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Abstract

Multilingual transformer language models have
recently attracted much attention from re-
searchers and are used in cross-lingual trans-
fer learning for many NLP tasks such as text
classification and named entity recognition.
However, similar methods for transfer learn-
ing from monolingual text to code-switched
text have not been extensively explored mainly
due to the following challenges: (1) Code-
switched corpus, unlike monolingual corpus,
consists of more than one language and existing
methods can’t be applied efficiently, (2) Code-
switched corpus is usually made of resource-
rich and low-resource languages and upon us-
ing multilingual pre-trained language models,
the final model might bias towards resource-
rich language. In this paper, we focus on
code-switched sentiment analysis where we
have a labelled resource-rich language dataset
and unlabelled code-switched data. We pro-
pose a framework that takes the distinction
between resource-rich and low-resource lan-
guage into account. Instead of training on the
entire code-switched corpus at once, we cre-
ate buckets based on the fraction of words in
the resource-rich language and progressively
train from resource-rich language dominated
samples to low-resource language dominated
samples. Extensive experiments across mul-
tiple language pairs demonstrate that progres-
sive training helps low-resource language dom-
inated samples.

1 Introduction

Code-switching is the phenomena where the
speaker alternates between two or more languages
in a conversation. The lack of annotated data and
diverse combinations of languages with which this
phenomenon can be observed, makes it difficult to
progress in NLP tasks on code-switched data. And
also, the prevalance of different languages is differ-
ent, making annotations expensive and difficult.
Intuitively, multilingual language models like
mBERT (Devlin et al., 2019) can be used for

Original fixing mein saja hone ka gift

Transliterated | fixing & T &1t T gift

Translated gift of punishment for fixing

Figure 1: An example of code-switched text, its translit-
erated and the translation versions.

code-switched text since a single model learns
multilingual representations. Although the idea
seems straightforward, there are multiple issues.
Firstly, mBERT performs differently on different
languages depending on their script, prevalence and
predominance. mBERT performs well in medium-
resource to high-resource languages, but is outper-
formed by non-contextual subword embeddings
in a low-resource setting (Heinzerling and Strube,
2019). Moreover, the performance is highly de-
pendent on the script Pires et al. (2019). Sec-
ondly, transformer models have only seen mono-
lingual sentences during the unsupervised pretrain-
ing, however code-switched text contains phrases
from both the languages in a single sentence, thus
making it an entirely new scenario for the trans-
former models. Thirdly, there is difference in
the languages based on the amount of unsuper-
vised corpus that is used for transformer language
models pretraining. For e.g., mBERT is trained
on the wikipedia corpus. English has ~ 6.3 mil-
lion articles, whereas Hindi and Tamil have only
~ 140K articles each. This may lead to under-
representation of low-resource langauges in the
final model. Further, English has been extensively
studied by NLP community over the years, mak-
ing the supervised data and tools more easily ac-
cessible. Thus, the model would be able to eas-
ily learn patterns present in the resource-rich lan-
guage segments and motivating us to attempt trans-
fer learning from English supervised datasets to
code-switched datasets.
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Figure 2: A visualization of the progressive training strategy. The source labelled dataset S in resource rich language
should be easily available. Using S, a classifier is trained, say m,;. Unlabelled code-switched dataset 7" is divided
into buckets using the fraction of English words as the metric. The leftmost bucket B1 has samples dominated by
resource-rich language and as we move towards right, the samples in the buckets are dominated by low-resource
language. m,,; is used to generate pseudo-labels for unlabelled texts in bucket B1. We use texts from B1 along with
their pseudo-labels and the dataset .S to train a second text classifier m4. Then, m; is used to get the pseudo-labels
for texts in bucket B2. We keep repeating this until we obtain the final model which is used for predictions.

