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Abstract
Multilingual transformer language models have001
recently attracted much attention from re-002
searchers and are used in cross-lingual trans-003
fer learning for many NLP tasks such as text004
classification and named entity recognition.005
However, similar methods for transfer learn-006
ing from monolingual text to code-switched007
text have not been extensively explored mainly008
due to the following challenges: (1) Code-009
switched corpus, unlike monolingual corpus,010
consists of more than one language and existing011
methods can’t be applied efficiently, (2) Code-012
switched corpus is usually made of resource-013
rich and low-resource languages and upon us-014
ing multilingual pre-trained language models,015
the final model might bias towards resource-016
rich language. In this paper, we focus on017
code-switched sentiment analysis where we018
have a labelled resource-rich language dataset019
and unlabelled code-switched data. We pro-020
pose a framework that takes the distinction021
between resource-rich and low-resource lan-022
guage into account. Instead of training on the023
entire code-switched corpus at once, we cre-024
ate buckets based on the fraction of words in025
the resource-rich language and progressively026
train from resource-rich language dominated027
samples to low-resource language dominated028
samples. Extensive experiments across mul-029
tiple language pairs demonstrate that progres-030
sive training helps low-resource language dom-031
inated samples.032

1 Introduction033

Code-switching is the phenomena where the034

speaker alternates between two or more languages035

in a conversation. The lack of annotated data and036

diverse combinations of languages with which this037

phenomenon can be observed, makes it difficult to038

progress in NLP tasks on code-switched data. And039

also, the prevalance of different languages is differ-040

ent, making annotations expensive and difficult.041

Intuitively, multilingual language models like042

mBERT (Devlin et al., 2019) can be used for043

Figure 1: An example of code-switched text, its translit-
erated and the translation versions.

code-switched text since a single model learns 044

multilingual representations. Although the idea 045

seems straightforward, there are multiple issues. 046

Firstly, mBERT performs differently on different 047

languages depending on their script, prevalence and 048

predominance. mBERT performs well in medium- 049

resource to high-resource languages, but is outper- 050

formed by non-contextual subword embeddings 051

in a low-resource setting (Heinzerling and Strube, 052

2019). Moreover, the performance is highly de- 053

pendent on the script Pires et al. (2019). Sec- 054

ondly, transformer models have only seen mono- 055

lingual sentences during the unsupervised pretrain- 056

ing, however code-switched text contains phrases 057

from both the languages in a single sentence, thus 058

making it an entirely new scenario for the trans- 059

former models. Thirdly, there is difference in 060

the languages based on the amount of unsuper- 061

vised corpus that is used for transformer language 062

models pretraining. For e.g., mBERT is trained 063

on the wikipedia corpus. English has ∼ 6.3 mil- 064

lion articles, whereas Hindi and Tamil have only 065

∼ 140K articles each. This may lead to under- 066

representation of low-resource langauges in the 067

final model. Further, English has been extensively 068

studied by NLP community over the years, mak- 069

ing the supervised data and tools more easily ac- 070

cessible. Thus, the model would be able to eas- 071

ily learn patterns present in the resource-rich lan- 072

guage segments and motivating us to attempt trans- 073

fer learning from English supervised datasets to 074

code-switched datasets. 075
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… brilliant bowling by ….

… plz आप मेरे frnd बा�नये ….

 … fixing में सजा का gift … 

… आम आदमी की �वजय ….

… अपना चेहरा देख पहले …

Text Sentiment

.. how sad are you .. -ve

.. i love paris ..  +ve

… आम आदमी की �वजय ….

… अपना चेहरा देख पहले …

… अ�भयान के �लए धन्यवाद …

⋮

…  plz आप मेरे frnd ब�नये …

… mario तो मेरा fav था … 

… fixing में सजा का gift …

⋮

… brilliant bowling by ….

… football game sucks …

… awssmmm movie ….

⋮
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Figure 2: A visualization of the progressive training strategy. The source labelled dataset S in resource rich language
should be easily available. Using S, a classifier is trained, say mpt. Unlabelled code-switched dataset T is divided
into buckets using the fraction of English words as the metric. The leftmost bucket B1 has samples dominated by
resource-rich language and as we move towards right, the samples in the buckets are dominated by low-resource
language. mpt is used to generate pseudo-labels for unlabelled texts in bucket B1. We use texts from B1 along with
their pseudo-labels and the dataset S to train a second text classifier m1. Then, m1 is used to get the pseudo-labels
for texts in bucket B2. We keep repeating this until we obtain the final model which is used for predictions.

