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Abstract— In recent years, policy learning methods using
either reinforcement or imitation have made significant progress.
However, both techniques still suffer from being computationally
expensive and requiring large amounts of training data. This
problem is especially prevalent in real-world robotic manip-
ulation tasks, where access to ground truth scene features is
not available and policies are instead learned from raw camera
observations. In this paper, we demonstrate the efficacy of
learning image keypoints via the Dense Correspondence pretext
task for downstream policy learning. Extending prior work to
challenging multi-object scenes, we show that our model can
be trained to deal with important problems in representation
learning, primarily scale-invariance and occlusion. We evaluate
our approach on diverse robot manipulation tasks, compare
it to other visual representation learning approaches, and
demonstrate its flexibility and effectiveness for sample-efficient
policy learning.

I. INTRODUCTION

Despite major advancements in reinforcement and imitation
learning, sample efficiency is still a dominant challenge for
both techniques, severely limiting their applicability to robotic
manipulation. While learning manipulation policies from raw
camera observations is typically computationally expensive
and requires large amounts of training data, ground truth scene
features are usually not available outside of simulation. This
results in a large disparity between the potential promised by
the state of art in e.g. reinforcement learning research and their
practical use in robotic manipulation. Representation learning
has been exploited to bridge the gap between training on
camera observations versus ground truth features [1] and
over the years, a wide variety of approaches have been
proposed. However, not all of them are equally suited for the
challenges of policy learning in robotic manipulation. From
experience, we offer the following criteria: 1) Meaningfulness,
i.e. to encode rich semantic content relevant to the task.
2) Compactness, to enable efficient policy learning from small
amounts of data. 3) Invariance to image rotation, scale and
partial occlusions, i.e. be temporally and spatially consistent.
4) Interpretability, to foster trust and safety. 5) Applicability
to deformable objects and multi-object scenes. 6) Require
minimal supervision.

One family of representation learning approaches are pose
estimation-based methods [2]–[5]. Although being compact,
meaningful and easy to interpret, they typically need a 3D
model of the object, they are not applicable to deformable
objects, and do not work well in the presence of occlusions.
Image reconstruction-based methods [6]–[8], on the other
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Fig. 1: We demonstrate that keypoints can be trained to be scale-invariant and
handle occlusions, while tracking multiple objects across time and camera
perspectives.

hand, are applicable to arbitrary scenes, but are hard to
interpret and their usefulness for policy learning is limited
due to the large discrepancy between pretext and downstream
tasks. Interestingly, Dense Object Nets (DON) trained on
dense correspondence were found to produce object keypoints
suitable for robot manipulation [9]–[11]. Constituting a
compact and easy to interpret representation, they facilitate
efficient policy learning. Notably, they can even generalize
across objects. Nevertheless, they have only been studied
in settings without occlusions and moving cameras [9]–[12].
Moreover, in the context of policy learning, they have only
been demonstrated to work for simple single-object tasks.

A major problem in image representation learning is scale-
invariance, i.e. the ability to find corresponding image features
across views with different distances between the object
and the camera. Whereas, in the domain of handcrafted
features, substantial work has been done to achieve scale-
invariance [13], both work on keypoints [9]–[12] and other
prior work [1] has avoided this problem by using fixed over-
head cameras. However, this severely limits the utility of this
method for diverse applications. For example, it can neither
be used for mobile robots, nor for manipulation tasks where a
wrist camera is required for precise alignment of the gripper.

In this work, we evaluate the feasibility of using keypoints
as a representation for policy learning on a new set of
simulated tasks including, for the first time, multi-object tasks.
The selected tasks introduce a set of new challenges, most
importantly, transparency, occlusion, moving cameras (hence
the need for scale-invariance) and stereo correspondence.
We perform extensive evaluations and demonstrate that
DON-based keypoints can be trained to deal with all these
challenges, often outperforming other methods.

In summary, our main contributions are:
1) We extend Dense Object Nets to deal with scale

variances and occlusions, e.g. due to moving cameras.
2) We demonstrate that keypoints are useful for learning

multi-object manipulation tasks, where additional objects
are not just clutter, but relevant to the task.



3) Finally, comparing it to other representation learning
approaches, we identify key challenges and propose
potential solutions for future work.

II. RELATED WORK

Representation Learning: A common approach to generate
more compact representations of camera observations is by
training a neural network model with a bottleneck such as
a Variational Auto-Encoder (VAE) for image reconstruc-
tion. An example of this approach is β-VAE [7] which
can be parameterized to favor disentangled representations.
MONet [6] partitions the image into several slots first, that
are subsequently encoded using multiple VAEs. In both cases,
the latent representation at the respective bottleneck(s) serves
as the representation for the downstream task. Similarly,
Transporter [8] is trained to reconstruct a source image I from
a target image I ′ via transporting local features. In [1], these
representations have been compared and shown to enable
more efficient policy learning on a set of robotic manipulation
tasks. Due to their agnosticism toward the scene’s content,
in principle, all these methods work out of the box with
multi-object scenes, occlusions and changes in perspective.

