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Abstract

Diffusion models have significantly advanced generative AI in terms of creating and editing
naturalistic images. However, improving the image quality of generated images is still of
paramount interest. In this context, we propose a generic kurtosis concentration (KC) loss
that can be readily applied to any standard diffusion model pipeline to improve image
quality. Our motivation stems from the projected kurtosis concentration property of natural
images, which states that natural images have nearly constant kurtosis values across different
band-pass filtered versions of the image. To improve the image quality of generated images,
we reduce the gap between the highest and lowest kurtosis values across the band-pass
filtered versions (e.g., Discrete Wavelet Transform (DWT)) of images. In addition, we also
propose a novel condition-agnostic perceptual guidance strategy during inference to further
improve the quality. We validate the proposed approach for four diverse tasks, viz., (1)
personalized few-shot finetuning using text guidance, (2) unconditional image generation, (3)
image super-resolution, and (4) blind face-restoration. Integrating the proposed KC loss and
perceptual guidance has improved the perceptual quality in all these tasks in terms of FID,
MUSIQ score, and user evaluation. Code is provided in the supplementary.

1 Introduction
Multi-modal generative AI has advanced by leaps and bounds with the advent of the diffusion model.
Large-scale text-to-image diffusion models, e.g., DALLE Ramesh et al. (2022), Stable-diffusion Rombach et al.
(2022) synthesize high-quality images in diverse scenes, views, and lighting conditions from text prompts.
These models generate high-quality and diverse images since they have been trained on a large collection
of image-text pairs and can capture the visual-semantic correspondence effectively. While diffusion models
generate images that appear highly realistic, recent studies have demonstrated that these images can still
be distinguished from natural ones using advanced image forensic tools Corvi et al. (2023). This suggests
that although state-of-the-art generative models excel at tasks like image editing, they often leave behind
subtle, unnatural artifacts. Ensuring high image quality is therefore critical for various generative tasks, such
as personalized few-shot finetuning Ruiz et al. (2022); Kumari et al. (2022), super-resolution Karras et al.
(2022); Dhariwal & Nichol (2021), image restoration, and unconditional image generation.

Our goal is to improve the image quality using natural image statistics by exploiting the well-known kurtosis
concentration property of natural images Zhang & Lyu (2014); Zoran & Weiss (2009); Wainwright & Simoncelli
(1999). This property states that natural images have nearly constant kurtosis (fourth order moment) values
across different band-pass (e.g., Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT))
versions of the images Zhang & Lyu (2014). Inspired by this property, we propose a novel kurtosis
concentration (KC) loss, which is generic and applicable to any diffusion-based pipeline. More specifically,
this loss minimizes the gap in the kurtosis of an image across band-pass filtered versions and improves the
quality of the generated images. We also propose a novel perceptual guidance (PG) strategy during inference
which is agnostic to conditioning (e.g., text/class) and further improves image quality. Both KC loss and PG
strategies are general-purpose and do not require any labels. It can be adapted to various generative tasks
with minimal effort. In this work, we experiment with diverse tasks: (1) personalized few-shot finetuning of
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Figure 1: Overview of DiffNat: Natural images exhibit consistent kurtosis values across bandpass-filtered
versions, shown by the tight blue box in the left figure. Diffusion-generated images (top right) show greater
kurtosis spread, indicating lower quality. Adding KC loss (bottom right) reduces kurtosis variance and
improves image quality.
text-to-image diffusion model, (2) unconditional image generation, (3) image super-resolution, and (4) blind
face-restoration.

Our major contributions are as follows:

• We introduce DiffNat - a framework for improving the image quality of diffusion models using the
kurtosis concentration property of natural images.

• We provide insights on how reducing kurtosis improves image quality. This is the primary motivation
for the proposed loss function.

• A novel condition-agnostic perceptual guidance strategy is proposed which further improves image
quality.

• We validate the proposed KC loss and PG strategy on diverse generative tasks, e.g., (1) personalized
few-shot finetuning of text-to-image diffusion model using text guidance, (2) unconditional image
generation, (3) image super-resolution, and (4) blind face-restoration. Experiments indicate that
incorporating the proposed KC loss and PG enhances perceptual quality across various tasks and
benchmarks, and this improvement has been validated through a user study.

2 Related Work
Generative models. Recent progress in generating high-fidelity, diverse images from text inputs has been
remarkable. Initially, GAN-based methods dominated text-to-image generation Qiao et al. (2019); Tao et al.
(2022); Liao et al. (2022); Zhu et al. (2019); Ruan et al. (2021), but recent advances have shifted towards
diffusion models like Stable Diffusion Rombach et al. (2022) and Imagen Saharia et al. (2022), which leverage
large datasets for training. Text-based image editing has also advanced significantly; GAN-based approaches
have improved with CLIP Radford et al. (2021), while diffusion-based methods offer better control and
impressive results Ruiz et al. (2022); Kumari et al. (2022); Gal et al. (2022). Personalization techniques
such as Textual Inversion Gal et al. (2022), DreamBooth Ruiz et al. (2022), and Custom Diffusion Kumari
et al. (2022) allow for the creation of unique images by embedding subjects or concepts into the model’s
output. In unconditional image generation, the Denoised Diffusion Probabilistic Model (DDPM) Ho et al.
(2020) is a leading method, providing superior image quality through variational inference and image-space
denoising. For conditional tasks like image super-resolution, guided diffusion Dhariwal & Nichol (2021)
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and latent diffusion models Karras et al. (2022) are highly effective, producing high-resolution images from
low-resolution inputs.

Natural Image Statistics. Natural images have interesting scale-invariance and noise properties Zoran &
Weiss (2009), which have been used for image restoration problems. Projected KC property of natural images,
i.e., natural images tend to have constant kurtosis values across different band-pass (DCT, DWT) filtered
versions has been used for blind forgery detection Zhang & Lyu (2014). Inspired by these observations, we
propose a novel loss function based on natural image statistics for generating better quality images.

3 Method

Figure 2: Kurtosis of various distributions where
kurtosis captures the peakedness of distributions.

In this section, we present the concept of KC loss (Sec.
3.2) which can be applied to various generative tasks for
enhancing the quality of generated images. We start by
providing a basic understanding of the KC property of
natural images.

3.1 Kurtosis Concentration Property

Definition 1 Kurtosis: It is a measure of the “peakedness”
of the probability distribution of a random variable Zhang
& Lyu (2014). For a random variable x, its kurtosis is
defined as,

κ(x) = µ4(x)
(σ2(x))2 − 3. (1)

where σ2(x) = Ex[(x − Ex(x))2] and µ4(x) = Ex[(x −
Ex(x))4] are the second order and fourth order moment of x. For example, the Gaussian random variable has
a kurtosis value of 0.

Kurtosis of well-known distributions is shown in Fig. 2. We can observe that a positive kurtosis indicates
that the distribution is more peaked than the normal distribution and negative kurtosis indicates it to be less
peaked than normal distribution Zhang & Lyu (2014). Kurtosis is a useful statistic used for blind source
separation Naik et al. (2014) and independent component analysis (ICA) Stone (2002).

For a random vector x, we define the kurtosis of the 1D projection of x onto a unit vector w as a projection
kurtosis, i.e., κ(wT x). Projection kurtosis is an effective measure of the statistical properties of high-
dimensional data. E.g., if x is a Gaussian, its projection over any w has a 1D Gaussian distribution. Therefore,
its projection kurtosis is always zero, which exhibits the kurtosis concentration (to a single value, i.e., zero) of
Gaussian.

It is well-known that natural images can be modeled using zero-mean Gaussian Scale Mixture (GSM)
vector Zoran & Weiss (2009); Zhang & Lyu (2014); Lyu et al. (2014); Wainwright & Simoncelli (1999). Next,
we analyze an interesting property of the GSM vector.

Lemma 1 A GSM vector x with zero mean has the following probability density function:

p(x) =
∫ ∞

0
N (x; 0, zΣx)pz(z)dz (2)

and its projection kurtosis is constant with respect to the projection direction w, i.e.,

κ(wT x) = 3varz{z}
Ez{z}2 (3)

where N (x; 0, zΣx) denotes a Gaussian distribution with zero mean and covariance matrix zΣx, with z a
positive random variable with density pz(z). Ez{z} and varz{z} are the mean and variance of latent variable
z respectively.
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Proof. The proof is provided in the Appendix.

