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Abstract

This paper focuses on the Matrix Factorization
based Clustering (MFC) method which is one of
the few closed-form algorithms for the subspace
clustering algorithm. Despite being simple, closed-
form, and computation-efficient, MFC can outper-
form the other sophisticated subspace clustering
methods in many challenging scenarios. We reveal
the connection between MFC and the Innovation
Pursuit (iPursuit) algorithm which was shown to
be able to outperform the other spectral clustering
based methods with a notable margin especially
when the span of clusters are close. A novel the-
oretical study is presented which sheds light on
the key performance factors of both algorithms
(MFC/iPursuit) and it is shown that both algo-
rithms can be robust to notable intersections be-
tween the span of clusters. Importantly, in contrast
to the theoretical guarantees of other algorithms
which emphasized on the distance between the sub-
spaces as the key performance factor and without
making the innovation assumption, it is shown that
the performance of MFC/iPursuit mainly depends
on the distance between the innovative components
of the clusters.

1 INTRODUCTION
When data points lie in a single linear manifold, conven-
tional techniques such as Principal Component Analysis
(PCA) can be efficiently used to find the underlying low-
dimensional structure [Zhang and Lerman, 2014, Lerman
et al., 2015]. However, in many applications, the data points
may be originating from multiple independent sources and a
union of manifolds can better model the data [Vidal, 2011].
The subspace clustering problem is defined on how to learn
these low dimensional manifolds when they are linear sub-
spaces [Heckel and Bölcskei, 2013, Elhamifar and Vidal,

2013, Tsakiris and Vidal, 2017, Rahmani and Atia, 2017a,
Peng et al., 2016, Lu et al., 2013, Feng et al., 2014, Patel
et al., 2013, Wang et al., 2013, Li et al., 2021, Lu et al., 2013,
Wang and Xu, 2016, You et al., 2016, Ji et al., 2017, Zhang
et al., 2018, Klys et al., 2018, Peng et al., 2016, Menon et al.,
2020, Jiang et al., 2018, Lipor et al., 2021] in a completely
unsupervised way.

Summary of contributions: This paper focuses on analyz-
ing two subspace clustering algorithms: Matrix Factoriza-
tion based Clustering (MFC) and Innovation Pursuit (iPur-
suit). First we reveal the underlying connection between
them and the presented analysis shows why they can no-
tably outperform other spectral clustering based methods
in the challenging scenarios. The main contributions of this
work can be summarized as follows.

• It is shown that iPursuit is equivalent to MFC if we alter its
`1-norm based cost function into a quadratic cost function
and importantly, all the presented theoretical results are
applicable to both algorithms.

• To the best of our knowledge, this paper presents the first
comprehensive analysis of MFC/iPursuit algorithms and
the presented analysis is not based on the restrictive inno-
vation assumption used in [Rahmani and Atia, 2017a,b].
The MFC/iPursuit algorithms are analyzed and we estab-
lish deterministic and probabilistic sufficient conditions
which guarantee that the computed adjacency matrix by
MFC/iPursuit satisfies a defined quality requirement. Impor-
tantly, it is shown that in contrast to most of other cluster-
ing algorithms whose performance depend on the distance
between the subspaces, the performance of MFC/iPursuit
mainly depends on the distance between the innovative com-
ponents of the clusters. Accordingly, even if the span of
clusters intersect heavily, MFC/iPursuit can still provably
satisfy the performance requirement.

Notation and Definitions: Given a matrix A, ‖A‖ denotes
its spectral norm, ‖A‖F denotes its Frobenius norm, and
‖A‖p,1 =

∑
i ‖ai‖p where ai denotes the ith column of

A and ai denotes the ith row of A. For a vector a, ‖a‖p
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denotes its `p-norm, a(i) denotes its ith element, and a[i : k]
contains the elements of a whose indexes are from i to k.
The elements of matrix Y = |X| are equal to the absolute
value of the elements of matrix X. The subspace U⊥ is
the complement of U . SM1−1 indicates the unit `2-norm
sphere in RM1 . It is assumed that data matrix D ∈ RM1×M2

can be represented as D = UΣVT where U ∈ RM1×rd

is the matrix of left singular vectors, the diagonal matrix
Σ ∈ Rrd×rd contains the non-zero singular values, the
columns of V ∈ RM2×rd are equal to the right singular
vectors, rd is the rank of D,M2 is the number of data points,
and M1 is the dimension of ambient space. The subspace
S = ⊕mi=1Si is equal to the direct sum of subspaces {Si}mi=1

and dim(S) denotes the dimension of S. Two adjacency
matrices A ∈ RM2×M2 and B ∈ RM2×M2 are said to be
equivalent when ai

‖ai‖1 = bi
‖bi‖1 holds for all 1 ≤ i ≤ M2.

RHS means right hand side and LHS means left hand side.

Distance between subspaces: Suppose U1 ∈ RM1×r and
U2 ∈ RM1×r are orthonormal bases for r-dimensional sub-
spaces S1 and S2, respectively. Two different notions are
used to express the affinity between two subspaces. One
measure is ‖UT

1 U2‖. However, ‖UT
1 U2‖ is always equal

to 1 when dim(S1 ∩ S2) > 0. The other measure of affinity
between two subspaces is

‖UT
1 U2‖σ =

√∑r
i=1 cos2 θi

r

where {θi}ri=1 are the principal angles between S1 and S2

[Soltanolkotabi et al., 2012]. Note that ‖UT
1 U2‖σ = 1 only

when S1 = S2.