The main idea behind our paper can be sum-
marised as follows: When doing zero shot transfer
learning from a resource-rich language (LangA)
to code switched language (say LangA-LangB,
where LangB is a low-resource language com-
pared to LangA), the model is more likely to be
wrong when the instances are dominated by LangB.
Thus, instead of self-training on the entire corpus
at once, we propose to progressively move from
LangA-dominated instances to LangB-dominated
instances while transfer learning. Figure 2 illus-
trates the idea. Model trained on the annotated
resource-rich language dataset is used to generate
pseudo-labels for code-switched data. Progressive
training uses the resource-rich language dataset
and (unlabelled) resource-rich language dominated
code-switched samples together to generate bet-
ter quality pseudo-labels for the (unlabelled) low-
resource language dominated code-switched sam-
ples. Lastly, annotated resource-rich language
dataset and pseudo-labelled code-switched data are
then used together for the training which increases
the performance of the final model.

Our key contributions are summarized as:

* We propose a simple, novel training strategy that
demonstrates superior performance. Since our

hypothesis is based on the pretraining phase of
the multilingual transformer models, it can be
combined with any transfer learning method.

* We conduct experiments across multiple
language-pair datasets, showing the efficiency of
our proposed method.

* We create probing experiments that verify our
hypothesis.

2 Related work

Multiple tasks like Language Identification,
Named Entity Recognition, Part-of-Speech,
Sentiment Analysis, Question Answering and
NLI have been studied in the code-switched
setting. For sentiment analysis, Vilares et al.
(2015) showed that multilingual approaches can
outperform pipelines of monolingual models
on code-switched data. Lal et al. (2019) use
CNN based network for the same. Winata
et al. (2019) use hierarchical meta embeddings
to combine multilingual word, character and
sub-word embeddings for the NER task. Aguilar
and Solorio (2020) augment morphological clues
to language models and uses them for transfer
learning from English to code-switched data with



labels. Samanta et al. (2019) uses translation
API to create synthetic code-switched text from
English datasets and use this for transfer learning
from English to code-switched text without labels
in the code-switched case. Qin et al. (2020) use
synthetically generated code-switched data to
enhance zero-shot cross-lingual transfer learning.
Recently, Khanuja et al. (2020) released the
GLUECoS benchmark to study the performance
of multiple models for code-switched tasks
across two language pairs En-Es and En-Hi. The
benchmark contains 6 tasks, 11 datasets and has 8
models for every task. Multilingual transformers
fine tuned with masked-language-model objective
on code-switched data can outperform generic
multilingual transformers. Results from Khanuja
et al. (2020) show that sentiment analysis, question
answering and NLI are significantly harder than
tasks like NER, POS and LID. In this work, we
focus on the sentiment analysis task in the absence
of labeled code-switched data using multilingual
transformer models, while taking into account the
distinction between resource-rich and low-resource
languages.

3 Preliminaries

Our problem is a sentiment analysis problem where
we have a labelled resource-rich language dataset
and unlabelled code-switched data. From here
onwards, we refer the labelled resource-rich lan-
guage dataset as the source dataset and the un-
labelled code-switched dataset as target dataset.
Since code-switching often occurs in language
pairs that include English, we refer to English as
the resource-rich language. The source dataset,
say S, is in English and has the text-label pairs
{(1'51 ) 2/51), (3732; ys2)7 "'(x3m7 ysm)} and the tar-
get dataset, say 7, is in code-switched form and
has texts {Zcs,, Tesy, ---Tes, - Where m is signif-
icantly greater than n. The objective is to learn
a sentiment classifier to detect sentiment of code-
switched data by leveraging labelled source dataset
and unlabelled target dataset.

4 Methodology

Our methodology can be broken down into three
main steps: (1) Source dataset pretraining, which
uses the resource-rich language labelled source
dataset .S for training a text classifier. This classi-
fier is used to generate pseudo-labels for the target

dataset T'. (2) Bucket creation, which divides the
unlabelled data 7" into buckets based on the fraction
of words from resource-rich language. Some buck-
ets would contain samples that are more resource-
rich language dominated while others contain sam-
ples dominated by low-resource language. (3) Pro-
gressive training, where we initially train using S
and the samples dominated by resource-rich lan-
guage and gradually include the low-resource lan-
guage dominated instances while training. For rest
of the paper, pretraining refers to step 1 and train-
ing refers to the training in step 3. And, we also
use class ratio based instance selection to prevent
the model getting biased towards majority label.

