solutions that fit each example independently (low coherence) are
less stable. In turn, we prove that the emergence of an implicit simplicity bias that is introduced
based on which minima are stable vs unstable and leads SGD to favor simpler solutions that utilize
shared features across data points instead of memorizing idiosyncrasies of individual examples.
Furthermore, our framework allows us to compare standard SGD with two variations: a simple
random perturbation method (which injects isotropic noise during training) and SAM. We find
that injecting small random perturbations has essentially the same stability criteria as plain SGD,
indicating that when viewed through the lens of linear stability, it does not fundamentally change
which minima are favored but increases the speed of escape from unstable minima. In contrast,
SAM imposes a stricter stability requirement: it penalizes directions with high curvature via an
effective Hessian factor in the update. As a result, our analysis predicts that SAM will actively avoid
sharper (narrow) minima even when SGD might be marginally stable there, and instead SAM will
gravitate even more strongly toward not just flatter, but more highly coherent solutions. In effect,
SAM amplifies the simplicity bias inherent in SGD by further discouraging solutions that depend on
complex, fragile combinations of features. Notably, this extends the conventional view of SAM as
merely favoring flat minima: our analysis shows that it also induces a bias toward solutions of lower
complexity that rely on shared structure across examples.

Contributions. Our work helps paint a coherent picture in which the “flat minima ⇒ good gener-
alization” heuristic and the “SGD finds simple functions” heuristic are two sides of the same coin.
We articulate this connection rigorously and in doing so, also suggest that interventions like SAM,
which further insist on flatness, are effectively heightening the simplicity bias – an interpretation
consistent with recent findings that SAM-trained models prefer more parsimonious representations
[Andriushchenko et al., 2023], can enlarge the regime of benign overfitting when compared to
SGD [Chen et al., 2023b] and can empirically choose better generalizing minima even there are mul-
tiple minima with the same flatness [Wen et al., 2023a]. Our main contributions can be summarized
as follows:

• Unified Linear Stability Analysis. By linearizing the training dynamics around a candidate
minimum, we derive the first known precise stability conditions for a randomly perturbed
variant of SGD, and SAM to explain when a solution will be an attractor under each
algorithm. We examine a data-dependent coherence matrix that measures the alignment
between per-example loss Hessians. We prove that the spectral properties of this coherence
matrix directly govern stability: roughly, solutions where training examples yield highly
aligned curvature (high coherence) remain stable under larger learning rates.

• Matching lower bounds. To show tightness of our analysis, we derive matching lower
bounds on the stability trace under SAM, further cementing exponential divergence when
coherence and curvature align unfavorably.

• Emergence of Simplicity Bias for SGD. We prove that if the training data admits a “simple”
global solution (where the model uses a few common set of features for many examples),
the solution will exhibit high coherence and thereby strong stability, causing SGD to prefer
it over more complex solutions (which have lower coherence and are unstable under similar
conditions). This result bridges the gap between data geometry and the classical flatness-
generalization argument, as highly coherent solutions tend to be flatter in the aggregate
sense.

• SAM intensifies the Simplicity Bias. Our analysis indicates that SAM’s update rule
effectively makes it even harder for solutions with disparate, high-curvature directions to
remain stable. Consequently, we show that the data coherence explains why SAM not only
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finds flatter minima than SGD, but also drives the model toward using more aligned (and
hence fewer) features. This aligns with recent empirical observations that SAM leads to
simpler or more generalizable representations in deep models [Andriushchenko et al., 2023,
Wen et al., 2023a, Springer et al., 2024].

• Empirical Validation. We validate our theoretical insights on a two-layer ReLU network,
where we can analytically characterize different types of solutions. We prove, for instance,
that in a two-layer network, a solution that memorizes each training example in a separate
neuron corresponds to a diagonal coherence matrix (no shared features), whereas a solution
that generalizes by using common features yields off-diagonal coherence and a dominant
principal component. Our results confirm that SGD (and especially SAM) is unlikely
to converge to the memorizing solution when a simpler one exists, consistent with the
simplicity bias phenomena observed in practice.

2 Background

We begin by introducing the linear stability framework, which forms the foundation for our analysis.
Linear stability provides a principled way to analyze the local behavior of iterative optimization
algorithms in the vicinity of critical points (e.g., local minima or saddle points) by linearizing the
update dynamics. This framework has been used to study convergence properties of SGD and its
variants and has recently emerged as a useful tool to characterize generalization-relevant behavior
such as the ability to escape sharp minima [Wu et al., 2018, Dexter et al., 2024].
Linearized Dynamics near a Minimum. Consider a twice-differentiable loss function L(w) over
model parametersw ∈ Rd, and supposew⋆ is a local minimum. Let δt = wt−w⋆ be the perturbation
from the minimum at time t. Expanding the gradient in a Taylor series around w⋆, we obtain

∇L(wt) = ∇L(w⋆ + δt) ≈ ∇2L(w⋆)δt,

since ∇L(w⋆) = 0. For a generic optimization algorithm with update rule wt+1 = wt − ηgt, the
linearized dynamics become

δt+1 = (I − ηHt)δt,

where Ht is an approximation to the local curvature (e.g., the Hessian or a stochastic surrogate). In
the case of stochastic gradient descent (SGD), the curvature matrix Ht is typically estimated using
a mini-batch of training samples. Let St denote a randomly sampled batch of size B and define the
stochastic Hessian estimate as

Ht =
1

B

∑
i∈St

Hi, where Hi = ∇2ℓ(w;xi, yi).

Then, the SGD update becomes

wt+1 = wt − ηHtwt = (I − ηHt)wt = Ĵtwt, (1)

where we use Ĵt to denote the random linear operator at iteration t. For deterministic full-batch
gradient descent, we replace Ht with the full Hessian H = 1

n

∑n
i=1 Hi and drop the hat notation.

To study the long-term behavior of the iterates, we analyze the expected squared norm of the weights:

E[∥wk∥2] = E[w⊤
0 Ĵ

⊤
1 · · · Ĵ⊤

k Ĵk · · · Ĵ1w0] = E[Tr(Ĵk · · · Ĵ1w0w
⊤
0 Ĵ

⊤
1 · · · Ĵ⊤

k )].

Assuming w0 ∼ N (0, I), we reduce to analyzing the quantity E[Tr(Ĵ⊤
k · · · Ĵ⊤

1 Ĵ1 · · · Ĵk)], which
captures the contraction or expansion behavior of the iterates under the sequence of update matrices.
See more details discussion of assumption in appendix A.
Stability criterion. The system is said to be linearly stable at w⋆ under a given optimization method
if the expected squared norm E[∥wk∥2] remains bounded as k → ∞. A sufficient condition for this
is that the spectral norm of the average update matrix E[Ĵ⊤

t Ĵt] is strictly less than 1. For full-batch
gradient descent, this reduces to requiring η < 2/λmax(H).
More generally, in the presence of stochasticity and structure in the data, one can derive stability
conditions involving both the Hessian spectrum and how curvature is distributed across examples.
This motivates the use of a data-dependent coherence measure, which we introduce next.
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Definition 1. Coherence measure [Dexter et al., 2024].For a collection of per-example Hessians
{Hi}ni=1, define the coherence matrix S ∈ Rn×n with entries Sij = ∥H1/2

i H
1/2
j ∥F =

√
Tr(HiHj).

The coherence measure σ is defined as follows:

σ =
λmax(S)

maxi∈n λmax(Hi)
(2)

High coherence corresponds to strong alignment in the curvature directions induced by different
training examples. Intuitively, perturbations in shared directions lead to large changes in loss across
many samples, which creates a stronger restorative gradient and thus stabilizes the solution. This
measure plays a central role in our analysis: we show that both SGD and SAM favor solutions
with high coherence, and that SAM in particular exhibits stronger divergence from low-coherence
solutions due to its amplified curvature penalty. The next section builds on this foundation to
characterize the dynamics of SGD, random perturbation, and SAM using linear stability theory.

3 Main Results

3.1 SGD under Random Perturbation

To better understand how optimization algorithms behave near critical points, we begin by analyzing
a simple but illustrative baseline: random perturbation-based SGD [Bisla et al., 2022]. This variant
injects additive noise into each update step and has been used to improve generalization or to escape
sharp minima:

wt+1 = wt − η∇Sl(w + δt)

= wt − ηHtwt − ηHtδt
(3)

While this method has been empirically studied, its behavior under the linear stability framework
has not been formally characterized. Our goal is to quantify how the injected noise affects both
the convergence region and the escape rate from unstable minima. By addressing these questions,
we establish a baseline against which we can evaluate SAM’s behavior. The following theorem
provides bounds on the trajectory norm under random perturbations, showing how noise modifies
the divergence behavior without altering the stability threshold.
Theorem 3.1. Given update rule (3),

1. Sufficient condition for divergence is as follows:

η ≥ σ

λ1
(
n

b
− 1)−

1
2

2. (Comparative Divergence Speed) Suppose Tr[J2k] ≤ C0α
k for some constants C0 and

αk, then the divergence rate of the random perturbation method is asymptotically within a
constant factor of that of standard SGD:

lim
k→∞

E[∥wk∥2]Random, lower bound

E[∥wk∥2]SGD, lower bound
= O(1)

3. Suppose the step size satisfies the convergence criterion established in prior stability anal-
yses (e.g., Dexter et al. [2024]). Then, under the random perturbation update (3), the
expected squared norm of the iterates remains bounded as k → ∞:

lim
k→∞

E[wT
k wk]upper bound = O(1)

Discussion. Theorem 3.1 characterizes the behavior of random perturbation under the linear stability
framework. We find that the divergence threshold for instability remains unchanged from standard
SGD as derived by Dexter et al. [2024] (part 1), implying that adding random noise does not alter
which minima are stable. However, once a minimum is unstable, the injected noise causes the
iterates to diverge at a constant faster rate (part 2). This observation aligns with the intuitive role
of noise in facilitating exploration during training. Further, in the stable regime, the iterates do not
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converge exactly to the minimum, but instead remain in a bounded region around it (part 3). This
residual variance arises from the persistent noise and illustrates a tradeoff: random perturbation aids
exploration but limits precision. Together, these results position random perturbation as a useful
baseline control for SAM as we now show that SAM’s behavior is due to a fundamentally different
mechanism that biases optimization toward aligned, lower-complexity minima.