1.1 DATA MODEL

Data Model 1 provides the details of the presumed model
along with definition of the used symbols. To simplify the
exposition and the analysis, it is assumed that the dimension
of subspaces are equal, the number of data points in different
clusters are equal, and a subspace S is used to define the
intersection between the span of clusters.

Data Model 1. The data matrix D ∈ RM1×M2 can be
written as D = [D1,D2, ...,Dm]T where T ∈ RM2×M2 is
an unknown permutation matrix. We define Si as the column
space of Di and Si 6⊂ Sj and Sj 6⊂ Si for any i 6= j. The
dimension of all subspaces is equal to r and there are n data
points in each cluster, i.e., Di ∈ RM1×n. The dimension
of the intersection between subspaces is equal to s, i.e.,
dim (∩mi=1Si) = s and we define subspace S = ∩mi=1Si.
In addition, Si ∩ Sj = S for all i 6= j. The orthonormal
matrix Ui ∈ RM1×r is a basis for Si and it can be written
as Ui = [S , U̇i] where orthonormal matrix S ∈ RM1×s

is a basis for S = ∩mi=1Si and U̇i ∈ RM×(r−s) is a basis
for Si ∩ S⊥. The orthonormal matrix U̇i represents the
component of Si which does not lie in S and we call Ṡi =
span(U̇i) = Si ∩S⊥ the innovative component of Si. Each

data point di which lies in Ski can be represented as

di = Sαi + U̇kiβi , (1)

where αi ∈ Rs and βi ∈ Rr−s.

In order to represent the association of each data point to
its corresponding cluster, we define index ki such that di ∈
Ski . Matrix D−k includes all the columns of D except the
ones which lie in Sk. Matrices Ḋj and D̄j are defined as
Ḋj = U̇T

j Dj and D̄j = STDj .

Algorithm 1 Data Clustering Using iPursuit
Input. The input is data matrix D ∈ RM1×M2 .
1. Project data points on SM−1. Set di equal to di/‖di‖2
for all 1 ≤ i ≤M2.
2. Direction search. Define C∗ ∈ RM1×M2 as optimal
point of min

C
‖CTD‖1 subject to diag(CTD) = 1 .

3. Define adjacency matrix A =
∣∣CTD

∣∣.
4. Normalize the `1-norm of each row of A (i.e., normal-
ize degree to 1) and apply graph preprocessing steps (e.g.,
sparsifying adjacency matrix A via keeping few dominant
non-zero elements of each row).
5. Apply spectral clustering to A + AT .
Output: The identified clusters.

2 RELATED WORK
Numerous approaches for subspace clustering were pro-
posed in prior work including statistical-based approaches
[Yang et al., 2006, Tipping and Bishop, 1999, Sugaya and
Kanatani, 2004, Fischler and Bolles, 1981], spectral cluster-
ing based methods [Elhamifar and Vidal, 2013, Liu et al.,
2013], the algebraic-geometric approach [Vidal et al., 2005],
and iterative methods [Bradley and Mangasarian, 2000].
Much of the recent research work on subspace clustering is
focused on spectral clustering [Von Luxburg, 2007] based
methods [Dyer et al., 2013, Gao et al., 2015, Elhamifar and
Vidal, 2013, Heckel and Bölcskei, 2013, Liu et al., 2013,
Rahmani and Atia, 2017c, Soltanolkotabi et al., 2012, Wang
et al., 2013, Chen and Lerman, 2009, Park et al., 2014].

The spectral clustering based algorithms are composed of
two main steps and they only differ in the first step. First,
an adjacency matrix is constructed via finding a neighbor-
hood set for each data point and in the second step, the
spectral graph clustering algorithm [Von Luxburg, 2007]
is applied to the learned adjacency matrix. For instance,
Sparse Subspace Clustering (SSC) [Elhamifar and Vidal,
2013] uses `1-minimization to construct a sparse adjacency
matrix, Low-Rank Representation (LRR) [Liu et al., 2013]
uses nuclear norm minimization to find the adjacency ma-
trix, and the Thresholding based Subspace Clustering (TSC)
method [Heckel and Bölcskei, 2013] simply uses the inner-
product between the data points to construct the adjacency



matrix. In contrast to TSC which uses inner-product be-
tween the data points to construct the adjacency matrix,
iPursuit [Rahmani and Atia, 2017a,c] utilized the directions
of innovation to measure the similarity between the data
points. The Matrix Factorization based Clustering (MFC)
method [Kanatani, 2001, Costeira and Kanade, 1998, Boult
and Brown, 1991] is a closed-from spectral clustering based
method which utilizes the right singular vectors of the data
to construct the adjacency matrix.

Algorithm 2 Matrix Factorization based Clustering (MFC)
Input. The input is data matrix D ∈ RM1×M2 .
1. Project data points on SM−1. Set di equal to di/‖di‖2
for all 1 ≤ i ≤M2.
2. SVD: Compute D = UΣVT where the columns of
V ∈ RM2×rd are equal to the right singular vectors.
3. Define A =

∣∣VVT |.
4. Similar to Step 4 in Algorithm 1.
5. Similar to Step 5 in Algorithm 1.
Output: The identified clusters.