This result by Zhang & Lyu (2014) shows that projection kurtosis is constant across projection directions
(e.g., wavelet basis), which provides theoretical insights into the kurtosis concentration property, which we
will discuss next.

Kurtosis Concentration Property: It has been observed that for natural images, projection kurtosis
values across different bandpass-filtered channels tend to be close to a constant value. This is termed as
kurtosis concentration property of natural images Zhang & Lyu (2014); Zoran & Weiss (2009); Lyu et al.
(2014); Bethge (2006); Lyu & Simoncelli (2009); Wainwright & Simoncelli (1999). It can also be interpreted
as an implication of Lemma 1, if we consider patches of natural images as zero-mean GSM vector ( Zoran &
Weiss (2009), Wainwright & Simoncelli (1999)) and projection directions correspond to bandpass filters, e.g.,
DWT.

One intuitive reasoning of the projected kurtosis concentration property is given as follows. It is observed
that the distribution (p(x, α, β)) of different bandpass (DWT) filtered versions of natural images follows a
generalized Gaussian density of the form Zhang & Lyu (2014); Zoran & Weiss (2009).

p(x, α, β) = β

2αΓ(1/β)exp(−|x|
α

)β (4)

where α, β are scaling parameters and Γ(.) is the Gamma function. The kurtosis of this function is given
by Zoran & Weiss (2009),

κ = Γ(1/β)Γ(5/β)
Γ(3/β)2 (5)

Empirically, it has been shown that for natural images, β takes relatively small values, ranging from 0.5 to
1 Zoran & Weiss (2009), and this kurtosis value tends to be constant Zhang & Lyu (2014); Zoran & Weiss
(2009); Lyu et al. (2014); Wainwright & Simoncelli (1999), independent of α or x.

We investigate and experimentally verify this property for natural images on large datasets, e.g., FFHQ
dataset (Fig. 9(c)), Dreambooth dataset, Oxford-flowers dataset (in Appendix). We conclude that this
property actually holds for both object datasets (Dreambooth dataset, Oxford flowers), face dataset (FFHQ)
with sufficient variations in viewpoint, scale, illumination, color, objects, pose, lighting condition etc. Analysis
of kurtosis difference has been shown in Fig. 9 and also in the Appendix, which clearly shows that the
difference of kurtosis values are higher in diffusion-generated images compared to natural images in these
datasets.

3.2 Kurtosis Concentration (KC) Loss

In this work, we introduce a novel KC loss function for training deep generative models, leveraging the KC
property of natural images to improve perceptual quality. Unlike previous approaches Zhang & Lyu (2014)
that used the KC property for tasks like noise estimation and source separation, our KC loss can be integrated
into any diffusion pipeline, and we validate its effectiveness with state-of-the-art diffusion models.

Suppose we need to train or finetune a diffusion model fθ using input training images (x) with or without a
conditioning vector c. The conditioning vector could be text, image, or none (in the case of the unconditional
diffusion model). Given an initial noise map ϵ ∼ N (0, I), and a conditioning vector c, the generated image
obtained from fθ is given by xgen = fθ(x, ϵ, c). Typically, the diffusion model is trained to minimize the
l2 distance between the ground truth image (x) and the noisy image (xgen) Dhariwal & Nichol (2021) or
their corresponding latent in case of Latent Diffusion Model (LDM) Rombach et al. (2022). Without loss of
generality, we are referring to that as reconstruction loss (Lrecon) between the ground-truth image (x) and
the generated image (xgen), denoted by,

Lrecon = Ex,c,ϵ[ ||xgen − x||22] (6)

Note that for diffusion models trained to predict the added noise, we could deterministically obtain the
intermediate clean image from the predicted noise and apply the loss to that. Next, we will describe the KC
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Figure 3: Overview of DiffNat. The proposed kurtosis concentration loss can be integrated into any diffusion-based
approach for various tasks (e.g., text-to-image generation (DreamBooth, Custom diffusion), super-resolution image-
to-image generation (Guided diffusion, k-diffusion), unconditional image generation (DDPM)). In addition to the
task-specific losses, and general reconstruction loss, we incorporate the kurtosis concentration loss (LKC), which
operates on the reconstructed images and minimizes the kurtosis deviation (i.e., max[κ{ci}] - min[κ{ci}]) across
Discrete Wavelet Transform (DWT) filtered version of the reconstructed image, Here, c1, c2 .. are DWT filtered
version of the reconstructed image and κ(x) denote kurtosis of x.

loss. Note, that the KC property holds across different bandpass transformed domains (DCT, DWT, fastICA)
and we choose DWT because it is widely used due to its hierarchical structure and energy compaction
properties E Woods & C Gonzalez (2008). Typically, DWT transforms images into LL (low-low), LH
(low-high), HL (high-low), HH (high-high) frequency bands and each of the sub-bands contains several sparse
details of the image. E.g., the LL and HH subbands contain a low-pass and high-pass filtered version of the
image, respectively Zhang & Lyu (2014). The generated image xgen is then transformed using Discrete Wavelet
Transform (DWT) with kernels k1, k2, .., kn producing filtered images ggen,1, ggen,2, .., ggen,n respectively, such
that, ggen,i = Fki

(xgen). Here, Fl denotes the discrete wavelet transform with kernel l.

Now, kurtosis values of these ggen,i should be constant by the KC property, therefore, we minimize the
difference between the maximum and minimum values of the kurtosis of ggen,i’s to finetune the model using
the loss,

LKC = Ex,c,ϵ[max(κ{ggen,i}) − min(κ{ggen,i})] (7)
Here, κ(x) is kurtosis of x. Note that, this loss (Algorithm. 1) is quite generic and can be applied to both image
or latent diffusion models for training. In the case of latent diffusion models, we need to transform the latent
to image space (via a pretrained VQVAE), before applying this loss, since this prior holds for image space
only. At each timestep (t), we extract the clean image (x0) from the noisy latents (ϵt) (x0 = (xt − σt.ϵt)/αt)
and apply KC loss exclusively to the clean image, not the noisy one. In case of applying this loss to any task
T (DreamBooth, super-resolution, unconditional image generation), the overall loss (L) function would be,
L = Ltask + Lrecon + LKC , where Ltask is the task-specific loss.

Algorithm 1: Kurtosis Concentration loss
Input: Diffusion model (fθ), training images (x), condition vector (c)
Output: KC loss LKC

1. ϵ ∼ N (0, I) ; // Sample random noise
2. xgen = fθ(x, ϵ, c) ; // Generate image
3. ggen,1, ggen,2, ggen,3, .. = DWT (xgen) ; // Wavelet decomposed images
4. LKC = Ex,c,ϵ[max(κ{ggen,i}) − min(κ{ggen,i})] ; // Compute the KC loss

3.3 Perceptual Guidance during Inference

Applying the KC loss during diffusion training enhances sample quality compared to vanilla diffusion.
Additionally, we propose a novel Perceptual Guidance (PG) mechanism during inference to further improve
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Algorithm 2: Perceptual Guidance
Input: Base diffusion model (θB), Diffusion model trained with KC (θP ), prompt (c), guidance scale (γ)
Output: output image (x0)
xT = N (0, I)
for t in T, T-1, .., 1 do

ϵ̂θB ,θP
(xt, c, t) = ϵθB

(xt, c, t) + γ
(

ϵθP
(xt, c, t) − ϵθB

(xt, c, t)
)

if t > 1 then
xt−1 ∼ N (µ(xt), Σt)

else
x0 = (x1 − σ1ϵ̂1)/α1

end
end
return x0

perceptual quality. Conceptually, this is analogous to classifier-free guidance, where the diffusion model is
evaluated both conditionally and unconditionally at each step, and the difference in their outputs serves as
a gradient direction toward the condition. However, while classifier-free guidance can indirectly improve
perceptual quality, it has notable limitations, i.e., (1) it is restricted to conditional models, and (2) its primary
goal is alignment with the condition, which does not necessarily guarantee improved perceptual quality. In
contrast, our PG mechanism generates two outputs with differing perceptual qualities—using two models,
one trained with KC loss and the other without—and amplifies the intermediate output at each step toward
the model with better perceptual quality. This approach offers key advantages - (1) it is condition-agnostic,
making it more versatile, (2) it can operate alongside traditional classifier-free guidance, complementing its
functionality (Tab. 11).