The main idea behind our paper can be sum-076

marised as follows: When doing zero shot transfer077

learning from a resource-rich language (LangA)078

to code switched language (say LangA-LangB,079

where LangB is a low-resource language com-080

pared to LangA), the model is more likely to be081

wrong when the instances are dominated by LangB.082

Thus, instead of self-training on the entire corpus083

at once, we propose to progressively move from084

LangA-dominated instances to LangB-dominated085

instances while transfer learning. Figure 2 illus-086

trates the idea. Model trained on the annotated087

resource-rich language dataset is used to generate088

pseudo-labels for code-switched data. Progressive089

training uses the resource-rich language dataset090

and (unlabelled) resource-rich language dominated091

code-switched samples together to generate bet-092

ter quality pseudo-labels for the (unlabelled) low-093

resource language dominated code-switched sam-094

ples. Lastly, annotated resource-rich language095

dataset and pseudo-labelled code-switched data are096

then used together for the training which increases097

the performance of the final model.098

Our key contributions are summarized as:099

• We propose a simple, novel training strategy that100

demonstrates superior performance. Since our101

hypothesis is based on the pretraining phase of 102

the multilingual transformer models, it can be 103

combined with any transfer learning method. 104

• We conduct experiments across multiple 105

language-pair datasets, showing the efficiency of 106

our proposed method. 107

• We create probing experiments that verify our 108

hypothesis. 109

2 Related work 110

Multiple tasks like Language Identification, 111

Named Entity Recognition, Part-of-Speech, 112

Sentiment Analysis, Question Answering and 113

NLI have been studied in the code-switched 114

setting. For sentiment analysis, Vilares et al. 115

(2015) showed that multilingual approaches can 116

outperform pipelines of monolingual models 117

on code-switched data. Lal et al. (2019) use 118

CNN based network for the same. Winata 119

et al. (2019) use hierarchical meta embeddings 120

to combine multilingual word, character and 121

sub-word embeddings for the NER task. Aguilar 122

and Solorio (2020) augment morphological clues 123

to language models and uses them for transfer 124

learning from English to code-switched data with 125
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labels. Samanta et al. (2019) uses translation126