3.2 Sharpness aware minimization (SAM)

We now analyzing SAM, an algorithm explicitly designed to seek flatter minima by optimizing a
worst-case perturbed loss. SAM replaces the standard gradient descent step with a descent direction
that maximizes the loss within a neighborhood of the current iterate. Formally, the gradient can be
approximated as:

∇l(w)SAM ≃ ∇l(w + ρ
∇l(w)

||∇l(w)||
)

Under the quadratic setting, we can write the iterate update process as:

wt+1 = wt − η∇Sl(wt + ρ
∇l(wt)

||∇l(wt)||
)

= (I − ηHt(I +
ρ

||Hwt||
H))wt

(4)

While the gradient update in SAM admits a closed-form expression under the quadratic approxima-
tion, the presence of the norm in the denominator—i.e., ∥Hwt∥—introduces significant analytical
challenges due to its dependence on the current iterate. To facilitate tractable analysis, we follow prior
works [Andriushchenko and Flammarion, 2022, Du et al., 2022, Zhou et al., 2025] and replace this
quantity by a fixed scalar value α. This simplification allows us to isolate the effect of the curvature
term and focus on the directional dynamics introduced by the sharpness-aware perturbation. Under
this update, the SAM update reduces to a linear transformation governed by an effective Hessian
of the form HSAM = H

(
I + ρ

αH
)

which portrays a stricter stability criterion and fundamentally
different optimization dynamics than SGD. This allows SAM to not only escape sharp minima more
aggressively but also to selectively stabilize solutions that exhibit coherent curvature, thereby am-
plifying simplicity bias. In our theory, we analyze the noise arising from the alignment of the space
spanned by different sample which accumulate over steps. For the following, we provide simplified
version of our theory (see Appendix C.8 and Appendix C.9 for exact details).
Theorem 3.2 ((Simplified) Linear Stability of SAM). Consider the update rule of SAM under a
quadratic loss approximation:

wt+1 =
(
I − ηHt

(
I +

ρ

α
H
))

wt,

where Ht is the mini-batch Hessian at time t, ρ is the SAM perturbation radius, and α is a fixed
approximation to ∥Hwt∥.

1. Divergence criterion. SAM diverges if the largest eigenvalue of the Hessian exceeds the
following threshold:

λmax(H) ≥ σ

η

( n

B
− 1

)−1/2 (
1 +

ρ

α
λmin(H)

)−1

.

Compared to SGD, this condition is stricter due to the additional curvature-dependent term
in the denominator, implying that SAM escapes sharp minima more aggressively.

2. Convergence criterion. If there exists ϵ ∈ (0, 1) such that

ϵ

η
≤ λi +

ρ

α
λ2
i ≤ 2− ϵ

η
, ∀i ∈ [d],

and the accumulated noise decays sufficiently fast (see Appendix C.9), then the iterates
converge in expectation:

lim
k→∞

E[∥wk∥2] = 0.
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see the divergence part proof in Appendix C.8 and see the convergence part of proof in Appendix
C.9
Discussion: Theorem 3.2 shows that the optimization dynamics of SAM are also governed by
the coherence measure that captures how sample gradients align. However, if we map the SAM
dyanamics to those of SGD as per Eq (1), we can extrapolate that SAM operates on a sharper surface
where the effective Hessian and coherence matrix becomes

HSAM =
(
I +

ρ

α
H
)
H,

SSAM,ij =

√
Tr[(I +

ρ

α
H)Hi(I +

ρ

α
H)Hj ].

SAM’s update effectively introduces an additional Hessian-dependent factor – penalizing directions
with large curvature – which tightens the stability criterion. Qualitatively, a solution that might be
marginally stable under SGD (with eigenvalues just below the SGD stability threshold) can become
unstable under SAM if even a single eigen-direction has curvature beyond SAM’s narrower tolerance.
This theoretical insight aligns well with SAM’s design goal of seeking flat minima [Foret et al., 2021],
but it goes further by pinpointing which sharp minima are especially disfavored: namely, those where
the sharpness arises from directions that are not supported uniformly by all training examples. By
contrast, if a sharp curvature direction is “universal” across examples (high coherence), it is somewhat
mitigated in our stability condition – intuitively, SAM is less alarmed by curvature that stems from
a feature direction that all data agree on, than by curvature that comes from one-off fluctuations.
In practical terms, this means SAM biases training even more strongly toward solutions that rely
on global features of the data. Solutions that depend on any single example (or a small subset of
examples) in a unique way will tend to have some high-curvature direction localized to that example’s
loss, making them unstable under SAM even if SGD might have tolerated them. Further, SAM also
escapes exponentially faster from minima that it deems as unstable.
We now show the optimality of the SAM divergence bound with a matching lower bound:
Theorem 3.3. For every choice of λ1 > 0, n ∈ N,B ∈ [n], η > 0 and σ ∈ [n], that satisfied

λ1(1 +
ρ

α
λ1) ≤

2σ

η
(σ +

n

B
− 1)−1, (5)

there exist a set of PSD matrices {Hi}i∈[n] such that λmax(H) = λ1 and limk→∞ E||Ĵk...Ĵ1||F < n

3.3 Emergence of Simplicity Bias: Realization in Two-Layer ReLU Models

We now instantiate the linear stability framework in a concrete neural network setting to analyze how
the theoretical insights developed so far translate to realistic model architectures. Specifically, we
focus on a two-layer ReLU network trained with mean squared error (MSE) loss:

fw(x) = W2 · ReLU(W1x+ b),

where W1 ∈ Rd2×d maps inputs to hidden units, W2 ∈ R1×d2 maps activations to output, and
b ∈ Rd2 is a bias term.
This setting allows us to bridge abstract notions such as curvature, coherence, and stability with
concrete properties of network solutions — including memorization, feature sharing, and low-rank
structure. We adopt a synthetic data distribution from prior work [Wen et al., 2023a] where inputs
x ∈ {−1, 1}d are drawn i.i.d. and labels are generated y = x[0]x[1], ensuring that both simple and
complex solutions exist.
Crucially, we analyze the Hessian of the MSE loss under exact interpolation. In this regime, the
gradient of the loss at the optimum is zero and the Hessian simplifies to:

H =
1

n

n∑
i=1

∇fw(xi)∇fw(xi)
⊤,

enabling direct application of our earlier stability results. By examining how per-sample gradients
align across examples, we quantify the coherence structure of different solutions and show how this
governs their stability under SGD and SAM.
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Memorization and Coherence. We begin by characterizing memorization in our setup – a data
point is memorized if it activates a unique hidden neuron [Wen et al., 2023a]. A memorized
solution is one where each training point is memorized. A generalizing solution reuses the same
features (neurons) across multiple samples, resulting in aligned gradients and higher coherence. The
following result formalizes the relationship between memorization and coherence.
Theorem 3.4 (Coherence Characterization of Memorization). A two-layer ReLU network defines a
memorizing solution if and only if the coherence matrix S is diagonal.

This observation implies that in the memorizing regime, the sample-wise Hessians are orthogonal,
i.e., Tr[HiHj ] = 0 for i ̸= j. As a result, the coherence matrix reduces to a diagonal form, elim-
inating any cross-sample interaction. Consequently, the corresponding stability condition degrades
to its weakest form, as no spectral amplification arises from off-diagonal terms.
In contrast, generalizing solutions induce non-trivial off-diagonal components in S, reflecting shared
activation patterns or feature overlap across examples. This coherent structure enhances the dominant
eigenvalue of S, thereby tightening convergence guarantees and improving stability under both SGD
and SAM. Hence, any statistical or geometric correlation among training samples inherently rules
out the memorizing case and promotes more favorable optimization dynamics.

Constructing Generalizing Solutions. To systematically explore generalization within this frame-
work, we define a family of (C, r)-generalizing solutions, where C controls the number of active
features and r determines the sharpness of the solution. For fixed r, all such solutions are equally
flat in trace norm, but differ in complexity through C.
Definition 2. ((C, r)-generalizing solution) Let {a1, a2, . . . , aC} ∈ {0, 1}C . We construct W1 such
that each hidden unit encodes a pattern of the form:

W1,j = r · [(−1)a1 , (−1)a2 , . . . , (−1)aC , 0, . . . , 0],

with j indexing a binary encoding of the ai’s i.e. j = 1 +
∑

2i−1ai. We set W2[j] =
1
r (−1)a1+a2

to match. For k > C, W1,k = 0, W2[k] = 0, b[k] = 0.

It is straightforward to verify that Tr[Hi] =
1
r2 (d+1)+ r2, indicating that r controls the flatness of

the solution. The minimum trace—and thus the flattest solution—is achieved when r = (d+ 1)1/4.
For any fixed r, the overall flatness Tr(H) remains constant regardless of C. The weights W1

exhaustively encode all possible feature values, and the bias b ensures that ReLU(W1x+ b) activates
only one row that match x. Given that y = x[0]x[1] (as described in Section 3.3), the construction
guarantees that each (C, r)-generalizing solution is also interpolating: f(xi) = yi for all i ∈ [n]. In
this framework, C acts as a complexity surrogate—controlling the number of features used—while
preserving identical flatness across interpolating solutions. An illustrative example is provided in
Appendix C.1. As we show next, the coherence matrix spectrum depends heavily on C:
Theorem 3.5 (SGD Stability of (C, r)-Generalizing Solutions). Fix r = (d + 1)1/4. Then, with
probability at least 1− δ, for a randomly drawn dataset of size n, the top eigenvalue of the coherence
matrix under a (C, r)-generalizing solution satisfies:

λmax(S) = O
( n

2C
(d+ 1)1/2

)
,

while maxi λmax(Hi) = 2(d+ 1)
1
2 .

(See Appendix C.11 for dependency of δ) combining with Theorem for the SGD bounds [Dexter
et al., 2024], this implies that simpler (low-C) generalizing solutions are more stable under SGD,
even when all candidate solutions lie in equally flat regions of the loss.

SAM Favors Simpler Solutions. Finally, we analyze how SAM further shifts this preference.
Under SAM, the coherence matrix becomes

SSAM
ij =

√
Tr

[
(I + ρ

αH)Hi(I +
ρ
αH)Hj

]
,

which accentuates the interaction between aligned directions. As a result, the top eigenvalue of
SSAM grows more sharply for generalizing solutions with small C than for more complex ones.
This bias is formalized in the following bound:
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(a) (b) (c) (d)

Figure 1: Comparison of optimization dynamics across different methods and configurations.
(a) SAM’s dyanamics over different hyper-parameter settings (Red:diverging Blue:converging). (b)
Boundary comparison: SGD, random perturbation, SAM. SGD and random perturbation bound-
aries largely overlap, while SAM diverges in more combination of batch size and σ. (c) SAM
boundaries at different ρ

α : Higher ρ
α further tightens the SAM boundary between the converging

and diverging regimes. (d) Convergence under different C, fixed r: For 2-layer ReLU networks,
SAM converges faster across varying C with fixed r.