2.1 A BRIEF OVERVIEW OF IPURSUIT
(ALGORITHM 1)

Suppose that data matrix D follows Data Model 1. If the
span of clusters satisfy Assumption 1, then we say that
Innovation Assumption holds.

Assumption 1. For each subspace Si, we have Si /∈ ⊕
k 6=i
Sk.

Define orthonormal matrix Pi such that the column-space
of P is equal to Pi = ⊕

k 6=i
Sk. If the innovation assumption

holds, then the rank of (I−PiP
T
i )Ui is greater than zero

and we define ~Si as the column-space of (I − PiP
T
i )Ui.

The geometrical idea behind iPursuit is that if we can find
a direction in ~Si, it is orthogonal to all the clusters except
Si and this fact can be used to distinguish Si from the rest
of clusters. Specifically, in order to find a direction in ~Ski
corresponding to each di, [Rahmani and Atia, 2017a,c]
proposed to find this direction (dubbed the direction of
innovation corresponding to di) as the optimal point of

min
c
‖cTD‖1 subject to cTdi = 1 . (2)

The motivation behind the design of (2) was that the direc-
tion of innovation corresponding to di can be computed via
looking for a vector which is orthogonal to the maximum
number of data points. Although the innovation assumption
was used to design iPursuit, in [Rahmani and Atia, 2017c,a]
it was numerically shown that it is not essential in the per-
formance of iPursuit.

The authors of [Rahmani and Atia, 2017c,a] presented an
analysis of (2) which is limited to a two cluster scenario

and it was based on the Innovation Assumption to prove
that the optimal point of (2) lies in ~Ski . In contrast, the pre-
sented theoretical study (a) does not require the innovation
assumption, (b) guarantees a completely different require-
ment, (c) is the first thorough analysis of MFC, (d) reveals
the connection between iPursuit and MFC, and importantly
(e) it shows the importance of the incoherence between the
innovative components.

3 ANALYZING A SPECTRAL
CLUSTERING BASED METHOD

The difference between different spectral clustering based
algorithms is in the way that they compute the adjacency
matrix. Accordingly, we should define proper metrics us-
ing which we could determine how accurate/useful is the
estimated adjacency matrix. The authors of [Soltanolkotabi
et al., 2012] used the number of false connections (any non-
zero connection between two nodes/data-points while they
belong to different clusters) as a metric to assess the es-
timated adjacency matrix. However, the graph clustering
algorithms such as spectral clustering can yield an exact
clustering of the data even if there are a significant amount
of false connections in the estimated adjacency matrix pro-
vided that the estimated weights on the true connections are
sufficiently stronger than the weights of the false connec-
tions. Therefore, in this paper, we use the following criteria
to assess the quality of a adjacency matrix and we analyze
the subspace clustering algorithms to reveal if/how they
satisfy Requirement 1.

Requirement 1. Suppose A ∈ RM2×M2 is the estimated
adjacency matrix. We require all the columns of A to satisfy

κ

m− 1
‖aiI⊥i ‖

p
p < ‖aiIi‖

p
p ,

where Ii = {j | ki = kj}, I⊥i = {j | ki 6= kj},
ki = arg maxj ‖UT

j di‖2, and aiIi contains the elements
of ai whose indexes are in Ii.

The parameter κ is chosen greater than 1 and it determines
how well the adjacency matrix represents the clustering
structure of the data. Evidently, the higher is κ, the more
challenging it is for a subspace clustering algorithm to sat-
isfy Requirement 1. In the following sections, we discuss
the role of parameter p and we analyze MFC/iPursuit such
that they satisfy Requirement 1 with p = 1/p = 2.

Remark 1. Even if A satisfies Requirement 1 with a large
κ, it does not necessarily mean that Spectral Clustering
yields exact clustering. Similarly, proving that A does not
contain any false connection (as in [Soltanolkotabi et al.,
2012]) also does not guarantee exact clustering. However,
these measures are useful to assess how clear the estimated
A represents the clustering structure. In addition, although
Requirement 1 does not guarantee exact clustering by the
spectral clustering step, it is very similar to the sufficient



condition stated in [Ling and Strohmer, 2020] to guarantee
that the spectral clustering algorithm yields the exact clus-
tering. Specifically, [Ling and Strohmer, 2020] proves that
if

max
i
‖aiI⊥i ‖1 <

mink γ2(L(Ak))

4
,

then the spectral clustering algorithm studied in [Ling and
Strohmer, 2020] yields an exact clustering where γ2(L(Ak))
is the second smallest eigenvalue of graph Laplacian w.r.t.
the kth cluster and Ak ∈ Rn×n.

4 THEORETICAL STUDIES
This section focuses on analyzing MFC/iPursuit and reveal-
ing the key factors in its performance. First, we discuss the
underlying connection between iPursuit and MFC and this
interesting connection is utilized to analyze both algorithms
using similar techniques. We refer the reader to [Rahmani,
2022] for the proofs of all the presented results. In the fol-
lowing sections, we utilize the parameters defined bellow.

Definition 1. Suppose D follows Data Model 1.
We define ∆min = minj{ inf

‖u‖=1
u∈Sj

‖uTDj‖pp}mj=1,

∆̇max = maxj{ sup
‖u‖=1

u∈Rr−s

‖uT Ḋj‖pp}mj=1, ∆̄max =

maxj{ sup
‖u‖=1
u∈Rs

‖uT D̄j‖pp}mi=1 ,and φ = maxj 6=t ‖U̇T
t U̇j‖.