Diffusion models typically generate images unconditionally by approximating the true data distribution q(x0)
with pθ(x0). However, many applications require conditioning on labels or text prompts c Dhariwal & Nichol
(2021). From the Bayesian perspective, the conditional score can be expressed as:

∇x log p(x | c) = ∇x log p(x) + ∇x log p(c | x) (8)

Given ϵθ(xt, t) (≈ −σt∇xt
log p(xt)) is a model trained to predict the noise added to a sample, the above

equation can be approximated as,

ϵ̂θ(xt, c, t) = ϵθ(xt, t) − σt∇xt
log pϕ(c | xt) (9)

Classifier guidance Dhariwal & Nichol (2021) meets this need by introducing an auxiliary model pϕ(c | xt)
and uses the modified score function ϵ̂, which, while effective, requires training a robust classifier for all
denoising steps—a challenging and resource-intensive task.

To avoid this, classifier-free guidance (CFG) Ho & Salimans (2022) uses a single neural network to parameterize
both the conditional and unconditional model. Ho & Salimans (2022) incorporates c directly into the denoising
network, training it to predict both the conditional score ϵθ(xt, c, t) and the unconditional score ϵθ(xt, t) by
randomly dropping the prompt during training. The resulting conditional gradient,

− 1
σt

(
ϵθ(xt, c, t) − ϵθ(xt, t)

)
(10)

leads to an updated diffusion score (putting Eq. 10 in Eq. 9):

ϵ̂θ(xt, c, t) = ϵθ(xt, t) + γ
(

ϵθ(xt, c, t) − ϵθ(xt, t)
)

. (11)

where γ is a constant guidance scale.

With a similar intuition, Perceptual Guidance (PG) refines the denoising trajectory in diffusion models by
integrating a perceptual prior during inference. Instead of calculating class/text-conditional or unconditional
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scores, we calculate scores corresponding to high or low perceptual quality. In PG, we redefine the condition
as an indicator function based on the presence of KC loss, c′ = 1KC. We can reformulate Eq. 8 as,

∇x log pγ(x | c′ = 1KC, c) = ∇x log p(x) + γ(∇x log p(x | c′ = 1KC, c) − ∇x log p(x)) (12)

We derive the guiding gradient from the difference between models trained with and w/o KC loss (representing
conditional and unconditional predictions). Suppose the baseline diffusion model is denoted by θB , and the
model trained with KC loss is denoted by θP (i.e., if c′ = True, then θ = θP , else θ = θB). During perceptual
guidance, we guide the diffusion process through the difference of output predicted by θB and θP as follows,

ϵ̂θB ,θP
(xt, c, t) = ϵθB

(xt, c, t) + γ
(

ϵθP
(xt, c, t) − ϵθB

(xt, c, t)
)

.

As a result, PG introduces a perceptual-optimized (using KC) denoiser where γ > 1 enhances perceptual
quality. Note that, here c could be a text prompt or NULL. This process is iterated T times to generate the
final sample as shown in Algorithm 2. A concurrent work on auto-guidance Karras et al. (2024) improves
image quality by guiding diffusion models using a weaker version of itself. Instead, PG leverages the difference
between models trained with and without KC loss for guidance (Tab. 10).

3.4 Intuitive Justification

Why do diffusion-generated images have higher kurtosis values? Natural images typically exhibit
smooth transitions and structured patterns, leading to a pixel intensity distribution with fewer outliers and,
consequently, lower kurtosis Zoran & Weiss (2009); Lyu et al. (2014); Wainwright & Simoncelli (1999); Bethge
(2006). In contrast, diffusion models generate images through iterative refinement of pure noise into coherent
structures. Due to imperfections in the trained UNet and finite denoising steps, residual high-frequency
noise may persist in the final output, leading to more extreme pixel intensity values and contributing to
heavier tails in the distribution Zhang et al. (2023). This phenomenon is more effectively characterized in the
frequency domain (wavelet transform), which generally correspond to higher kurtosis values Zhang & Lyu
(2014) (Fig. 9).

How does KC loss improve image quality? Intuitively, minimizing the KC loss can be seen as a
locality-aware smoothing of the data distribution to enhance perceptual quality. For instance, in Fig. 6, the
output of GD without KC loss exhibits undesirable abrupt changes near the eye region. Ideally, we should first
detect such regions and then apply suitable operations to improve perceptual quality. However, performing a
spatially varying refinement is challenging, and globally applying such filters might be sub-optimal for other
regions. It has been observed that the wavelet coefficients of natural images follow a Generalized Gaussian
density Moulin & Liu (1999); Sharifi & Leon-Garcia (1995); Mallat (1989), and Kurtosis quantifies the
heaviness of the tails and peakedness of a distribution compared to the Gaussian distribution Zhang & Lyu
(2014); Maier (2021). Therefore, kurtosis across bandpass wavelet filtered versions of the image automatically
provides locality of the abrupt changes and minimizing KC loss performs locality-aware smoothing of the
data distribution. In Fig. 6, incorporating KC loss enhances the generated eye region.

4 Experiments
We evaluate the efficacy of the proposed loss for four tasks - (1) personalized few-shot finetuning of diffusion
model using text guidance, (2) unconditional image generation, (3) image super-resolution, and (4) blind
face-restoration.

4.1 Task 1: Personalized few-shot finetuning using text guidance
In this section, we address the problem of finetuning the text-to-image diffusion model from a few examples
for text-guided image generation in a subject-driven manner. Specifically, given only a few images (e.g.,
3-5) of a particular subject without any textual description, our task is to learn the subject-specific details
and generate new images of that particular subject in different conditions specified by the text prompt. To
evaluate the efficacy of KC loss in this task, we build upon methods, (1) DreamBooth Ruiz et al. (2022), (2)
Custom diffusion Kumari et al. (2022), and (3) AttnDreambooth (AttnDB) Pang et al. (2024). We evaluate
all approaches with/without KC loss on the DreamBooth dataset with same setup for a fair comparison. We
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Input DB+KC+PGDB+KCDB

<V> teapot ''<V> teapot on top of a wood''

<V> backpack ''<V> backpack in the jungle''

Figure 4: Qualitative comparison of with/without KC loss and PG in DreamBooth (DB). The quality of teapot
image (top row) improves while adding KC and PG. In the bottom row, the background of DB generated images looks
blurry and unnatural (highlighted in red), while adding KC and PG improves image quality, and the background look
more natural.

have also compared with another naturalness loss, i.e., LPIPS loss Zhang et al. (2018) as a baseline. For KC
loss, we decompose the reconstructed images using 27 ‘Daubechies’ filter banks and get the average difference
of the kurtosis values as a loss function. When adding the proposed KC loss to these approaches, we obtain
performance improvements in visual quality, i.e., FID Lucic et al. (2018), MUSIQ score Ke et al. (2021),
HPSv2 Wu et al. (2023), subject/prompt fidelity metrics (DINO, CLIP-I, CLIP-T) and LPIPS-diversity Zhang
et al. (2018) as shown in Tab. 1. The qualitative results are shown in Fig. 4. In practice, better perceptual
quality often correlates with higher semantic fidelity Dhariwal & Nichol (2021); Ramesh et al. (2022), as
both improvements are driven by more accurate and coherent image generation that captures the intended
high-level semantics of the prompt, verified in Tab. 1. More training details and ablation are provided in the
Appendix.

Table 1: Comparison on personalized few-shot finetuning task
Method Image quality Subject fidelity Prompt fidelity Image diversity

FID ↓ MUSIQ ↑ HPSv2 ↑ DINO ↑ CLIP-I ↑ CLIP-T ↑ LPIPS-div ↑

DB Ruiz et al. (2022) 111.76 68.31 25.12 0.65 0.81 0.31 0.38
DB Ruiz et al. (2022) + LPIPS 108.23 68.39 25.43 0.65 0.80 0.32 0.40
DB + KC loss (Ours) 100.08 69.78 25.82 0.68 0.84 0.34 0.42
DB + KC loss + PG (Ours) 93.45 70.82 26.04 0.70 0.86 0.35 0.43
CD Kumari et al. (2022) 84.65 70.15 26.12 0.71 0.87 0.38 0.40
CD Kumari et al. (2022) + LPIPS 80.12 70.56 26.33 0.71 0.87 0.37 0.43
CD + KC loss (Ours) 75.68 72.22 26.64 0.73 0.88 0.40 0.44
CD + KC loss + PG (Ours) 66.27 73.77 27.10 0.77 0.89 0.43 0.46
AttnDB Pang et al. (2024) 80.59 70.23 26.42 0.72 0.85 0.35 0.41
AttnDB Pang et al. (2024) + LPIPS 80.06 70.50 26.66 0.73 0.87 0.35 0.43
AttnDB + KC loss (Ours) 73.02 71.10 26.83 0.75 0.89 0.37 0.45
AttnDB + KC loss + PG (Ours) 64.78 72.89 27.35 0.78 0.90 0.38 0.47

Human evaluation. Since perceptual metrics are not always reliable, we also conducted a human preference
study using Amazon Mechanical Turk (AMT) for (1) subject fidelity assessment and (2) image quality ranking.
For the subject fidelity assessment, we evaluated the visual similarity of real and generated images, both
with and without KC loss, to the actual subject. We asked around 5000 visual similarity questions to 50
unbiased users (age 20-50, randomized gender, AMT). The average rating was 5.8 (on a scale where 0 is
“extremely unlikely” and 10 is “extremely likely”), indicating our proposed loss retains subject fidelity in most
cases. We also had 50 unbiased users rank our method against baselines (i.e., “DiffNat”, “DreamBooth”,
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Figure 5: Comparison of unconditional image generation (DDPM) with/without KC loss. Integrating KC
loss significantly improve image quality, whereas DDPM generated images have unnatural image artifacts.