API to create synthetic code-switched text from127

English datasets and use this for transfer learning128

from English to code-switched text without labels129

in the code-switched case. Qin et al. (2020) use130

synthetically generated code-switched data to131

enhance zero-shot cross-lingual transfer learning.132

Recently, Khanuja et al. (2020) released the133

GLUECoS benchmark to study the performance134

of multiple models for code-switched tasks135

across two language pairs En-Es and En-Hi. The136

benchmark contains 6 tasks, 11 datasets and has 8137

models for every task. Multilingual transformers138

fine tuned with masked-language-model objective139

on code-switched data can outperform generic140

multilingual transformers. Results from Khanuja141

et al. (2020) show that sentiment analysis, question142

answering and NLI are significantly harder than143

tasks like NER, POS and LID. In this work, we144

focus on the sentiment analysis task in the absence145

of labeled code-switched data using multilingual146

transformer models, while taking into account the147

distinction between resource-rich and low-resource148

languages.149

150

3 Preliminaries151

Our problem is a sentiment analysis problem where152

we have a labelled resource-rich language dataset153

and unlabelled code-switched data. From here154

onwards, we refer the labelled resource-rich lan-155

guage dataset as the source dataset and the un-156

labelled code-switched dataset as target dataset.157

Since code-switching often occurs in language158

pairs that include English, we refer to English as159

the resource-rich language. The source dataset,160

say S, is in English and has the text-label pairs161

{(xs1 , ys1), (xs2 , ys2), ...(xsm , ysm)} and the tar-162

get dataset, say T , is in code-switched form and163

has texts {xcs1 , xcs2 , ...xcsn}, where m is signif-164

icantly greater than n. The objective is to learn165

a sentiment classifier to detect sentiment of code-166

switched data by leveraging labelled source dataset167

and unlabelled target dataset.168

4 Methodology169

Our methodology can be broken down into three170

main steps: (1) Source dataset pretraining, which171

uses the resource-rich language labelled source172

dataset S for training a text classifier. This classi-173

fier is used to generate pseudo-labels for the target174

dataset T . (2) Bucket creation, which divides the 175

unlabelled data T into buckets based on the fraction 176

of words from resource-rich language. Some buck- 177

ets would contain samples that are more resource- 178

rich language dominated while others contain sam- 179

ples dominated by low-resource language. (3) Pro- 180

gressive training, where we initially train using S 181

and the samples dominated by resource-rich lan- 182

guage and gradually include the low-resource lan- 183

guage dominated instances while training. For rest 184

of the paper, pretraining refers to step 1 and train- 185

ing refers to the training in step 3. And, we also 186

use class ratio based instance selection to prevent 187

the model getting biased towards majority label. 188

4.1 Source Dataset Pretraining 189

Resource-rich languages have abundant resources 190

which includes labeled data. Intuitively, sentences 191

in T that are similar to positive sentiment sentences 192

in S would also be having positive sentiment (and 193

same for the negative sentiment). Therefore, we 194

can treat the predictions made on T by multilin- 195

gual model trained on S as their respective pseudo- 196

labels. This would assign noisy pseudo-labels to 197

unlabeled dataset T . The source dataset pretraining 198

step is a text classification task. Let the model ob- 199

tained after pretraining on dataset S be called mpt. 200

This model is used to generate the initial pseudo- 201

labels and to select the instances to be used for 202

progressive training. 203

4.2 Bucket Creation 204

Since progressive training aims to gradually 205

progress from training on resource-rich language 206

dominated samples to low-resource language dom- 207

inated samples, we divide the dataset T into buck- 208

ets based on fraction of words in resource-rich 209

language. This creates buckets that have more 210

resource-rich language dominated instances and 211

also buckets that have more low-resource language 212

dominated instances as well. In figure 2, we can 213

observe that the instances in the leftmost bucket are 214

dominated by the English, whereas the instances 215

in the rightmost bucket are dominated by Hindi. 216

More specifically, we define: 217

feng(xi) =
neng(xi)

nwords(xi)
218

where neng(xi) and n_words(xi) denotes the num- 219

ber of English words and total number of words 220

in the text xi. Then, we sort the texts in dataset T 221

in decreasing order of feng(xi) and create k buck- 222

ets (B1, ..., Bk) with equal number of texts in each 223
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Algorithm 1: Pseudocode for our progres-
sive training framework.

Input: Source dataset S, target dataset T
Parameter: Selection fraction δ, number of buckets k
Output: Predictions on target dataset T
// Backbone model
Model mbb ϵ (mBERT,MuRIL, IndicBERT )
Model mpt←mbb trained on dataset S
// Bucketing step
T ′← ((feng(xi), xi, mpt(xi)) for xi in T )
T ′← reverse_sorted(T ′)
(B1, B2, ..., Bk)← divide T ′ into k equal buckets
// Class ratio based instance

selection
Xclassq ← Samples in T ′ predicted to be in class q
Xst←∪q=1

q=0 (δ most confident samples in Xclassq )
Xstr ←Xst ∩Br

// Progressive training step
Model m0 ← mpt

for i = 1 to k do
Ti←∪r=i

r=1((x,mr−1(x)) for x in Xstr )
Model mi←mbb trained on S ∪ Ti

Return mk(T )