4.1 Source Dataset Pretraining

Resource-rich languages have abundant resources
which includes labeled data. Intuitively, sentences
in 7T that are similar to positive sentiment sentences
in S would also be having positive sentiment (and
same for the negative sentiment). Therefore, we
can treat the predictions made on 7' by multilin-
gual model trained on S as their respective pseudo-
labels. This would assign noisy pseudo-labels to
unlabeled dataset T". The source dataset pretraining
step is a text classification task. Let the model ob-
tained after pretraining on dataset S be called 1.
This model is used to generate the initial pseudo-
labels and to select the instances to be used for
progressive training.

4.2 Bucket Creation

Since progressive training aims to gradually
progress from training on resource-rich language
dominated samples to low-resource language dom-
inated samples, we divide the dataset 7" into buck-
ets based on fraction of words in resource-rich
language. This creates buckets that have more
resource-rich language dominated instances and
also buckets that have more low-resource language
dominated instances as well. In figure 2, we can
observe that the instances in the leftmost bucket are
dominated by the English, whereas the instances
in the rightmost bucket are dominated by Hindi.
More specifically, we define:

feng ) = 2225

where nepg(x;) and n_words(x;) denotes the num-
ber of English words and total number of words
in the text x;. Then, we sort the texts in dataset 1T’
in decreasing order of fenq(x;) and create k buck-
ets (B, ..., B) with equal number of texts in each



Algorithm 1: Pseudocode for our progres-
sive training framework.

Input: Source dataset S, target dataset T’

Parameter: Selection fraction §, number of buckets &

Qutput: Predictions on target dataset 1"

// Backbone model

Model my, € (mMBERT, MuRIL, IndicBERT)

Model my,; <— mys trained on dataset S

// Bucketing step

T < ((feng (i), Ti» mpt(x;)) for x; in T)

T’ « reverse_sorted(T")

(B1, Bz, ..., B) <+ divide T" into k equal buckets

// Class ratio based instance
selection

Xelass, < Samples in T predicted to be in class ¢

Xt ngé (6 most confident samples in Xclassq)

Xst,p — Xst N B’r

// Progressive training step

Model mo <= mpt

fori =11t kdo
T; + U=t (2, me—1 () for 2 in X4,)
Model m; < myyp, trained on S U T;

Return m(T)

bucket. Thus, bucket B contains the instances
mostly dominated by English language and as we
move towards buckets with higher index, instances
would be dominated by the low-resource language.

4.3 Progressive Training

As the model m,y; is obtained by fine-tuning on a
resource-rich language dataset S, it is more likely
to perform better on resource-rich language dom-
inated instances. Therefore, we choose to start
progressive training from resource-rich language
dominated samples. However, note that the pseudo-
labels generated for dataset 1" are noisy, thus we
sample high confident resource-rich language domi-
nated samples to obtain better quality pseudo-labels
for the rest of the instances.

Firstly, we use m,y; to obtain all the high confi-
dence samples from dataset 7" to be used for pro-
gressive training and their respective pseudo-labels.
Among the samples to be used for progressive train-
ing, we select the samples from 57 and use them
along with S to train a second classifier which is
further used to generate pseudo-labels for the rest
of the samples to be used for progressive training.
Then we select samples from Bs and use them
along with samples from previous iterations (i.e.
samples selected from B and S) to get a third clas-
sifier. We continue this process until we reach the
last bucket and use the model obtained at the last
iteration to make the final predictions.

