
Evolving Alignment via Asymmetric Self-Play
Scalable Preference Fine-Tuning Beyond Static Human Prompts

Ziyu Ye ∗

University of Chicago
Rishabh Agarwal
Google DeepMind

Tianqi Liu
Google DeepMind

Rishabh Joshi
Google DeepMind

Sarmishta Velury
Google DeepMind

Quoc V. Le
Google DeepMind

Qijun Tan
Google DeepMind

Yuan Liu
Google DeepMind

Abstract
Current RLHF approaches for aligning large language models (LLMs) typically
assume a fixed prompt distribution, which is sub-optimal and limits the generaliza-
tion capabilities for language models. To address this issue, we introduce a general
framework that casts alignment as an asymmetric game between two players: (i)
a creator that generates increasingly informative prompt distributions using the
reward model, and (ii) a solver that learns to produce more preferred responses
on prompts produced by the creator. This framework of Evolving Alignment via
Asymmetric Self-Play (eva), results in a simple and efficient approach that can
utilize any existing RLHF algorithm. eva outperforms state-of-the-art methods
on widely-used benchmarks, without the need of any additional human crafted
prompts. Specifically, eva improves the win rate of GEMMA2-9B-IT on Arena-
Hard from 51.6% to 60.1% with DPO, from 55.7% to 58.9% with SPPO, from
52.3% to 60.7% with SimPO, and from 54.8% to 60.3% with ORPO, surpassing
its 27B version and matching claude-3-opus. This improvement is persistent
even when new human crafted prompts are introduced. Finally, we show eva is
effective and robust under various ablation settings.

What I cannot create, I do not understand.
Richard P. Feynman

creator solver

propose responses

evolve prompts

𝜋!
" 𝜋!|#$

Figure 1: eva: Open-Ended RLHF via
Asymmetric Self-Play. The creator is
the prompt generation policy πX and
the solver is the response policy πY |X .

SFT DPO DPO-eva

8.55

8.70

8.85

Ra
tin

g (
0-

10
)

8.57
8.66

8.90
MT-Bench

SFT DPO DPO-eva

42

48

54

60

W
in

 ra
te

(%
)

41.3

51.6

60.1
Arena-Hard

SFT DPO DPO-eva

36

42

48

54

W
in

 ra
te

(%
)

38.39

51.68
55.53

AlpacaEval

Figure 2: Results: Our method eva achieves concrete per-
formance gain especially on hard alignment benchmarks,
without relying on any additional human prompts. Here,
we report results for DPO-eva; see more in §3.

.
1 Introduction
Long-lived artificial intelligence must deal with an ever-evolving, open-ended world, yet currently
face constraints in both the scale and quality of available data, and the growth rate at which new,
useful information is created. High quality human data, crucial for scaling large language model
(LLM) based intelligence, is projected to run out in the next few years [Villalobos et al., 2024]; the
quality of such data is also expected to stagnate: as LLMs become more capable, they need to solve
increasingly complex or new challenges, requiring training data beyond abilities of humans to create.
This necessitates a new fundamental mechanism for self-improving, where models can continuously
self-generate and self-solve harder problems. We thereby investigate the research question below:

Can language models self-create new, learnable tasks to work on,
to self-improve to generalize better for human preferences alignment?

∗Work done during an internship at Google.

 ESTIMATE

SAMPLE
&

EVOLVE

𝐢𝐧𝐟𝐨 𝑥𝑖 := 𝒓𝑖
max − 𝒓𝑖

minLLM 𝑥𝑖 𝑦𝑖
(1)

𝑟𝑖
(1)

RM

proximal
evolving

by an LLM

weighted
sampling

by i𝐧𝐟𝐨 𝑥𝑖

 𝑥𝑖𝜒𝑡 = subset () 𝑥𝑖𝜒𝑡
info

= 𝜒𝑡+1 evolved () 𝑥𝑖=

The Creator StepClassical RLHF

Open-Ended RLHF: eva

𝜒0

𝜃0

so
lv

er

creator𝜒0

𝜃0 𝜃1

𝜒2

𝜃2

…

…

𝜒1
creator

so
lv

er

so
lv

er

so
lv

er

Figure 3: Pipeline: eva generalizes classical RLHF with open-ended RLHF, optimized via a creator-
solver game for self-improving language models. See more on the objective and principle in § 2.

Many preference optimization algorithms [Christiano et al., 2017, Zhao et al., 2023] have been
proposed to improve the alignment of language models, however, they all default to fixed prompt
training distributions. Such fixed training paradigm inevitably leads to: (i) generalization issues
(models may underperform or hack on insufficiently represented instructions) and (ii) efficiency issues
(data annotation and model training are costly, however not all prompt provide the same utility, and
identifying informative prompts by human efforts is nontrivial) [Team et al., 2023, 2024].

The objective thereby should not only be to optimize over a specific, static distribution of prompts,
rather, to design an agent that can autonomously evolve the training distribution for self-improvement,
to align well across unseen, novel environments or tasks (instantiated by prompts).

We develop eva (Evolving Alignment via Asymmetric Self-Play), as in Figure 1, 3. Central to eva is
a game with the minimax-regret objective, achieved by alternating optimization of creating prompts
and solving them. The interplay encourages evolving curricula [Parker-Holder et al., 2022], potentially
benefits both generalization and efficiency (see § C). Orthogonal to many recent self-play studies in
LLM alignment [Munos et al., 2023, Wu et al., 2024], eva is asymmetric [Sukhbaatar et al., 2017],
with two policies of different goals; and in contrast to many self-training works [Gulcehre et al.,
2023] focusing on improving in Y | X , we jointly optimize in (X ,Y) by generative exploration.

Our main contributions are: (i) a new principle of open-ended RLHF that generalize classical RLHF;
(ii) a new algorithm with asymmetric self-play that can be plugged into any alignment pipeline; and
(iii) the new state-of-the-art especially on hard alignment benchmarks across various algorithms.

eva is easy to deploy. We hope it can serve as a scalable method for the AI community to build
robust, open-ended, sample-efficient and self-improving intelligence, that aligns with human values.

2 Method

Algorithm overview. On a high level, eva extends RLHF to open-ended RLHF via a creator
that adapts prompt distributions with an easy-to-implement estimate, sample then evolve procedure,
mimicking the minimax-regret policy of asymmetric self-play games, as detailed in §B.

Algorithm 1 eva: Evolving Alignment via Asymmetric Self-Play
Input: initial policy πθ0 , initial prompt set X0

1: for iteration t = 1, 2, . . . do

▽ /⋆ creator step ⋆/

2: estimate informativeness: Xt ← Xt ∪ {info(xi)}
sample subset: X info

t ← sample(Xt)

self-evolve prompts: X ′
t ← evolve(X info

t)

▽ /⋆ solver step ⋆/

3: self-generate responses: ∀ xi ∈ X ′
t , generate {y(j)

i } ∼ πθt−1(· | xi)

4: annotate rewards: X ′
t ← X ′

t ∪ {(y
(j)
i , r

(j)
i)}

5: preference optimization: θt ← θt−1 − η∇θLX ′
t
(θ)

6: end for

2

2.1 The Principle: Open-ended RLHF for Joint Self-Improvement

Motivation. Classical RLHF optimizes over a static prompt set, thus brittle in ever-changing worlds.
To have an agent that generalizes well across unseen, novel tasks, we must design a new objective.

Formalization. We thus formally introduce optimizable prompt generation policy πϕ(x), which is
jointly optimized with the response policy πθ(y | x) with regard to the joint reference policy2:

Definition 1 (Open-ended RLHF) Let πϕ,θ(x,y) := πϕ(x) · πθ(y | x) and πref(x,y) :=
pref(x) · πref(y | x). We define evolving alignmenta as the open-ended joint optimization on the
prompt and response policy for alignment w.r.t the joint reference policy:

max
ϕ,θ

Ex∼πϕ(x),y∼πθ(y|x)

[
r(x,y)

]
− β · DKL

[
πϕ,θ(x, y) ∥ πref(x,y)

]
, (1)

aThis generalizes RLHF (Eq. 4), which is a special case if πϕ is static as pref, by expanding Eq. 1:

max
ϕ,θ

Ex∼πϕ(·),y∼πθ(·|x)
[
r(x,y)

]
− β·

(
Ex∼πϕ(·)

[
DKL

[
πθ(y|x)∥πref(y|x)

]]
− DKL

[
πϕ(x)∥pref(x)

])
.

2.2 The Mechanism: Asymmetric Self-Play via the Creator v.s. Solver Game

Intuition. It is hard to directly optimize Eq. 1, due to (i) the intractability of the unspecified
reference [Dennis et al., 2020]; (ii) the instability of joint differentiation [Goodfellow et al., 2014].
We present an alternating optimization objective by casting it as an asymmetric creator-solver game.

• Intuitively, the creator can guide the solver by prompt curricula with increasing complexity,
encouraging efficient and general learning to handle the diversity in the wild.

• Mathematically, this resembles RL optimization via expectation-maximization [Dayan and
Hinton, 1997, Singh et al., 2023], where ϕ for the prompt distribution is fixed at each step.

Formalization. We formalize the alternating optimization as an asymmetric game as follows:

• Creator: the prompt player πX that strategically generate prompts for the solver.
• Solver: the response player πY|X (or π) that learn to generate preferred responeses.

We use minimax regret strategy [Savage, 1951, Dennis et al., 2020], where the solver minimizes and
the creator maximizes regret (see § A). At the equilibrium [Nash et al., 1950], there is:

Remark 1 (Minimax Regret) If the solver-creator game reaches an equilibrium, the solver
follows a minimax regret strategy, i.e., it optimizes to perform well under all cases:

π⋆ ∈ arg min
π∈ΠY|X

max
πX∈ΠX

Ex∼πX

[
Regret(x, π)

]
. (2)

However, without access to the true optimal policy, we must approximate the regret. Leveraging the
stochastic policy and the reward model, we design the advantage-based proxy:

Definition 2 (Informativeness Proxy) We measure the informativeness of a prompt by the
(absolute) empirical worst-case optimal advantage, approximating the minimax regret:

info(x)← Â⋆
min := |min

y
r(x,y)−max

y′
r(x,y′)|, (3)

which is estimated by sampling multiple responses for x from the solver and calculating gap
between the maximal reward (from the best y) and the minimal reward (from the worst y).

In sum, our open-ended RLHF allow for an evolving joint distribution for better generalization; the
minimax regret objective adds robustness on such evolving curricula by incentivizing agents to align
well in all cases. We use the informativeness proxy (see § C for more; an attentive reader may want
to distinguish it from Shannon’s [Shannon, 1948]) to guide learning. Together, it is a mechanism that
the creator keeps challenging the solver, and the solver learns to improve.