bucket. Thus, bucket B1 contains the instances224

mostly dominated by English language and as we225

move towards buckets with higher index, instances226

would be dominated by the low-resource language.227

4.3 Progressive Training228

As the model mpt is obtained by fine-tuning on a229

resource-rich language dataset S, it is more likely230

to perform better on resource-rich language dom-231

inated instances. Therefore, we choose to start232

progressive training from resource-rich language233

dominated samples. However, note that the pseudo-234

labels generated for dataset T are noisy, thus we235

sample high confident resource-rich language domi-236

nated samples to obtain better quality pseudo-labels237

for the rest of the instances.238

Firstly, we use mpt to obtain all the high confi-239

dence samples from dataset T to be used for pro-240

gressive training and their respective pseudo-labels.241

Among the samples to be used for progressive train-242

ing, we select the samples from B1 and use them243

along with S to train a second classifier which is244

further used to generate pseudo-labels for the rest245

of the samples to be used for progressive training.246

Then we select samples from B2 and use them247

along with samples from previous iterations (i.e.248

samples selected from B1 and S) to get a third clas-249

sifier. We continue this process until we reach the250

last bucket and use the model obtained at the last251

iteration to make the final predictions.252

More formally, we use mpt to select the most253

confident δ fraction of samples from the dataset 254

T , considering probability as the proxy for the 255

confidence. Let Xst denote the δ fraction of sam- 256

ples with the highest probability of the majority 257

class to be used for progressive training. Let 258

Xsti = Xst ∩ Bi, where Xsti is the subset of 259

samples from bucket Bi that would be used for 260

the progressive training. To train across k buckets, 261

we use k iterations. Let mj denote the model ob- 262

tained after training for iteration j and m0 refers 263

to model mpt. Iteration j is trained using texts 264

((∪j
i=1Xsti)∪S). The true labels for texts in S are 265

available and for texts Xsti , labels obtained using 266

model mi−1 are considered as their respective la- 267

bels. The model obtained at the last iteration i.e. 268

mk is used for final predictions. 269

4.4 Class ratio based instance selection 270

Datasets frequently have a significant amount of 271

class imbalance, thus when selecting the samples 272

for progressive training, we often end up selecting 273

a very small amount or no samples from the mi- 274

nority class which leads to very poor performance. 275

Hence, instead of selecting δ fraction of samples 276

from the entire dataset T , we select δ fraction of 277

samples per class. Specifically, let X+ and X− de- 278

note the set of samples for which the pseudo-labels 279

are positive and negative sentiment respectively. 280

For progressive training, we choose δ fraction of 281

most confident samples from X+ and δ fraction of 282

most confident samples from X−. 283

The pseudo-code for algorithm is shown in Al- 284

gorithm 1. 285

5 Experiments 286

We describe the details relevant to the experiments 287

in this section and also elaborate on the probing 288

tasks. 289

5.1 Datasets 290

For source dataset pretraining, we use the En- 291

glish Twitter dataset from SemEval 2017 Task 4 292

(Rosenthal et al., 2017). We upsample the mi- 293

nority class to create a balanced dataset. We use 294

three code-switched datasets for our experiments 295

: Hindi-English (Patra et al., 2018), Spanish- 296

English (Vilares et al., 2016), and Tamil-English 297

(Chakravarthi et al.). Hindi-English, Spanish- 298

English are collected from Twitter and the Tamil- 299

English is collected from YouTube comments. 300

Most of the sentences in the datasets are written 301
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in the Roman transcript. We use the same pre-302

processing as done in GLUECoS for the first two303

datasets. For the other two datasets, we use the304

AI4Bharat Transliteration python library 1 to get305

the transliterations. The statistics of the dataset can306

be found in Table 1. Two out of the three datasets307

have a class imbalance, the maximum being in the308

case of Tamil-English where the positive class is309

∼5x of the negative class.310

5.2 Model training311

In all the experiments we use multilingual-bert-312

base-cased (mBERT) for tokenization and training.313

The supervised English dataset has a 80-20 train-314

validation split. For pretraining with supervised315

English dataset, we use 4 epochs and choose the316

best model using the validation set. For training,317

we use 4 epochs and use the model at the end for318

the final evaluation. The batch size is 64, sequence319

length is 128 and learning rate is 5e-5. Every iter-320

ation takes approximately ∼1-2 seconds and ∼12321

GB of memory on a GPU. For all the experiments322

the value of δ is set to 0.5 following Wang et al.323

(2021). We observe that in most datasets, the num-324

ber of spikes in the distribution plot of feng(xi)325

is either 1 or 2. For example, we observe there326

are only two spikes for the Hindi-English dataset327

in Figure 7 in Appendix. Therefore, we set k=2.328

More details can be found in table 5 in Appendix.329

In the rest of the paper, we refer to the model330

pretrained on the resource-rich language source331

dataset as model mpt, the model trained on source332

dataset along with bucket B1 as m1, and the model333

trained on source dataset along with the buckets334

B1 and B2 as m2. m2 is the model used for final335

predictions.336

5.3 Evaluation337

As the datasets are significantly skewed between338

the two classes, we choose to report micro, macro339

and weighted f1 scores as done in Mekala and340

Shang (2020). For code-switched datasets, we use341

all the sentences without labels during the self-342

training. The final score is obtained using the pre-343

dictions made by model m2 on all the sentences344

and their true labels. For each dataset, we run the345

experiment with 5 seeds and report the mean and346

standard deviation.347

348

1https://pypi.org/project/ai4bharat-transliteration/

Table 1: Statistics of datasets. SemEval2017 is a su-
pervised English dataset and the rest are code-switched
datasets.