Input GTGD + KCGD GD + KC + PG

Figure 6: Qualitative comparison of with/without KC loss, PG in guided diffusion (GD). The bottom image (with
KC loss) has better eye details (best viewed in color).

“Custom diffusion”, “None is satisfactory”), totaling 1500 questionnaires. The aggregate responses showed
that DiffNat-generated images significantly outperformed the baselines by a large margin (50.4%). Further
details are provided in the Appendix.

4.2 Task 2: Unconditional image generation
Unconditional image generation operates without the need for text or image guidance. It aims to learn the
training data distribution through a generative model (in this case, a diffusion model) and produce samples
that resemble the training data distribution. We opted for the well-known unconditional image generation
pipeline, the DDPM Ho et al. (2020), to test the efficacy of KC loss. PG is especially effective here because
classifier-free guidance cannot be applied.

In DDPM, we directly integrate the KC loss into the image space, demonstrating the flexibility of our
proposed loss. We experimented with the Oxford-flowers Nilsback & Zisserman (2006), CelebA-faces Zhang
et al. (2020), CelebAHQ Karras et al. (2017), Stanford-Dogs Khosla et al. (2011) and Stanford-Cars Krause
et al. (2013) datasets, achieving consistent improvements in image quality, as shown in Tab. 2 and Figure 5.
Additionally, PG further enhances image quality, as indicated in Tab. 2. Human evaluation is not feasible for
unconditional image generation due to the lack of one-to-one correspondence between training and generated
images, but quantitative and qualitative analyses demonstrate the effectiveness of our approach.

4.3 Task 3: Image super-resolution

Image super-resolution typically takes the form of a conditional generation task, leveraging a low-resolution
image as an additional condition for the diffusion model. In this study, we use two state-of-the-art diffusion
pipelines as baselines for comparison. Guided diffusion (GD) Dhariwal & Nichol (2021) directly takes the
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Table 2: Comparison of unconditional image generation task

Method Oxford flowers Celeb-faces CelebAHQ Stanford-Dogs Stanford-Cars

FID ↓ MUSIQ ↑ FID ↓ MUSIQ ↑ FID ↓ MUSIQ ↑ FID ↓ MUSIQ ↑ FID ↓ MUSIQ ↑

DDPM Ho et al. (2020) 243.43 20.67 202.67 19.07 199.77 46.05 129.91 50.12 143.71 53.77
DDPM Ho et al. (2020) + LPIPS 242.62 20.80 201.55 19.21 197.17 46.15 115.72 50.86 137.22 53.98
DDPM + KC loss (Ours) 237.73 21.13 198.23 19.52 190.59 46.83 105.45 51.53 125.85 54.21
DDPM + KC loss + PG (Ours) 200.12 22.45 188.49 20.82 175.12 48.32 98.77 52.17 115.93 54.85

Table 3: Comparison of image super-resolution (x4) task
Method Image quality Image Diversity

FID ↓ PSNR ↑ SSIM ↑ MUSIQ ↑ LPIPS-div ↑

GD Dhariwal & Nichol (2021) 121.23 18.13 0.54 57.31 0.37
GD Dhariwal & Nichol (2021) + LPIPS 119.81 18.22 0.54 57.42 0.40
GD + KC loss (Ours) 103.19 18.92 0.55 58.69 0.42
GD + KC loss + PG (Ours) 93.45 20.17 0.58 60.13 0.45
LD Karras et al. (2022) 95.83 19.16 0.56 59.57 0.38
LD Karras et al. (2022) + LPIPS 92.77 19.42 0.57 59.82 0.40
LD + KC loss (Ours) 83.34 20.25 0.58 61.20 0.42
LD + KC loss + PG (Ours) 71.33 21.92 0.60 62.85 0.44

low-resolution image as a condition and performs the diffusion operation in the pixel space. Additionally,
we also explore the latent diffusion model (LD) Karras et al. (2022) that operates in the latent space of a
pre-trained VQVAE Esser et al. (2021).

Note that, as GD operates in the pixel space, we directly add the proposed KC loss to the output of the
denoising UNet. Conversely, for LD, we initially convert the latent embedding to image space using the
pre-trained decoder and integrate the KC loss on the output of the decoder. For training, we use the standard
FFHQ dataset Karras et al. (2017), which contains 70k high-quality images. We address the task of ×2, ×4,
and ×8 super-resolution where the GT images are of resolution 256 × 256. We evaluate randomly sampled
3000 images from CelebA-Test dataset Karras et al. (2017) under the same ×2, ×4 and ×8-SR setting in
Tab. 4, Tab. 3 and Tab. 5 respectively. In the qualitative results shown in Fig. 6, we observe that adding KC
loss improves the image quality and finer details, e.g., eye structure, texture, and lighting.

Human evaluation. We conduct a human evaluation of the image super-resolution task to compare GD
and LD with the addition of KC loss to each counterpart (DiffNat). The aggregate response of choices
(corresponding to best quality images w.r.t methods) from 50 unbiased users (age 20-50, randomized gender,
AMT) across 1000 questionnaires, shown in Fig. 8, indicates that DiffNat-generated images have superior
quality compared to the GD and LD baselines.

4.4 Task 4: Blind face restoration

We also verify the efficacy of KC loss and PG for blind face restoration task. For blind face restoration
task Suin et al. (2024), we train on FFHQ dataset with and without KC loss on IPC baseline Suin et al.
(2024), and evaluate on a subset of Celeb-A test set with a resolution of 256x256. Average LPIPS, FID, IDS,
PSNR, SSIM are reported in Tab. 18. Qualitative results (Fig. 28) also verify that adding KC loss and PG
improves the image quality.

5 Ablation and analysis
Table 6: Face restoration

Method LPIPS-div↑ FID↓ IDS ↑ PSNR ↑ SSIM ↑
DifFace 0.20 70.69 0.48 22.82 0.61
RestoreFormer 0.29 60.98 0.39 21.77 0.53
IPC (WACV’24) 0.32 55.42 0.54 22.34 0.60
IPC + KC 0.34 43.21 0.61 24.19 0.64
IPC + KC + PG 0.36 38.23 0.65 25.71 0.69

Ablation of loss and guidance. Here we perform
ablation studies of diffusion backbone (SD-1.5, SDXL),
KC loss and PG as shown in Tab. 7 & 8 on DreamBooth dataset. We observe that PG is complementary
to classifier-free guidance (CFG) and both KC loss and PG improve image quality as shown in Fig. 4, and

Table 4: Image super-resolution (x2) task
Method Image quality

FID ↓ PSNR ↑ SSIM ↑ LPIPS-div ↑ MUSIQ ↑
GD Dhariwal & Nichol (2021) 100.2 19.4 0.62 0.25 58.12
GD + KC loss (Ours) 80.9 20.2 0.66 0.28 59.91
GD + KC loss + PG (Ours) 71.3 21.7 0.69 0.33 60.32
LD. Karras et al. (2022) 82.45 21.2 0.64 0.26 60.23
LD + KC loss (Ours) 70.12 22.3 0.70 0.29 62.15
LD + KC loss + PG (Ours) 59.32 23.6 0.73 0.31 63.72

Table 5: Image super-resolution (x8) task
Method Image quality

FID ↓ PSNR ↑ SSIM ↑ LPIPS-div ↑ MUSIQ ↑
GD Dhariwal & Nichol (2021) 140.3 17.5 0.52 0.33 55.26
GD + KC loss (Ours) 125.5 18.7 0.56 0.35 57.33
GD + KC loss + PG (Ours) 108.6 19.1 0.58 0.38 58.62
LD. Karras et al. (2022) 103.2 18.7 0.59 0.40 58.62
LD + KC loss (Ours) 80.1 19.5 0.67 0.43 60.31
LD + KC loss + PG (Ours) 67.3 20.8 0.69 0.44 61.87
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Input GTIPC+KC+PGIPC+KCIPC

Figure 7: Restoration comparison with IPC. KC and PG improves image quality (highlighted in green).