Method Coherence Measure λmax(S) ER maxi λmax(Hi) λmax(H) Tr(H)

SGD 133.942 12740.285 6.167 94.385 6.776 51.954
SAM ρ = 0.01 121.473 10103.288 6.2 82.882 6.211 48.401
SAM ρ = 0.05 90.309 6421.689 6 70.948 4.988 38.481
SAM ρ = 0.1 65.656 3445.964 5.6 52.294 3.834 29.140

Table 1: Coherence and Hessian-based metrics across methods. ER stand for effective rank of the
features. We perform PCA on the features of training data and set the threshold for effective rank
to be 90 percent to determine the activation pattern used in different combination of parameters and
optimization.

Theorem 3.6 (SAM Stability of (C, r)-Generalizing Solutions). Under a (C, r)-generalizing solu-
tion for a randomly iid drawn dataset of size n, the top eigenvalue of the SAM-induced coherence
matrix satisfies:

λmax(S
SAM) = O

 n

2c
(d+ 1)

1
2

√
(1 +

ρ

α

2(d+ 1)
1
2

2c
)2 +

ρ2

α2
(
1

n
(
1

2c
− 1

22c
))4(d+ 1)

 ,

and,
max

i
λmax((I +

ρ

α
H)Hi) = 2(d+ 1)

1
2 (1 +

ρ

α

1

2C
2(d+ 1)

1
2 )

Combining with Theorem 3.2, Theorem 3.6 shows that SAM not only escapes sharp minima more
aggressively, but also amplifies stability differences between simple and complex solutions by favoring
solutions with smaller C more aggressively, further biasing optimization toward lower-complexity
minima. This explains recent empirical observations of SAM inducing low-rank or structured
representations even when curvature alone does not distinguish between candidate solutions.

4 Experiments

In the experimental section, we empirically validate the following key aspects of our theoretical
framework: (1) The behavior of SAM, random perturbation, and SGD under varying combinations
of batch size B and noise scale σ to validate our theoretical findings. (2) The dynamics of different
optimization algorithms in the vicinity of various (C, r)-generalizing solutions, again for validating
our theory, (3) The influence of the coherence measure throughout the training process, its role in
optimization, and its sensitivity to different training hyperparameters across methods.
Local: Linear stability in quadratic loss for different algorithms (B, σ) We investigate the
diverging/converging behavior compared to our theoretical upper and lower bounds over different
values of (B, σ) for quadratic loss. For space, the experimental setup is moved to Appendix C.3.
The results are presented in Fig 1(a). The dashed line and solid line are plotted as per Theorem
3.3 and Theorem 3.2 respectively. We observe a gap in small batch size setting also apparent from
our theory but for larger batch sizes, our theory can accurately predict the diverging and converging
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behaviors. For Figures 1(b)(c), we compare the experimental boundary of SGD, random perturb and
SAM and observe that the boundary between stable and unstable regimes shift as we increase the
ratio ρ

α as also predicted by our theory. Additionally, SGD and random perturbation algorithm show
strong overlap in the boundary which also aligns with our theoretical results.
Local: Linear stability in MSE loss for different algorithms in 2-layer ReLU network. To
study the local behaviors of different algorithms, we initialize the model around the (C, r) solution
(Def. 2) with small Gaussian noise N(0, 0.01) to the model weights to ensure non-zero gradients.
We sample n = 100 data points as described in set up in section 3.3. From figure 1(d), we observe for
smaller C, the converging speed is indeed faster compared to those with high C as expected from our
theory. Additionally, we find that when compared between SGD and SAM, SAM demonstrate higher
converging speed which also aligns with our analysis. (See Appendix C.4 for additional details)
Global: The role of coherence in the training. In this section, we investigate the role of the
coherence measure through the training dynamics using the setup in the previous section. The
final results is presented in Table 1. A key finding is that SAM substantially reduces the effective
coherence measure compared to SGD. To better understand the representational changes induced by
SAM, we also compute the effective rank of the learned features. Specifically, we perform principal
component analysis (PCA) on the training features and define the effective rank as the minimum
number of components required to explain 90% of the variance. We observe a consistent decrease in
effective rank alongside coherence, suggesting that SAM encourages more compact and structured
representations – an observation that aligns with our theoretical predictions.
Furthermore, we track the evolution of the coherence measure throughout the training (Figure. 2)
and find that it varies dynamically, rather than remaining fixed. This suggests that coherence is a
nonstationary quantity during optimization, and tracking its trajectory may yield new insights into
the evolving relationship between data samples.

Figure 2: 2-layer ReLU network. SAM imposes strong regularization on the maximum elementwise
Hessian eigenvalue, and this also reduces the largest eigenvalue of the coherence matrix, which
implies the stability condition is satisfied with smaller σ.

Conclusion. Our analysis reveals that the stability properties of optimization algo-
rithms—especially in the presence of data coherence—are central to the emergence of generalization
and simplicity in deep learning. We show that SAM amplifies this implicit bias by selectively sta-
bilizing flatter, more coherent solutions, offering a theoretical explanation for its empirical success.
These results suggest a unifying lens to interpret generalization as a stability-driven selection of
solutions, and open avenues for designing optimizers that align algorithmic bias with data geometry.

Limitation. A primary limitation of our work is the reliance on a linear approximation of the loss
landscape, as our analysis focuses on local behavior near minima. While we empirically explore
the relationship between the coherence measure and training hyperparameters using two-layer ReLU
networks, extending this investigation to larger models and real-world datasets remains an important
direction for future work. Such studies could offer deeper insights into the practical significance of
coherence in larger deep learning systems. For more discussion regarding limitation and practical or
potential direction, we provide detailed exposition in appendix A.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not
remove the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.
Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.
The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.
IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”,
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: see main context and abstract
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the limitation of the paper at the end
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See proof in appendix C.9, C.11, C.13, C.7 and theory section
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See experiment section in main context and details in section C.5, C.3,
C.4
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend on
the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Will provide code in camera ready version once accpeted
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See experiment in main context and details in section C.5, C.3, C.4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See experiment section and details in section C.5, C.3, C.4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See experiment section in main content and details in section C.5, C.3,
C.4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See details in experiment section in main context and details in section
C.5, C.3, C.4
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: See experiment section in main context and details in section C.5, C.3,
C.4 and related work in appendix B
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
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A More discussion on limitation and practical implication

Assumption and simplification: Our theoretical analysis is limited to a linear approximation near
local minima, which may not capture the full dynamics of training. While our analysis is local,
this regime remains highly relevant: empirical studies show that loss landscapes are often locally
approximately quadratic, even in overparameterized models [Li et al., 2018], motivating many
theoretical frameworks for optimization and generalization [Achour et al., 2024, Wen et al., 2023b].
Since training often proceeds through plateau phases near minima, local dynamics are central to
understanding stability. Like gradient flow and neural tangent kernel analyses, our work adopts
simplifying assumptions that, while not universally valid, yield valuable insights. Our approach
aligns with prior work demonstrating the utility of local approximations.
Other than linear assumption, we also utilize assumption and simplification such as i.i.d. data, two-
layer ReLU networks, and restrict ourselves to basic optimizers (SGD, SAM). We offer clearification
for the above assumption in following:
First, the i.i.d. sampling assumption is standard in theoretical deep learning (e.g., generalization
bounds, stochastic processes) and reflects how minibatches are typically drawn in practice. Studying
non-i.i.d. settings like curriculum or imbalanced sampling is a valuable direction for future work.
Second, while (c,r)-generalizing solutions are restricted, they reflect key structures observed in deep
networks—especially in activation patterns. ReLU networks exhibit rich symmetries (e.g., permuta-
tion, rescaling) that yield exponentially many equivalent solutions with identical loss, gradient, and
Hessian, making our framework practically relevant despite its constraints. Such simplifications are
common to enable tractable analysis.
Third, we focus on plain SGD and SAM to isolate the roles of noise and sharpness in a clean setting.
Extending to optimizers like momentum SGD or Adam, which interact with curvature in subtle ways,
is a promising direction that can reveal more optimization properties under data geometry structure.
Lastly, our analysis reveals a limitation of optimization dynamics in settings where the data exhibits
high redundancy or strongly correlated features. In such cases, the linear stability criteria become
less sensitive to solution complexity, as many parameter configurations yield similar activation
patterns and induce comparable coherence measures. This results in a potential blind spot: the
optimization algorithm may fail to distinguish between simple and complex solutions if the underlying
data geometry does not sufficiently break symmetry. Recognizing this limitation offers a valuable
direction for future theoretical work, particularly in understanding how optimization behavior is
shaped not only by the loss landscape but also by the structure and diversity of the training data.
Practical Implications: In terms of practicality of the proposed coherence measure, it is com-
putationally expensive and not typically used in training. Our work is intended as a first step in
highlighting coherence as a potentially valuable conceptual lens for understanding training dynamics
and generalization. While the coherence measure is not yet a standard diagnostic tool, this is also true
for many theoretical quantities when first introduced. A relevant example is sharpness (e.g., max-
imum eigenvalue of the Hessian), which was originally difficult to compute at scale, yet it inspired
successful optimization strategies such as SAM that approximate the principle indirectly. Similarly,
although computing exact gradient coherence or per-sample Hessian quantities is currently expen-
sive, we see this as a motivation for future work on scalable surrogates or proxies. Our contribution
is to show that coherence connects to stability in a theoretically grounded way, suggesting that it
could inform the design of future optimizers or monitoring tools, even if not computed directly.
For potential direction for design of algorithm, one concrete idea is to adapt the learning rate based
on coherence between mini-batches—reducing it when gradients are aligned, and increasing it when
they diverge. Other possibilities include regulator that promote gradient alignment or batch selection
strategies favoring coherence. While we have not explored these experimentally, we view them as
promising directions for future work.
Larger Empirical Scope: To investigate the scalability and practical relevance of our insights,
we conducted additional experiments on the CIFAR-10 dataset using a ResNet-18 model (11.7M
parameters). To approximate the coherence measure in a tractable way, we used the pairwise dot
product of per-sample gradients normalized by the maximum gradient norm: ∇li∇lj

max ∥∇lk∥ . For further
approximation, We compute this on a fixed subset of 100 samples (10 per class) to construct a
coherence matrix. For the feature rank calculation, we record the features from before the last linear
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layer for whole training dataset and use PCA to calculate the rank of feature with explain ratio up
to 99.9 percent. According to our experiments, we find that the feature rank decrease as expected
and the the approximated coherence measure also closely follow the training process despite milder
trends due to the approximation. The results are shown in following:

Optimizer Rank Coherence
SGD 148.33± 3.22 1.0045± 0.0020
SAM (0.05) 157.67± 9.29 1.0052± 0.0060
SAM (0.1) 144.33± 7.10 1.0771± 0.0680
SAM (0.2) 128.67± 5.51 1.0907± 0.0890

Table 2: Effect of Optimizer and SAM radius on feature rank and coherence. We record the rank
and coherence on subset of CIFAR10 after training for 200 epochs.