2Here, pref(x) represents an idealized, potentially intractable probability measure over all possible tasks
(instantiated via prompts) in the wild, as a conceptual reference or a guiding target for alignment.

3

3 Main Experimental Results

eva brings notable gains in alignment without relying on any human-crafted data, thus offering
data efficiency as well. In the base setup, from the one-iteration finetuned model (θ0→1), eva adds
a creator to self-evolve prompts of the initial iteration and optimizes for an additional open-ended
RLHF iteration, resulting in θ1→1̃. See detailed settings in § D.

eva achieves self-improvement. As shown in red rows in Table 1, eva yields notable perfor-
mance improvement over θ0→1 across different optimization algorithms, especially on the harder
Arena-Hard benchmark, which is recognized to be more challenging and distinguishable among
others due to the complexity of its prompts and its fairer scoring system [Li et al., 2024b]. For
example, eva brings 8.5% gain with DPO as the solver, surpassing its 27B version and matching
claude-3-opus as in the AH leaderboard, while using fully self-automated joint generation.

eva can surpass human-crafted prompts. We further show that eva-prompt-trained models
(θ1→1̃) can match and even outperform those trained on additional new prompts from UltraFeedback
(θ1→2) (which we denoted as human prompts), while being much cheaper and more efficient. Addi-
tionally, on MT-Bench, training with new human prompts typically show decreased performance in
the first turn and only modest gains in the second turn. In contrast, eva notably enhances second-turn
performance. We hypothesize that eva evolves novel, learnable prompts that include characteristics
of second-turn questions, reflecting emergent skills like handling follow-up interactions.

Model Family (→) GEMMA-2-9B-IT

Benchmark (→) Arena-Hard MT-Bench AlpacaEval 2.0

Method (↓) / Metric (→) WR (%) avg. score 1st turn 2nd turn LC-WR (%) WR (%)

θ0: SFT 41.3 8.57 8.81 8.32 47.11 38.39

θ0→1: DPO 51.6 8.66 9.01 8.32 55.01 51.68
θ1→1̃: + eva 60.1 (+8.5) 8.90 9.04 8.75 (+0.43) 55.35 55.53
θ1→2: + new human prompts 59.8 8.64 8.88 8.39 55.74 56.15
θ0→1: SPPO 55.7 8.62 9.03 8.21 51.58 42.17
θ1→1̃: + eva 58.9 (+3.2) 8.78 9.11 8.45 (+0.24) 51.86 43.04
θ1→2: + new human prompts 57.7 8.64 8.90 8.39 51.78 42.98

θ0→1: SimPO 52.3 8.69 9.03 8.35 54.29 52.05
θ1→1̃: + eva 60.7 (+8.4) 8.92 9.08 8.77 (+0.42) 55.85 55.92
θ1→2: + new human prompts 54.6 8.76 9.00 8.52 54.40 55.72

θ0→1: ORPO 54.8 8.67 9.04 8.30 52.17 49.50
θ1→1̃: + eva 60.3 (+5.5) 8.89 9.07 8.71 (+0.41) 54.39 50.88
θ1→2: + new human prompts 57.2 8.74 9.01 8.47 54.00 51.21

Table 1: Main results. Our eva achieves notable alignment gains and can surpass human prompts
on major benchmarks across a variety of representative direct preference optimization algorithms.

We then conduct in-depth ablation studies on eva, with findings below in the Appendix:

• § E.1 - informativeness metric: our regret-based metric outperforms other alternatives.
• § E.2 - sample-then-evolve procedure: our method outperforms greedy selection.
• § E.3 - scaling w/ reward models: the alignment gain of eva scales with reward models.
• § E.4 - continual training : our method has monotonic gain with incremental training; the

evolved data and schedule by eva serves as an implicit regularizer for better local minima.

4 Concluding Remarks
eva is a new, simple framework for aligning language models, and can be plugged into any existing
alignment pipeline. The primary takeaway may be that RLHF can be made open-ended: (i) self-
evolving joint data distributions can bring significant gain (as shown across various preference
optimization algorithms), and (ii) reward advantage acts as an effective metric informing the collection
and creation of future prompts for alignment. eva presents a new view of alignment by framing it as
an asymmetric game between a creator generating new and learnable prompts and a solver producing
preferred responses. eva also incentivizes agents to create problems rather than to simply solve
problems, which is a key feature of intelligence, yet model trainers often neglect.

4

https://github.com/lm-sys/arena-hard-auto/tree/efc012e192b88024a5203f5a28ec8fc0342946df?tab=readme-ov-file#full-leaderboard-updated-0831

Appendix

A Preliminaries

We hereby review major concepts, which we later in § 2 use regret and the proxy by advantage to
identify informative prompts, leading to learning curricular implicitly maximizing contrastive ratio .

Alignment by RLHF. Classical RLHF [Ouyang et al., 2022] optimizes on a fixed distribution D:

max
πθ

Ex∼D,y∼πθ(y|x)

[
r(x,y)

]
−β · DKL

[
πθ(y | x) ∥ πref(y | x)

]
, (4)

where x and y denote the prompts and responses, and r(·, ·) is the reward function.

Reward. Let the optimal policy of Eq. 4 be π⋆(·) and Z(·) be the partition function, we have:

r(x,y) = β · log π⋆(y | x)
πref(y | x)

+ β · logZ(x). (5)

Regret. Let r⋆(x) = maxy′ r(x,y′) be the optimal reward achievable at x, the regret to take y is:

Regret(x,y) = r⋆(x)− r(x,y). (6)

The regret with regard to policy is defined as:

Regret(x, π) = Ey′∼π(y′|x)

[
r(x,y′)

]
− Ey′∼π⋆(y′|x)

[
r(x,y′)

]
. (7)

Advantage. The advantage function quantifies how much better a response y is w.r.t. a baseline:

A(x,y) = r(x,y)− Ey′∼π(y′|x)

[
r(x,y′)

]
. (8)

Variants of advantage (e.g., the worst-case advantage A⋆
min) are related to regret, as shown in Table 2.

Direct preference optimization. The DPO [Rafailov et al., 2023] objective for RLHF is:

LDPO
β (πθ) =

∑
(y+,y−,x)∈D

− log
[
σ
(
β ·∆x

θ; ref

)]
, (9)

where we use +,− to denote chosen and rejected responses, and denote the contrastive ratio as:

∆x
θ; ref := log

πθ (y+ | x)
πref (y+ | x)

− log
πθ (y− | x)
πref (y− | x)

. (10)

By reward reparameterization with Eq. 5, advantage also relates to contrastive ratio, as in § C.

B The Practical Algorithm

We now illustrate eva of Algorithm 1 (cf., Fig 3), with specifications in Appendix I.

B.1 The Creator Step: Estimate, Sample then Evolve

Plainly, the creator finds most useful prompts and generate variants of them for preference optimiza-
tion. One may relate this to evolution strategies [Schwefel, 1977] which find the most promising
species, then mutate and crossover, or to curriculum RL [Parker-Holder et al., 2022] which finds
environments with high-regret levels, then edits within some distance. As in Section 2.2, we do not
seek a differentiable creator in this work. The creator is implemented in three steps as in Figure 3.

Step 1: info(·) – estimate the informativeness. For each x in the prompt set Xt, we generate
responses, annotate rewards and estimate a informativeness metric to x by Eq. 3 (see also Table 2).

Step 2: sample(·) – weighted sampling for an informative subset. Using the informativeness
metric as the weight, we sample a informative prompt subset X info

t to be evolved later.

5

Step 3: evolve(·) – evolving for a proximal region of high-advantage prompts. Our algorithm
is agnostic to and does not rely on any specific evolving method. We take EvolInstruct [Xu et al.,
2023a] as an off-the-shelf method, which conducts in-depth (i.e., adding constraints, deepening,
concretising, complicating) and in-breadth evolving (i.e., mutation) for prompts. Specifically, we
iterate over each prompt in theX info

t , where each one is evolved to multiple variations, then optionally
mix the newly generated prompts with a uniformly sampled buffer from Xt to create X ′

t .

B.2 The Solver Step: Solve then Optimize

This step is the classical preference optimization [Rafailov et al., 2023], where responses are generated
and the gradient descent is performed. Take the pointwise reward model setting as an example, for
every prompt, we sample n responses with reward annotated for each; we take the responses with the
maximal and the minimal reward to construct the preference pairs, then optimize upon.

Put together, eva can unify existing iterative optimization pipeline [Tran et al., 2023] with a new
creator module, which can either share the same network as the solver policy or operate independently.

C Understanding eva in Different Intuitive Ways

Learning potential. Our metric intuitively identifies the learning potential of a prompt by measuring
the gap between the best and worst response to it from the solver. We reason, that prompts eliciting
both high-reward and low-reward outcomes, reflect learnable tasks where the model is capable of
improving but has not yet mastered, thereby implying learning potential (cf., Jiang et al. [2021b]).

Worst-case guarantees. The minimax-regret objective, by design, leads to solvers that perform
robustly across the prompt space, thus gives the worst-case guarantee. While exact equilibrium may
not be attainable with approximation, our empirical results in § E.1 demonstrate robustness.

Auto-curricula for the players. With the stochastic policy, the advantage may be heuristically
understood as the reward difference between a base solver and a reference solver. Rather than
optimizing separate solvers [Dennis et al., 2020], we sample multiple times from the same policy to
create the pair. In this way, the creator is incentivized to produce new prompts that are just out of the
comfort zone of solvers [Chaiklin et al., 2003]:

• For overly challenging prompts, both solutions perform poorly, leading to a low proxy.
• For overly easy prompts, the base solution already performs well, again giving a low proxy.
• The optimal strategy is to find prompts that are just beyond the solver’s current capability.

Auto-curricula inherent to Contrastive Optimization. Contrastive preference optimization gen-
eralizes DPO and a family of algorithms (c.f., Hejna et al. [2023], Rafailov et al. [2023], Tang et al.
[2024]), many of whose losses monotonically decrease as the contrastive ratio increases. Here, by
Eq. 5 and Eq. 10, the contrastive ratio can be written via the advantage-based proxy:

A⋆
min(x) = β · ∆x

θ⋆; ref . (11)
By our proxy, we implicitly incentivize the creator to generate prompts that bring the most contrastive
responses, which decrease the loss the most. This matches the curriculum learning literature, which
prioritizes (in our case, generatively prioritizes) examples with smaller losses for better convergence
and generalization [Bengio et al., 2009]. We hereby suggest the Contrastive Curriculum Hypothesis:
in contrastive preference optimization, prioritizing prompts with higher contrastive ratio improves
sample efficiency and generalization. We show initial empirical results on this in § E.1 and § E.4.