Keypoints: Keypoints are a set of pixel- or 3D coordinates,
usually placed on the task-relevant objects, and that are ideally
invariant to changes in the camera and object positions. These
keypoints can be generated by training an encoder on the
dense correspondence pretext task[9]. They are suited for
policy learning via behavioral cloning [10] and model-based
reinforcement learning (RL) [11]. Subsequent work has shown
that keypoints can be learned end-to-end through RL [14].
Moreover, keypoints are able to generalize between instances
of the same object class [9] and they are also applicable to
deformable objects [10].

Multi-Object Scenes: Recent work [12] explores the use of
DC-generated keypoints in a multi-object setting. The authors
employ a similarity graph between scenes, from which they
sample using random walker sampling. To label the similarity
between scenes, they leverage a pretrained ResNet [15] and
cluster the resulting embeddings. Strikingly, this allows them
to retain within-class generalization, while simultaneously
distinguishing object classes without additional supervision.
However, this method has a number of drawbacks. First, it
requires single-object scans of all objects. Second, as the
authors noted, it deals poorly with occlusions. Third, their
similarity measure requires the computation of a K-means
clustering. This both leads to increasing complexity of the
method, scaling with the number of training sequences and
leads to further problems when the number of classes is not
known. Much of this stems from attempting to generalize
between objects of the same class. Florence et al. [9] identified
that their underlying technique can be used for multi-object
scenes, but did not provide a way to train the network to
distinguish between the individual objects in a multi-object
scene. In contrast, our method instead allows to collect data
from multi-object scenes and to directly train the DON on
them. This not only makes data collection much faster and
removes the mentioned computational overhead, but also

allows to directly train the encoder for object-discrimination
and occlusions.

Policy Learning: Another common problem for visual rep-
resentations is object scaling, i.e. finding correspondences
between views of the same object that show it from different
distances. Prior work circumvents this problem by either
planning a grasp from a fixed height [9], [12] or, for
policy learning, capturing the scene using a fixed overhead
camera [10], [11]. This restricts the use of DONs, for
example, with a moving wrist-camera. In robotic manipulation,
however, such a camera might be needed for a precise
grasping. Similarly, prior work does not address the problem
of occlusion. In this work, we demonstrate that DONs can
be trained to be invariant to scale as well as to occlusions,
while still having the ability to distinguish multiple objects.

III. TECHNICAL APPROACH

Our goal is to extract keypoints from camera observations
for efficient policy learning. We achieve this by training
a DON in a self-supervised manner, for which we first
need to estimate ground truth pixel correspondences between
pairs of images. In this section, we first recap the general
DON pretraining procedure and keypoint generation. We then
describe how to adapt these techniques to the multi-object
case and how to achieve scale-invariance. Finally, we detail
how we use the keypoints for policy learning.

A. Correspondence Estimation

By moving a RGB-D camera in a static scene, we can
reconstruct the 3D representation of that scene, e.g. using
volumetric reconstruction [16], from which a point cloud
can be extracted. After filtering out background points, we
can project the point cloud back onto the image plane to
generate object masks for all images along the trajectory.
For a given pixel position in one image in the trajectory, we
can find the corresponding pixel position in another image
of the same trajectory via simple 3D projections using the
respective camera pose and calibration matrix.

B. Dense-Correspondence Pretraining

Using the aforementioned technique for finding correspon-
dences between pairs of images, we train an encoder network
eη : RH×W×3 → RH×W×D, mapping an RGB image to a D-
dimensional descriptor, to minimize the descriptor distance
between corresponding points, while enforcing at least a
margin M between non-corresponding points. In doing so,
we utilize a self-supervised pixelwise contrastive loss [17],
[18]. Specifically, for a given pair of images Ia, Ib, we sample
m pixel locations ua from the object mask of Ia and compute
the corresponding positions ub in Ib. Additionally, for each
point i in ua we sample n non-corresponding points ui from
both Ib’s object mask and the background. We then compute
a gradient-update for the encoder as



Fig. 2: Keypoint generation during policy learning.
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Similar to [9], we use a ResNet50 encoder with stride 8
pretrained on ImageNet and bilinearly upsample the feature
maps back to the full input resolution. We use the Adam [19]
optimizer with an initial learning rate of 1e−4 and exponen-
tially decay by a factor of 0.9 every 25 steps.Additionally,
we regularize the training via a L2 penalty of 1e−4.