B Related Work

Flat vs. sharp minima and generalization. The connection between the geometry of minima and
generalization in deep networks has been studied extensively. Hochreiter and Schmidhuber [1997]
first argued that flat minima (regions in parameter space where the loss remains low) correspond to
better generalization, while sharp minima might lead to worse generalization. Keskar et al. [2017]
provided empirical evidence that large-batch SGD tends to find sharper minima than small-batch
SGD, correlating with higher test error, bringing this idea to prominence. However, Dinh et al.
[2017] pointed out that the sharpness of a minimum is not an invariant property (reparameterizations
of the model can change the Hessian spectrum without affecting generalization), cautioning that one
must carefully define “sharpness” (e.g., by normalizing for scale or using local subspace measures).
Our work incorporates this perspective by focusing on a relative stability analysis: effectively, we
look at sharpness in the context of the optimizer’s step size and algorithm, which is invariant to
certain rescaling (for example, SAM’s notion of sharpness implicitly accounts for parameter scale
through the perturbation magnitude).
Sharpness-Aware Minimization [Foret et al., 2021] and follow-up methods (e.g., adaptive SAM by
Kwon et al., 2021, investigations in Chen and Flammarion, 2022) directly encode flatness into the
training objective. By explicitly favoring flatter minima, SAM biases the training trajectory toward
solutions that are less sensitive to perturbations in parameter space [Zhang et al., 2024, Chen et al.,
2023a]. Empirically, SAM has demonstrated improved generalization across many tasks. The work
of Andriushchenko et al. [2023] is particularly relevant to our findings: they show that SAM not
only finds flatter minima but that the learned features (e.g., the covariance of layer activations) tend
to be lower rank, suggesting the model focuses on a smaller set of principal components of the
data. This aligns with our result that SAM bias can lead to simpler (more coherent) feature usage.
There have also been studies connecting flatness to other measures like noise stability: Jiang et al.
[2020] evaluate a variety of complexity measures (including some Hessian-based) to see which best
predict generalization; they found that no single measure works universally, but a combination can.
Our introduction of coherence could add a new dimension to such measures, since it incorporates
data-dependent interactions.
Linear stability. Linear stability has gained increasing attention in recent machine learning research
as a tool to characterize the local convergence or divergence behavior around minima. This framework
enables a unified perspective that jointly considers the data distribution, loss landscape geometry,
and optimization dynamics. Prior works such as Wu et al. [2018, 2022], Wu and Su [2023] leveraged
linear stability to analyze how noise interacts with local minima and to derive convergence criteria
based on the Frobenius norm of the Hessian and Ma and Ying [2021] use the framework of linear
stability to study property of noise in terms of it higher order moment. More recently, Dexter
et al. [2024] introduced a coherence-based measure that captures fine-grained alignment properties
of the data through the Hessian. These lines of work provide valuable new perspectives on the
interplay between data and optimization—perspectives that are difficult to obtain through classical
optimization analysis alone—and offer a deeper understanding of local training dynamics.
Our work is closely related to [Wu et al., 2018, 2022, Dexter et al., 2024, Wu and Su, 2023, Mulayoff
and Michaeli, 2024]. Compared to Dexter et al. [2024] who focused on the analysis of SGD, we
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take one step further and analyze random noise injected SGD and SAM. Specifically, we investigate
how SAM influences local optimization dynamics and how it interacts with the structure of the data.
Furthermore, we provide an explicit analysis of two-layer ReLU networks, revealing connections
between linear stability, neural activations, and solution stability. This helps elucidate the role of
SAM in shaping both the geometry and generalization behavior of trained models. Finally, unlike
these prior works, we also set up realization of the theory to a two layer neural network and discuss
how the insight from analysis in linear stability can be transferred to the neural network and show
how the pattern of activation in neural network can related to result of linear stability. Specifically,
we explicitly construct a 2-layer neural network with several solutions of the same sharpness but
different complexity (captured by the sparsity in the activation pattern), and show that SGD (and
SAM even more aggressively) prefers simpler (sparser) solutions.

Stability and implicit bias in optimization. Our use of “stability” is in the sense of dynamical
stability of fixed points for the parameter update. This differs from the notion of algorithmic stability
in learning theory (e.g., Hardt et al., 2016), which concerns how sensitive the final model is to removal
of a training example. Algorithmic stability yields generalization bounds but doesn’t directly explain
which solution is picked. Nonetheless, both concepts are linked: an optimizer that always returns
the same minimum despite small data perturbations might be one that has a strong attractor basin
(stable solution).
A large body of work on implicit bias of gradient methods has focused on linear models or homoge-
neous models, proving that gradient descent converges to particular norm-minimizing solutions or
maximum margin solutions [Soudry et al., 2018, Gunasekar et al., 2018]. For example, Soudry et al.
[2018] show that for linearly separable data and logistic loss, SGD converges to the max-L2-margin
classifier. This can be seen as a form of simplicity bias (since a max-margin separator in linear space
is a simpler decision boundary than a complex wiggle that also separates the data). In deep networks,
Lyu and Li [2019] extended this to deep homogeneous networks (showing convergence to margin
maximization). These works explain which solution among the continuum of minimizers is chosen,
in terms of margins or norms. Our work provides a complementary lens: rather than characterizing
the final solution in closed-form, we explain it via the dynamics preferences (coherence and stability
during training). Margin and flatness might be connected; indeed, a large margin classifier often
corresponds to a broad basin in loss landscape. Exploring the link between coherence and margin
could be interesting (perhaps high coherence solutions also align with large margin in classification
tasks).
The notion of simplicity bias has been documented empirically by several works. Arpit et al. [2017]
found that deep nets first fit the “easy” patterns (e.g., clean labels) before memorizing noisy data,
indicating a bias towards simpler functions. Kalimeris et al. [2019] and Valle-Pérez et al. [2019]
argued from a information/combinatorics perspective that, because there are exponentially more
complex functions than simple ones, a random initialization plus SGD is more likely to land in a
simple function that fits the data (if such exists). Shah et al. [2020] (Pitfalls of Simplicity Bias)
constructed datasets with multiple features to quantify this bias and showed it can hurt robustness.
Our results give a theoretical underpinning to these observations by linking them to the Hessian
structure and training dynamics: effectively, the simple patterns correspond to directions in which
many data points have aligned gradients, hence those get learned quickly and form a stable basis for
the solution, whereas complex patterns do not align and either get learned later or not at all.
Recently, Morwani et al. [2023] provided a rigorous analysis of simplicity bias in one-hidden-layer
ReLU networks (in the infinite width, lazy training regime). They defined simplicity in terms of
the function depending on a low-dimensional projection of inputs and proved that indeed gradient
descent finds such low-dimensional solutions under certain conditions. Their findings dovetail nicely
with our coherence interpretation (low-dimensional projection usage implies high alignment among
gradients of those inputs). While their analysis is specialized to a particular regime, ours aims to
be more generally intuitive and spans beyond the NTK regime by considering the Hessian of the
nonlinear model.
Another related concept is Neural Collapse [Papyan et al., 2020], which describes that at the final
layer of a classifier, the class means and features tend to align in certain simple symmetric patterns.
Neural collapse occurs in the late phase of training and indicates a sort of self-organization of features.
This might be seen as a high-coherence structure in the last-layer gradients for examples of the same
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class. While our work did not directly address neural collapse, the idea that training dynamics lead
to aligned and symmetric configurations is broadly consistent.

Data geometry and gradient alignment. The role of data distribution in learning dynamics has
been explored under terms like gradient confusion [Sankararaman et al., 2020] and gradient align-
ment. When gradients of different examples are more aligned, training converges faster and perhaps
finds simpler models. Sankararaman et al. [2020] demonstrated that increasing overparameterization
can reduce gradient confusion (making gradients more aligned by virtue of more flexible models
finding a common direction) up to a point, which speeds up convergence. Chatterjee [2020] studied
how examples that are hard or easy influence learning; easy examples likely align well with the gra-
dient direction. Our coherence matrix formalizes one aspect of gradient alignment (at a second-order
level, but one could similarly define Gij = ∇ℓ⊤i ∇ℓj for first-order gradients). In fact, one could in-
corporate first-order coherence in our analysis; we focused on Hessian since it directly ties to stability,
but gradient dot products matter for the actual update direction in SGD. A high Hessian coherence
usually also implies gradient coherence at w∗ if w∗ is a zero training error solution (gradients are
zero at w∗, but consider nearby points or earlier in training). Also, this Gram matrix–like definition
of alignment appears in several related formulations. In its simplest form, the gradient Gram matrix
Gij = ∇ℓTi ∇ℓj has been used to quantify gradient diversity, mutual coherence, or feature alignment
in analyses of SGD [Sankararaman et al., 2020]. In neural tangent kernel (NTK) theory or fisher
kernel terminology[Khanna et al., 2018], a closely related object appears as the empirical kernel
matrix, whose (i, j) entry is given by ∇wf(xi, w)

⊤∇wf(xj , w), which offer interpretation for the
relationship among data.
In summary, our work synthesizes ideas from these threads: we put forth coherence as a data-
dependent quantifier that influences stability of solutions, thereby linking the optimizer’s implicit
bias to the geometry of data in parameter space. By doing so, we integrate perspectives from
flat minima research, implicit bias theory, and empirical studies of feature learning. We hope this
unification will spur further research in understanding and controlling the biases of gradient-based
training in deep learning.