In addition, when y > x, we define σl(
x
y , δ) =

x−2
√
x log

2M2
δ

y+2
√

(y−x) log
2M2
δ +2 log

2M2
δ −2

√
x log

2M2
δ

and

σu(xy , δ) =
x+2

√
x log

2M2
δ +2 log

2M2
δ

y+2
√
x log

2M2
δ +2 log

2M2
δ −2

√
(y−x) log

2M2
δ

.

The parameters ∆min, ∆̇max, and ∆̄max are similar to per-
meance statistic [Lerman et al., 2015] which indicates how
well the data points are distributed inside the subspaces. For
instance, when the columns of Di in Si are concentrated
around a direction, the value of inf

‖u‖=1
u∈Si

‖uTDi‖pp is small

in comparison to when the data points are uniformly dis-
tributed in Si. Although the permeance statistic appears in
the presented results, it does not necessarily mean that iPur-
suit and MFC require a uniform distribution of data pints
inside the subspaces and the reason that it appears is that the
sufficient conditions guarantee the performance under the
worst case scenarios. The parameter φ indicates how close
the innovative components {Ṡi}mi=1 are to each other.

Remark 2. It is important to note that φ only measures
the affinity between the innovative components {Ṡi}mi=1. In
other word, even if two subspaces Si and Sj heavily inter-
sect such that ‖UT

i Uj‖σ is nearly equal to 1, ‖U̇T
i U̇j‖

could be small if the innovative components are incoher-
ent with each other. In the following results, it is shown

that in contrast to most of subspace segmentation meth-
ods whose performance depend on maxj 6=t ‖UT

t Uj‖σ , the
performance of iPursuit and MFC mainly depends on the
distance between the innovative components.

4.1 THE CONNECTION BETWEEN IPURSUIT
AND MFC

The cost function of iPursuit (2) encourages the optimal di-
rection c∗i to be orthogonal to the maximum number of data
points. If the innovation assumption (Assumption 1) holds
and c∗i ∈ ~Ski for all the data points, then A = |DTC∗| does
not include any false connection. However, in practice the
innovation assumption is not essential and A = |DTC∗|
can yield an accurate clustering of the data even if |DTC∗|
is not a sparse matrix [Rahmani and Atia, 2017c, Ling and
Strohmer, 2020]. A direct conclusion is that it may not
be essential to employ `1-norm in the cost function of (2).
Accordingly, in this section, we investigate an iPursuit algo-
rithm whose ith optimal direction is obtained as the optimal
point of

min
c
‖cTD‖2 subject to cTdi = 1 . (3)

The following lemma shows that the iPursuit algorithm
which employs `2-norm to compute the optimal directions
is equivalent to MFC.

Lemma 1. Define C∗ as the optimal point of

min
C
‖DTC‖2,1 subject to diag(CTD) = 1 ,

and define A =
∣∣DTC∗

∣∣. Then A(i, j) = |viTvj |
‖vi‖22

.

Lemma 1 shows that iPursuit is equivalent to MFC when
`2-norm is employed to compute the optimal vectors (note

that the denominator of A(i, j) = |viTvj |
‖vi‖22

is the same for
all the entries of a row and Step 4 of Algorithm 2 normalizes
the degree of the nodes and keeps the dominant entries of
each row). We leverage this connection between MFC and
iPursuit to provide an analysis which is applicable to both
algorithms. In the following theoretical results, p appears
as a parameter in the sufficient conditions. If p = 1, the
sufficient condition corresponds to iPursuit and if p = 2,
then the sufficient condition corresponds to MFC.

4.2 AN ANALYSIS FOR MFC AND IPURSUIT

The following theorem provides a sufficient condition to
guarantee that Requirement 1 is satisfied. The presented
results are applicable to both iPursuit and MFC since it
is assumed that A = |DTC∗| where C∗ is obtained via
solving

min
C
‖DTC‖p,1 subject to diag(CTD) = 1 . (4)



Theorem 2. Suppose that D follows Data Model 1 and
A = |DTC∗| where C∗ is the optimal point of (4). If

min
i

‖βi‖p2
‖di‖p2

∆min ≥

∆̇max κ

(
1

κ+ (m− 1)
+

m− 1

κ+ (m− 1)
φp
)
,

(5)

then A satisfies Requirement 1.

In contrast to former theoretical results which require
maxj 6=t ‖UT

t Uj‖σ to be sufficiently small, the presented
guarantee is concerned with maxj 6=t ‖U̇T

t U̇j‖ and note
that maxj 6=t ‖U̇T

t U̇j‖ can stay small even if the subspaces
have a high dimension of intersection (i.e., ‖UT

t Uj‖σ is
nearly equal to 1). When m, the number of clusters, is
large, the sufficient condition can be roughly simplified into
φp ≤ ∆min

κ ∆̇max
mini

‖βi‖p2
‖di‖p2

, which means that the higher is
the dimension of intersection, the more distanced the innova-
tive components should be. The sufficient condition requires
all the data points to have a sufficiently strong projection on
the innovative component.

4.3 PROBABILISTIC GUARANTEES

In this section, we simplify the result presented in Theorem
2 in two steps. First, we presume a random model for the
distribution of the data points and in the second step, we
consider a random model for the generation of the subspaces.
We start with the first step as follows.