C. Keypoint Generation

During policy learning, we freeze the encoder and sample
one frame from the set of trajectories that we want the
policy to learn. We then either randomly sample reference
positions from the relevant object masks or manually select
them. The descriptors at these positions of the sampled image
serve as the reference descriptors for the model. A camera
observation is encoded by feeding it through the frozen
encoder and computing the Euclidean distance between each
of the reference descriptors and the respective descriptor at
all positions in the embedding of the image. Applying a
softmax to the negative distance map yields an activation
map interpreted as the probability of each pixel location
corresponding to the reference position. Unlike prior work [9],
[10], we select the keypoint location as the global mode of
the activation map, which we found to work better than the
expectation in the presence of noise and multimodality. Fig. 2
illustrates this approach.

To generate 3D keypoints, [10] propose to project the pixel-
coordinates into the world frame. In contrast, we find that
either projecting the pixel-coordinates into the local camera
frame, or even just appending the respective depth values to
the coordinate vector, besides being simpler, yields a more
effective representation for our LSTM policy. This is due the
LSTM being sensitive to the scale of the data. We normalize
the pixel coordinates to lie within [−1, 1] to ease learning
the policy.

D. Scale-Invariance and Multi-Object Tasks

To extend DONs to multi-object tasks, we want to pretrain
directly on multi-object scenes, such that the data is fast to
collect and already contains occlusions. Thus, we need to
generate separate masks for each object in the scene. To do
so, we can employ volumetric reconstruction and split the
resulting point cloud using simple clustering. Projecting these

Fig. 3: RLBench Tasks: CloseMicrowave, TakeLidOffSaucePan, PhoneOn-
Base, PutRubbishInBin

object-wise point clouds back onto the camera planes yields
consistent object masks for the trajectory. During one iteration
of pretraining, we sample one of the object masks and treat
the other object as part of the background, teaching the model
to distinguish the two objects. Just sampling an object mask
has the added benefit of working with any number of objects
and empty masks are skipped. Furthermore, we collect an
additional set of trajectories, only showing the robot arm, to
teach the model not to confuse it with the objects in the scene.

Similarly, as we found the DON to generalize badly
to unseen perspectives such as close-ups, we needed to
pretrain the model on similar perspectives it would see
during policy learning. Note, that this is not limited to cases
where the change in perspective cuts away necessary context,
but to changes in distance between object and camera in
general. In contrast, having these different perspectives in the
training data teaches the model to generate a scale-invariant
representation. In our experience, larger descriptor dimensions
enable training the encoder on more perspectives without
loss in quality. Yet, we find it important to normalize the
descriptor distances in pretraining by the square root of the
descriptor dimension. During policy learning, we sample an
equal number of reference positions from all the object masks.

E. Imitation Learning

We follow [20] in the setup of our experiments, with the
action space being constituted by the change in the robot’s
end-effector pose. Using an LSTM, we predict the mean
of a Gaussian action-distribution with fixed variance, i.e.
πθ ∼ N (fθ(s, θ);σ

2). The variance is set to correspond to
1mm for the translational and 0.25 degrees for the rotational
components of the action. For the observation, we concatenate
the visual representation with the robot’s current joint angles
or the end-effector pose. Across all trajectories contained
in a batch and their time steps, we minimize the negative
log-likelihood of the predicted action distribution as

L(s, a) = −q log(πθ(a | s)). (2)

We again train the model using the Adam optimizer with
a learning rate of 3e−4 and an L2 penalty of 3e−6.

IV. EXPERIMENTAL EVALUATIONS

We evaluate the utility of different representations for policy
learning using RLBench [21], a suite of realistic manipulation
tasks using everyday objects. In this framework, between
instances of the same tasks, the objects are placed randomly in
the scene. We select two single-object tasks (CloseMicrowave,
TakeLidOffSaucePan), two multi-object tasks (PhoneOnBase,
PutRubbishInBin) and perform all of them with the model



TABLE I: Success rates of the learned policies.

Method Microwave Lid Phone Rubbish

CNN 0.615 0.315 0.420 0.245
CNND 0.560 0.180 - -

β-VAE [7] 0.110 0.000 0.005 0.000
Transporter [8] 0.035 0.075 0.000 0.005
MONet [6] 0.785 0.875 0.385 0.760

DC KP 2D 0.805 0.280 - -
DC KP 3D 0.935 0.800 0.640 0.590
GT KP 0.875 0.990 0.720 0.885

of a Franka Emika Panda robot, see Fig. 3. These tasks
pose different challenges. In the CloseMicrowave task, we
confront the models with an object that changes its shape
and has very different appearance across a trajectory and
in TakeLidOffSaucepan there is high object symmetry and
transparency. The PhoneOnBase task requires careful align-
ment of the gripper and the PutRubbishInBin task adds visual
clutter. The multi-object tasks further introduce occlusions
and the need to track multiple objects. For the single-object
tasks, we train the policy on 14 expert demonstrations, using
a wrist-mounted camera with 256× 256 pixels, while for the
multi-object tasks providing 140 demonstrations and using
a stereo setup of overhead and wrist camera (with identical
resolutions). The overhead camera provides an overview over
the scene, while the wrist camera facilitates alignment of
the gripper with the objects and requires scale-invariance
from the encoders. Both camera observations are encoded
independently with the same encoder.