C Appendix – Experiments and Proofs

C.1 Illustrative example for (C, r) solution and calculation of the r and trace

Recall our construction for (C, r)-generalizing solutions. We design W1 by an exhaustive enumera-
tion of all possible feature constructions of size C. In other words, ∀{a1, a2...aC} ∈ {0, 1}C , let the
jth row of W1 be W1,j = r[(−1)a1 , (−1)a2 , ...(−1)aC , 0, 0, ...0], with j = 1+

∑
2i−1ai. Similarly,

let b[j] = −r(C − 1). We set W2[j] =
1
r (−1)a1+a2 . For k > C, W1,k = 0, W2[k] = 0, b[k] = 0.

The following is the W1 with d = 5, c = 3, r = 1 and hidden layer with 10 neurons.



1 1 1 0 0
−1 1 1 0 0
1 −1 1 0 0
−1 −1 1 0 0
1 1 −1 0 0
−1 1 −1 0 0
1 −1 −1 0 0
−1 −1 −1 0 0
0 0 0 0 0
0 0 0 0 0


(6)
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The following is the W2 with d = 5, c = 3, r = 1 and hidden layer with 10 neurons.

1
−1
−1
1
1
−1
−1
1
0
0


(7)

The following is the b with d = 5, c = 3, r = 1 and hidden layer with 10 neurons.

2
2
2
2
2
2
2
2
0
0


(8)

For the following, we show calculation of relationship between trace of Hessian. We first show the
trace of one sample and corresponding flatness. As we known in previous calculation that gradient
can be as follows:

∇fw(xi) =



ReLU(W1,1xi)
...

ReLU(W1,d2
xi)

W2,11[W1,1xi > 0]xi

...
W2,j1[W1,d2

xi > 0]xi

W2,j1[W1,1xi > 0]
...

W2,j1[W1,d2xi > 0]


(9)

And the Hessian is ∇fw(xi)∇fw(xi)
T . (for zero loss solution) Then the trace will be

Tr[∇fw(xi)∇fw(xi)
T ] = ||∇fw(xi)||2 Now, we have exactly one activation at a time due to the

bias (b) that impose such restriction. Therefore, the ||∇fw(xi)||2 = r2+ 1
r2 d+

1
r2 = r2+ 1

r2 (d+1)
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C.2 Role of coherence measure in dynamics

Figure 3: 2-layer ReLU network. We found that the SAM method can impose strong regulation on
the maximum eigenvalue elementwise, and this also reduce the strengthen of the largest eigenvalue
of the coherence matrix. It means that the stability condition can be satisfied with smaller σ. From
our experiments, we find that the sharpness of the solution impose strong regulation of the eigenvalue
of the coherence matrix.

Figure 4: 2-layer ReLU network. (Left) Comparison of SGD and SAM with different ρ. (Middle)
We perform the same set of experiment with increased learning rate from 0.1 to 0.3. (Black to Red)
(Right) SGD with different contrast loss strengthen (0.0, 0.1, 0.01). Through out the experiments,
we find uniform shifting behavior for different algorithm with different strength but the relationship
between maxi λmax(Hi) and λmax(S) form strong regression line.

C.3 Experiment details - Local Linear stability in quadratic loss for different algorithms
(B, σ)

The experiments in this section serve to understand the local behavior of in terms of the linear
stability. By studying the behavior near the local minimum, we aim to verify the correctness of our
theory. We follow the same experiment set up to reproduce the plot in Dexter et al. [2024]. We first
initialize Hi = me1e

T
1 for all i ∈ [σ] and Hi = mei−σ+1e

T
i−σ+1 otherwise. We use m = 2n

σ so that
the sharpness of the minima (λmax(H)) is controlled to be 2. We set the learning rate to be smaller
than 1 make sure diverging behavior arise due to noise not the sharpness. The loss function in the
optimization is l(w) = 1

n

∑n
i=1 wHiw and the gradient is ∇l(w) = 2

n

∑n
i=1 Hiw that satisfies our

theory setting. For all the experiment in this section, we set n = 100. For each set of parameters
(B, η, σ), we determine divergence or converence by conducting 1000 steps update of the weight and
calculate the norm of the weight. If the weight norm is 1000 times larger than original initialization,
we classify it as diverging and vice versa. For each tuple, we perform the experiment 10 times. If
the diverging behavior occurs more than half of the experiments set, we mark the specific tuple as
diverging. The experiments involved in our work are done with CPU only.

C.4 Experiment details - Local Linear stability in mse loss for different algorithms in 2-layer
ReLU network.

We use the dimension of data d = 100 and the dimension of hidden layer is set to 50. Further, we
use the batch size B = 10, the SAM ρ = 0.01, and the learning rate η = 0.01. We train for 50
epochs and log the loss over epochs. All experiments comparing different algorithms are done with
same initialization using the same random seed. The results are averaged over 5 runs.
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C.5 Experiment details - Global: The role of coherence in the training.

To make the analysis more computationally tractable while tracking multiple quantities simultane-
ously, we reduce the model size: the input dimension is set to 15, the hidden layer size to 10, and the
number of training samples to 50. All other hyperparameters remain the same as in the Section 4.
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C.6 Some identities and definition

We summarize the background and identities used through out the proof.
Definition 3. The definition of Hessian and subset of Hessian where xi is random variables with
Bernoulli distribution

Ht =
1

B

n∑
i=1

xiHi , H =
1

n

n∑
i=1

Hi (10)

Lemma C.1. Consider two matrix A, B with A being Positive semidefinite, then
λmax(A) Tr[B] ≥ Tr[AB] ≥ λmin(A) Tr[B] (11)

The λmin, λmax are smallest and largest eigenvalue of the matrix A.
Lemma C.2. Consider two matrix A, B, C, then

Tr[ABC] = Tr[BCA] = Tr[CAB] (12)

Lemma C.3. l1-l2 norm inequality: For any x ∈ R, ||x||2 ≤ ||x||1 ≤
√
d||x||2

Lemma C.4. Binomial coefficient: For all n, k ∈ N such that k ≤ n, the binomial coefficients
satisfy that (

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
(13)

Lemma C.5. For any matrix M ∈ Rn×n, ||M ||F ≤ ||M ||S1
≤

√
n||M ||F , where ||M ||Sp

is p
norm of the spectrum of M, and the inequality is obtain through l1-l2 norm inequality.
Lemma C.6. For matrices M1...Mk ∈ Rn×n, Tr[M1...Mk] ≤ ||M1...Mk||S1

(see Bhatia [2013])

C.7 Proof for Random perturbation

Theorem C.7. Give update rule (3),

1. The condition for divergence is the same as that for SGD [Dexter et al., 2024] as follows:

η ≥ σ

λ1
(
n

b
− 1)−

1
2

2. (Comparative Divergence Speed) Suppose Tr[J2k] ≤ C0α
k for some constants C0 and

αk, then the divergence rate of the random perturbation method is asymptotically within a
constant factor of that of standard SGD:

lim
k→∞

E[∥wk∥2]Random, lower bound

E[∥wk∥2]SGD, lower bound
= O(1)

3. Suppose the step size satisfies the convergence criterion established in prior stability anal-
yses (e.g., Dexter et al. [2024]). Then, under the random perturbation update (3), the
expected squared norm of the iterates remains bounded as k → ∞:

lim
k→∞

E[wT
k wk]upper bound = O(1)

Proof. Define H = 1
n

∑n
i=1 Hi. Now consider k steps after, we can have expression for wk as

following:

wk = Ĵk...Ĵ1w0 − η

k∑
t=1

(

k∏
t′=t+1

Ĵt′)Htδt (14)

We consider the dot product of wk and take expectation over all random process in between:

E[wT
k wk] = E[(Ĵk...Ĵ1w0 − η

k∑
t=1

(

k∏
t′=t+1

Ĵt′)Htδt)
T (Ĵk...Ĵ1w0 − η

k∑
t=1

(

k∏
t′=t+1

Ĵt′)Htδt)]

= E[wT
0 Ĵ1...ĴkĴk...Ĵ1w0] + η2E[(

k∑
t=1

(

k∏
t′=t+1

Ĵt′)Htδt))
T (

k∑
t=1

(

k∏
t′=t+1

Ĵt′)Htδt))]

(15)
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We first consider the second term. Note that all the cross terms are eliminated as they are independent
to each other:

η2E[(

k∑
t=1

(

k∏
t′=t+1

Ĵt′)Htδt))
T (

k∑
t=1

(

k∏
t′=t+1

Ĵt′)Htδt))] = η2E[

k∑
i=1

δTt Ht(Ĵt+1...Ĵ
2
K ...Ĵt+1)Htδt]

= η2E[

k∑
i=1

Tr((Ĵt+1...Ĵ
2
K ...Ĵt+1)(Htδtδ

T
t Ht)]

= η2σ2
1

k∑
i=1

E[Tr(Ĵt+1...Ĵ
2
K ...Ĵt+1)]E[H2

t ]

≥ η2σ2
1λ

2
min

k∑
i=1

E[Tr((Ĵt+1...Ĵ
2
K ...Ĵt+1))]

(16)

The term Tr((Jt+1...J
2
K ...Jt+1)) can be decomposed into the following according to Dexter et al.

[2024].

η2σ2
1λ

2
min(H)

k∑
t=1

E[Tr((Jt+1...J
2
K ...Jt+1))] ≥ η2σ2

1λ
2
min(H)(

k∑
t=1

Tr[J2t + η2t(
1

Bn
− 1

n2
)t

n∑
y1...yt=1

Hy1 ...H
2
yt
...Hy1 ]

≥ η2σ2
1λ

2
min(H)(

k∑
t=1

Tr[J2t] + (
η

σ
)2t(

n

b
− 1)tλmax(H)2t)

(17)

The last term represent the growth of the perturbation over time step. Contrary to the original
analysis, the dependency of the magnitude is a summation of geometric series. However, despite
the summation dependency, the criterion for diverging is still the same as we only require that
( ησ )

2(nb − 1)λmax(H)2 to be larger than 1. i.e.,

η ≥ σ

λmax
(
n

b
− 1)−

1
2 (18)

Now, observe that the perturbation base method will not change the fundamental criterion for the
diverging. However, it will change the speed of diverging. We first consider the summation.