Assumption 2. Each matrix Di ∈ RM1×n is generated as
Di = UiGi where the elements of Gi ∈ Rr×n are sampled
independently from N (0, 1√

r
).

Assumption 2 ensures that the distribution of di
‖di‖2 is uni-

formly at random on SM1−1 ∩ Ski . Note that E[‖di‖22] = 1
and in the following theorems, we do not normalize the
`2-norm of the data points to make the analysis easier. In
this section, we derive the guarantees for p = 2 and similar
guarantees for p = 1 can be established.

Theorem 3. Suppose D follows Data Model 1, matrices
{Di}mi=1 are generated as in Assumption 2, and adjacency
matrix A is computed as in Theorem 2 with p = 2. If

(
n

r
− ηδr)σl

(
r − s
r

, δ

)
≥

κ(
1

κ+m− 1
+ φ2 m− 1

κ+m− 1
)

(
n

r
+
r − s
r

ηδr−s

) (6)

where ηδx = max( 4zδx
3 log 2 x m

δ ,
√

4n(x+3)
x2 log 2xm

δ ) and

zδx = 1 + 2
√

1
x log 2nm

δ + 2
x log 2nm

δ , then Requirement 1
with p = 2 is satisfied with probability at least 1− 5δ.

Theorem 3 reveals several interesting points about the re-
quirements of the algorithms. First it confirms our intuition
about the relation between the dimension of subspaces and
the required number of data points. The sufficient condition
states that n/r should be sufficiently large to ensure that
Requirement 1 is satisfied. When n/r is sufficiently large,
then (nr −ηδr) is nearly equal to n/r. Therefore, when m is
large, the sufficient condition roughly states that φ2 should
be sufficiently smaller than 1

κ
r−s
r . In other word, Theorem 3

clearly indicates that the higher is the dimension of intersec-
tion, the more separable their innovative components should
be. Next, we further simplify the sufficient condition via
assuming a random model for the distribution of subspaces.

Theorem 4. Suppose D and A are generated as in The-
orem 3 and {Ṡi}mi=1 and S are chosen independently and
uniformly at random. If(n
r
− ηδr

)
σl

(
r − s
r

, δ

)
≥

κ

(
n

r
+
r − s
r

ηδr−s

)(
1

κ+m− 1
+
cδ(r − s)2

M1

m− 1

κ+m− 1

)
then Requirement 1 is satisfied with prob-
ability at least 1 − 6δ, where cδ =

3 max
(

1,
√

8M1π
(M1−1)(r−s) ,

√
16M1 log mr

δ

(M1−1)(r−s)

)
.

If we simplify the sufficient condition, Theorem 4 roughly
states that M1 should be sufficiently larger than κr(r −
s)
√

logm. The main reason is that the subspaces and their
innovative components are generated uniformly at random
and the higher is the dimension of the ambient space, the
less coherent they are in expectation.

Remark 3. The main purpose of the presented analy-
sis is to demonstrate the key performance factors of the
MFC/iPursuit algorithms and to show why they are notably
robust to the strong intersection between the span of clus-
ters. If we want to go further and use the theoretical results
to compare MFC/iPursuit against the other subspace clus-
tering algorithms, we need to analyze the other methods
using the utilized criteria (Requirement 1). Although it goes
beyond the scope of this paper, Section 4.5 presents a full
analysis of the TSC algorithm based on Requirement 1 to
show why MFC can strongly outperform TSC while their
computation complexities are not much different.

4.4 WITH THE INNOVATION ASSUMPTION

The innovation assumption (Assumption 1) is not essential
in the performance of MFC/iPursuit and we did not use it
in any of the presented studies. However, the innovation
assumption can be utilized to establish stronger guarantees.
In this section, two theorems are presented whose only dif-
ference with Theorem 2 and Theorem 4 is that they assume
that Assumption 3 (stated bellow) holds.



Assumption 3. It is assumed that D follows Data Model 1
and dim(Ṡi ∩ Pi) = 0 where Pi = ⊕k 6=iSi.

Assumption 3 ensures that each innovative component Ṡi is
independent from the direct sum of all the other subspaces.
The following theorem presumes that Assumption 3 holds.

Theorem 5. Suppose D follows Assumption 3, define ~Si as
the column space of (I − PiP

T
i )Ui, define ~Ui as a basis

for ~Si, and assume A = |DTC∗| where C∗ is the optimal
point of (4). If

min
i

‖βi‖p2
‖di‖p2

min
i
‖~UT

kiU̇ki‖pm ≥
κ

κ+m− 1

∆̇max

∆min
, (7)

then Requirement 1 is satisfied where ‖~UT
ki

U̇ki‖m is the
minimum singular value of ~UT

ki
U̇ki .

The subspace ~Si was defined as the projection of Si onto
(⊕k 6=iSk)⊥ which is equivalent to the projection of Ṡi onto
(⊕k 6=iSk)⊥. The closer is Ṡi to ~Si, the more incoherent
is Ṡi with the innovative component of the other clusters
since ~Si is orthogonal to⊕j 6=iṠj . This is the reason we have
‖~UT

ki
U̇ki‖m on the LHS of (7) because

‖~UT
kiU̇ki‖m = min

‖u‖2=1
‖~UT

kiU̇kiu‖2

is a measure of coherence between Ṡi and ~Si. Therefore,
similar to Theorem 2, Theorem 5 states that the weaker is
the projection of data points onto the innovative components,
the more distanced the innovative components should be.
The major difference between the condition of Theorem 2
and that of Theorem 5 is that in (7) m plays a stronger role
and (7) states that increasing m (provided that it does not
increase the coherency between the innovative components)
can enhance the chance of MFC/iPursuit to satisfy Require-
ment 1. The following theorem provides a more explicit
sufficient condition via assuming the random data model
used in Theorem 4.