D Additional Experimental Settings

Datasets and models for training. We use UltraFeedback [Cui et al., 2023] as the training
dataset, which contains diverse high-quality prompts that are primarily human-generated. We use
the instruction-finetuned GEMMA-2-9B [Team et al., 2024] as the primary model, which is a strong
baseline for models of its size. In training, Each iteration uses 10K prompts (i.e., 1/6 partition from
UltraFeedback in classical training). We denote θt→t+1 as the model trained w/ new human prompts
based on the t-th checkpoint, and θt→t̃ as the one trained w/ evolved prompts from the t-th checkpoint
w/o adding any new human prompts. Detailed re-implementation instructions can be found in § I.

6

Evaluation settings. We choose: (i) AlpacaEval 2.0 [Dubois et al., 2024], which assesses general
instruction following with 805 questions; (ii) MT-Bench [Zheng et al., 2023], which evaluates
multi-turn instruction following with 80 hard questions in 8 categories; (iii) Arena-Hard [Li et al.,
2024b], which is derived from 200K user queries on Chatbot Arena with 500 challenging prompts
across 250 topics. We use gpt-4-1106 as the judge and gpt-4-0314 as the baseline for win rate.

Optimization algorithms. We focus on direct preference optimization and consider the following:

• With reference policy: DPO [Rafailov et al., 2023], SPPO [Wu et al., 2024].
• Without reference policy: SimPO [Meng et al., 2024], ORPO [Hong et al., 2024].

Reward models as preference oracles. We use ARMORM-8B [Wang et al., 2024] as our default
reward model as the human-preference proxy, and consider the following for ablation studies:

• Pointwise: ARMORM-8B [Wang et al., 2024], SKYWORKRM-27B [Liu and Zeng, 2024].
• Pairwise: PAIRRM-0.4B [Jiang et al., 2023], PAIRRM-8B [Dong et al., 2024].

E Ablation Studies

E.1 The Choice of Informativeness Metrics: info(·)

Metric info(x) Related Interpretations
A⋆

min: worst-case optimal advantage |miny r(x,y)−maxy′ r(x,y′)| minimax regret [Savage, 1951]

A⋆
avg: average optimal advantage | 1N

∑
y r(x,y)−maxy′ r(x,y′)| Bayesian regret [Banos, 1968]

A⋆
dts: dueling optimal advantage |maxy ̸=y⋆ r(x,y)−maxy′ r(x,y′)| dueling regret [Wu and Liu, 2016]

Table 2: The reward-advantage-based metrics that serve as the informativeness proxies for prompts.

Model Family (→) GEMMA-2-9B-IT

Benchmark (→) Arena-Hard MT-Bench AlpacaEval 2.0

Method (↓) / Metric (→) WR (%) avg. score 1st turn 2nd turn LC-WR (%) WR (%)
θ0→1: DPO 51.6 8.66 9.01 8.32 55.01 51.68

θ1→1̃: + eva (uniform) 57.5 8.71 9.02 8.40 53.43 53.98

θ1→1̃: + eva (var(r)) 54.8 8.66 9.13 8.20 54.58 52.55
θ1→1̃: + eva (avg(r)) 58.5 8.76 9.13 8.40 55.01 55.47
θ1→1̃: + eva (1/avg(r)) 56.7 8.79 9.13 8.45 55.04 54.97

θ1→1̃: + eva (1/A⋆
min) 52.3 8.64 8.96 8.31 53.84 52.92

θ1→1̃: + eva (A⋆
avg) (our variant) 60.0 8.85 9.08 8.61 56.01 56.46

θ1→1̃: + eva (A⋆
dts) (our variant) 60.0 8.86 9.18 8.52 55.96 56.09

θ1→1̃: + eva (A⋆
min) (our default) 60.1 (+8.5) 8.90 9.04 8.75 (+0.43) 55.35 55.53

Table 3: Choice of informativeness metric. Our informativeness metric by advantage achieves the
best performances, comparing with others as the weight to sample prompts to evolve by the creator.

Advantage as the informativeness metric outperforms baselines. As in Table 3, eva offers an
effective curriculum by the advantage-based proxy as the informativeness metric (bottom row):

• Comparing w/ uniform evolving (brown): Existing baselines generate prompts in a uniform
manner [Yuan et al., 2024] w/o informativeness measure (cf., the principle of insufficient rea-
son [Keynes, 1921, Tobin et al., 2017]). Ours (red) concretely outperform, corroborating Das
et al. [2024] that uniform learners can suffer sub-optimality gaps.

• Comparing w/ other heuristics (blue): Prior practices [Team et al., 2023] tried heuristics like
prioritizing prompts w/ the most variance in its rewards or w/ the lowest/highest average.
We find our advantage based methods (red) outperforms those heuristics.

• Comparing w/ the inverse advantage (purple): Contrary to curriculum learning, a line
of works conjecture that examples w/ higher losses may be prioritized [Jiang et al., 2019,

7

Kawaguchi and Lu, 2020], which can be done by inverting our metric. We find it significantly
hurt the alignment gain, corroborating Mindermann et al. [2022] that those examples are
often noisy, unlearnable or irrelevant, meaning our curriculum is effective and practical.

• Among our advantage variants (red): We designed variants of our default advantage-based
metric, as in Table 2; the default A⋆

min remains competitive among its peers. Together, the
advantage-based principle provides a robust guideline for prompt sampling and evolving.

The lesson is that we must be selective about which are the promising to evolve, otherwise unlearnable,
noisy or nave prompts may hinder learning. Our regret-inspired metric represents a solid baseline.

E.2 The Effect of the sample-then-evolve procedure

Benchmark (→) Arena-Hard MT-Bench AlpacaEval 2.0

Method (↓) / Metric (→) WR (%) avg. score 1st turn 2nd turn LC-WR (%) WR (%)

θ0→1: DPO 51.6 8.66 9.01 8.32 55.01 51.68

θ1→1̃: [no evolve]-greedy 56.1 8.68 8.98 8.38 54.11 53.66
θ1→1̃: [no evolve]-sample 55.3 8.69 9.00 8.38 54.22 54.16

θ1→1̃: + eva-greedy (our variant) 59.5 8.72 9.06 8.36 54.52 55.22

θ1→1̃: + eva-sample (our default) 60.1 8.90 9.04 8.75 55.35 55.53

Table 4: Effect of evolving. The blue are those training w/ only the informative subset and w/o
evolving); we denote -sample for the default weighted sampling procedure in Algo 1, while using
-greedy for the variant from the classical active data selection procedure (cf., a recent work [Muldrew
et al., 2024] and a pre-LLM work [Kawaguchi and Lu, 2020]), which selects data by a high-to-low
ranking via the metric greedily. We show evolving brings a remarkable alignment gain (the red v.s.
the blue); and as we evolve, sampling is more robust than being greedy (cf., Russo et al. [2018]).

The design of evolve(·) in eva is effective. As in Table 4, we show:

• Removing the evolve(·) step: if we only do subset sampling or ordered selection, we still
have gain, but not as much as w/ evolving (e.g., eva brings 4.8% additional wins on AH).

• Altering the sample(·) step: if we greedily select prompts by the metric instead of using
them as weights for importance sampling, the performance will be weaker as we evolve.

This shows that simply adaptive training within a fixed prompt distribution is unsatisfactory; our open-
ended RLHF with generative prompt exploration gives a substantial headroom for self-improvement.

E.3 Scaling Pointwise and Pairwise Reward Models

DPO DPO-eva DPO-eva
54.0

54.5

55.0

55.5

56.0

56.5

LC
 W

in
 ra

te
(%

)

55.01
55.35

56.12ArmoRM-8B
SkyworkRM-27B

SPPO SPPO-eva SPPO-eva
51.00

51.25

51.50

51.75

52.00

52.25

52.50

52.75

53.00

LC
 W

in
 ra

te
(%

)

51.58
51.86

52.71PairRM-0.4B
PairRM-8B

Figure 4: eva scales with quality of reward
models, under pointwise RMs w/ DPO (left) and
pairwise RMs w/ SPPO (right). Note SPPO han-
dles general preferences thus requires pairwise
RMs, and DPO relies on the Bradley-Terry as-
sumption, for which pointwise RMs are suitable.

Figure 4 presents the length-controlled win rate
of eva on AlpacaEval using pointwise and pair-
wise reward models of varying scales. The re-
sults give a clear trend: as the quality of reward
models improve, eva brings higher alignment
gain. The scaling observation shows the effec-
tiveness of eva in exploiting more accurate re-
ward signals to choose informative prompts for
better alignment. One takeaway is interaction
w/ the external world is essential for intelligence.
The more accurate reward signals observed, the
better the agent incentivize themself to improve
(cf., Silver et al. [2021]).

8

E.4 eva Improves Both Sample Efficiency and Generalization

We then continuously run the default incremental training (i.e., trainining from the last checkpoint
w/ the evolved set in each iteration), as in Fig 5, eva presents monotonic performance gain over
iterations, and surpasses that trained w/ new human prompts, implying the generalization benefit.
Specifically, we conjecture that behaviors of the dashed/dotted lines relate to loss of plasticity [Ash
and Adams, 2019, Dohare et al., 2023, Abbas et al., 2023, Xue et al., 2024]. Classical works
resolve it by the optimization view (e.g., weight perturbing), whereas eva provides a view from data
scheduling, potentially mimicking an implicit regularizer for better generalization.

Iter 1 Iter 2 Iter 3

50

55

60

Ar
en

a H
ar

d
W

in
 R

ate
 (%

) DPO

Iter 1 Iter 2 Iter 3

56

58

60

Ar
en

a H
ar

d
W

in
 R

ate
 (%

) SPPO
same prompts
new human prompts
eva prompts

Figure 5: Continual training.
eva stays robust w/ more itera-
tions in incremental training.

The solutions found by eva cannot be recovered by training
longer w/ a fixed distribution (the dashed), nor by navely sourcing
new prompts w/o examining informativeness (the gray dotted),
thus our generative data schedule is effective.

In Table 5, we ablate eva in scratch training, i.e., training w/ the
full set (the evolved and the original data). eva is competitive in
incremental training, thus learns more effective with less data –
a nice bonus via minimax regret [Jiang et al., 2021a].

Benchmark (→) Arena-Hard MT-Bench AlpacaEval 2.0
Method (↓) / Metric (→) WR (%) avg. score LC-WR (%)

θ0: SFT 41.3 8.57 47.11

θ0→1: DPO 51.6 8.66 55.01
θ0→1̃: eva (scratch) 59.8 8.88 54.59
θ1→1̃: eva (incremental) 60.1 8.90 55.35

Table 5: Ablation on incremental v.s. scratch training.