η2σ2
1λ

2
min(H)

k∑
t=1

(
η

σ
)2t(

n

b
− 1)tλ2t

max = η2σ2
1λ

2
min

( ησλmax)
2(nb − 1)(( ησλmax)

2k(nb − 1)k − 1)

( ησλmax)2(
n
b − 1)− 1

(19)

Now we impose assumption on the growth of the Tr(J2k) by assuming that it grow with pattern
C0α

k and calculate the sum of it.

k∑
t=1

C0α
t =

C0α(α
k − 1)

α− 1
(20)

Finally, we temporarily denote the term ( ησλmax(H))2(nb − 1) to be r and the overall lower bound
for the calculation will be:

E[wT
k wk] ≥ C0α

k +
1

nd5
rk + η2σ2

1λ
2
min(

C0α(α
k − 1)

α− 1
+

1

nd5
r(rk − 1)

r − 1
) (21)
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Now we set the σ1 = 1 and compare with the original naive SGD and set that α ≥ r

lim
k→∞

E[wT
k wk]Random, lower bound

E[wT
k wk]SGD, lower bound

= 1 + η2σ2
1λ

2
min(H)

α

α− 1
(22)

The escaping speed of the random perturbation base method is faster by a constant. Now we set that
α ≤ r

lim
k→∞

E[wT
k wk]Random, lower bound

E[wT
k wk]SGD, lower bound

= 1 + η2σ2
1λ

2
min

r

r − 1
(23)

No matter which term dominates, we will have constant faster escaping efficiency compared to the
original naive SGD.
Now, we consider the convergence behavior, we first note that there exists ϵ and C such that
E[Ĵk...Ĵ

2
1 ...Ĵk] ≤ C((1− ϵ)2 + ϵ)k. Here, we temporarily denote ((1− ϵ)2 + ϵ) to be r. We apply

this identity to the above equation and we will get the following:

E[wT
k wk] ≤ Crk + η2λmax

k∑
t=1

Crt

= Crk + η2λmax
r(1− rk)

1− r

(24)

We consider long term behavior (i.e., k → ∞)

lim
k→∞

E[wT
k wk] ≤ η2λmax

r

1− r
(25)

We observe that there exist residual terms relating to the perturbation itself and this fits our intuition
that the random perturbation method will usually hover around the minimum as the noise injected
can lead to less accurate estimation of the gradient direction.
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C.8 Proof for divergence theorem

Theorem C.8. For update rules as following:

Wt+1 = (I − ηHt(I +
ρ

α
H))Wt (26)

Define Ĵt = (I − ηHt(I +
ρ
αH)), then

1.There exist Mk such that

E[Ĵk
T
...Ĵ1

T
Ĵ1...Ĵk] ⪰ Mk (27)

with

Mk = J2k + η2k(
1

Bn
− 1

n2
)k

n∑
y1...yk=1

(I +
ρ

α
H)Hyk

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk

(I +
ρ

α
H)

(28)

2.The Trace of Mk can be lower bounded by the following:

Tr[Mk] ≥ η2k(
1

Bn
− 1

n2
)k(1 +

ρ

α
λmin(H))2k Tr[

n∑
y1...yk=1

Hyk
...H2

y1
...Hyk

] (29)

3. The Trace of Mk is lower bounded through σ:

Tr[Mk] ≥ η2k(
n

B
− 1)k(1 +

ρ

α
λmin(H))2k

1

σ2k

1

nd5
λmax(H)2k (30)

4. The diverging criterion for SAM under linear stability is:

λmax(H) ≥ σ

η
(
n

B
− 1)−

1
2 (1 +

ρ

α
λmin(H))−1 (31)

Proof. We prove by induction as follows.
Base case: k=1

E[Ĵ1
T
Ĵ1] = E[(I − ηHt(I +

ρ

α
)H)T (I − ηHt(I +

ρ

α
)H)]

= E[I − 2ηHt −
ηρ

α
(HtH +HHt) + η2H2

t +
η2ρ

α
(H2

t H +HH2
t ) +

η2ρ2

α2
HH2

t H]

= I − 2ηH − 2
ηρ

α
H2 + η2E[H2

t ] +
η2ρ

α
(E[H2

t ]H +HE[H2
t ]) +

η2ρ2

α2
HE[H2

t ]H

(32)

We know that

E[H2
t ] = H2 + (

1

Bn
− 1

n2
)
∑
i=1

H2
i (33)

and we will have

E[Ĵ1
T
Ĵ1] = J2 + η2(

1

Bn
− 1

n2
)(I +

ρ

α
H)(

∑
i=1

H2
i )(I +

ρ

α
H)

= M1

(34)
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Induction case: k-1 to k

E[Ĵk
T
...Ĵ1

T
Ĵ1...Ĵk] ⪰ E[Ĵk

T
Mk−1Ĵk]

= E[(I − ηHk − ηρ

α
HkH)TMk−1(I − ηHk − ηρ

α
HkH)]

= E[Mk−1 − ηMk−1Hk − ηρ

α
Mk−1HkH − ηHkMk−1 + η2HkMk−1Hk +

η2ρ

α
HkMk−1HkH−

ηρ

α
HHkMk−1 +

η2ρ

α
HHkMk−1Hk +

η2ρ2

α2
HHkMk−1HkH]

= JMk−1J + η2(
1

nB
− 1

n2
)(I +

ρ

α
H)(

∑
i

HiMk−1Hi)(I +
ρ

α
H)

(35)

Now, we subsititude the expression of Mk−1 into the expression and we will have the follows:

E[Ĵk
T
...Ĵ1

T
Ĵ1...Ĵk] ⪰ JMk−1J + η2(

1

nB
− 1

n2
)(I +

ρ

α
H)(

∑
i

HiMk−1Hi)(I +
ρ

α
H)

= J [J2(k−1) + η2(k−1)(
1

Bn
− 1

n2
)(k−1)

n∑
y1...yk=1

(I +
ρ

α
H)Hyk−1

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk−1

(I +
ρ

α
H)]J+

η2(
1

nB
− 1

n2
)(I +

ρ

α
H)(

∑
i

Hi[J
2(k−1)+

η2(k−1)(
1

Bn
− 1

n2
)(k−1)

n∑
y1...yk=1

(I +
ρ

α
H)Hyk−1

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk−1

(I +
ρ

α
H)]Hi)(I +

ρ

α
H)

⪰ J2k + η2k(
1

Bn
− 1

n2
)k

n∑
y1...yk=1

(I +
ρ

α
H)Hyk

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk

(I +
ρ

α
H)

= Mk

(36)

Now, we wish to analyze the trace of the matrix Mk. For simplicity, we analyze the latter term of
the expression.

Tr[Mk] = Tr[η2k(
1

Bn
− 1

n2
)k

n∑
y1...yk=1

(I +
ρ

α
H)Hyk

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk

(I +
ρ

α
H)]

(37)

We first focus on specific term in the summation.

Tr[(I +
ρ

α
H)Hyk

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk

(I +
ρ

α
H)] =

Tr[(I +
ρ

α
H)2Hyk

(I +
ρ

α
H)Hyk−1

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk−1

(I +
ρ

α
H)Hyk

]

≥ (1 +
ρ

α
λmin(H))2 Tr[Hyk

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk

]

= (1 +
ρ

α
λmin(H))3 Tr[Hyk−1

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk−1

(I +
ρ

α
H)H2

yk
]

≥ (1 +
ρ

α
λmin(H))4 Tr[Hyk−1

H2
yk
Hyk−1

(I +
ρ

α
H)...(I +

ρ

α
H)H2

y1
(I +

ρ

α
H)...(I +

ρ

α
H)]

(38)

Here, we use the lemma C.1. By continue pruning, we will have the following:
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Tr[(I +
ρ

α
H)Hyk

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk

(I +
ρ

α
H)] ≥ (1 +

ρ

α
λmin(H))2k Tr[Hyk

...H2
y1
...Hyk

]

(39)

We apply this to the summation in Mk and we will get

Tr[Mk] ≥ η2k(
1

Bn
− 1

n2
)k(1 +

ρ

α
λmin(H))2k Tr[

n∑
y1...yk=1

Hyk
...H2

y1
...Hyk

] (40)

Now, we connect the Mk with the coherence measure in the following:

Tr[Mk] ≥ η2k(
1

Bn
− 1

n2
)k(1 +

ρ

α
λmin(H))2k

n∑
y1...yk=1

Tr[Hyk
...H2

y1
...Hyk

]

= η2k(
1

Bn
− 1

n2
)k(1 +

ρ

α
λmin(H))2k

n∑
y1...yk=1

||Hyk
...Hy1

||2F

≥ η2k(
1

Bn
− 1

n2
)k(1 +

ρ

α
λmin(H))2k

n∑
y1...yk=1

1

d
||Hyk

...Hy1
||2S1

≥ η2k(
1

Bn
− 1

n2
)k(1 +

ρ

α
λmin(H))2k

n∑
y1...yk=1

1

d
Tr[Hyk

...Hy1
]2

≥ η2k(
1

Bn
− 1

n2
)k(1 +

ρ

α
λmin(H))2k

n∑
y=1

1

d
Tr[Hk

y ]
2

≥ η2k(
1

Bn
− 1

n2
)k(1 +

ρ

α
λmin(H))2k

1

nd
(

n∑
y=1

Tr[Hk
y ])

2

(41)

for the above we use lemma C.5 and we know the following from Dexter et al. [2024]:

nk

d2σk
Tr[Hk] ≤

n∑
y=1

Tr[Hk
y ] (42)

Finally, we can have the following:

Tr[Mk] ≥ η2k(
1

Bn
− 1

n2
)k(1 +

ρ

α
λmin(H))2k

1

nd
(
nk

d2σk
)2(Tr[Hk])2

= η2k(
1

Bn
− 1

n2
)k(1 +

ρ

α
λmin(H))2k

1

nd
(
nk

d2σk
)2(Tr[Hk])2

= η2k(
n

B
− 1)k(1 +

ρ

α
λmin(H))2k

1

σ2k

1

nd5
(Tr[Hk])2

≥ η2k(
n

B
− 1)k(1 +

ρ

α
λmin(H))2k

1

σ2k

1

nd5
λmax(H)2k

(43)

We then will have the following condition for diverging:

λmax(H) ≥ σ

η
(
n

B
− 1)−

1
2 (1 +

ρ

α
λmin(H))−1 (44)
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C.9 Proof for convergence theorem

Theorem C.9. For update rules as following:

Wt+1 = (I − ηHt(I +
ρ

α
H))Wt (45)