Theorem 6. Suppose D and A are generated as in Theorem
4 and assume that M1 > s+ (r − s)m. If

σl

(
r − s
r

, δ

)
σl

(
ϑ

M1
, δ

)
≥

κ

κ+m− 1

n
r + r−s

r ηδr−s
n
r − ηδr

(8)

where ϑ = M1 −
(
s+ (r − s)(m− 1)

)
, then Requirement

1 with p = 2 is satisfied with probability at least 1− 6δ − ε
where ε is the probability that the rank of D is less s+ (r−
s)m.

Note that Theorem 6 does not need to explicitly presume
that Assumption 3 holds because when M1 > s+ (r− s)m,

Assumption 3 is satisfied with an overwhelming probability
[Vershynin, 2010]. The sufficient condition roughly states
that when n/r is large enough, then r−s

s
ϑ
M1

should be
sufficiently larger than κ

κ+m to guarantee that the require-
ment is satisfied with high probability. The value of ϑ

M1

increases when M1 increases and it converges to 1 when
rd/M1 decreases.

Theorem 2, Theorem 5, and Theorem 6 indicate that if D fol-
lows Data Model 1, then the larger is the number of clusters,
the more likely it is for MFC/iPursuit to satisfy Requirement
1 provided that increasingm does not increase the coherency
between {Ṡi}mi=1. This fact might sound counter intuitive,
but it is an accurate prediction. For instance, suppose that
D is generated as in Theorem 6, the first n columns of D
lie in S1, n = 200, r = 10, s = 8, and M1 = 400. Define

aS1 =
1

n

n∑
i=1

ai

where ai is the ith column of A. Therefore, aS1 is the
average of the first n columns of A which are corresponding
to data points in S1. Figure 1 shows aS1 with different
values of m for the adjacency matrices computed by MFC
and the TSC algorithm [Heckel and Bölcskei, 2013] which
computes A = |DTD|. Ideally, we should observe that the
expected value of the elements of aS1 [1 : n] are sufficiently
larger than the expected value of the elements of aS1 [n :
M2]. One can observe that when A = |DTD|, the elements
of aS1 [1 : n] are not much distinguishable from the elements
of aS1 [n : M2] with both m = 2 and m = 10. In contrast,
when A = |DTC∗| and when m = 10, ‖aS1 [1 : n]‖2
is clearly larger than 1

m−1‖aS1 [n : M2]‖2. The last plot
of Figure 1 shows the effect of m on the quality of the
computed adjacency matrix in a more clear way. Define
parameter κ̂ as follows

κ
′

=
(m− 1) ‖aS1 [1 : n]‖22
‖aS1 [n : M2]‖22

. (9)

Parameter κ
′

shows how clear the adjacency matrix sepa-
rates the data points in S1 from the other clusters. The last
plot (first from right), shows κ

′
versus m for both MFC

and TSC. One can observe that κ
′

notably increases as
m increases when A = |DTC∗| which means that the
quality of the estimated adjacency matrix improves as m
increases. In sharp contrast, increasing m does not show a
positive/negative impact on the computed adjacency matrix
by Algorithm 3.

It is important to note that the conclusion that the perfor-
mance of MFC/iPursuit improves if m increases is not a
general rule. When M1 is not sufficiently large, as m in-
creases, the distance between the subspaces (and the dis-
tance between their innovative components) decreases and
it degrades the performance of the algorithms. Moreover,
the reason that in Theorem 4 and Theorem 6 the coherency



between the subspaces decreases as M1 increases is due to
the presumed model for the generation of the subspaces and
it is not a general rule that φ decreases as M1 increases.

Algorithm 3 Inner-Product based Subspace Clustering
[Heckel and Bölcskei, 2013] (TSC Algorithm)
Input. The input is data matrix D ∈ RM1×M2 .
1. Data Preprocessing. Normalize the `2-norm of the
columns of D, i.e., set di equal to di/‖di‖2 for all 1 ≤
i ≤M2.
2. Define A =

∣∣DTD|.
3. Similar to Step 4 in Algorithm 1.
4. Similar to Step 5 in Algorithm 1.
Output: The identified clusters.

4.5 COMPARISON WITH THE TSC ALGORITHM

In this section, we theoretically compare the TSC algorithm
against against MFC/iPursuit. Both MFC/iPursuit and Al-
gorithm 3 use inner-product as the kernel function to mea-
sure the similarity between data points. However, in sharp
contrast to Algorithm 3, MFC/iPursuit computes the inner-
product between the directions of innovation and the data
points as opposed to computing the inner-product between
the data points. In [Rahmani and Atia, 2017b,c] and in this
paper, it is shown that this difference makes MFC/iPursuit
able to notably outperform TSC in most of scenarios. In
order to clarify the reason behind this performance differ-
ence, we provide similar analysis for Algorithm 3 and we
compare the requirements of MFC/iPursuit against those
of Algorithm 3. Although the presented theorems only in-
clude sufficient conditions (not necessary conditions), their
comparison is insightful.