Figure 8: Human evaluation for im-
age super-resolution task.

Table 7: Loss & guidance ablation on
DB (SD-1.5)

KC CFG PG FID ↓ MUSIQ ↑
✗ ✗ ✗ 125.56 67.12
✗ ✗ ✓ 114.38 68.05
✗ ✓ ✗ 111.76 68.31
✗ ✓ ✓ 109.12 68.92
✓ ✗ ✗ 105.33 69.34
✓ ✓ ✗ 100.08 69.78
✓ ✗ ✓ 98.21 70.02
✓ ✓ ✓ 93.45 70.82

Table 8: Loss & guidance ablation on
DB (SDXL)

KC CFG PG FID ↓ MUSIQ ↑
✗ ✗ ✗ 102.32 70.18
✗ ✗ ✓ 96.17 70.92
✗ ✓ ✗ 95.32 71.35
✗ ✓ ✓ 89.72 71.87
✓ ✗ ✗ 85.11 72.05
✓ ✓ ✗ 80.75 72.32
✓ ✗ ✓ 73.33 72.88
✓ ✓ ✓ 70.18 73.02

Fig. 6. We have also performed ablations w.r.t transforms (DCT, DWT) and the results are provided in the
Appendix.

Table 9: Comparison of real
vs synthetic detection

Method Accuracy

DB 93.33%
DB + KC loss 66.66%
CD 94.16 %
CD + KC loss 92.50%

Kurtosis analysis. To verify the efficacy of the proposed KC loss, we performed
an average kurtosis analysis by computing the average kurtosis deviation of
DWT-filtered images from the FFHQ dataset and plotting the results in Fig. 9.
The analysis showed that images generated with GD had the highest kurtosis
deviation (Fig. 9 (a)), while natural images had the least deviation (Fig. 9 (c)),
and adding KC loss reduced the kurtosis deviation (Fig. 9 (b)), thus improving
image quality as demonstrated both qualitatively and quantitatively.

(a) Avg. κ of GD generated images (b) Avg. κ of images with GD + KC (c) Avg. κ of Natural images

Figure 9: Average kurtosis (κ) analysis of guided diffusion (GD) framework trained on FFHQ dataset. From this
analysis, it is evident that GD-generated images have higher kurtosis deviation. Integrating KC loss reduces the
kurtosis deviation to preserve the naturalness of the generated images. Natural images have more concentrated
kurtosis values.
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(a) GD (b) GD + KC (c) LD (d) LD + KC
Figure 10: Perceptual artifact ratio analysis. Green boundaries localizes perceptual artifacts. Adding KC loss reduces
such artifacts

Comparison of real vs synthetic detection. To analyze the robustness
of the proposed KC loss, we train a classifier to distinguish real images from synthetic ones generated by
diffusion models, including those with and without KC loss. The results in Tab. 9 show that adding KC loss
decreased the real vs synthetic classification accuracy, indicating that the generated images with KC loss
have higher perceptual quality and appear more natural to both human viewers and machine algorithms.

Perceptual artifact analysis. Zhang et al. (2023) identified perceptual artifacts in diffusion-generated
images, which adversely impact image quality, and developed a dataset and metric (Perceptual Artifacts
Ratio, PAR) to automate artifact localization/editing. Our analysis shows that incorporating KC loss reduces
these perceptual artifacts (Fig. 10), as evidenced by a decrease in average PAR (Table. 12), demonstrating
that KC loss inherently enhances image quality by minimizing artifacts.

Computational cost. The time and space complexity of CFG and PG for SDXL in A5000 machine (single
image inference) are presented in Tab. 10. We observe that while PG incurs a bit higher compute overhead
than CFG, as both require two forward passes, it achieves greater quality improvement (on Dreambooth
(DB) task, DB dataset) with minimal memory overhead due to optimized attention in Diffusers.

Table 10: Complexity
Metrics w/o guidance CFG PG PG + CFG
GPU mem. (MB) 12167 12218 12200 12500
Inference time (s) 7.2 14.5 14.9 29.3
FID 102.32 95.32 73.33 70.08
MUSIQ 70.18 71.35 72.88 73.02

Comparison with recent SD model. We ablate KC
and PG on SOTA models like SDXL (Tab. 11) and FLUX
(Tab. 11) for DB task, observing consistent gains. However,
the improvements are more pronounced in pixel-space
models like GD Dhariwal & Nichol (2021) (Tab. 3, 4, 5).

Table 11: Ablation on DB task, DB dataset for FLUX and SDXL

KC CFG PG FLUX SDXL
FID ↓ MUSIQ ↑ LIQE ↑ Q-align ↑ FID ↓ MUSIQ ↑ LIQE ↑ Q-align ↑

✗ ✗ ✗ 60.13 75.24 7.20 4.37 102.32 70.18 4.32 1.85
✗ ✗ ✓ 55.43 75.98 7.54 4.52 96.17 70.92 4.81 2.01
✗ ✓ ✗ 52.12 76.33 7.83 4.73 95.32 71.35 5.15 2.32
✗ ✓ ✓ 50.42 76.72 7.97 4.96 89.72 71.87 5.37 2.41
✓ ✗ ✗ 45.23 77.50 8.32 5.21 85.11 72.05 5.62 2.52
✓ ✓ ✗ 42.74 77.93 8.61 5.63 80.75 72.32 5.98 2.83
✓ ✗ ✓ 40.21 78.34 8.90 5.82 73.33 72.88 6.35 3.12
✓ ✓ ✓ 36.96 78.85 9.13 6.04 70.08 73.02 6.82 3.55

Limitations. The proposed PG strategy necessitates two forward passes through the diffusion model to
obtain the guidance direction, which is time-consuming. We aim to address this issue in future work.

6 Conclusion Table 12: PAR analysis of tasks - DB, CD, DDPM on Oxford flowers (OF),
DDPM on CelebFaces (CF), DDPM on CelebAHQ (CelebHQ), GD on FFHQ,
LD on FFHQ has been reported. (in %)

Setting DB CD DDPM (OF) DDPM (CF) DDPM (CelebHQ) GD LD
w/o KC loss 1.64 0.63 3.02 7.09 3.20 0.89 1.11
w KC loss 0.75 0.36 2.99 6.97 2.63 0.51 1.07

While diffusion models have made
significant strides in generating nat-
uralistic images, enhancing image
quality remains a key focus. We in-
troduce a novel and generic KC loss,
leveraging the KC property of natural images, which minimizes the gap between maximum and minimum
kurtosis values across different DWT-filtered versions of the image. Additionally, we propose a condition-
agnostic PG strategy to further improve image quality. Our experiments show that KC loss and PG improve
image quality in various generative tasks, including personalized few-shot fine-tuning of text-to-image models,
unconditional image generation, image super-resolution, and blind face-restoration. Human studies validate
the effectiveness of our approach.
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A Appendix

In this supplementary material, we will provide the following details.

1. Training details.

2. Theoretical justification.

3. KC loss added as a regularizer.

4. Additional Ablations.

5. Failure cases.

6. Kurtosis analysis.

7. Computational complexity.

8. Convergence analysis.

9. Qualitative analysis.

10. Experiments on image super-resolution.

11. Experiments on other tasks.

B Training Details

The training details of finetuning the diffusion model for various tasks have been provided here. For
personalized few-shot finetuning, we consider two methods - Dreambooth Ruiz et al. (2022) and Custom
diffusion Kumari et al. (2022). For fair comparison, we applied both the approaches on the dataset and
setting introduced by Dreambooth. The dataset contains 30 subjects (e.g., backpack, stuffed animal, dogs,
cats, sunglasses, cartoons etc) and 25 prompts including 20 re-contextualization prompts and 5 property
modification prompts. DINO, which is the average pairwise cosine similarity between the ViT-S/16 DINO
embeddings Caron et al. (2021) of the generated and real images. (2) CLIP-I, i.e., the average pairwise cosine
similarity between CLIP Radford et al. (2015) embeddings of the generated and real images. To measure
the prompt fidelity, we use CLIP-T, which is the average cosine similarity between prompt and image CLIP
embeddings.