F Additional Experimental Results

In general, eva maintains the accuracy on downstream tasks and is robust on those reasoning-heavy
tasks, and the scaling with reward models is more prominent on AlpacaEval, possibly due to the
training sources for such reward models [Wang et al., 2024, Liu and Zeng, 2024].

Method (↓) / Dataset (→) MUSR-TA TruthfulQA-Gen WMDP GSM8K GSM-Plus MMLU-Pro
θ0: SFT 38.80 34.76 58.62 24.64 18.62 52.08

θ0→1: DPO 38.40 34.76 58.45 24.56 18.50 52.63
θ1→1̃: + eva 38.40 34.15 58.40 24.26 17.96 53.03
θ0→1: SPPO 40.80 34.15 58.72 24.79 18.42 52.70
θ1→1̃: + eva 41.20 34.64 58.94 25.40 18.88 52.47

Table 6: Performance on Downstream tasks.

Model Family (→) GEMMA-2-9B-IT

Benchmark (→) MT-Bench Arena-Hard AlpacaEval 2.0

Method (↓) / Metric (→) avg. score 1st turn 2nd turn WR (%) avg. len LC (%) WR (%) avg. len

θ0→1: DPO 8.66 9.01 8.32 51.6 651 55.01 51.68 1883
θ1→1̃: + eva-i (ARMO-8B) 8.90 9.04 8.75 60.1 725 55.35 55.53 2089
θ1→1̃: + eva-i (SKYWORKRM-27B) 8.75 9.07 8.43 60.3 744 56.12 56.40 2097

Table 7: Effect of (pointwise) reward models.

Model Family (→) GEMMA-2-9B-IT

Benchmark (→) MT-Bench Arena-Hard AlpacaEval 2.0

Method (↓) / Metric (→) avg. score 1st turn 2nd turn WR (%) avg. len LC (%) WR (%) avg. len

θ0→1: SPPO 8.62 9.03 8.21 55.7 560 51.58 42.17 1850
θ1→1̃: + eva-i (PAIRRM-0.4B) 8.78 9.11 8.45 58.9 567 51.86 43.04 1870
θ1→1̃: + eva-i (PAIRRM-8B) 8.89 9.08 8.70 60.2 563 52.71 44.52 1848

Table 8: Effect of (pairwise) reward models.

9

G Related Works

Self-improving algorithms and iterative optimization. This line of work focuses on iteratively
generating samples from the response policy and continuously re-training the policy by selected
self-generated samples. Major works include ReST [Gulcehre et al., 2023, Singh et al., 2023],
STaR [Zelikman et al., 2022], RFT [Yuan et al., 2023], RAFT [Dong et al., 2023], self-improving
LLMs [Huang et al., 2022, Yuan et al., 2024]; in the context of preference optimization, iterative
DPO [Xu et al., 2023b, Tajwar et al., 2024, Tran et al., 2023, Xiong et al., 2024, Pang et al., 2024] has
proven effective. Most works focus on self-training by improving in Y | X , while we jointly optimize
both responses and prompts via generative exploration in the (X ,Y) space. Among them, we also
distinctly present a game-theoretic framework with the minimax-regret principle as the guidance.

Prompt synthesis for language models. Existing works include Self-Instruct [Wang et al., 2022],
WizardLM [Xu et al., 2023a, Luo et al., 2023], Self-Align [Sun et al., 2024], Glan [Li et al., 2024a],
EvoPrompt [Guo et al., 2023], Magpie [Xu et al., 2024] and others [Long et al., 2024]. eva is
an orthogonal contribution since any synthesis method can be plugged in as the evolve(·) for the
creator. Importantly, our work presents a new reward-related metric to endow prompt the notion
of informativeness, with new implications as in § C. We also focus on preference optimization
algorithms, while those existing works primarily use synthesized prompts in an SFT-only way.

Self-play and curriculum RL. Agents trained on a fixed data distribution are often brittle and
may struggle to adapt to the real world [Hughes et al., 2024]. Self-play [Samuel, 1959, Goodfellow
et al., 2014, Silver et al., 2016] addresses this by having the agent learn through self-interaction, thus
creating more diverse experiences and automatic curricula. In asymmetric self-play, the paradigm
centers on “Alice proposing a task, and Bob doing it” [Sukhbaatar et al., 2017, Samvelyan et al.,
2023, Beukman et al., 2024, Dennis et al., 2020]. Other nice game-theoretic frameworks that guide
learning agents include Bai et al. [2020], Anil et al. [2021], Rajeswaran et al. [2020]. We revive the
classical asymmetric self-play principle [Sutton et al., 2011] in optimizing language models. Unlike
traditional curriculum RL [Parker-Holder et al., 2022], which usually renders environments from
specified levels [Dennis et al., 2020], our approach is generative by nature, as we directly generate
contexts from the auto-regressive language models.

Self-play in RLHF. A growing line of research frames RLHF as a symmetric self-play game, where
both players are response players [Munos et al., 2023, Wu et al., 2024, Choi et al., 2024, Rosset et al.,
2024]. However, these methods still rely on a fixed prompt distribution thus is sub-optimal. In contrast,
we solve this by asymmetric self-play, enabling evolving prompt distributions for more generalizable
language agents. During our work, we notice one concurrent paper adopting the asymmetric two-
player setup [Zheng et al., 2024], however (i) it applies to adversarial attack tasks instead of general
alignment benchmarks, (ii) it is incompatible w/ direct preference optimization, and (iii) it relies
on the maxmin principle (which is known to be producing unlearnable environments [Dennis et al.,
2020]) instead of the minimax regret principle [Fan, 1953, Savage, 1951] as we do. We also first
precisely defined the new problem of open-ended RLHF, which generalizes over classical RLHF.

H Future Directions

eva defines a new paradigm for alignment, opening up many new directions, e.g., (i) extending
to differentiable creator policies, combining w/ other evolve(·) methods; (ii) evolving for more
iterations w/ on-policy solvers like RLOO [Ahmadian et al., 2024]; (iii) investigating exploration
bonuses for diversity, coverage and extrapolation, and self-consuming loops [Gerstgrasser et al.,
2024]; (iv) extending the game with more players for full automation (e.g., rewarders, critics, rewriters,
verifiers, retrievers); (v) extending from alignment to reasoning (e.g., auto-conjecturing in theorem
proving [Poesia et al., 2024] can be cast as asymmetric games), w/ process reward models and
hierarchical tree search for creator and solver generations; (vii) exploring other metric like Fisher
information for theoretical guarantees; (vii) scaling up w/ million-level data.

10

I Appendix on Reproducibility

As mentioned, currently we put supplementary materials and additional experiment results on
anonymous.4open.science/r/eva-i-workshop/, where we intend to release code there, and
all the datasets (generated prompts and responses) and models (with other models beyond the current
family), upon approval – before then, we are more than happy to provide any clarification requested
to help re-implement eva and replicate our results.

Our code base is made to be simple to use for practitioners, requiring only a creator module addition
within the commonly adopted Alignment Handbook pipeline.

Hyperparameter settings. We follow the original hyperparameter settings as in [Hong et al., 2024,
Meng et al., 2024, Wu et al., 2024], default to be:

Hyperparameter (↓) / Loss (→) DPO ORPO SimPO SPPO
learning rate 5e-7 5e-7 8e-7 5e-7
learning rate scheduler cosine cosine cosine linear
β 0.05 / 10 0.001
γ / / 5 /
λ / 0.5 / /
no. epochs per iter 2 1 1 6
warmup ratio per iter 0.1 0.1 0.1 0.1
effective batch size 8 8 32 8
max length 2048 2048 2048 1024
max prompt length 1024 1024 1024 512
optimizer adamw adamw adamw rmsprop

Iterative Training Settings. By default [Tran et al., 2023, Yuan et al., 2024], we train with equal-
size prompt subset in each iteration. Unless otherwise specified, we use 10K prompts from the
UltraFeedback dataset [Cui et al., 2023] per iteration. The incremental training proceeds as follows:

• θ0 : Base SFT model.

• θ0→1 : initialize with θ0; then train with the prompt split X1 by self-generated responses
from the initial model θ0.

• θ1→2 : initialize with θ0→1; trained with the prompt split X2 via by self-generated responses
from the initial model θ0→1.

For evolving prompts (e.g., evolving X1 to X1̃), with the calculated informativeness metric for
each prompt, we normalize them as the weight to do weighted sampling for a 25% informative
subset to get X info

1 . We then iterate over in X info
1 and call EvolInstrut [Xu et al., 2023a]

as the plug-in evolving method (with the number of evolutions as 4) using the default mutation
templates for (i) in-depth evolving (constraints, deepening, concretizing, increased reasoning steps)
and (ii) in-breadth evolving (extrapolation) as implemented in tasks/evol instruct/utils.py
of distilabel==1.3.2. Next we uniformly select 80% prompts from this evolved dataset and
20% from the original dataset (i.e., the buffer) to form X1̃. We do not seek extensive parameter
search (e.g., the number of evolutions, the evolving ratio) in this stage and encourage future works on
exploring this and other plug-in evolving methods. For solver we generate 6 responses per prompt.

Software environments. All our experiments are conducted on 8xNVIDIA H100 SXM GPUs. Our
codebase primarily relies on transformers==4.40.0. For the response generation of GEMMA
models at the training stage, we use vllm==0.5.4 with flashinfer backend for CUDA 12.4
and torch 2.4. For evolving prompts, we use distilabel==1.3.2, and use LiteLLM to serve
Gemini, OpenAI (default to be gpt-4o-mini) and transformers models. For evaluation on all
benchmarks, we use sglang==0.2.10 and openai==1.35.14, with gpt-4-1106-preview as
the judge model and gpt-4-0314-preview as the baseline model. Specifically for AlpacaEval 2.0,
we use alpaca eval gpt4 turbo fn as the annotator config. We use 42 as the random seed.