Dataset Total Positive Negative

SemEval2017 27608 19799 7809

Spanish-English 914 489 425
Hindi-English 6190 3589 2601
Tamil-English 10097 8484 1613

5.4 Baselines 349

We consider three baselines described below: 350

• Deep Embedding for Clustering (DEC) initially 351

trains the model on the source dataset S, obtains 352

pseudo-labels on unlabeled data in T and further 353

trains on all the samples from unlabelled data 354

along with their pseudo-labels using the soft la- 355

beling objective (Xie et al., 2016) as done in 356

LOTClass (Meng et al., 2020). 357

• No Progressive Training (No-PT) initially trains 358

the model on the source dataset S. As done in 359

(Wang et al., 2021), it selects δ fraction of the 360

code-switched data with pseudo-labels and trains 361

a classifier on selected samples and the source 362

dataset S without any progressive training. 363

• Unsupervised Self-Training (Unsup-ST) (Gupta 364

et al., 2021) starts with a pretrained sentiment 365

analysis model and then self-trains using code- 366

switched dataset. We use the default version 367

which doesn’t require human annotations. We 368

use the model mpt to initiate the self-training for 369

fair comparison. 370

We also compare with two ablation versions of our 371

method, denoted by - Source and - Ratio. The first 372

method uses only the code-switched dataset with 373

its corresponding pseudo-labels without the source 374

dataset S for training. The second method chooses 375

the most confident samples for training without 376

taking the class ratio into account. 377

We also report the performance in the supervised 378

setting, denoted by Supervised. For each dataset, 379

train the model only on dataset T but use true labels 380

to do the same. This helps in getting a possible 381

upper bound. 382

5.5 Performance comparison 383

The results for all the three datasets are reported in 384

Table 2. In almost all the cases, we observe a per- 385

formance improvement using our method as com- 386

pared to the baselines, maximum improvement be- 387

ing upto ∼ 1.2% in the case of Spanish-English. In 388
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Table 2: Model performance on the Spanish-English, Hindi-English & Tamil-English dataset using mBERT. For
Tamil-English dataset, the - Ratio method increases the F1 score of positive class (which is the majority class) by
∼ 2% but F1 score of negative class drops by ∼ 9%. Thus, we observe a performance improvement in weighted F1
score and micro F1 score but a decrease in macro F1 score.

Methods Spanish-English Hindi-English Tamil-English

Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1

Supervised 71.1 71.5 71.6 74.7 74.9 75.1 62.7 84.3 82.8

DEC 75.7± 0.4 75.3± 0.3 75.5± 0.5 66.0± 0.5 67.9± 0.7 67.1± 0.4 51.7± 0.9 77.8± 0.8 75.5± 0.6
No-PT 76.2± 0.6 76.3± 0.6 76.3± 0.6 67.1± 0.8 69.2± 0.3 68.4± 0.6 53.3± 0.4 78.6± 0.6 76.7± 0.2
Unsup-ST 73.9± 1.7 74.3± 1.6 74.1± 1.7 66.6± 1.5 66.7± 1.4 66.8± 1.3 49.8± 2.1 69.2± 5.3 69.8± 8.4
Ours 77.4± 0.8 77.5± 0.8 77.5± 0.8 67.8± 0.8 69.9± 0.5 69.1± 0.7 53.1± 0.4 80.5± 0.2 77.5± 0.1

- Source 74.6± 1.4 74.6± 1.4 74.6± 1.5 67.2± 0.5 68.7± 0.4 68.3± 0.4 74.6± 1.4 74.6± 1.4 74.6± 1.5
- Ratio 77.1± 0.7 77.3± 0.6 77.2± 0.6 64.7± 0.5 68.4± 0.2 66.5± 0.4 49.9± 0.3 83.3± 0.1 77.7± 0.1