For unconditional image generation, we have experimented on oxford flowers, CelebAfaces and CelebAHQ
datasets. Image quality has been measured by FID and MUSIQ score.

In case of image super-resolution, we experimented with guided diffusion Dhariwal & Nichol (2021) and
latent diffusion Karras et al. (2022) pipelines. We use FFHQ dataset for training, and test on a subset of
1000 images from CelebAHQ test set for x4 super-resolution task. The hyperparameter details are given in
Tab. 13.

C Theoretical Justification

Here we provide theoretical analysis of the Lemmas mentioned in the main paper.

Definition 2 Lipschitz Continuity : A function f is said to be Lipschitz continuous if there exists a constant
L (called the Lipschitz constant) such that for all x and y in the domain of f :

|f(x) − f(y)| ≤ L|x − y| (13)

Definition 3 Max-Min Difference : Consider the function f :

f(κ1, κ2, . . . , κn) = max(κi) − min(κi) (14)
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Table 13: Hyperparameters

Hyperparameter Values
Coefficient of Lrecon 1
Coefficient of Lprior 1
Coefficient of LKC 1

Perceptual guidance scale 1.001
Learning rate 10−5

Batch size (Dreambooth, Custom diffusion) 8
Batch size (DDPM) 125

Batch size (GD) 16
Batch size (LD) 9

Text-to-image diffusion model Stable Diffusion-v1 Rombach et al. (2022)
Number of class prior images (Dreambooth, Custom diffusion ) 10

Number of DWT components 25
DWT filter Daubechies

Definition 4 Lipschitz Condition: We need to show that there exists a constant L such that for any two sets
of kurtosis values (κ1, κ2, . . . , κn) and (κ′

1, κ′
2, . . . , κ′

n),

|f(κ1, κ2, . . . , κn) − f(κ′
1, κ′

2, . . . , κ′
n)| ≤ L

n∑
i=1

|κi − κ′
i| (15)

Lemma 2 KC loss is differentiable and Lipschitz continuous with Lipschitz constant 2.

Proof. We are taking maximum and minimum across kurtosis values, therefore KC loss is differentiable and
so as the combined loss, since differentiability preserves over addition.

Next, we proof the Lipschitz continuity. Note, the function max(κi) is 1-Lipschitz because:

| max(κi) − max(κ′
i)| ≤ max

i
|κi − κ′

i| (16)

Similarly, the function min(κi) is also 1-Lipschitz because:

| min(κi) − min(κ′
i)| ≤ max

i
|κi − κ′

i| (17)

Since both the maximum and minimum functions are 1-Lipschitz, their difference is also Lipschitz continuous
with a constant of 2:

|f(κ1, κ2, . . . , κn) − f(κ′
1, κ′

2, . . . , κ′
n)| ≤ 2 max

i
|κi − κ′

i| (18)

For simplicity, if we consider the l1 norm of the differences, we get:

|f(κ1, κ2, . . . , κn) − f(κ′
1, κ′

2, . . . , κ′
n)| ≤ 2

n∑
i=1

|κi − κ′
i| (19)

Thus, we have shown that the KC loss function, i.e., the difference between the maximum and minimum
kurtosis values of wavelet-transformed coefficients of natural images is Lipschitz continuous with a Lipschitz
constant of 2 when considering the l1 norm.

Lemma 3 A Gaussian scale mixture (GSM) vector x with zero mean has the following probability density
function:

p(x) =
∫ ∞

0
N (x; 0, zΣx)pz(z)dz (20)

and its projection kurtosis is constant with respect to the projection direction w, i.e.,

κ(wT x) = 3varz{z}
Ez{z}2 (21)

where Ez{z} and varz{z} are the mean and variance of latent variable z respectively.
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Proof. Marginal distribution of the projection of x on non-zero vector w is given by Zhang & Lyu (2014),

pw(t) =
∫

x:wT x=t

p(x)dx

=
∫

z

pz(z)dz.

∫
x:wT x=t

1√
(2πz)d|det(Σx)|

exp(−xT Σ−1
x x

2z
)dx

=
∫

z

Nt(0, zwT Σxw)pz(z)dz

Note that, the last equality holds from the marginalization property of Gaussian, i.e., X ≈ N (µ, Σ), then,
AX ≈ N (Aµ, AΣAT ).

The variance of wT x,

Et{t2} =
∫

z

pzdz

∫
t

t2Nt(0, zwT Σxw)dz

= wT Σxw

∫
z

zpzdz

= wT ΣxwEz{z}

The fourth order moment of wT x,

Et{t4} =
∫

z

pzdz

∫
t

t4Nt(0, zwT Σxw)dz

= 3(wT Σxw)2
∫

z

z2pzdz

= 3(wT Σxw)2Ez{z2}

We utilize the property that Nt(0, σ2) has a fourth order moment of 3σ4.

Finally, the kurtosis becomes,

κ(wT x) = Et{t}4

Et{t}2 − 3

= 3Ez{z}2

Ez{z}2 − 3

= 3(Ez{z2} − Ez{z}2)
Ez{z}2

= 3varz{z}
Ez{z}2

D KC Loss Added as a Regularizer

We would like to highlight that in our work, the underlying theoretical framework behind the forward and
reverse diffusion processes remains unchanged; rather, we focus on improving the performance of the denoising
neural network used to approximate the reverse diffusion trajectory.

Suppose, we have the input training images (x) and conditioning vector c. The conditioning vector could be
text (text-to-image model), image (image-to-image model), or none (in case of the unconditional diffusion
model). In the forward process, the noisy versions of image x at timestep t is generated as xt = αtx + σtϵ,
where ϵ ∼ N(0, I).
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In the reverse process, a denoised autoencoder (fθ) is trained to predict the denoised version of the image
(xt,gen) at each timestep t from the noisy images xt, i.e., xt,gen = fθ(xt, c, t). Typically, the denoised
autoencoder (fθ) is trained by minimzing the Mean Squared Error between the real image (x) and the
generated denoised version of the image at time step t (xt,gen) averaged over timesteps and noise variances as
denoted by,

Lrecon = Ex,c,ϵ,t[ ||xt,gen − x||22] (22)

The kurtosis concentration loss is applied on the generated images (xt,gen), and therefore can be considered
as a function (f ′) of xgen as follows:

LKC = Ex,c,ϵ,t[f ′(xt,gen)] (23)

Note the function f ′ is difference between the maximum and minimum values of the DWT filtered version of
input xt,gen.

Therefore, the total loss function can be written as,

Ltotal = Ex,c,ϵ,t[ ||xt,gen − x||22] + Ex,c,ϵ,t[f ′(xt,gen)] (24)

In our work, the above-mentioned framework remains the same. Instead, the proposed KC loss acts as an
additional regularizer to the training of the denoising neural network, which helps it to denoise xt better
(Lemma 2, main paper), ultimately improving the approximation of x, i.e., xt,gen at each time step t.

E Additional Ablations

In Fig. 11, we visualize some of the DiffNat generated images using various text-prompts. The generated
images capture the context of the text-prompt and also retain naturalness. We have also provided qualitative
comparison w.r.t Dreambooth in Fig. 12.

We also provide ablations for using DCT transforms and analyse the performance with respect to other tasks
and methods. Experiments in Table. 14 suggests DWT performs better than DCT for different methods
across datasets.

F Failure Cases

We also present some of the failure cases of DiffNat in Fig. 13. E.g., our model fails to generate images of
“A [V] berry bowl with the Eiffel Tower in the background”, but actually generates images with “the Eiffel
Tower” in the berry bowl. Similarly, the model fails to generate “A cube shaped [V] can”, since these object
do not appear in the training set. The model also fails to generate “A [V] cat on top of a purple rug in a
forest” and instead generated some version of purple cat.