1. There exist Nr such that

E[ĴT
k ...ĴT

1 Ĵ1...Ĵk] ⪯
k∑

r=0

(1− ϵ)2(k−r)

(
k

r

)
Nr (46)

and

Nk = η2k(
1

nB
− 1

n2
)k

n∑
y1,...yr=1

(I +
ρ

α
H)Hyk

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk

(I +
ρ

α
H)

(47)

2. The Nr can be upper bounded as following

Tr[Nr] ≤ η2k(
1

B
− 1

n
)kd3k+

1
2n4k λmax(HSAM)

4k

σ2k
SAM

(48)

3. Suppose there exist ϵ ∈ (0, 1) and we will have converging criterion such that
ϵ

η
≤ λi +

ρ

α
λ2
i ≤ 2− ϵ

η
∀i ∈ [d] and

lim
k→∞

1

ϵk
η2k(

1

nB
− 1

n2
)k

n∑
y1,y2...yk=1

(I +
ρ

α
H)Hyk

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk

(I +
ρ

α
H) = 0

(49)

then we will have that limk→∞ E[ĴT
k ...ĴT

1 Ĵ1...Ĵk] = 0

Proof. We first define Nr as follows:

Nk = η2k(
1

nB
− 1

n2
)k

n∑
y1,...yr=1

(I +
ρ

α
H)Hyk

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk

(I +
ρ

α
H)

(50)

We define N0 = I

we want to prove the following:

E[ĴT
k ...ĴT

1 Ĵ1...Ĵk] ⪯
k∑

r=0

(1− ϵ)2(k−r)

(
k

r

)
Nr (51)

Base case: k=1

E[ĴT
1 Ĵ1] = E[(I − ηĤ − ηρ

α
ĤH)T (I − ηĤ − ηρ

α
ĤH)]

= J2 + η2(
1

nB
− 1

n2
)
∑
i

(I +
ρ

α
H)H2

i (I +
ρ

α
H)

⪯ (1− ϵ)2N0 +N1

(52)

The first condition (1 − ϵ)2I is achieved when the condition of the assumption is satisfied. We
demonstrate why that is the case

J = I − ηH(I +
ρ

α
H) (53)
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and observe the following

−(1− ϵ)2I ⪯ J2 ⪯ (1− ϵ)2I (54)

First, we focus on the

J2 ⪯ (1− ϵ)2I (55)

By replacing the definition of J into the equation, we will reach

(I − ηH(I +
ρ

α
H))2 ⪯ (1− ϵ)2I (56)

By removing the square term,

(I − ηH(I +
ρ

α
H)) ⪯ (1− ϵ)I (57)

Rearrange will give

ϵI ⪯ ηH(I +
ρ

α
H) (58)

By decomposing each eigenvalue direction, we can have that
ϵ

η
≤ λi +

ρ

α
λ2
i (59)

We perform the same operation on the other direction and we will have

λi +
ρ

α
λ2
i ≤ 2− ϵ

η
(60)

The ϵ in our analysis represent the deterministic term in each step as we use it to upper bound J2.
Compared to SGD, the ϵ can be larger as the term I − ηH is larger than I − ηH − η ρ

αH
2 in each

direction. The deterministic part of update process can shrink faster compared to the SGD. The
analysis implicitly incorporate it through ϵ. For the other part, N1 represent the randomness in the
operation which can be directly checked that if we increase the batch size to n, we will have the
term vanished. The format of the Nr rely on how different sample align with each other and this
form origin of the noise. Compared to the tradition analysis, we can have more subtle observation
of the noise through this specific form as we no longer need to assume the structure of the noise or
we can assume the how each sample align with each other to see the final form of the noise and this
can reveal more insight of the relationship between sample for further analysis. Now, we proceed to
induction step.
Induction case: k-1

E[ĴT
k ...ĴT

1 Ĵ1...Ĵk] ⪯ E[ĴT
k (

k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr)Ĵk]

= JT (

k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr)J + η2(

1

nb
− 1

n2
)
∑
i

(I +
ρ

α
H)Hi(

k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr)Hi(I +

ρ

α
H)

⪯ (1− ϵ)2
k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr + η2(

1

nb
− 1

n2
)
∑
i

k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
(I +

ρ

α
H)HiNrHi(I +

ρ

α
H)

=

k−1∑
r=0

(1− ϵ)2(k−r)

(
k − 1

r

)
Nr + η2(

1

nb
− 1

n2
)

k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)∑
i

(I +
ρ

α
H)HiNrHi(I +

ρ

α
H)

=

k−1∑
r=0

(1− ϵ)2(k−r)

(
k − 1

r

)
Nr +

k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr+1

(61)
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By reordering the term, we will have the following using lemma C.4:

k−1∑
r=0

(1− ϵ)2(k−r)

(
k − 1

r

)
Nr +

k∑
r=1

(1− ϵ)2(k−r)

(
k − 1

r − 1

)
Nr

= (1− ϵ)2kN0 +

k−1∑
r=0

((1− ϵ)2(k−r)

(
k − 1

r

)
+ (1− ϵ)2(k−r)

(
k − 1

r − 1

)
)Nr +Nk

=

k∑
r=0

(1− ϵ)2(k−r)

(
k

r

)
Nr

(62)

Similarly, as we require that the Tr[Nr] term to be smaller than ϵr, we can upper bound the term with
constant C such that 1

ϵr Tr[Nr] ≤ C, and therefore,

k∑
r=0

(1− ϵ)2(k−r)

(
k

r

)
Tr[Nr] ≤ C

k∑
r=0

(
k

r

)
(1− ϵ)2(k−r)ϵr

= C((1− ϵ)2 + ϵ)k

(63)

For the last step, as we ask the Tr[Nr] term to be smaller than ϵ, we can further bound it. Despite we
can upper bound it through ϵ, we can still analysis its magnitude. If it is smaller, it will also converge
faster. The distinction between SAM and SGD is that SAM has extra multiplication (I + ρ

αH) and
this result from the operation with the gradient ascent intermediate step. We can find that this can
potentially make the process unstable as it amplify the noise through out the process and this fit in
to our general believe that SAM can make the optimization process less stable but still converge fast
due to the shrink of the deterministic term. Note that unlike the tradition analysis that require step
size to be η ≤ 2

λmax(H) , we ask for different criterion for converging. This is due to the fact that
we analysis the origin of noise which comes from alignment of samples and the traditional analysis
focus more on the deterministic part which directly involve eigenvalue of Hessian and usually the
analysis specify the noise with covariance matrix instead.

To answer the relationship between ϵ and the Nr. We first consider the following inequility

λ1(S)
k ≤ Tr(Sk)

=

n∑
y1...yk=1

||H
1
2
y1H

1
2
yk ||F ...||H

1
2
y2H

1
2
y1 ||F

=

n∑
y1...yk=1

Tr(Hy1Hyk
)....Tr(Hy2Hy1)

= n2k(Tr(H2))k

≤ n2kdkλmax(H)2k

(64)

Now, we defined a new form of coherence matrix and Hessian to accomadate the SAM algorithm as
following:

SSAMij
=

√
Tr((I +

ρ

α
H)Hi(I +

ρ

α
H)Hj) (65)

HSAMij
= (I +

ρ

α
H)

n∑
i=1

Hi (66)

Now, we go back to the Nr
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Tr(Nr) = η2k(
1

nB
− 1

n2
)k

n∑
y1...yk=1

Tr((I +
ρ

α
H)Hyk

...(I +
ρ

α
H)H2

y1
(I +

ρ

α
H)...Hyk

(I +
ρ

α
H))

= η2k(
1

nB
− 1

n2
)k

n∑
y1...yk=1

||(I + ρ

α
H)Hyk

...(I +
ρ

α
H)Hy1

||2F

≤ η2k(
1

nB
− 1

n2
)k
√
d

n∑
y1...yk=1

||(I + ρ

α
H)Hyk

||2F ...||(I +
ρ

α
H)Hy1 ||2F

≤ η2k(
1

B
− 1

n
)k
√
d max
i=1...n

||(I + ρ

α
H)Hi||2kF

≤ η2k(
1

B
− 1

n
)k
√
d max
i=1...n

dk(λmax((I +
ρ

α
H)Hi))

2k

≤ η2k(
1

B
− 1

n
)kd3k+

1
2n4kmaxi=1...n(λmax((I +

ρ
αH)Hi))

2k

λmax(SSAM)2k
λmax(HSAM)4k

≤ η2k(
1

B
− 1

n
)kd3k+

1
2n4k λmax(HSAM)4k

σ2k
SAM

(67)
In our analysis, through new definition of the coherence matrix and Hessian, we find that SAM
is performing optimization on the loss surface that is amplified by I + ρ

αH . The loss surface is
sharper as it give larger eigenvalue in each direction. If we compared about the ratio λmax(H)4

σ2 and
λmax(HSAM)4

σ2
SAM

, we can see question about which one is larger or smaller will need more information
about the exact coherence matrix to determine. They can be the same or different depending on the
relationship between samples. However, for both of the method, if the solution give larger coherence
measure, they both converge faster for the specific solution and vice versa.

C.10 Proof for theorem 3.4

Proof. We know that the ∇fw(xi) can be written as following:

∇fw(xi) =



ReLU(W1,1xi)
...

ReLU(W1,d2xi)
W2,11[W1,1xi > 0]xi

...
W2,j1[W1,d2xi > 0]xi

W2,j1[W1,1xi > 0]
...