11

https://anonymous.4open.science/r/eva-i-workshop/
https://github.com/huggingface/alignment-handbook
https://github.com/argilla-io/distilabel/blob/main/src/distilabel/steps/tasks/evol_instruct/utils.py#L36

J Examples on Prompts and Model Generations

Figure 6: The initial prompt distribution of AlpacaEval by bart-large-mnli with 0-shot classifi-
cation, which is imbalanced. For the reward distribution, the category with lowest average reward has
the highest reward gap (i.e., the default informativeness proxy), implying the potential to improve.

initial prompt→ Write me the code for a distributed transaction manager.\nThink
step by step and use pseudo code first.\nThen, define interfaces
for all involved actors and entities.\nUse Rational Unified
approach for this part.\n\nOnly then move on to the actual
implementation, class-by-class, and method-by-method.\nMake the
code be implemented in C# and follow SOLID principles.

evolved #1 → Craft a suite of syntax for a distributed transaction coordinator.
Start with a sequential breakdown in pseudocode format. Following
that, establish the protocols for communication and interaction
amongst the various participants and components, incorporating
the Rational Unified Process methodology.\n\nProceed thereafter to
the concrete creation, detailing each class and function. Ensure
that the final C# code adheres to the precepts of SOLID and is
annotated for clarification and maintainability purposes.

evolved #2 → Devise a comprehensive set of directives and structures for a
distributed transaction coordinator architecture. Initiate by
formulating a step-by-step algorithmic decomposition in pseudocode.
Subsequently, delineate the frameworks for dialog and cooperation
between the numerous entities and elements, utilizing the tenets
of the Rational Unified Process methodology.\n\nContinue to the
actual generation of the code, meticulously detailing every class
and corresponding method. Guarantee that the culminating C# code
is in strict compliance with SOLID principles and is supplemented
with descriptive commentary to enhance future clarity and upkeep,
while also validating the code against a set of unit tests to
ensure robust functionality.

evolved #3 → Commence by constructing an algorithm in pseudocode that
meticulously breaks down the sequential stages for a distributed
transaction coordinator system. Progress by outlining the
communication protocols and collaborative mechanisms among the
myriad components, adhering to the Rational Unified Process
approach.\n\nAdvance to crafting the code in C#, ensuring each
class and method is elaborated with precision, aligning with SOLID
design principles. Integrate thorough comments for heightened
maintainability and conduct comprehensive unit testing for assured
operational integrity.

evolved #4 → Design a detailed flowchart that represents the intricate
steps of an orchestration engine for managing microservices
in a cloud-native environment. Begin by detailing the service
discovery, load balancing, and fault tolerance strategies, while
incorporating the DevOps philosophy.\n\nProceed by developing the
implementation in Java, focusing on clean, modular code following
object-oriented programming best practices. Accompany your
code with clear documentation for easy understanding and perform
rigorous integration testing to guarantee robustness.

Table 9: Examples of evolved prompts from AlpacaEval. We suggest practitioners to include
generated responses with oracle rewards and self-critique in the context for better prompt evolving,
which is helpful for mitigating the effect of potential self-consuming loops in synthetic data training.

12

1st-turn prompt: When a number is divided by 10, the remainder is 4. What
is the remainder when twice the number is divided by 4?

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva
Here’s how to solve this problem:
1. Understand the first statement:

* "When a number is divided by 10,
the remainder is 4" means the number
can be represented as 10*k + 4,
where k is an integer.
2. Double the number:

* Twice the number is 2*(10*k + 4) =
20*k + 8
3. Divide by 4:

* (20*k + 8) divided by 4 is (20*k)/4
+ 8/4 = 5*k + 2
4. Find the remainder:

* Since 5*k is a multiple of 4, the
remainder when twice the number is
divided by 4 is 2.
Let me know if you’d like to try
another example!

Here’s how to solve this problem:
1. Understand the first statement:
- "When a number is divided by 10,
the remainder is 4" means the number
can be represented as 10*k + 4,
where k is an integer.
2. Double the number:
- Twice the number is 2*(10*k + 4) =
20*k + 8
3. Divide by 4:
- When (20*k + 8) is divided by 4,
the 20*k term is perfectly divisible
by 4.
- The remainder will be the same as
the remainder when 8 is divided by 4,
which is 0.
Therefore, the remainder when twice
the number is divided by 4 is 0.

2nd-turn prompt: What about when twice the number is divided by 5?

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva
Here’s how to solve that:
1. We know: Twice the number
is 20*k + 8 (from the previous
calculation).
2. Divide by 5: (20*k + 8) divided
by 5 is (20*k)/5 + 8/5 = 4*k + 1.6
3. Find the remainder: Since 4*k
is a multiple of 5, the remainder
when twice the number is divided by
5 is 1.
Let me know if you have any more
number theory puzzles!

Here’s how to solve that:
1. Twice the number: We know twice
the number is 20*k + 8 (from the
previous steps).
2. Divide by 5:

* 20*k is divisible by 5.

* 8 divided by 5 leaves a remainder
of 3.
Therefore, the remainder when twice
the number is divided by 5 is 3.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva
The assistant’s response is
incorrect. The assistant
incorrectly calculated the remainder
when twice the number is divided
by 5. The assistant calculated
the decimal part of the division
operation, not the remainder. The
correct calculation should be (20n +
8) % 5 = (20n % 5) + (8 % 5) = 0 + 3
= 3. Therefore, the remainder when
twice the number is divided by 5 is
3, not 1 as the assistant stated.

The corrected response would be:
1. We know: Twice the number
is 20*k + 8 (from the previous
calculation).
2. Divide by 5: (20*k + 8) divided
by 5 gives us a remainder of (20*k %
5) + (8 % 5) = 0 + 3 = 3.
3. Find the remainder: The
remainder when twice the number is
divided by 5 is 3.

Rating: [[3]], "score": 3, "turn":
2, "tstamp": 1722737011.7768948

The assistant’s answer is correct
and matches the reference answer.
The assistant correctly explains
that twice the number is 20*k + 8
and that when this is divided by 5,
the remainder is 3. The assistant’s
explanation is clear and easy to
understand, making it helpful for
the user. There are no mistakes to
correct.

Rating: [[10]], "score":
10, "turn": 2, "tstamp":
1722846518.5543818

Table 10: Comparison of model generations on examples from MT-Bench.

13

1st-turn prompt: Imagine you are writing a blog post comparing two popular smartphone models.

Develop an outline for the blog post, including key points and subheadings to effectively

compare and contrast the features, performance, and user experience of the two models. Please

answer in fewer than 200 words.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

Smartphone Showdown: [Model A] vs.

[Model B]\n\n**I. Introduction**\n* Briefly

introduce the two smartphone models being

compared, highlighting their popularity and

target audience.\n* State the purpose of the

comparison: to help readers decide which phone

best suits their needs.\n\n**II. Design and

Display**\n* Physical dimensions, weight,

and build quality comparison.\n* Screen

size, resolution, and display technology

(e.g., OLED, LCD).\n* Design aesthetics and

user preferences.\n\n**III. Performance

and Specs**\n* Processor, RAM, and storage

comparison.\n* Benchmark scores and real-world

performance analysis.\n* Battery life and

charging capabilities.\n\n**IV. Camera

Capabilities**\n* Rear and front camera

specs (megapixels, aperture, features).\n*
Image quality comparison in various

lighting conditions.\n* Video recording

capabilities.\n\n**V. Software and User

Experience**\n* Operating system and user

interface comparison.\n* App ecosystem

and availability.\n* Software features and

customization options.\n\n**VI. Price and

Value**\n* Compare the price points of both

models.\n* Analyze the value proposition

based on features and performance.\n\n**VII.
Conclusion**\n* Summarize the key differences

and similarities.\n* Recommend the best

phone for specific user profiles (e.g.,

budget-conscious, photography enthusiasts,

gamers).

iPhone 14 Pro vs. Samsung Galaxy S23:

Which Flagship Reigns Supreme?\n\n**I.
Introduction**\n* Briefly introduce both

smartphones and their position in the

market.\n* State the purpose of the comparison:

to help readers decide which phone best suits

their needs.\n\n**II. Design and Display**\n*
Physical dimensions, weight, and build quality

comparison.\n* Screen size, resolution,

refresh rate, and display technology (OLED

vs. Super AMOLED).\n* Design aesthetics and

unique features (e.g., notch vs. punch-hole,

color options).\n\n**III. Performance and

Camera**\n* Processor comparison (Apple

A16 Bionic vs. Snapdragon 8 Gen 2).\n*
RAM and storage options.\n* Camera specs:

megapixels, lens types, aperture, and special

features (e.g., telephoto, macro).\n* Image

quality comparison based on sample photos

and user reviews.\n\n**IV. Software and User

Experience**\n* Operating systems: iOS 16

vs. Android 13.\n* User interface comparison:

intuitiveness, customization options, and

app ecosystems.\n* Special features: Face

ID vs. in-display fingerprint sensor,

voice assistants.\n\n**V. Battery Life and

Charging**\n* Battery capacity and real-world

usage comparison.\n* Fast charging speeds and

wireless charging capabilities.\n\n**VI. Price

and Value**\n* Compare starting prices and

different storage configurations.\n* Assess

the overall value for money based on features

and performance.\n\n**VII. Conclusion**\n*
Summarize the key differences and strengths

of each phone.\n* Recommend the best phone

for specific user types (e.g., photography

enthusiasts, gamers, budget-conscious

consumers).

2nd-turn prompt: Take your previous response and rephrase it as a limerick.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

Two phones, a showdown so grand,\n[Model A]

and [Model B], hand in hand.\nDesign, specs,

and price,\nWe’ll analyze nice,\nTo help you

choose, understand?\n\nLet me know if you’d

like me to try filling in the bracketed parts

with specific model names!

\nTwo phones, a Pro and a Galaxy,\nFor
flagships, they truly are spacy.\nWith cameras

and screens,\nAnd processors keen,\nWhich one

wins? Read on, and be savvy! \nLet me know if

you’d like another limerick!

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s response is creative and

relevant to the user’s request. The user

asked the assistant to rephrase the previous

response, which was a detailed outline for a

blog post, into a limerick. The assistant

successfully did so, maintaining the essence

of the original response in a limerick format.

The assistant also offered to further customize

the limerick by filling in the bracketed

parts with specific model names, showing a

willingness to provide additional detail if

needed. However, the limerick does not fully

capture the depth and detail of the original

response, which is understandable given the

constraints of the limerick format.

Rating: [[8]], "score": 8, "turn": 2,

"tstamp": 1722737024.0327556

The assistant’s response is creative and

relevant to the user’s request. The assistant

successfully rephrased the previous response,

which was a detailed outline for a blog

post comparing two smartphone models, into

a limerick. The limerick is playful and

engaging, and it maintains the essence of

the original response, which is to compare the

two phones and help the reader make an informed

decision. The assistant also offers to create

another limerick if the user wants, showing a

willingness to continue the interaction.

Rating: [[9]], "score": 9, "turn": 2,

"tstamp": 1722846542.9437995

Table 11: (Continued) comparison of model generations on examples from MT-Bench.

14

1st-turn prompt: Each problem consists of three statements. Based on the first two statements,

the third statement may be true, false, or uncertain.\n1. Oranges cost more than apples.\n2.
Oranges cost less than bananas.\n3. Bananas cost more than apples and bananas cost more than

orange.\nIf the first two statements are true, then the third statement is?