More formally, we use my,; to select the most

confident ¢ fraction of samples from the dataset
T, considering probability as the proxy for the
confidence. Let X,; denote the  fraction of sam-
ples with the highest probability of the majority
class to be used for progressive training. Let
Xgt, = Xgt N B;, where X, is the subset of
samples from bucket B; that would be used for
the progressive training. To train across k buckets,
we use k iterations. Let m; denote the model ob-
tained after training for iteration j and mg refers
to model m,,;. Iteration j is trained using texts
((U{ZlX st;) US). The true labels for texts in .S are
available and for texts X;,, labels obtained using
model m;_; are considered as their respective la-
bels. The model obtained at the last iteration i.e.
my, s used for final predictions.

4.4 Class ratio based instance selection

Datasets frequently have a significant amount of
class imbalance, thus when selecting the samples
for progressive training, we often end up selecting
a very small amount or no samples from the mi-
nority class which leads to very poor performance.
Hence, instead of selecting § fraction of samples
from the entire dataset 1", we select ¢ fraction of
samples per class. Specifically, let X and X_ de-
note the set of samples for which the pseudo-labels
are positive and negative sentiment respectively.
For progressive training, we choose ¢ fraction of
most confident samples from X and § fraction of
most confident samples from X _.

The pseudo-code for algorithm is shown in Al-
gorithm 1.

S Experiments

We describe the details relevant to the experiments
in this section and also elaborate on the probing
tasks.

5.1 Datasets

For source dataset pretraining, we use the En-
glish Twitter dataset from SemEval 2017 Task 4
(Rosenthal et al., 2017). We upsample the mi-
nority class to create a balanced dataset. We use
three code-switched datasets for our experiments
Hindi-English (Patra et al., 2018), Spanish-
English (Vilares et al., 2016), and Tamil-English
(Chakravarthi et al.). Hindi-English, Spanish-
English are collected from Twitter and the Tamil-
English is collected from YouTube comments.
Most of the sentences in the datasets are written



in the Roman transcript. We use the same pre-
processing as done in GLUECoS for the first two
datasets. For the other two datasets, we use the
Al4Bharat Transliteration python library ! to get
the transliterations. The statistics of the dataset can
be found in Table 1. Two out of the three datasets
have a class imbalance, the maximum being in the
case of Tamil-English where the positive class is
~5x of the negative class.

5.2 Model training

In all the experiments we use multilingual-bert-
base-cased (mBERT) for tokenization and training.
The supervised English dataset has a 80-20 train-
validation split. For pretraining with supervised
English dataset, we use 4 epochs and choose the
best model using the validation set. For training,
we use 4 epochs and use the model at the end for
the final evaluation. The batch size is 64, sequence
length is 128 and learning rate is 5e-5. Every iter-
ation takes approximately ~1-2 seconds and ~12
GB of memory on a GPU. For all the experiments
the value of ¢ is set to 0.5 following Wang et al.
(2021). We observe that in most datasets, the num-
ber of spikes in the distribution plot of fe,4(z;)
is either 1 or 2. For example, we observe there
are only two spikes for the Hindi-English dataset
in Figure 7 in Appendix. Therefore, we set k=2.
More details can be found in table 5 in Appendix.

In the rest of the paper, we refer to the model
pretrained on the resource-rich language source
dataset as model 1, the model trained on source
dataset along with bucket B as m1, and the model
trained on source dataset along with the buckets
B1 and By as mo. mo is the model used for final
predictions.

5.3 Evaluation

As the datasets are significantly skewed between
the two classes, we choose to report micro, macro
and weighted fl scores as done in Mekala and
Shang (2020). For code-switched datasets, we use
all the sentences without labels during the self-
training. The final score is obtained using the pre-
dictions made by model my on all the sentences
and their true labels. For each dataset, we run the
experiment with 5 seeds and report the mean and
standard deviation.

"https://pypi.org/project/ai4bharat-transliteration/

Table 1: Statistics of datasets. SemEval2017 is a su-
pervised English dataset and the rest are code-switched
datasets.