Besides the three pretrained representation learning meth-
ods β-VAE [7], Transporter [8] and MONet [6], we further
compare against an end-to-end optimized Convolutional
Neural Network (CNN) and a variant that has access to the
camera’s depth values (CNND). To disentangle the effects
of representation and policy learning, we also add a ground
truth keypoints model (GT-KP). We train all the policies for
1000 steps for the single-object tasks and 1500 steps for the
multi-object tasks. We then evaluate all the policies in the
respective task environments for 200 episodes.

A. Single-Object Tasks

From the results shown in Tab. I, we observe that both
β-VAE and Transporter learn representations that are unsuited
for the tasks at hand. Transporter in particular is designed
for scenarios with a top-down view on the scene and
well-separated local features. Although the CNNs achieve
reasonable policy success on CloseMicrowave, they are vastly
outperformed by both Monet and Keypoints. Note that in
TakeLidOffSaucePan, there is little information in the object’s
pixel-position but instead most of the information is in the
camera depth. This can account for the performance gap
between the 2D and 3D keypoints in Tab. I. Therefore, we
drop the 2D keypoints and the underperforming CNND from
the comparisons for the more difficult tasks.

While MONet manages to outperform the learned keypoints
on TakeLidOffSaucePan, the GT-KP model still outperforms
it by a large margin, indicating that keypoints are the more
effective representation, although the current implementation

still has room for improvement. MONet’s strong performance
on TakeLidOffSaucePan is due to it partitioning the lid into
its parts. It considers the dark parts (handle and knob) as
one entity, thus enabling the policy to learn a sure grasp,
and incidentally ignoring the difficulties entailed by the
transparency of the rest of the lid.

B. Multi-Object Tasks

In PhoneOnBase, many task instances are so difficult, that
also the human pilot providing the demonstrations could
only solve 84% of the instances. Even among the remaining
instances, a sizable fraction requires a more complex trajectory
than the rest, such that the ground truth model’s success rate
of 72% is close to what can be expected to be achieved by BC.
While the learned keypoints come very close to this upper-
bound on PhoneOnBase, the gap is larger on PutRubbishInBin
due to the additional visual clutter and complex shape of the
bin. MONet tends to conflate the robot arm with the scene
object, making it perform poorly on PhoneOnBase, where
precise alignment is critical. On PutRubbishInBin, where
precision is less crucial, it outperforms the learned keypoints.

V. CONCLUSIONS

Keypoints allow for efficient policy learning. Not only
are they a compact representation that still encodes the task-
relevant information, but if properly normalized, they are easy
to learn from. Compared to other methods, this allows higher
efficacy of the downstream policy when the training data
is scarce, but precision is still required. Unlike CNNs and
representations such as MONet, they can easily incorporate
depth information, making them a powerful choice for robotic
manipulation. Moreover, the method can be extended to new
challenges in a straightforward manner. This includes, but is
not limited to, multi-object tasks, occlusions, and changing
object scale. While it needs to be specifically trained to handle
these problems, doing so is intuitive, making the method
a flexible approach. Compared to, e.g. MONet, keypoints
generalize less well to unseen camera perspectives, and need
to be specifically trained for new challenges, whereas MONet
is more robust and generalizes better out of the box. Even
with the improved pretraining, keypoints remain significantly
more noisy for the moving wrist camera than for the stable
overhead camera.

The descriptor distance provides an intuitive measure of
the encoder’s certainty that can be used in multiple ways,
e.g. to ignore or resample uncertain keypoints to better deal
with occlusions. Leveraging this fact will help to make the
encoding less noisy. Moreover, using additional techniques
such as random crop [22] in DC pretraining can help reduce
the noise further. A more fundamental challenge lies in object
symmetry when not enough context is provided to uniquely
identify positions on the object. This is especially prevalent for
the wrist camera, e.g. with the lid or phone receiver. One way
to remedy this would be to introduce a memory component
or extend the current camera observation by previously seen
frames to add context. Finally, pretraining a Dense Object
Net on a large set of different objects can enable the method
to generalize beyond different instances of the same class.
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