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

Here’s how to break down the logic:\n\n*
Statement 1: Oranges > Apples (Oranges

cost more than apples)\n* **Statement

2:** Oranges < Bananas (Oranges cost less

than bananas)\n\nThis means the price

order is: Bananas > Oranges > Apples\n\n*
Statement 3: Bananas > Apples AND Bananas

> Oranges\n\nStatement 3 is **partially

true**.\n\n* The part "Bananas > Apples" is

true based on our price order.\n* The part

"Bananas > Oranges" is also true based on our

price order.\n\n\nLet me know if you’d like to

try another one!

Here’s how to break down the logic:\n\n*
Statement 1: Oranges > Apples (Oranges

cost more than apples)\n* **Statement 2:**

Oranges < Bananas (Oranges cost less than

bananas)\n\nThese statements tell us that

bananas are the most expensive, then oranges,

and apples are the least expensive.\n\n*
Statement 3: Bananas > Apples AND Bananas

> Oranges\n\nSince bananas are indeed more

expensive than both apples and oranges,

statement 3 is **true**.\n\n\nLet me know

if you’d like to try another one!

2nd-turn prompt: If the third statement is true. Is the first statement true, false, or

uncertain? Please explain.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

If the third statement is true, the first

statement is **false**.\n\nHere’s why:\n\n*
Statement 3: States that bananas cost

more than both apples AND oranges.\n\nThis
means the price order is: Bananas > Oranges

> Apples.\n\n* **Statement 1:** States that

oranges cost more than apples.\n\nIf bananas

are the most expensive, and oranges are second,

then oranges cannot be more expensive than

apples.\n\n\nLet me know if you have any other

logic puzzles!

If the third statement is true, then the first

statement is **uncertain**.\n\nHere’s why:\n\n*
Statement 3: Bananas > Apples AND Bananas >

Oranges\n\nThis tells us bananas are the most

expensive, but it doesn’t explicitly state the

relative prices of apples and oranges.\n\n*
Statement 1: Oranges > Apples\n\nThis
statement claims oranges are more expensive

than apples.\n\nStatement 3 doesn’t contradict

statement 1, but it also doesn’t confirm it.

It’s possible that oranges *are* more expensive

than apples, but statement 3 alone doesn’t give

us enough information to be sure.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s response is incorrect. The

assistant states that if the third statement is

true, the first statement is false. However,

the third statement only establishes that

bananas cost more than both apples and

oranges. It does not provide information

about the relative costs of apples and oranges.

Therefore, the first statement could be true

(if oranges cost more than apples), false (if

oranges cost less than apples), or uncertain

(if oranges and apples cost the same). The

assistant’s explanation is flawed because it

incorrectly assumes that the order of costs

must be Bananas > Oranges > Apples, when

in fact the order could also be Bananas >

Apples = Oranges or Bananas > Apples > Oranges.

\n\nCorrected Assistant’s Answer: If the third

statement is true, then bananas cost more than

apples and bananas cost more than oranges.

This means that oranges could still cost more

than apples, making the first statement true.

However, it’s also possible that oranges and

apples have the same cost, which would make the

first statement false. Therefore, based on the

third statement alone, the first statement is

uncertain.

Rating: [[2]], "score": 2, "turn": 2,

"tstamp": 1722737017.2808955

The assistant’s response is correct and helpful.

The assistant explains that the first statement

is uncertain if the third statement is true,

which aligns with the reference answer.

The assistant provides a clear explanation

of why this is the case, stating that the

third statement doesn’t contradict the first

statement, but it also doesn’t confirm it.

Therefore, the assistant’s response is accurate

and informative.\n\nThe assistant’s response:

"If the third statement is true, then the

first statement is **uncertain**. Here’s why:

Statement 3: Bananas > Apples AND Bananas >

Oranges. This tells us bananas are the most

expensive, but it doesn’t explicitly state

the relative prices of apples and oranges.

Statement 1: Oranges > Apples. This statement

claims oranges are more expensive than apples.

Statement 3 doesn’t contradict statement 1,

but it also doesn’t confirm it. It’s possible

that oranges *are* more expensive than apples,

but statement 3 alone doesn’t give us enough

information to be sure.

Rating: [[10]], "score": 10, "turn": 2,

"tstamp": 1722846527.2339694

Table 12: (Continued) comparison of model generations on examples from MT-Bench.

15

1st-turn prompt: Implement a function to find the median of two sorted arrays of different sizes with O(1) space complexity and O(n)

time complexity.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

python\n\def find median sorted arrays(nums1, nums2):\n """\n

Finds the median of two sorted arrays of different sizes.\n\n

Args:\n nums1: The first sorted array.\n nums2: The second

sorted array.\n\n Returns:\n The median of the two sorted

arrays.\n """\n\n m, n = len(nums1), len(nums2)\n if m

> n:\n nums1, nums2, m, n = nums2, nums1, n, m # Ensure m

<= n\n\n imin, imax, half len = 0, m, (m + n + 1) // 2\n\n

while imin <= imax:\n i = (imin + imax) // 2\n j = half len

- i\n if i < m and nums2[j - 1] > nums1[i]:\n imin = i + 1 #

i is too small, increase it\n elif i > 0 and nums1[i - 1] >

nums2[j]:\n imax = i - 1 # i is too big, decrease it\n else:\n

i is perfect\n\n if i == 0:\n max left = nums2[j - 1]\n

elif j == 0:\n max left = nums1[i - 1]\n else:\n max left

= max(nums1[i - 1], nums2[j - 1])\n\n if (m + n) % 2 == 1:\n

return max left\n\n if i == m:\n min right = nums2[j]\n

elif j == n:\n min right = nums1[i]\n else:\n min right =

min(nums1[i], nums2[j])\n\n return (max left + min right) /

2.0\n\n# Example usage\nnums1 = [1, 3]\nnums2 = [2]\nmedian =

find median sorted arrays(nums1, nums2)\nprint(f"The median of

{nums1} and {nums2} is: {median}")\n\n\n**Explanation:**\n\n1.

Handle Unequal Lengths:\n - If ‘nums1‘ is longer than

‘nums2‘, swap them to ensure ‘nums1‘ is always the shorter

array. This simplifies the logic.\n\n2. **Binary Search:**\n

- The core idea is to use binary search on the shorter array

(‘nums1‘).\n - ‘imin‘ and ‘imax‘ define the search range for

the partition point ‘i‘ in ‘nums1‘.\n - ‘half len‘ calculates

the desired total number of elements on the left side of the

partition (to find the median).\n\n3. **Partitioning:**\n - In

each iteration, ‘i‘ divides ‘nums1‘ into two parts: ‘nums1[0:i]‘

and ‘nums1[i:m]‘.\n - ‘j‘ is calculated to divide ‘nums2‘ so that

the total number of elements on the left side is ‘half len‘.\n\n4.

Adjusting the Partition:\n - We compare elements at the

boundaries of the partitions to see if ‘i‘ is in the correct

position:\n - If ‘nums2[j - 1] > nums1[i]‘, ‘i‘ is too small,

so we move ‘imin‘ to ‘i + 1‘.\n - If ‘nums1[i - 1] > nums2[j]‘,

‘i‘ is too large, so we move ‘imax‘ to ‘i - 1‘.\n\n5. **Finding

the Median:**\n - Once ‘i‘ is in the correct position, we

find:\n - ‘max left‘: The maximum element in the left partitions

of both arrays.\n - ‘min right‘: The minimum element in the

right partitions of both arrays.\n - If the total length is odd,

‘max left‘ is the median.\n - If the total length is even, the

median is the average of ‘max left‘ and ‘min right‘.\n\n**Time

Complexity:** O(log(min(m, n))) because we perform binary search

on the shorter array.\n\n**Space Complexity:** O(1) as we only

use a constant amount of extra space for variables.

python\n\def find median sorted arrays(nums1, nums2):\n """\n

Finds the median of two sorted arrays of different sizes.\n\n

Args:\n nums1: The first sorted array.\n nums2: The second

sorted array.\n\n Returns:\n The median of the two sorted

arrays.\n """\n\n m, n = len(nums1), len(nums2)\n if m

> n:\n nums1, nums2, m, n = nums2, nums1, n, m # Ensure m

<= n\n\n imin, imax, half len = 0, m, (m + n + 1) // 2\n\n

while imin <= imax:\n i = (imin + imax) // 2\n j = half len

- i\n if i < m and nums2[j - 1] > nums1[i]:\n imin = i + 1 #

i is too small, increase it\n elif i > 0 and nums1[i - 1] >

nums2[j]:\n imax = i - 1 # i is too big, decrease it\n else:\n

i is perfect\n\n if i == 0:\n max left = nums2[j - 1]\n

elif j == 0:\n max left = nums1[i - 1]\n else:\n max left

= max(nums1[i - 1], nums2[j - 1])\n\n if (m + n) % 2 ==

1:\n return max left\n\n if i == m:\n min right = nums2[j]\n

elif j == n:\n min right = nums1[i]\n else:\n min right =

min(nums1[i], nums2[j])\n\n return (max left + min right) /

2.0\n\n# Example usage\nnums1 = [1, 3]\nnums2 = [2]\nmedian =

find median sorted arrays(nums1, nums2)\nprint(f"The median of

{nums1} and {nums2} is: {median}")\n\n\n**Explanation:**\n\n1.

Handle Unequal Lengths:\n - If ‘nums1‘ is longer than

‘nums2‘, swap them to ensure ‘nums1‘ is always the shorter

array. This simplifies the logic.\n\n2. **Binary Search:**\n

- The core idea is to use binary search on the shorter array

(‘nums1‘).\n - ‘imin‘ and ‘imax‘ define the search range for the

partition point ‘i‘ in ‘nums1‘.\n - ‘half len‘ calculates the

desired total number of elements on the left side of the partition

(to find the median).\n\n3. **Partitioning:**\n - In each

iteration, ‘i‘ divides ‘nums1‘, and ‘j‘ divides ‘nums2‘ such that

the total number of elements on the left side is ‘half len‘.\n\n4.

Adjusting the Search Range:\n - If ‘nums2[j - 1] > nums1[i]‘,

it means ‘i‘ is too small, so we need to move the partition

point in ‘nums1‘ to the right (‘imin = i + 1‘).\n - If ‘nums1[i

- 1] > nums2[j]‘, ‘i‘ is too large, so we move it to the left

(‘imax = i - 1‘).\n\n5. **Finding the Median:**\n - When the

correct partition is found (‘i‘ is in the right position), we

find:\n - ‘max left‘: The maximum element on the left side of

the partition.\n - ‘min right‘: The minimum element on the right

side of the partition.\n - If the total number of elements is

odd, ‘max left‘ is the median.\n - If even, the median is the

average of ‘max left‘ and ‘min right‘.\n\n**Time Complexity:**

O(log(min(m, n))) because we are performing binary search on the

shorter array.\n\n**Space Complexity:** O(1) as we are only using

a constant amount of extra space for variables.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s answer is correct and provides a detailed

explanation of the code. The assistant correctly states that the

time complexity is O(log(min(m, n))) and the space complexity is

O(1), which aligns with the reference answer. The assistant also

provides an example usage of the function, which is helpful for

understanding how to use it. The assistant’s code is a different

implementation than the reference answer, but it achieves the same

result and meets the same complexity requirements.