G Kurtosis Analysis

To verify the efficacy of the proposed KC loss, we perform average kurtosis analysis in this section. we
compute the average kurtosis deviation of DWT filtered version of images from the dataset and plot them in
Fig. 15, Fig. 16 and Fig. 17. E.g., in case of dreambooth task, we compute the kurtosis statistics of bandpass
filtered version of natural images from Dreambooth dataset, images generated by Dreambooth and images
generated by DiffNat (i.e., adding KC loss) and plot it in Fig. 15. We observe that the Dreambooth generated
images (Fig. 15 (a)) have highest kurtosis deviation. The average deviation is least for natural images (Fig. 15
(c)) and adding KC loss reduces the kurtosis deviation (Fig. 15 (b)). Similar trends can be observed for
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Figure 11: DiffNat generated images. The task is to learn a unique identifier (“A [V] dog backpack”) of the
training images and generate variations w.r.t. background, lighting conditions etc. The generated images
look natural in different background context, e.g., “A [V] dog backpack on the beach/ with a city in the
background etc”. The generated images are of high quality.

Table 14: Comparison of DCT vs DWT

Method FID score ↓ MUSIQ score ↑
DB (Dreambooth dataset) 111.76 68.31
DB + KC (DCT) 106.23 68.72
DB + KC (DWT) 100.08 69.78
CD (Dreambooth dataset) 84.65 70.15
CD + KC (DCT) 80.33 70.67
CD + KC (DWT) 75.68 72.22
DDPM (Oxford flowers) 243.43 20.67
DDPM + KC (DCT) 240.12 20.98
DDPM + KC (DWT) 237.73 21.13
GD (FFHQ) 121.23 57.31
GD + KC (DCT) 112.66 58.12
GD + KC (DWT) 103.19 58.69
LD (FFHQ) 95.83 59.57
LD + KC (DCT) 88.52 60.37
LD + KC (DWT) 83.34 61.20
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Figure 12: Comparison of DreamBooth and DiffNat. DiffNat generated images have better visual quality.

Figure 13: Failure cases of DiffNat. Instead of generating “A [V] berry bowl with the Eiffel Tower in the
background”, our method generates image with the Eiffel Tower in the berry bowl. Also, while generating “A
[V] cat on top of a purple rug in a forest”, it generates a purple [V] cat, which shows the color bias w.r.t the
text-prompt of the model.
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DDPM (Fig. 16), guided diffusion (Fig. 17) as well. Adding KC loss improves image quality has been verified
both qualitatively and quantitatively in the paper. This analysis verifies minimizing kurtosis loss improves
diffusion image quality.

H Computational Complexity

Here we analyze the computational complexity of the proposed KC loss. Suppose, given a batch of N images.
We need to perform DWT of each images using k different filters. Since, DWT for ‘Haar’/’Daubechis’ wavelet
can be done in linear time, the complexity of performing DWT with k filters can be done in O(Nk) time.
Now, calculating the difference between maximum and minimum kurtosis can be done in linear time, therefore,
the computational complexity of calculating KC loss is O(Nk). This minimal overhead of computing KC loss
can be observed in the training time analysis provided next. The run time analysis has been provided in
Table. 15. Note that the experiments for Dreambooth, Custom diffusion, DDPM have been performed on
a single A5000 machine with 24GB GPU. We have performed guided diffusion (GD) and latent diffusion
(LD) experiments on a server of 8 24GB A5000 GPUs. The experimental results in Table. 15 show that
incorporating KC loss induces minimum training overhead.

Table 15: Training time analysis

Method dataset Training time

DreamBooth Ruiz et al. (2022) 5-shot finetuning 10 min 21s
DreamBooth Ruiz et al. (2022) + KC loss 5-shot finetuning 11 min 30s
Custom Diffusion Kumari et al. (2022) 5-shot finetuning 6m 43s
Custom Diffusion Kumari et al. (2022) + KC loss 5-shot finetuning 7m 11s
DDPM Ho et al. (2020) CelebAfaces 2d 8h 21m
DDPM Ho et al. (2020) + KC loss CelebAfaces 2d 9h 19m
GD Dhariwal & Nichol (2021) FFHQ 23h 10m
GD Dhariwal & Nichol (2021) + KC loss FFHQ 1d 1h 29m
LD Karras et al. (2022) FFHQ 20h 15m
LD Karras et al. (2022) + KC loss FFHQ 22h 40m

I Convergence Analysis

The main idea of the diffusion model is to train a UNet, which learns to denoise from a random noise
to a specific image distribution. More denoising steps ensure a better denoised version of the image, e.g.,
DDPM Ho et al. (2020), LDM Karras et al. (2022). In proposition 1 (main paper), we show that minimizing
projection kurtosis further denoise input signals. Therefore, KC loss helps in the denoising process and
improves the convergence speed. We have shown that adding KC loss improves the loss to converge faster for
Dreambooth task in Fig. 14.

J Qualitative Analysis

In this section, we provide more qualitative analysis to show that adding KC loss improves image quality.
Zoomed view of the generated images are shown to compare w.r.t the baselines in Fig. 19, Fig. 20, Fig. 21,
Fig. 22, Fig. 23, Fig. 24, Fig. 25, Fig. 26. Details are provided in the caption.

K Experiments on Image Super-resolution

In this section, we provide more experimental results for image super-resolution task. This includes quantitative
results and human evaluation.
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Figure 14: Loss curve convergence of Dreambooth.

(a) Average kurtosis of Dreambooth
images

(b) Avg. kurtosis (trained with
Dreambooth + KC loss)

(c) Average kurtosis of Natural im-
ages

Figure 15: Average kurtosis analysis of Dreambooth, DiffNat and natural images over the dataset used
in Dreambooth. From this analysis, it is evident that Dreambooth generated images have higher kurtosis
deviation. Integrating KC loss reduces the kurtosis deviation to preserve the naturalness of the generated
images. Natural images have more concentrated kurtosis values.

(a) Average kurtosis of DDPM im-
ages

(b) Average kurtosis of images
trained with DDPM + KC loss

(c) Average kurtosis of Natural im-
ages

Figure 16: Average kurtosis analysis of DDPM framework trained on Oxford flowers dataset. From this
analysis, it is evident that DDPM generated images have higher kurtosis deviation. Integrating KC loss
reduces the kurtosis deviation to preserve the naturalness of the generated images. Natural images have more
concentrated kurtosis values.
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(a) Avg. kurtosis of GD generated
images

(b) Avg. kurtosis of images trained
with GD + KC loss (c) Avg. kurtosis of Natural images

Figure 17: Average kurtosis analysis of guided diffusion (GD) framework trained on FFHQ dataset. From
this analysis, it is evident that GD generated images have higher kurtosis deviation. Integrating KC loss
reduces the kurtosis deviation to preserve the naturalness of the generated images. Natural images have more
concentrated kurtosis values.

Table 16: Comparison of image super-resolution (x2) task

Method Image quality

FID score ↓ PSNR ↑ SSIM ↑ MUSIQ score ↑

GD Dhariwal & Nichol (2021) 100.2 19.4 0.62 58.12
GD + KC loss(Ours) 80.9 20.2 0.66 59.91
LD. Karras et al. (2022) 82.45 21.2 0.64 60.23
LD + KC loss(Ours) 70.12 22.3 0.70 62.15

K.1 Quantitative Results

In addition to the super resolution task (x4) shown in the main paper, we conduct experiments for x2 and x8
tasks as well in the same setting. The ground-truth images are of size 256 X 256. Therefore, x2 task performs
image super-resolution from 128 X 128 → 256 X 256 and x8 task performs image super-resolution from 32 X
32 → 256 X 256 and the corresponding experiments are shown in Table 16 and Table 17 respectively. For
training, we use standard FFHQ dataset Karras et al. (2017), and evaluation is performed on CelebA-Test
dataset Karras et al. (2017). We observe that adding KC loss improves image quality quantitatively both for
guided diffusion (GD) and latent diffusion (LD). Qualitative results are shown in Fig. 23, Fig. 24, Fig. 25 and
Fig. 26. Next, we also perform human study to validate our approach.

K.2 Human Evaluation

We conduct human evaluation of image super-resolution task to compare guided diffusion (GD)/ latent
diffusion (LD) and adding KC loss to the corresponding counterpart (DiffNat). We provide 20 examples of
natural images and corresponding generated images using GD, LD and our method DiffNat (i.e., adding
KC loss) and asked the following question to amazon mechanical turks: "which of the generated images is
of best visual quality considering factors include image quality and preserving the identity of the original
image?" Similar to Dreambooth task, we evaluate this by 50 users, totalling 1000 questionnaires. The available
options are { ’DiffNat’, ’GD/LD’, ’None is satisfactory’ }. The aggregate response shows that DiffNat
generated images are of better image quality compared to the baselines, as shown in Fig. 27. Therefore,
we verified the improved image quality quantitatively, qualitatively and through human evaluation as well.
Note that, human evaluation is not applicable for unconditional image generation task since there is no
one-to-one correspondence between the training images and the generated images. It will be ambiguous for
the human observers to compare quality between approaches. Therefore, we abstain ourselves from performing
human evaluation for this task. However, the quantitative and qualitative analysis exhibit the efficacy of our
approach.
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Figure 18: Subject fidelity assessment by user study. The ratings ranges from “0” being “extremely unlikely” to 10
being “extremely likely”. We observe from the plot that most of the users find DiffNat preserves subject fidelity. The
average rating is 5.8, which is “moderately likely” to “highly likely”.