most cases, the final performance is within ∼ 10%389

of the supervised setting. We believe our improve-390

ments are significant since the baselines are close to391

the supervised model in terms of the performance392

and yet our progressive training strategy makes393

a significant improvement. We report the statis-394

tical significance test result between our method395

and other baselines in table 6. In all the cases, we396

observe the p-value to be less than 0.001 . The pro-397

gressively trained model for Spanish-English does398

better than its corresponding supervised setting,399

outperforming it by ∼ 6%. We hypothesize, this400

is because of having a large number of instances401

in the source dataset S, the progressively trained402

model has access to more information and suc-403

cessfully leveraged it to improve the performance404

on target code-switched dataset. The compari-405

son between our method and its ablated version406

- Source demonstrates the importance of source407

dataset while training the classifier. We can note408

that our proposed method is efficiently transferring409

the relevant information from the source dataset410

to the code-switched dataset, thereby improving411

the performance. On comparing our method with412

- Ratio, we observe that using class ratio based in-413

stance selection improves the performance in two414

out of three cases. For the Tamil-English dataset,415

we observe that the weighted & micro F1 score are416

higher for - Ratio method but the macro F1 score417

is poor. This is because the F1 score of the positive418

class increases by ∼ 2% but F1 score of negative419

class drops by ∼ 9% when using - Ratio method420

instead of ours. Since the datatset is skewed in421

the favor of the positive class, this lead to a higher422

weighted and micro F1 score.423

In Figure 3, we plot the performance obtained424

by No-PT and our method on both buckets. Since425

our method aims at improving the performance of426

low-resource language dominated instances, we427

expect our model m2 to perform better on bucket 428

B2 and we observe the same. As shown in Figure 3, 429

in most of the cases, our method performs better 430

than the baseline on bucket B2. For bucket B1, 431

we observe a minor improvement in the case of 432

Spanish-English, whereas it stays similar for other 433

datasets. Detailed qualitative analysis is present in 434

section A.4 in Appendix. 435

Figure 3: Model performance comparison across
buckets (left-to-right: Spanish-English, Hindi-English,
Tamil-English). Bucketwise F1 score for datasets. B1

contains English dominated instances and B2 contains
low resource language dominated instances. Values are
reported across 5 runs. Points on the same vertical line
are from the same run i.e. both No-PT and our model
were initialized with same initial weights.