However, the assistant’s answer does not address the user’s

original question about achieving O(n) time complexity. The

assistant should have clarified that it’s not possible to find the

median of two sorted arrays of different sizes with O(1) space

complexity and O(n) time complexity, as stated in the reference

answer.

Rating: [[8]], "score": 8, "turn": 1, "tstamp":

1722737514.2011044

The assistant’s answer is correct and provides a detailed

explanation of the code. The assistant correctly states that

the time complexity is O(log(min(m, n))) and the space complexity

is O(1), which aligns with the reference answer. The assistant

also provides a step-by-step explanation of the code, which is

very helpful for understanding the logic behind the solution.

The assistant’s code is also correct and will correctly find the

median of two sorted arrays of different sizes. Therefore, there

are no corrections needed for the assistant’s response.

Rating: [[10]], "score": 10, "turn": 1, "tstamp":

1722846533.772981

Table 13: (Continued) comparison of model generations on examples from MT-Bench.

16

1st-turn prompt: You are given two sorted lists of size m and n. Implement a function to find the kth

smallest element in the union of the two lists with linear complexity.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

‘‘‘python\n\def find kth smallest(list1, list2, k):\n

"""\n Finds the kth smallest element in the union

of two sorted lists.\n\n Args:\n list1: The first

sorted list.\n list2: The second sorted list.\n

k: The desired kth smallest element.\n\n Returns:\n

The kth smallest element in the union of the two

lists.\n """\n\n m, n = len(list1), len(list2)\n

i, j = 0, 0\n min heap = [] \n\n # Build a min-heap

with the first elements of both lists\n for x in

range(min(m, n)):\n heapq.heappush(min heap, (list1[x],

x, 0)) # (value, list index, position in list)\n

heapq.heappush(min heap, (list2[x], x, 1))\n\n #

Extract k smallest elements from the heap\n for in

range(k - 1):\n , , = heapq.heappop(min heap)\n\n #

The top element of the heap is the kth smallest\n

return heapq.heappop(min heap)[0]\n\n# Example

usage:\nlist1 = [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9,

10]\nk = 5\nkth smallest = find kth smallest(list1,

list2, k)\nprint(f"The {k}th smallest element

is: {kth smallest}")\n\n\n**Explanation:**\n\n1.

Initialization:\n - ‘m‘ and ‘n‘ store the lengths

of the input lists.\n - ‘i‘ and ‘j‘ are pointers

to track the current position in each list.\n -

‘min heap‘ is a min-heap used to efficiently store

and retrieve the smallest elements encountered so

far.\n\n2. **Building the Min-Heap:**\n - The code

iterates through the first ‘min(m, n)‘ elements of

both lists.\n - For each element, a tuple ‘(value,

list index, position in list)‘ is pushed onto the

‘min heap‘. This tuple helps us keep track of

the element’s value, the list it belongs to, and

its original position.\n\n3. **Extracting k-1

Smallest Elements:**\n - The ‘for‘ loop runs ‘k -

1‘ times, effectively extracting the ‘k-1‘ smallest

elements from the ‘min heap‘.\n\n4. **Finding the kth

Smallest:**\n - After the loop, the top element of

the ‘min heap‘ contains the ‘k‘th smallest element.\n

- ‘heapq.heappop(min heap)‘ removes and returns this

element.\n\n**Time Complexity:**\n\n- Building the

min-heap: O(m + n)\n- Extracting k-1 elements: O(k *

log(k))\n- Overall: **O(m + n + k * log(k))**, which

is approximately **O(m + n)** since ‘k‘ is usually much

smaller than ‘m + n‘.\n\n\n\nLet me know if you have

any other questions!

‘‘‘python\n\def find kth smallest(list1, list2, k):\n

"""\n Finds the kth smallest element in the union

of two sorted lists.\n\n Args:\n list1: The first

sorted list.\n list2: The second sorted list.\n

k: The desired rank of the smallest element.\n\n

Returns:\n The kth smallest element in the union of

the lists.\n """\n\n i = 0 # Index for list1\n j =

0 # Index for list2\n merged = [] # Store the merged

elements\n\n while i < len(list1) and j < len(list2):\n

if list1[i] <= list2[j]:\n merged.append(list1[i])\n

i += 1\n else:\n merged.append(list2[j])\n j

+= 1\n\n # Add any remaining elements from list1\n

while i < len(list1):\n merged.append(list1[i])\n

i += 1\n\n # Add any remaining elements from list2\n

while j < len(list2):\n merged.append(list2[j])\n

j += 1\n\n return merged[k - 1] # Return the kth

element (index k-1)\n\n# Example usage:\nlist1

= [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9, 10]\nk

= 5\n\nkth smallest = find kth smallest(list1,

list2, k)\nprint(f"The {k}th smallest element

is: {kth smallest}")\n\n\n**Explanation:**\n\n1.

Initialization:\n - ‘i‘ and ‘j‘ are index pointers

for ‘list1‘ and ‘list2‘ respectively, starting at

0.\n - ‘merged‘ is an empty list to store the merged

sorted elements.\n\n2. **Merging:**\n - The ‘while‘

loop continues as long as both ‘i‘ and ‘j‘ are within

the bounds of their respective lists.\n - In each

iteration, it compares the elements at ‘list1[i]‘

and ‘list2[j]‘.\n - The smaller element is appended

to ‘merged‘, and the corresponding index (‘i‘ or

‘j‘) is incremented.\n\n3. **Adding Remaining

Elements:**\n - After one list is exhausted, the

remaining elements from the other list are directly

appended to ‘merged‘.\n\n4. **Returning the kth

Element:**\n - Finally, ‘merged[k - 1]‘ is returned,

which represents the kth smallest element in the union

(remember that list indices start from 0).\n\n**Linear

Complexity:**\n\n- The algorithm iterates through each

element in both lists at most once during the merging

process.\n- The time complexity is therefore O(m + n),

which is linear in the total number of elements (m +

n), making it efficient for large lists.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s answer is incorrect. The user asked

for a solution with linear complexity, but the

assistant provided a solution with a time complexity

of O(m + n + k * log(k)), which is not linear. The

assistant’s solution uses a min-heap, which is not

necessary and adds unnecessary complexity to the

solution.

Rating: [[2]], "score": 2, "turn": 1, "tstamp":

1722737030.6411152

The assistant’s answer is correct and helpful. It

provides a Python function that implements the

two-pointer approach to find the kth smallest element

in the union of two sorted lists. The assistant’s

function is slightly different from the reference, but

it achieves the same goal. The assistant’s function

merges the two lists into a new list and then returns

the kth element from the merged list. The assistant

also provides a detailed explanation of how the

function works and confirms that the time complexity

is linear, which is what the user asked for. However,

the assistant’s function uses extra space to store

the merged list, which is not necessary and not as

efficient as the reference.

Rating: [[8]], "score": 8, "turn": 1, "tstamp":

1722846543.867601

Table 14: (Continued) comparison of model generations on examples from MT-Bench.

17

2nd-turn prompt: Does there exist an algorithm with better time complexity? If so, implement it.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

You are absolutely right! There’s a more efficient algorithm

with a time complexity of **O(m + n)** without using a

heap.\n\nHere’s the implementation:\n\npython\n\def

find kth smallest optimized(list1, list2, k):\n """\n Finds

the kth smallest element in the union of two sorted lists\n with

O(m + n) time complexity.\n\n Args:\n list1: The first sorted

list.\n list2: The second sorted list.\n k: The desired kth

smallest element.\n\n Returns:\n The kth smallest element in the

union of the two lists.\n """\n m, n = len(list1), len(list2)\n i,

j = 0, 0\n result = []\n\n # Merge the lists while keeping track

of the kth smallest\n while len(result) < k:\n if i < m and j <

n:\n if list1[i] <= list2[j]:\n result.append(list1[i])\n

i += 1\n else:\n result.append(list2[j])\n j += 1\n

elif i < m:\n result.append(list1[i])\n i += 1\n else:\n

result.append(list2[j])\n j += 1\n\n return result[k - 1]\n\n#

Example usage:\nlist1 = [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9,

10]\nk = 5\nkth smallest = find kth smallest optimized(list1,

list2, k)\nprint(f"The {k}th smallest element

is: {kth smallest}")\n\n\n**Explanation:**\n\n1.

Initialization:\n - ‘m‘ and ‘n‘ store the lengths of the

lists.\n - ‘i‘ and ‘j‘ are pointers for ‘list1‘ and ‘list2‘,

respectively.\n - ‘result‘ is a list to store the merged and

sorted elements.\n\n2. **Merging and Tracking:**\n - The ‘while‘

loop continues until ‘k‘ elements are in the ‘result‘ list.\n -

In each iteration, it compares the current elements from ‘list1‘

and ‘list2‘.\n - The smaller element is appended to ‘result‘,

and the corresponding pointer (‘i‘ or ‘j‘) is incremented.\n

- If one list is exhausted, the remaining elements from the

other list are appended to ‘result‘.\n\n3. **Returning the

kth Smallest:**\n - Finally, ‘result[k - 1]‘ contains the ‘k‘th

smallest element.\n\n**Time Complexity:**\n\n- The algorithm

iterates through both lists once, resulting in a time complexity

of **O(m + n)**.\n\n\n\nLet me know if you have any more

questions!