Dataset Total Positive Negative
SemEval2017 27608 19799 7809
Spanish-English 914 489 425
Hindi-English 6190 3589 2601
Tamil-English 10097 8484 1613

5.4 Baselines

We consider three baselines described below:

* Deep Embedding for Clustering (DEC) initially
trains the model on the source dataset .S, obtains
pseudo-labels on unlabeled data in 7" and further
trains on all the samples from unlabelled data
along with their pseudo-labels using the soft la-
beling objective (Xie et al., 2016) as done in
LOTClass (Meng et al., 2020).

* No Progressive Training (No-PT) initially trains
the model on the source dataset S. As done in
(Wang et al., 2021), it selects J fraction of the
code-switched data with pseudo-labels and trains
a classifier on selected samples and the source
dataset .S without any progressive training.

* Unsupervised Self-Training (Unsup-ST) (Gupta
et al., 2021) starts with a pretrained sentiment
analysis model and then self-trains using code-
switched dataset. We use the default version
which doesn’t require human annotations. We
use the model my to initiate the self-training for
fair comparison.

We also compare with two ablation versions of our
method, denoted by - Source and - Ratio. The first
method uses only the code-switched dataset with
its corresponding pseudo-labels without the source
dataset S for training. The second method chooses
the most confident samples for training without
taking the class ratio into account.

We also report the performance in the supervised
setting, denoted by Supervised. For each dataset,
train the model only on dataset 7" but use true labels
to do the same. This helps in getting a possible
upper bound.

5.5 Performance comparison

The results for all the three datasets are reported in
Table 2. In almost all the cases, we observe a per-
formance improvement using our method as com-
pared to the baselines, maximum improvement be-
ing upto ~ 1.2% in the case of Spanish-English. In



Table 2: Model performance on the Spanish-English, Hindi-English & Tamil-English dataset using mBERT. For
Tamil-English dataset, the - Ratio method increases the F1 score of positive class (which is the majority class) by
~ 2% but F1 score of negative class drops by ~ 9%. Thus, we observe a performance improvement in weighted F1
score and micro F1 score but a decrease in macro F1 score.

Methods Spanish-English Hindi-English Tamil-English
Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1 ~ Macro-F1 Micro-F1 Weighted-F1
Supervised 71.1 715 71.6 4.7 74.9 75.1 62.7 84.3 82.8
DEC 75.7+04 753403 75.5+0.5 66.0+0.5 67.9+0.7 67.1+0.4 51.7+0.9 7784038 75.5+ 0.6
No-PT 76.2+0.6 76.3+£0.6 76.3+ 0.6 67.1+£0.8 69.2+0.3 68.4+£0.6 53.3+04 78.6+0.6 76.7+£0.2
Unsup-ST  73.9+£1.7 743+16 741+1.7 66.6+1.5 66.7+1.4 66.8+1.3 49.8+2.1 692453 69.8+8.4
Ours 774+08 T775+08 775+08 678+08 699+05 69.1+07 531+04 80.5+02 77.5+0.1
- Source 74614 T746E1.4 746+ 1.5 67.2+£0.5 68704 68.3 £0.4 746+14 T746+14 746 £1.5
- Ratio 77.14+07 77.3+06 772406 64.7+0.5 68.4+0.2 66.5+ 0.4 49.94+03 833+01 77.7+0.1

most cases, the final performance is within ~ 10%
of the supervised setting. We believe our improve-
ments are significant since the baselines are close to
the supervised model in terms of the performance
and yet our progressive training strategy makes
a significant improvement. We report the statis-
tical significance test result between our method
and other baselines in table 6. In all the cases, we
observe the p-value to be less than 0.001 . The pro-
gressively trained model for Spanish-English does
better than its corresponding supervised setting,
outperforming it by ~ 6%. We hypothesize, this
is because of having a large number of instances
in the source dataset S, the progressively trained
model has access to more information and suc-
cessfully leveraged it to improve the performance
on target code-switched dataset. The compari-
son between our method and its ablated version
- Source demonstrates the importance of source
dataset while training the classifier. We can note
that our proposed method is efficiently transferring
the relevant information from the source dataset
to the code-switched dataset, thereby improving
the performance. On comparing our method with
- Ratio, we observe that using class ratio based in-
stance selection improves the performance in two
out of three cases. For the Tamil-English dataset,
we observe that the weighted & micro F1 score are
higher for - Ratio method but the macro F1 score
is poor. This is because the F1 score of the positive
class increases by ~ 2% but F1 score of negative
class drops by ~ 9% when using - Ratio method
instead of ours. Since the datatset is skewed in
the favor of the positive class, this lead to a higher
weighted and micro F1 score.