5.6 Probing task : Out-Of-Distribution (OOD) 436

detection 437

As previously mentioned, our proposed frame- 438

work is based on two main hypotheses: (1.) A 439

transformer model trained on resource-rich lan- 440

guage dataset is more likely to be correct/robust 441

on resource-rich language dominated samples com- 442

pared to the low-resource language dominated sam- 443

ples, (2.) The models obtained using the progres- 444

sive training framework is more likely to be cor- 445

rect/robust on the low-resource dominated samples 446

compared to the models self-trained on the entire 447

code-switched corpus at once. To confirm our hy- 448

potheses, we perform a probing task where we 449

compute the fraction of the samples that are OOD. 450

6



More specifically, we ask two questions: a) Is the451

fraction of OOD samples same for both the buck-452

ets for model mpt? b) Is there a change in OOD453

fraction for bucket B2 if we use model m1 instead454

of model mpt? The first question helps in verify-455

ing the first part of the hypothesis and the second456

question helps in verifying the second part of the457

hypothesis.458

Since the source dataset S is in English and the459

target dataset T is code-switched, the entire dataset460

T might be considered as out-of-distribution. How-461

ever, transformer models are considered robust and462

can generalise well to OOD data (Hendrycks et al.,463

2020). Determining if a sample is OOD is diffi-464

cult until we know more about the difference in the465

datasets. However, model probability can be used466

as a proxy. We use the method based on model’s467

softmax probability output similar to Hendrycks468

and Gimpel (2018) to do OOD detection. Higher469

the probability of the predicted class, more is the470

confidence of the model, thus less likely the sample471

is out of distribution.472

For a given model trained on a dataset, a thresh-473

old pα is determined using the development set (or474

the unseen set of samples) to detect OOD samples.475

pα is the probability value such that only α fraction476

of samples from the development set (or the unseen477

set of samples) have probability of the predicted478

class less than pα. For example, if α = 10%, 90%479

of samples in the development set have probability480

of predicted class greater than pα. If a new sample481

from another dataset (or bucket) has probability of482

predicted class less than pα, we would consider it to483

be OOD. Using pα, we can determine the fraction484

of samples from the new set that are OOD. Since,485

there is no method to know the exact value of α to486

be used, we report OOD using three values of α487

: 0.01, 0.05 and 0.10. For model mpt, we use the488

development split from the dataset S to determine489

the value of pα, and for model m1, we use the set490

of samples from bucket B1 that are not used in self-491

training (i.e. B1 −Xst1) to determine pα. Based492

on the value of α, we conduct two experiments and493

answer our two questions.494

Is the fraction of OOD samples same for both495

the buckets for model mpt? In the first experi-496

ment, we consider the model trained on the source497

dataset and try to find the fraction of OOD samples498

in both the buckets. Since the first bucket contains499

more resource-rich language dominated samples,500

we expect a lesser fraction of samples to be out-501

of-distribution compared to the second bucket. We 502

can observe this is true for almost all the datasets 503

in the Figure 4. However, the difference in the 504

out-of-distribution fraction for the buckets is dif- 505

ferent across different datasets. This shows that 506

instances dominated by resource-rich language are 507

less likely to be out-of-distribution for the classifier 508

trained on S compared to instances dominated by 509

low-resource language, thus providing empirical 510

evidence in support of the first part of our hypothe- 511

sis.

Figure 4: Figure showing bucketwise OOD for different
datasets (left-to-right: Spanish-English, Hindi-English,
Tamil-English) using the model mpt. In most cases,
samples in B2 are more OOD compared to samples in
B1 across different values of α. Values are reported
across 5 runs, points on the same vertical line are from
the same run i.e. once a model mpt has been trained,
the same model is used to evaluate the fraction of OOD
data in both the buckets.

512

Is there a change in OOD fraction for bucket 513

B2 if we use model m1 instead of model mpt? 514

In the second experiment, we compare the frac- 515

tion of OOD data in bucket B2 for the models mpt 516

and m1. In Figure 5, we observe a lesser fractions

Figure 5: Figure showing model wise OOD for bucket
B2 across multiple datasets (left-to-right: Spanish-
English, Hindi-English, Tamil-English). We compare
two models, mpt and m1. In all the cases, we observe
that samples in B2 are more OOD for model mpt com-
pared to m1 across different values of α. Values are
reported for 5 runs and points on the same vertical line
are from the same run i.e. both mpt and m1 were ini-
tialized with same initial weights.

517
of samples in bucket B2 are OOD for model m1 518

compared to model mpt. This is expected since 519

the model m1 has seen samples with low-resource 520

language words while training, thus providing em- 521
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Table 3: Performance using multiple multilingual models. First three rows denote performance without using
progressive training and the last row denotes the performance when the model with best performance is used with
progressive training.

Model Spanish-English Hindi-English Tamil-English

Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1

mBERT 76.2± 0.6 76.3± 0.6 76.3± 0.6 67.1± 0.8 69.2± 0.3 68.4± 0.6 53.3± 0.4 78.6± 0.6 76.7± 0.2
MuRIL - - - 77.0± 0.4 77.7± 0.3 77.7± 0.4 54.2± 0.2 64.2± 0.4 68.8± 0.3
IndicBERT - - - 73.5± 0.5 74.5± 0.3 74.3± 0.4 54.6± 0.1 68.0± 0.6 71.3± 0.4
Ours + Best 77.4± 0.8 77.5± 0.8 77.5± 0.8 77.0± 0.4 77.6± 0.4 77.6± 0.4 53.1± 0.4 80.5± 0.2 77.5± 0.1

Table 4: Model performance on the three datasets for different number of buckets (k) using mBERT.

Buckets Spanish-English Hindi-English Tamil-English

Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1

k=2 77.4± 0.8 77.5± 0.8 77.5± 0.8 67.8± 0.8 69.9± 0.5 69.1± 0.7 53.1± 0.4 80.5± 0.2 77.5± 0.1
k=3 76.1± 0.7 76.2± 0.7 76.2± 0.7 67.2± 0.6 69.4± 0.5 68.6± 0.6 53.1± 0.2 79.9± 0.4 77.2± 0.1
k=4 76.6± 1.6 76.7± 1.7 76.7± 1.6 67.6± 0.4 69.7± 0.3 68.9± 0.4 52.9± 0.4 80.6± 0.7 77.5± 0.3