Theorem 7. Suppose D follows Data Model 1. If

1 ≥ κmax
i

{
‖αi‖p2
‖di‖p2

}
∆̄max

∆min
+

κmax
i

{
‖βi‖p2
‖di‖p2

}
φp

∆̇max

∆min
,

(10)

then A = |DTD| satisfies Requirement (1).

There are two terms on the RHS of the sufficient condition
where only the second term is weighted by φ. Even in the
best case scenario where the innovative components are
orthogonal to each other, i.e., φ = 0, it may not be possible
to satisfy the sufficient condition. For instance, suppose s/r
is nearly equal to one and assume that the elements of βi
and αi are sampled independently from N (0, 1). In this
scenario, E

[
‖αi‖22
‖di‖22

]
= s

m ≈ 1 and it may not be possible
to satisfy the sufficient condition even for κ = 2. The main
reason is that when s/m is high, the inner-product value
between data points in different clusters are high, no matter
how well separated the innovative components are. In sharp

contrast to Algorithm 3, MFC/iPursuit utilize the inner-
product between the optimal directions and the data points
to construct the adjacency matrix and when s/m is high,
the optimal directions are strongly incoherent with S and
this feature makes the role of the innovative components
notably more significant. In order to make a more explicit
comparison, we derive the sufficient condition for Algorithm
3 while it is assumed that the data is generated as in Theorem
4. The following theorem provides the result.

Theorem 8. Suppose D is generated as in Theorem 4 and
A = |DTD|. If(n
r
− ηδr

)
≥ κ σu

(s
r
, δ
)(n

r
+
s

r
ηδs

)
+

κ σu

(
r − s
r

, δ

)(
n

r
+
r − s
r

ηδr−s

)(
cδ(r − s)2

M1

)
,

then Requirement 1 with p = 2 is satisfied with probability
at least 1− 9δ, where cδ was defined in Theorem 4 and ηδx
was defined in Theorem 3.

The first term on the RHS of the sufficient condition of
Theorem 8 is the dominant term when s is large. When there
are a sufficiently large number of data points in the clusters
(n/r is large enough), the sufficient condition roughly states
that κ s

r should be sufficiently smaller than 1. However, it is
not feasible to satisfy this condition in many scenarios. For
instance, if we choose κ = 2, then the sufficient condition
can be satisfied only when s/r > 0.5.

In summary, comparing the sufficient conditions suggests
that in sharp contrast to Algorithm 3 which fails when the
span of clusters are close, MFC/iPursuit can effectively
leverage the innovative components of the clusters and if
these innovative components are sufficiently separable (φ is
sufficiently small), MFC/iPursuit might successfully distin-
guish the clusters.

5 NUMERICAL EXPERIMENTS
This paper does not present a new clustering algorithm and
the main focus was to provide a deep understating and anal-
ysis of the MFC/iPursuit algorithms. We refer the reader
to [Kanatani, 2001, Costeira and Kanade, 1998, Boult and
Brown, 1991, Vidal, 2011, Rahmani and Atia, 2017a,b] for
numerical studies of the MFC/iPursuit algorithms. The fo-
cus of the presented experiments are to demonstrate some
of the features of the algorithms which was predicted by
the presented theoretical studies. For iPursuit, MFC, and
TSC, the graph preprocessing step (Step 4 in Algorithm
1) was done as follows. For each column of A, 8 largest
elements were kept and the rest of elements were set to zero.
Clustering error is defined as Ne

M2
where Ne is the total num-

ber of misclassified data points. In the appendix, we have
included a simple numerical experiment showing that exact
clustering can be achieved if Requirement 1 holds even for
small values of κ.
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Figure 1: The first 4 plots (from LHS) show the elements of aS1 = 1
n

∑n
i=1 ai with different number of clusters for MFC

and Algorithm 3. The first n = 200 data points lie in first cluster, r = 10, s = 8, and M1 = 400. The last plot demonstrates
parameter κ

′
defined in (9) versus m. One can observe that in this experiment increasing m improves the quality of the

adjacency matrix computed by MFC.
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Figure 2: First three plots from left: Clustering error versus the number of clusters for different values of M1 where r = 10,
s = 9, and n = 100. First plot from right: This plot demonstrates clustering error versus s. In this experiment, M1 = 40,
r = 10, and n = 100.

5.1 THE DIMENSION OF INTERSECTION
BETWEEN THE SUBSPACES

In the presented deterministic results (Theorem 2 and The-
orem 5), we observed that ‖βi‖2‖di‖2 is an important factor in
the performance of MFC/iPursuit and in the probabilistic
results, this factor appeared as r−s

r . The purpose of this
experiment is twofold. Firstly, we show that the accuracy of
MFC/iPursuit degrades as s increases (since r−s

r decreases).
Secondly, it is shown that MFC/iPursuit are notably robust
against intersection between the span of clusters compar-
ing to most of other methods. The first plot (from right)
in Figure 2 shows clustering error versus s where in this
experiment M1 = 40, r = 10, and n = 100 (the number
of evaluation runs was 50). One can observe that the ac-
curacy of MFC/iPursuit degrades as s increases. However,
both of them notably outperform the other methods when
s is high. The main reason is that as the presented theo-
retical studies indicated, the performance of MFC/iPursuit
mainly depends on the coherency between the innovative
components {Ṡi}mi=1 while most of other algorithms such as
TSC require the span of clusters {Si}mi=1 to be sufficiently
incoherent.