W2,j1[W1,d2
xi > 0]


(68)

where the gradient is taken with respect to parameter (W2,W1, b) in sequence. For each element in
the coherence matrix, we will have

Si,j = ||H
1
2
i H

1
2
j ||F =

√
Tr(H

1
2
j H

1
2
i H

1
2
i H

1
2
j ) =

√
Tr(HiHj) =

√
(∇fT

w (xi)∇fw(xj))2

= |∇fT
w (xi)∇fw(xj)|

(69)

As the activation of the samples are orthogonal to each other in memorizing solution. The orthogonal
in activation will also give the gradient orthogonal property and therefore,

Tr(HiHj) = (∇fi∇fj)
2 = 0 (70)

Therefore, the coherence matrix is diagonal in the setting. The corresponding coherence measure is
small compared to other solution and we can conclude that the memorizing solution is relatively hard
to find during optimization process as seen in the prior work with coherence measure. The reverse
is also true. If the coherence matrix is diagonal, then the solution is memorizing solution. As if we
have two data activation overlap, the gradient product will not be zero.
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C.11 Proof for theorem 3.5

Proof. Suppose we draw a dataset with size n uniformly at random. The coherence matrix becomes
block diagonal matrix with eigenvalue being 2(d+1)

1
2 maxi=1...2C |Si| where Si is the set with data

matched to specific feature extracted by W1,i and we know the following:

Si,j = |∇fT
w (xi)∇fw(xj)| = 2(d+ 1)

1
2 . (71)

We estimate the following:

P ( max
i=1...2C

|Si| ≥ nu+ nϵ). (72)

We can find that by union bound

P ( max
i=1...2C

|Si| ≥ nu+ nϵ) ≤
2C∑
i=1

P (|Si| ≥ nu+ nϵ) (73)

Let u = 1
2C

and ϵ =

√
C+log 1

δ

2n . Also, we know that by |Si| is a sum of independent variables Xik

that fall into the category and we can formulate through chernoff bound:

P (|Si| ≥ nu+ nϵ) = P (
1

n

n∑
j=1

Xj ≥ u+ ϵ) ≤ exp(−2ϵn2) ≤ exp(−(C + log
1

δ
)) = e−Cδ

(74)

Therefore,

P ( max
i=1...2C

|Si| ≥ nu+ nϵ) ≤
2C∑
i=1

P (|Si| ≥ nu+ nϵ)

≤
2C∑
i=1

e−Cδ

≤ δ

(75)

C.12 Proof for theorem 3.6

Proof. For the generalizing solution, we can analyze the element in the coherence matrix. Tr((I +
ρ
αH)Hi(I +

ρ
αH)Hj). We can see that if two samples do not share the same activation, the specific

element will be zero. We consider average value for the element that are within the same cluster. As
they are in the same cluster, the Hi = Hj = HS

E[(
∑
k

Xk)

√
Tr[(I +

ρ

α
H)Hi(I +

ρ

α
H)Hj ] = E[(

∑
k

Xk)

√
Tr[HiHj +

ρ

α
HHiHj +

ρ

α
HjHHj +

ρ2

α2
HHiHHj ]]

= E[(
∑
k

Xk)

√√√√Tr[H2
S ] +

2ρ

α
Tr[H3

S ]

n∑
k=1

Xk +
ρ2

α2
Tr[H4

S ]
∑
kk′

XkXk′ ]

= E[(
∑
k

Xk) Tr[HS ]

√√√√1 +
2ρ

α
Tr[HS ]

n∑
k=1

Xk +
ρ2

α2
Tr[H2

S ]
∑
kk′

XkXk′ ]

(76)

where the
∑

k Xk are random variables indicating the sample inside the specific cluster or not. The
other term is the strengthen of coherence elementwise. We can observe that this is a convex function
in terms of the random variables and therefore we can lower bound it by taking the expectation first
in each random variable:
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E[(
∑
k

Xk)

√
Tr[(I +

ρ

α
H)Hi(I +

ρ

α
H)Hj ]]

≥ E[
∑
k

Xk] Tr[HS ]

√√√√1 +
1

n

2ρ

α
Tr[HS ]E[

n∑
k=1

Xk] +
1

n2

ρ2

α2
Tr[H2

S ]E[
∑
kk′

XkXk′ ]

(77)

The key lies in the term E[
∑

kk′ XkXk′ ] which is not simply the multiplication of the two individual
probability and we an find that it is 1

22c + 1
n (

1
2c − 1

22c ) and we will have the following:

E[(
∑
k

Xk)

√
Tr[(I +

ρ

α
H)Hi(I +

ρ

α
H)Hj ]

≥ n

2c
2(d+ 1)

1
2

√
1 +

2ρ

α

1

2c
2(d+ 1)

1
2 +

ρ2

α2
(
1

22c
+

1

n
(
1

2c
− 1

22c
))4(d+ 1)

=
n

2c
2(d+ 1)

1
2

√
(1 +

ρ

α

2(d+ 1)
1
2

2c
)2 +

ρ2

α2
(
1

n
(
1

2c
− 1

22c
))4(d+ 1)

(78)

Now, the even stronger dependency of the number of features used can also be translated to the
probability statement. With probability 1 − δ, the eigenvalue of the coherence matrix is upper

bounded byO( n
2c (d+1)

1
2

√
(1 + ρ

α
2(d+1)

1
2

2c )2 + ρ2

α2 (
1
n (

1
2c − 1

22c ))4(d+ 1)) using the same method
as in appendix C.12.
The additional higher order interacting term give strong additional bias toward solution with lower
C, by observation, we can see that the term become more significant when the data dimension (also
model dimension) becomes higher and cannot be neglect for modern deep learning scenario in terms
of overparameter region. Also, to check the correctness of our result, we find that by replacing ρ to
be zero, we can recover back to the case for SGD exactly.
To calculate the eigenvalue of maxi λmax(Hi), we will need to calculate the average number of the
data that align with each other as follows:

max
i

λmax((I +
ρ

α
H)Hi) = max

i
λmax((I +

ρ

nα

n∑
i=1

∇fw(xi)∇fw(xi)
T )∇fw(xi)∇fw(xi)

T )

= max
i

||∇fw(xi)||2 +
ρ

α
||∇fw(xi)||4

1

2c

= 2(d+ 1)
1
2 (1 +

ρ

α

1

2c
2(d+ 1)

1
2 )

(79)
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C.13 Proof for theorem 3.3

Proof. We follow the construction of prior work Dexter et al. [2024] and focus on the termE Tr[ĴT Ĵ ]

where Ĵ = I − ηHt − ηρ
α HtH (Note that Ht =

∑
i xiHi, where xi is Bernoulli with probability

B
n being 1) with the probability of sampling each sample being independent Bernoulli distribution.
The construction of set {Hi}i∈[n] is such that Hi = me1e

T
1 , ∀i ∈ [σ] and Hi = 0 otherwise, and

m = λ1n
σ so that λmax(H) = σ

nm = λ1. Note that λmax(S) = mσ and maxi λmax(Hi) = m

and the coherence measure is exactly σ. Also under this construction, E[Tr[ĴT
k ...ĴT

1 Ĵ1...Ĵk] =

Tr[E[(ĴT
1 Ĵ1)

2k]] as all matrix involved are commuting with i.i.d sampled.
We have following:

E[ĴT Ĵ ] = E[(I − ηHt −
ηρ

α
HHt)(I − ηHt −

ηρ

α
HtH)]

= E[I − 2ηHt −
ηρ

α
(HHt +HtH) + ηH2

t +
η2ρ

α
(H2

t H +HH2
t ) +

η2ρ2

α2
HH2

t H]

= I − 2ηHt − 2
ηρ

α
H2 + ηH2

t + 2
η2ρ

α
H3 +

η2ρ2

α2
H4 + η2(

1

Bn
− 1

n2
)
∑
i

(I +
ρ

α
H)H2

i (I +
ρ

α
H)

(80)

Now, we calculate eT1 E[ĴT Ĵ ]e1 (e1 is the only direction that involve interaction of different samples)
will give us

eT1 E[ĴT Ĵ ]e1 = 1− 2ηλ1 − 2
ηρ

α
λ2
1 + ηλ2

1 + 2
η2ρ

α
λ3
1 +

η2ρ2

α2
λ4
1 + η2(

1

Bn
− 1

n2
)(1 +

ρ

α
λ1)

2n
2λ2

1

σ
(81)

We need the term to be smaller than 1 to avoid growing infinitely

1− 2ηλ1 − 2
ηρ

α
λ2
1 + ηλ2

1 + 2
η2ρ

α
λ3
1 +

η2ρ2

α2
λ4
1 + η2(

1

Bn
− 1

n2
)(1 +

ρ

α
λ1)

2n
2λ2

1

σ
≤ 1 (82)

We can rearrange and obtain the following:

−2ηλ1(1 +
ρ

α
λ1) + η2λ2

1(1 +
ρ

α
λ1)

2 + η2(
n

B
− 1)(1 +

ρ

α
λ1)

2λ
2
1

σ
≤ 0 (83)

We find that we can divide the equation on both side by ηλ1(1 +
ρ
αλ1) and have

−2 + ηλ1(1 +
ρ

α
λ1) + η(

n

B
− 1)(1 +

ρ

α
λ1)

λ1

σ
≤ 0 (84)

Now, we can rearrange and have the following:

ηλ1(1 +
ρ

α
λ1)(

n
B − 1

σ
+ 1) ≤ 2 (85)

ηλ1

σ
(1 +

ρ

α
λ1)(

n

B
− 1 + σ) ≤ 2 (86)

Finally, we will have

λ1(1 +
ρ

α
λ1) ≤

2σ

η
(
n

B
− 1 + σ)−1 (87)

The additional term (1+ ρ
αλ1) result from the SAM modified surface gives a more restricted learning

rate choice compared to the SGD. We can also check the result by setting ρ = 0 and will find that it
reduce to the original SGD criterion.
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C.14 Theorem from Dexter et al. [2024]

Theorem 1 Let {Ĵi}i∈N be a sequence of i.i.d copies of Ĵ defined in linearized SGD. Let {Hi}i∈[n]

have coherence measure σ. If

λmax(H) ≥ 2

η
or λmax(H) ≥ σ

η
(
n

B
− 1)−

1
2 , then lim

k→∞
E||Ĵk...Ĵ1|| = ∞ (88)

Theorem 2 For every choice of λmax > 0, n ∈ N, B ∈ [n], η > 0 and σ ∈ [n], that satisfies:

λmax <
2σ

η
(σ +

n

B
− 1)−1 (89)

There exists a set of PSD matrices {Hi}i∈[n] such thatλmax(H) = λmax and limk→∞ E||Ĵk...Ĵ1|| <
n.

Lemma 4.1 Let Ĵi be independent Jacobians of SGD dynamics,
(1) If

λmax ≥ 2

η
or lim

k→∞
(
η2

nB
− η2

n2
)

n∑
y1...yk=1

||Hyk
...Hy1 ||F = ∞ (90)

then limk→∞ E||Ĵk...Ĵ1||2F = ∞
(2) If, for some ϵ ∈ (0, 1),

ϵ

η
< λi(H) <

2− ϵ

η
∀i ∈ [d] and

1

ϵk
lim
k→∞

(
η2

nB
− η2

n2
)

n∑
y1...yk=1

||Hyk
...Hy1 ||F = 0 (91)

then limk→∞ E||Ĵk...Ĵ1||2F = 0
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