pirical evidence in the support of our proposed522

training strategy. Although, the samples from B2523

would still have noisy labels, we expect them to be524

more accurate when predicted by m1 than mpt525

5.7 Comparison with other multilingual526

models527

Recently, multiple multilingual transformer models528

focusing on Indian languages have been proposed.529

We experiment with MuRIL (Khanuja et al., 2021)530

and IndicBERT (Kakwani et al., 2020). Firstly, we531

obtain the performance of three language models:532

mBERT, MuRIL, and IndicBERT without progres-533

sive training on all datasets and we use progressive534

training on top of the best performing model cor-535

responding to each dataset and verify whether it536

further improves the performance. The F1 scores537

are reported in Table 3. We observe that perfor-538

mance either increases or stays very competitive in539

all the cases, thus showing our method is capable540

of improving performance even when used with541

the best multilingual model for the task.542

5.8 Hyper-parameter sensitivity analysis543

There are two hyper-parameters in our experiments:544

the number of buckets (k) and the ratio of samples545

selected for self-training (δ). We vary k from 2 to546

4 to study the effect of the number of buckets on547

the performance and the F1-scores are reported in548

Table 4. We observe that the values with k=2 per-549

form either better or competitive with other values.550

As mentioned earlier, we believe this is because551

of the number of spikes in the distribution plot of552

feng being 1 or 2 across the datasets. In presence553

of more number of spikes, higher value of k should554

give better performance.555

For studying the effect of hyper-parameter δ, we 556

plot macro, micro, and weighted F1 scores across 557

multiple values of δ in figure 6. With low δ, there 558

wouldn’t be enough sentences for self-training to 559

help whereas with high δ, the samples would be 560

too noisy. Thus, a value in the middle i.e. 0.4-0.6 561

should be reasonable choice.

Figure 6: F1 score using different values of parameter δ
for the three datasets (Spanish-English, Hindi-English
and Tamil-English). The plots represent macro, micro
and weighted F1 score (left-to-right).

562
6 Conclusion, limitations and future work 563

In this paper, we propose progressive training 564

framework that takes distinction between low- 565

resource and resource-rich language into account 566

while doing zero-shot transfer learning for code- 567

switched texts. We show that our framework im- 568

proves performance across multiple datasets. Fur- 569

ther, we also create probing tasks to provide empir- 570

ical evidence in support of our hypothesis. 571

A key potential limitation of the current frame- 572

work is that depending on the size of S and the 573

capacity of the model, the model might forget in- 574

formation relevant for the low-resource language. 575

In future, we would like to perform a systematic 576

study of the dependency on size of S. And also, 577

we want to extend the framework to other tasks 578

like question-answering and natural language infer- 579

ence. 580
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7 Ethical consideration581

This paper proposes a progressive training frame-582

work to transfer knowledge from resource-rich lan-583

guage data to low-resource code-switched data. We584

work on sentiment clsasification task which is a585

standard NLP problem. Based on our experiments,586

we don’t see any major ethical concerns with our587

work.588
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A Appendix723

A.1 Statistics related to the dataset724

Table 5: Average value and standard deviation of feng
for both the buckets.

Dataset B1 B2
Spanish-English 0.79± 0.08 0.44± 0.14

Hindi-English 0.79± 0.21 0.14± 0.13

Tamil-English 0.51± 0.16 0.13± 0.09

A.2 Statistical Significance Results725

Table 6: We perform paired t-test between our method
and baselines. The p-value obtained by performing the
test between our methods and baselines for all three
datasets is reported in the table.

Dataset No-PT DCE - Source - Ratio
Spanish-English 5.11e−13 2.09e−6 8.28e−4 8.82e−8

Hindi-English 2.76e−6 4.37e−43 3.49e−4 6.85e−12

Tamil-English 1.87e−41 3.72e−16 3.71e−3 3.40e−7

A.3 Distribution plot of feng words726

Figure 7: Distribution of feng(x) vs number of sam-
ples for the Spanish-English, Hindi-English and Tamil-
English datasets (left-to-right). For Hindi-English, we
can observe two spikes in the graph showing some sam-
ples are heavily dominated by English and some sam-
ples are heavily dominated by Hindi. For the other two
datasets, we observe the progression to be more gradual.

A.4 Qualitative analysis727

As discussed previously, on the low-resource lan-728

guage dominated bucket, our model is correct more729

often than the No-PT baseline. We focus on sam-730

ples from bucket B2 for qualitative analysis. For731

the sample, "fixing me saja hone ka gift", the Hindi732

word "saja" refers to punishment which is negative733

in sentiment whereas the word "gift" is positive734

in sentiment. Thus, the contextual information in735

the Hindi combined with that of the English is nec-736

essary to make correct prediction. For the sample737

"Mera bharat mahan, padhega India tabhi badhega738

India", the model has to identify Hindi words "ma- 739

han" & "badhega" to make the correct predictions. 740
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