5.2 NUMBER OF CLUSTERS

In the theoretical results (Theorem 2 and Theorem 5), it
was shown that the quality of the adjacency matrix com-
puted by MFC/iPursuit might improve when m increases.
Specifically, the theoretical results suggested that when data
follows Data Model 1 and as long as increasing m does not
increase the coherency between {Ṡi}mi=1, MFC/iPursuit can

yield a better adjacency matrix (an adjacency matrix with
higher mini

(m−1)‖aiIi‖
p
p

‖aiI⊥
i
‖pp ) if m increases.

The first three plots (from left) in Figure 2 shows cluster-
ing error versus m for different values of M1 where in this
experiment r = 10, s = 9, and n = 100 (the number of eval-
uation runs was 50). One can observe that when M1 = 300
and whenM1 = 50, the accuracy of MFC/iPursuit improves
when m increases while when M1 = 20, the accuracy de-
grades. The reason for this observation is that as the theo-
retical results indicated, both the number of clusters and the
coherency between the innovative components contribute to
the performance of the algorithms. When M1 is not suffi-
ciently large, increasing m increases the coherency between
the innovative components and it degrades the performances
of the algorithms.

5.3 FACE CLUSTERING

In this experiment, we use the Extended Yale B dataset
which contains 64 images for each of 38 individuals in
frontal view and different illumination condition Lee et al.
[2005]. In this dataset, since all the images were taken from
the same frontal pose, the faces corresponding to each sub-
ject can be approximated with a low-dimensional subspace
Basri and Jacobs [2003]. Thus, the images in this dataset
can be modeled as a union of linear subspaces. In this exper-
iment, we created D via vectorizing each image and using
each image as a column of D. To expedite the run-time, we
projected the data on the span of the first 500 left singular



Table 1: Clustering error of different algorithms on the Ex-
tended Yale B dataset.

Algorithm iPursuit MFC LRR SSC TSC
Clustering error 0.08 0.09 0.6 0.29 0.71

vectors. Define s as the vector of the singular values of D
and define ŝ = s

maxi s(i)
. In MFC, we estimated rd equal

to the number of elements of ŝ which are greater than 0.01.
Table 1 shows the clustering error of the clustering algo-
rithms (number of misclassified data points divided by the
total number of data points). One can observe that the per-
formance of MFC and iPursuit are close to each other since
they employ similar tools to build the adjacency matrix. In
addition, they notably outperformed the other approaches
and the main reason is that in this dataset the span of clus-
ters are close to each other [Vidal, 2011]. The presented
theoretical results indicated that MFC/iPursuit could yield
a high quality adjacency matrix even if the span of clusters
are close to each other because their performance mainly
depend on the incoherency between the innovative compo-
nents of the clusters.

5.4 REQUIREMENT 1

We discussed the fact that Requirement 1 indicates how
clear the estimated adjacency matrix represents the clus-
tering structure of the data and it is similar to the suffi-
cient condition established in [Ling and Strohmer, 2020]
which guarantees that the spectral clustering algorithm can
yield exact clustering. In this experiment, we assume that
m = 4 and n = 100 which means M2 = 400. In order
to construct A, we sample each element of A from half-
normal distribution and we normalize the elements such that
κ

m−1‖aiI⊥i ‖1 = ‖aiIi‖1 , for all 1 ≤ i ≤ M2. Figure 3
shows clustering error of the spectral clustering algorithm
versus κ. One can observe that even a small value of κ can
guarantee exact clustering. Although the minimum value
of κ for which we can guarantee exact clustering depends
on the distribution of the elements of A, but it shows that
(as the results in [Ling and Strohmer, 2020] suggests), ex-
act clustering can be achieved if the false connections are
sufficiently weaker than the true connections.

5.5 SUBSPACES WITH DIFFERENT
INTERSECTIONS

In the presented theoretical studies, we utilized a single
subspace S to model the intersection between the span of
clusters to derive succinct sufficient conditions. In practice,
every pair of clusters could have different intersecting sub-
spaces. Define St ∈ RM1×12 as a basis for a 12 dimensional
subspace. In this experiment, we build the span of each clus-
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Figure 3: Clustering error versus parameter κ.

ter as
Ui = [Si, U̇i]

where the columns of Si ∈ RM1×9 are sampled from the
columns of St randomly for each cluster. Therefore, each
pair of clusters could have different intersecting subspaces.
Figure 4 shows clustering error versus number of clusters
where M1 = 60. One can observe that the MFC algorithm
yields accurate clustering of the data even if a single sub-
space does not model the intersection between all the pairs
of subspaces.

10 20 30 40

Number of Clusters

0

0.2

0.4

0.6

0.8

1

C
lu

s
te

ri
n
g
 E

rr
o
r

TSC

SSC

MFC

Figure 4: Clustering error versus number of clusters.

CONCLUSION

It was shown that iPursuit is equivalent to a closed form
matrix factorization based clustering algorithm if the direc-
tion search optimization problem is altered into a quadratic
optimization problem. A novel analysis applicable to both
algorithms were proposed which showed that in contrast
to some of the other subspace clustering algorithms whose
performance depend on the distance between the span of
clusters, the performance of MFC/iPursuit mainly depends
on the distance between the innovative components of the
clusters.
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