In Figure 3, we plot the performance obtained
by No-PT and our method on both buckets. Since
our method aims at improving the performance of
low-resource language dominated instances, we

expect our model mo to perform better on bucket
B> and we observe the same. As shown in Figure 3,
in most of the cases, our method performs better
than the baseline on bucket B;. For bucket Bj,
we observe a minor improvement in the case of
Spanish-English, whereas it stays similar for other
datasets. Detailed qualitative analysis is present in
section A.4 in Appendix.

Pl + NoPT + No-PT + No-PT
i - Ours T .+ Ours .« Ours
HER I

Weighted F1 score
= = =

0.60

Buckets Buckets Buckets

Figure 3: Model performance comparison across
buckets (left-to-right: Spanish-English, Hindi-English,
Tamil-English). Bucketwise F1 score for datasets. By
contains English dominated instances and By contains
low resource language dominated instances. Values are
reported across 5 runs. Points on the same vertical line
are from the same run i.e. both No-PT and our model
were initialized with same initial weights.

5.6 Probing task : Out-Of-Distribution (OOD)
detection

As previously mentioned, our proposed frame-
work is based on two main hypotheses: (1.) A
transformer model trained on resource-rich lan-
guage dataset is more likely to be correct/robust
on resource-rich language dominated samples com-
pared to the low-resource language dominated sam-
ples, (2.) The models obtained using the progres-
sive training framework is more likely to be cor-
rect/robust on the low-resource dominated samples
compared to the models self-trained on the entire
code-switched corpus at once. To confirm our hy-
potheses, we perform a probing task where we
compute the fraction of the samples that are OOD.



More specifically, we ask two questions: a) Is the
fraction of OOD samples same for both the buck-
ets for model my;? b) Is there a change in OOD
fraction for bucket By if we use model m; instead
of model my,;? The first question helps in verify-
ing the first part of the hypothesis and the second
question helps in verifying the second part of the
hypothesis.

Since the source dataset .S is in English and the
target dataset T is code-switched, the entire dataset
T might be considered as out-of-distribution. How-
ever, transformer models are considered robust and
can generalise well to OOD data (Hendrycks et al.,
2020). Determining if a sample is OOD is diffi-
cult until we know more about the difference in the
datasets. However, model probability can be used
as a proxy. We use the method based on model’s
softmax probability output similar to Hendrycks
and Gimpel (2018) to do OOD detection. Higher
the probability of the predicted class, more is the
confidence of the model, thus less likely the sample
is out of distribution.

For a given model trained on a dataset, a thresh-
old p,, is determined using the development set (or
the unseen set of samples) to detect OOD samples.
Dq 1 the probability value such that only « fraction
of samples from the development set (or the unseen
set of samples) have probability of the predicted
class less than p,. For example, if o = 10%, 90%
of samples in the development set have probability
of predicted class greater than p,,. If a new sample
from another dataset (or bucket) has probability of
predicted class less than p,,, we would consider it to
be OOD. Using p,,, we can determine the fraction
of samples from the new set that are OOD. Since,
there is no method to know the exact value of « to
be used, we report OOD using three values of «
: 0.01, 0.05 and 0.10. For model m,,;, we use the
development split from the dataset .S’ to determine
the value of p,, and for model m;, we use the set
of samples from bucket B; that are not used in self-
training (i.e. B; — X, ) to determine p,. Based
on the value of o, we conduct two experiments and
answer our two questions.