Figure 19: Qualitative comparison of with/without KC loss in Dreambooth. The bottom image (with KC
loss) shows better image quality and shadows (best viewed in color).

Table 17: Comparison of image super-resolution (x8) task

Method Image quality

FID score ↓ PSNR ↑ SSIM ↑ MUSIQ score ↑

GD Dhariwal & Nichol (2021) 140.3 17.5 0.52 55.26
GD + KC loss(Ours) 125.5 18.7 0.56 57.33
LD. Karras et al. (2022) 103.2 18.7 0.59 58.62
LD + KC loss(Ours) 80.1 19.5 0.67 60.31
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Figure 20: Qualitative comparison of with/without KC loss in Dreambooth. The bottom image (with KC
loss) shows better image quality and reflections on the bowl full of berries (best viewed in color).
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Figure 21: Qualitative comparison of with/without KC loss in Custom diffusion. The bottom image (with
KC loss) shows better image quality in terms of color vividness and contrast (best viewed in color).

Figure 22: Qualitative comparison of with/without KC loss in Custom diffusion. The bottom image (with
KC loss) shows better image quality in terms of detail and smoothness (best viewed in color).
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Input GTGD + KCGD

Figure 23: Qualitative comparison of with/without KC loss in guided diffusion (GD). The bottom image
(with KC loss) has better eye and hair details (best viewed in color).

Input GTGD + KCGD

Figure 24: Qualitative comparison of with/without KC loss in guided diffusion (GD). The bottom image
(with KC loss) has better eye details and skin smoothness (best viewed in color).
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Input GTLD + KC LD

Figure 25: Qualitative comparison of with/without KC loss in Latent diffusion (LD). The bottom image (with
KC loss) has higher similarity w.r.t the ground truth in terms of left eye and skin color (best viewed in color).

Figure 26: Qualitative comparison of with/without KC loss in Latent diffusion (LD). The bottom image (with KC
loss) has higher similarity w.r.t the ground truth in terms of left eye and skin color (best viewed in color).
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Figure 27: Human evaluation for image super-resolution task. DiffNat performs better than guided diffusion
(GD), latent diffusion (LD) in user study as well.

Table 18: Blind Face restoration

Method LPIPS-div↑ FID↓ IDS ↑ PSNR ↑ SSIM ↑
DifFace 0.20 70.69 0.48 22.82 0.61
RestoreFormer 0.29 60.98 0.39 21.77 0.53
IPC Suin et al. (2024) 0.32 55.42 0.54 22.34 0.60
IPC + KC 0.34 43.21 0.61 24.19 0.64

L Experiments on other Tasks

We analyze the effectiveness of KC loss on other visual recognition tasks, e.g., inverse problem like blind face
restoration.

L.1 Blind Face Restoration

For blind face restoration task Suin et al. (2024), we train on FFHQ dataset with and without KC loss on
IPC baseline Suin et al. (2024), and evaluate on 3000 images on Celeb-A test set with a resolution of 256x256.
Average LPIPS, FID, IDS, PSNR, SSIM are reported in Tab. 18. Qualitative results (Fig. 28) also verify that
adding KC loss improves image quality.

Figure 28: Restoration comparison with IPC
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L.2 Conditional Image Generation with Structural Constraints.

We also experiment with more challenging conditional image generation with structural constraint. In this
context, we experiment with Crtl-U Zhang et al. (2024), to verify the efficacy of KC loss and PG strategy.
Ctrl-U Zhang et al. (2024) proposes uncertainty-aware reward modeling for conditional image generation. It
estimates reward uncertainty by running two forward passes of the diffusion model at different timesteps. The
framework uses this uncertainty to adaptively regularize a pixel-wise consistency loss. They have expreimented
on ADE20K, COCO-Stuff datasets for segmentation, edge, depth conditions.

We integrate KC loss additionally to the existing losses of Ctrl-U for training and use PG strategy during
inference for segmentation mask as condition. We experiment on ADE20K and COCO-stuff dataset and
observe improvements in both segmentation performance and image quality. We use the same setting used by
Crtl-U. Experimental results are shown in Tab. 19 and Fig. 29, Fig. 30.

L.3 Comparison with AttnDreambooth

For the personalized few-shot finetuning task, we also compare with a recent baseline - AttnDreamBooth
(AttnDB) Pang et al. (2024). It introduces a novel method to enhance personalized text-to-image synthesis by
addressing limitations in existing approaches like Textual Inversion and DreamBooth, which often suffer from
overfitting or neglecting the target concept. AttnDreamBooth decomposes the personalization process into
three distinct training stages: (1) learning embedding alignment to integrate new concepts into the model’s
vocabulary, (2) refining the attention map through fine-tuning cross-attention layers with a regularization
term that encourages similarity between the attention maps of the new concept and its super-category, and (3)
acquiring the subject identity by fine-tuning the entire U-Net. We add both KC loss and PG strategy to this,
and obtain performance improvement both in image quality, and diversity as shown in Tab. 20. Qualitative
results are shown in Fig. 31.

Table 19: Performance Comparison w.r.t Ctrl-U on ADE20K and COCO-stuff Datasets

Method ADE20K COCO-stuff
mIoU ↑ FID ↓ CLIPscore ↑ mIoU ↑ FID ↓ CLIPscore ↑

Ctrl-U (ICLR’25) Zhang et al. (2024) 46.49 28.01 32.26 49.91 25.79 31.23
Ctrl-U + KC 46.72 24.32 29.32 50.12 14.08 31.75
Ctrl-U + KC + PG 46.91 20.12 30.12 50.47 11.06 32.18

Table 20: Comparison on personalized few-shot finetuning task
Method Image quality Subject fidelity Prompt fidelity Image diversity

FID ↓ MUSIQ ↑ HPSv2 ↑ DINO ↑ CLIP-I ↑ CLIP-T ↑ LPIPS-div ↑

DB Ruiz et al. (2022) 111.76 68.31 25.12 0.65 0.81 0.31 0.38
DB Ruiz et al. (2022) + LPIPS 108.23 68.39 25.43 0.65 0.80 0.32 0.40
DB + KC loss (Ours) 100.08 69.78 25.82 0.68 0.84 0.34 0.42
DB + KC loss + PG (Ours) 93.45 70.82 26.04 0.70 0.86 0.35 0.43
CD Kumari et al. (2022) 84.65 70.15 26.12 0.71 0.87 0.38 0.40
CD Kumari et al. (2022) + LPIPS 80.12 70.56 26.33 0.71 0.87 0.37 0.43
CD + KC loss (Ours) 75.68 72.22 26.64 0.73 0.88 0.40 0.44
CD + KC loss + PG (Ours) 66.27 73.77 27.10 0.77 0.89 0.43 0.46
AttnDB Pang et al. (2024) 80.59 70.23 26.42 0.72 0.85 0.35 0.41
AttnDB Pang et al. (2024) + LPIPS 80.06 70.50 26.66 0.73 0.87 0.35 0.43
AttnDB + KC loss (Ours) 73.02 71.10 26.83 0.75 0.89 0.37 0.45
AttnDB + KC loss + PG (Ours) 64.78 72.89 27.35 0.78 0.90 0.38 0.47
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Input <-----------------Generated images---------------->condition

Crtl-U

Crtl-U
+ KC

Crtl-U
+ KC
+ PG

Figure 29: Qualitative comparison with Ctrl-U

Input <-----------------Generated images---------------->condition

Crtl-U

Crtl-U
+ KC

Crtl-U
+ KC
+PG

Figure 30: Qualitative comparison with Ctrl-U

17



Under review as submission to TMLR

Input AttnDB+KC+PGAttnDB+KCAttnDB

<V> ducktoy ''<V> ducktoy on a cobblestone street''

<V> cat ''<V> cat on wooden floor''

Figure 31: Qualitative comparison with AttnDreamBooth
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