Is the fraction of OOD samples same for both
the buckets for model m,;? In the first experi-
ment, we consider the model trained on the source
dataset and try to find the fraction of OOD samples
in both the buckets. Since the first bucket contains
more resource-rich language dominated samples,
we expect a lesser fraction of samples to be out-

of-distribution compared to the second bucket. We
can observe this is true for almost all the datasets
in the Figure 4. However, the difference in the
out-of-distribution fraction for the buckets is dif-
ferent across different datasets. This shows that
instances dominated by resource-rich language are
less likely to be out-of-distribution for the classifier
trained on .S compared to instances dominated by
low-resource language, thus providing empirical
evidence in support of the first part of our hypothe-
sis.
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Figure 4: Figure showing bucketwise OOD for different
datasets (left-to-right: Spanish-English, Hindi-English,
Tamil-English) using the model m,;. In most cases,
samples in By are more OOD compared to samples in
Bj across different values of . Values are reported
across 5 runs, points on the same vertical line are from
the same run i.e. once a model m,,; has been trained,
the same model is used to evaluate the fraction of OOD
data in both the buckets.

Is there a change in OQOD fraction for bucket
By if we use model 1 instead of model m,,;?

In the second experiment, we compare the frac-
tion of OOD data in bucket Bs for the models m,,;
and m;. In Figure 5, we observe a lesser fractions

o Mmpt © Mpe o Mpe
com com com
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Figure 5: Figure showing model wise OOD for bucket
By across multiple datasets (left-to-right: Spanish-
English, Hindi-English, Tamil-English). We compare
two models, m,; and m,. In all the cases, we observe
that samples in By are more OOD for model m,; com-
pared to my across different values of «. Values are
reported for 5 runs and points on the same vertical line
are from the same run i.e. both m,; and m; were ini-
tialized with same initial weights.

of samples in bucket B2 are OOD for model m;
compared to model ;. This is expected since
the model m; has seen samples with low-resource
language words while training, thus providing em-



Table 3: Performance using multiple multilingual models. First three rows denote performance without using
progressive training and the last row denotes the performance when the model with best performance is used with

progressive training.

Model Spanish-English Hindi-English Tamil-English

Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1
mBERT 76.2+06 76.3+0.6 76.3£0.6 67.1+0.8 69.2+0.3 68.4+ 0.6 53.3+04 78.6+0.6 76.7+0.2
MuRIL - - - 770+£04 77703 T77.7T£04 542+02 642£04 68.8 £0.3
IndicBERT - - - 73.5+05 745+£0.3 743+04 546+0.1 68.0+0.6 71.3+0.4
Ours + Best 77.4+08 775+08 775+08 770+04 77.6+04 77.6+£0.4 53.1+04 80.5+02 775+0.1

Table 4: Model performance on the three datasets for different number of buckets (k) using mBERT.

Buckets Spanish-English Hindi-English Tamil-English

Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1
k=2 774+08 T775+08 775+08 67.8+08 699+05 691+07 531+04 805+02 77.5£0.1
k=3 76.1+£0.7 76.24+0.7 76.2+0.7 67.24+06 69.4+0.5 68.6 + 0.6 53.1+02 79.94+04 77.2+0.1
k=4 76.6+1.6 76.7+1.7 76.7+1.6 67.6+04 69.7+0.3 68.94+ 0.4 529+04 806+07 77.5+03

pirical evidence in the support of our proposed
training strategy. Although, the samples from Bs
would still have noisy labels, we expect them to be
more accurate when predicted by m than my,;

5.7 Comparison with other multilingual
models

Recently, multiple multilingual transformer models
focusing on Indian languages have been proposed.
We experiment with MuRIL (Khanuja et al., 2021)
and IndicBERT (Kakwani et al., 2020). Firstly, we
obtain the performance of three language models:
mBERT, MuRIL, and IndicBERT without progres-
sive training on all datasets and we use progressive
training on top of the best performing model cor-
responding to each dataset and verify whether it
further improves the performance. The F1 scores
are reported in Table 3. We observe that perfor-
mance either increases or stays very competitive in
all the cases, thus showing our method is capable
of improving performance even when used with
the best multilingual model for the task.

5.8 Hyper-parameter sensitivity analysis

There are two hyper-parameters in our experiments:
the number of buckets (k) and the ratio of samples
selected for self-training (6). We vary k from 2 to
4 to study the effect of the number of buckets on
the performance and the F1-scores are reported in
Table 4. We observe that the values with k=2 per-
form either better or competitive with other values.
As mentioned earlier, we believe this is because
of the number of spikes in the distribution plot of
feng being 1 or 2 across the datasets. In presence
of more number of spikes, higher value of £ should
give better performance.

For studying the effect of hyper-parameter §, we
plot macro, micro, and weighted F1 scores across
multiple values of ¢ in figure 6. With low ¢, there
wouldn’t be enough sentences for self-training to
help whereas with high ¢, the samples would be
too noisy. Thus, a value in the middle i.e. 0.4-0.6
should be reasonable choice.
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Figure 6: F1 score using different values of parameter §
for the three datasets (Spanish-English, Hindi-English
and Tamil-English). The plots represent macro, micro
and weighted F1 score (left-to-right).

6 Conclusion, limitations and future work

In this paper, we propose progressive training
framework that takes distinction between low-
resource and resource-rich language into account
while doing zero-shot transfer learning for code-
switched texts. We show that our framework im-
proves performance across multiple datasets. Fur-
ther, we also create probing tasks to provide empir-
ical evidence in support of our hypothesis.

A key potential limitation of the current frame-
work is that depending on the size of S and the
capacity of the model, the model might forget in-
formation relevant for the low-resource language.
In future, we would like to perform a systematic
study of the dependency on size of S. And also,
we want to extend the framework to other tasks
like question-answering and natural language infer-
ence.



7 Ethical consideration

This paper proposes a progressive training frame-
work to transfer knowledge from resource-rich lan-
guage data to low-resource code-switched data. We
work on sentiment clsasification task which is a
standard NLP problem. Based on our experiments,
we don’t see any major ethical concerns with our
work.
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A

Appendix

A.1 Statistics related to the dataset

Table 5: Average value and standard deviation of fe,,q

for both the buckets.
Dataset B1 B2
Spanish-English | 0.79 +0.08 | 0.44 +0.14
Hindi-English | 0.79 +0.21 | 0.14 £0.13
Tamil-English | 0.51 £0.16 | 0.13 £ 0.09

A.2 Statistical Significance Results

Table 6: We perform paired t-test between our method
and baselines. The p-value obtained by performing the
test between our methods and baselines for all three
datasets is reported in the table.

Dataset No-PT DCE - Source | - Ratio
Spanish-English | 5.11e713 | 2.09¢=6 | 8.28¢~* | 8.82¢78
Hindi-English | 2.76e75 | 4.37e=% | 3.49¢~* | 6.85¢12
Tamil-English | 1.87¢=*1 [ 3.72¢716 | 3.71e73 | 3.40e7

A.3 Distribution plot of f.,, words
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Figure 7: Distribution of feng(2) vs number of sam-
ples for the Spanish-English, Hindi-English and Tamil-
English datasets (left-to-right). For Hindi-English, we
can observe two spikes in the graph showing some sam-
ples are heavily dominated by English and some sam-
ples are heavily dominated by Hindi. For the other two
datasets, we observe the progression to be more gradual.

A4 Qualitative analysis

As discussed previously, on the low-resource lan-
guage dominated bucket, our model is correct more
often than the No-PT baseline. We focus on sam-
ples from bucket B2 for qualitative analysis. For
the sample, "fixing me saja hone ka gift", the Hindi
word "saja" refers to punishment which is negative
in sentiment whereas the word "gift" is positive
in sentiment. Thus, the contextual information in
the Hindi combined with that of the English is nec-
essary to make correct prediction. For the sample
"Mera bharat mahan, padhega India tabhi badhega
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India", the model has to identify Hindi words "ma-
han" & "badhega" to make the correct predictions.