You are right to ask! While the previous algorithm has linear

time complexity, we can achieve an even better solution with

O(log(min(m, n))) time complexity using a slightly more

sophisticated approach.\n\nThe key idea is to leverage

the sorted nature of the lists and use a **binary search**

strategy.\n\nHere’s the implementation:\n\n\##\npython\n\def

find kth smallest optimized(list1, list2, k):\n """\n Finds

the kth smallest element in the union of two sorted lists with

O(log(min(m, n))) time complexity.\n\n Args:\n list1: The

first sorted list.\n list2: The second sorted list.\n k: The

desired rank of the smallest element.\n\n Returns:\n The kth

smallest element in the union of the lists.\n """\n m, n =

len(list1), len(list2)\n if m > n:\n list1, list2, m, n = list2,

list1, n, m # Ensure list1 is the shorter one\n\n left, right

= 0, m\n while left <= right:\n partitionX = (left + right) //

2\n partitionY = k - partitionX\n\n maxLeftX = list1[partitionX

- 1] if partitionX > 0 else float(’-inf’)\n minRightX =

list1[partitionX] if partitionX < m else float(’inf’)\n\n

maxLeftY = list2[partitionY - 1] if partitionY > 0 else

float(’-inf’)\n minRightY = list2[partitionY] if partitionY

< n else float(’inf’)\n\n if maxLeftX <= minRightY and maxLeftY

<= minRightX:\n if partitionX == 0:\n return list2[partitionY

- 1]\n elif partitionY == 0:\n return list1[partitionX - 1]\n

else:\n return max(list1[partitionX - 1], list2[partitionY

- 1])\n elif maxLeftX > minRightY:\n right = partitionX - 1

Too many elements on the right side of list1\n else:\n

left = partitionX + 1 # Too many elements on the right side of

list2\n\n\n**Explanation:**\n\n1. **Shorten Lists:** If ‘list1‘

is longer than ‘list2‘, swap them to ensure ‘list1‘ is always

the shorter one. This simplifies the logic.\n\n2. **Binary

Search:**\n - ‘left‘ and ‘right‘ pointers define the search space

within ‘list1‘.\n - ‘partitionX‘ is the middle point in ‘list1‘,

and ‘partitionY‘ is calculated to divide the remaining elements in

‘list2‘ such that ‘partitionX + partitionY = k‘.\n - ‘maxLeftX‘,

‘minRightX‘, ‘maxLeftY‘, and ‘minRightY‘ represent the largest

element to the left and smallest element to the right of the

partitions in both lists.\n\n3. **Comparison and Adjustment:**\n

- If the ‘maxLeftX‘ is less than or equal to ‘minRightY‘ and

‘maxLeftY‘ is less than or equal to ‘minRightX‘, it means the kth

smallest element lies within the current partitions. We return

the larger of ‘maxLeftX‘ and ‘maxLeftY‘.\n - If ‘maxLeftX‘ is

greater than ‘minRightY‘, it indicates that we need to search

in the left subarray of ‘list1‘ (i.e., decrease ‘right‘).\n -

Otherwise, we search in the right subarray of ‘list1‘ (i.e.,

increase ‘left‘).\n\n4. **Termination:** The binary search

continues until ‘left‘ crosses ‘right‘, indicating the correct

partition has been found.\n\n**Time Complexity:**\n\n- The

binary search divides the search space in half at each step.\n-

Therefore, the time complexity is O(log(min(m, n))), which is

significantly faster than linear time for large lists where one

list is much smaller than the other.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s first response to the user’s question is

incorrect. The user asked for a function to find the kth smallest

element in the union of two sorted lists with linear complexity.

The assistant provided a function that uses a min-heap, which

has a time complexity of O(m + n + k * log(k)). This is not

linear complexity, as the user requested. The assistant’s second

response to the user’s question is also incorrect. The user

asked if there exists an algorithm with better time complexity

than linear. The assistant provided a function that has a

time complexity of O(m + n), which is linear, not better than

linear. The assistant should have provided a function that uses a

binary search approach, which has a time complexity of O(log(m) +

log(n)), as the reference answer correctly does.

Rating: [[2]], "score": 2, "turn": 2, "tstamp":

1722737031.5033472

The assistant’s response is correct and helpful. The assistant

provided a Python function that uses a binary search approach to

find the kth smallest element in the union of two sorted lists.

The assistant also provided a detailed explanation of how the

function works, including the time complexity of the function.

The assistant’s answer matches the reference answer in terms of

the algorithm used and the explanation provided. The assistant

also correctly identified that the binary search approach has

a better time complexity than the linear approach. However,

the assistant’s code has a minor issue. The assistant’s code

does not handle the case when ‘k‘ is greater than the sum of the

lengths of the two lists. In such a case, the code will raise

an ‘IndexError‘. This can be fixed by adding a check at the

beginning of the function to return ‘None‘ if ‘k‘ is greater than

the sum of the lengths of the two lists.

Rating: [[9]], "score": 9, "turn": 2, "tstamp":

1722846556.6828268

Table 15: (Continued) comparison of model generations on examples from MT-Bench.

18

References
Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity

in continual deep reinforcement learning. In Conference on Lifelong Learning Agents, pages
620–636. PMLR, 2023.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and
Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Cem Anil, Guodong Zhang, Yuhuai Wu, and Roger Grosse. Learning to give checkable answers with
prover-verifier games. arXiv preprint arXiv:2108.12099, 2021.

Jordan T Ash and Ryan P Adams. On the difficulty of warm-starting neural network training. arXiv
preprint arXiv:1910.08475, 2019.

Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal reinforcement learning with self-play. Advances in
neural information processing systems, 33:2159–2170, 2020.

Alfredo Banos. On pseudo-games. The Annals of Mathematical Statistics, 39(6):1932–1945, 1968.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.

Michael Beukman, Samuel Coward, Michael Matthews, Mattie Fellows, Minqi Jiang, Michael
Dennis, and Jakob Foerster. Refining Minimax Regret for Unsupervised Environment Design.
arXiv preprint arXiv:2402.12284, 2024.

Seth Chaiklin et al. The zone of proximal development in Vygotskys analysis of learning and
instruction. Vygotskys educational theory in cultural context, 1(2):39–64, 2003.

Eugene Choi, Arash Ahmadian, Matthieu Geist, Oilvier Pietquin, and Mohammad Gheshlaghi Azar.
Self-Improving Robust Preference Optimization. arXiv preprint arXiv:2406.01660, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Provably sample
efficient rlhf via active preference optimization. arXiv preprint arXiv:2402.10500, 2024.

Peter Dayan and Geoffrey E Hinton. Using expectation-maximization for reinforcement learning.
Neural Computation, 9(2):271–278, 1997.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Parash Rahman, A Rupam Mahmood, and
Richard S Sutton. Maintaining plasticity in deep continual learning. arXiv preprint
arXiv:2306.13812, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. RLHF Workflow: From Reward Modeling to Online
RLHF, 2024.

19

https://arxiv.org/abs/2303.07507
https://arxiv.org/abs/2303.07507
https://arxiv.org/html/2402.14740v1
https://arxiv.org/html/2402.14740v1
https://arxiv.org/pdf/2108.12099
https://arxiv.org/pdf/2108.12099
https://arxiv.org/abs/1910.08475
https://arxiv.org/pdf/2006.12007
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-39/issue-6/On-Pseudo-Games/10.1214/aoms/1177698023.full
https://ronan.collobert.com/pub/2009_curriculum_icml.pdf
https://arxiv.org/abs/2402.12284
https://blogs.ubc.ca/vygotsky/files/2013/11/chaiklin.zpd_.pdf
https://blogs.ubc.ca/vygotsky/files/2013/11/chaiklin.zpd_.pdf
https://arxiv.org/abs/2406.01660
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2402.10500
https://arxiv.org/abs/2402.10500
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=628b80ac7952a67155d62e10dc2854ac8c04a6e4
https://arxiv.org/abs/2012.02096
https://arxiv.org/abs/2012.02096
https://arxiv.org/abs/2306.13812
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2304.06767
https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B
https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Ky Fan. Minimax theorems. Proceedings of the National Academy of Sciences, 39(1):42–47, 1953.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes,
Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, et al. Is model collapse in-
evitable? breaking the curse of recursion by accumulating real and synthetic data. arXiv preprint
arXiv:2404.01413, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and
Dorsa Sadigh. Contrastive prefence learning: Learning from human feedback without rl. arXiv
preprint arXiv:2310.13639, 2023.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Edward Hughes, Michael Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
Shi, Tom Schaul, and Tim Rocktaschel. Open-Endedness is Essential for Artificial Superhuman
Intelligence. arXiv preprint arXiv:2406.04268, 2024.

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R Ganger,
Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating deep
learning by focusing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021a.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pages 4940–4950. PMLR, 2021b.

Kenji Kawaguchi and Haihao Lu. Ordered sgd: A new stochastic optimization framework for
empirical risk minimization. In International Conference on Artificial Intelligence and Statistics,
pages 669–679. PMLR, 2020.

John Maynard Keynes. A treatise on probability. Courier Corporation, 1921.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang, Shao-
han Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, et al. Synthetic data (almost) from
scratch: Generalized instruction tuning for language models. arXiv preprint arXiv:2402.13064,
2024a.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
zalez, and Ion Stoica. From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and
BenchBuilder Pipeline. arXiv preprint arXiv:2406.11939, 2024b.

20

https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://www.jstor.org/stable/88653
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2308.08998
https://arxiv.org/abs/2308.08998
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=ZG3RaNIsO8
https://arxiv.org/abs/2310.13639
https://arxiv.org/abs/2403.07691
https://arxiv.org/abs/2403.07691
https://arxiv.org/abs/2210.11610
https://arxiv.org/pdf/2406.04268
https://arxiv.org/pdf/2406.04268
https://arxiv.org/abs/1910.00762
https://arxiv.org/abs/1910.00762
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2110.02439
https://arxiv.org/pdf/2010.03934
https://proceedings.mlr.press/v108/kawaguchi20a.html
https://proceedings.mlr.press/v108/kawaguchi20a.html
https://www.gutenberg.org/files/32625/32625-pdf.pdf
https://arxiv.org/abs/2402.13064
https://arxiv.org/abs/2402.13064
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939

Chris Yuhao Liu and Liang Zeng. Skywork Reward Model Series. https://huggingface.co
/Skywork, September 2024. URL https://huggingface.co/Skywork.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang.
On llms-driven synthetic data generation, curation, and evaluation: A survey. arXiv preprint
arXiv:2406.15126, 2024.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple Preference Optimization with a Reference-
Free Reward. arXiv preprint arXiv:2405.14734, 2024.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In International Conference
on Machine Learning, pages 15630–15649. PMLR, 2022.

William Muldrew, Peter Hayes, Mingtian Zhang, and David Barber. Active Preference Learning for
Large Language Models. arXiv preprint arXiv:2402.08114, 2024.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
learning from human feedback. arXiv preprint arXiv:2312.00886, 2023.

John F Nash et al. Non-cooperative games. Princeton University, 1950.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
International Conference on Machine Learning, pages 17473–17498. PMLR, 2022.

Gabriel Poesia, David Broman, Nick Haber, and Noah D Goodman. Learning Formal Mathematics
From Intrinsic Motivation. arXiv preprint arXiv:2407.00695, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model
based reinforcement learning. In International conference on machine learning, pages 7953–7963.
PMLR, 2020.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct Nash Optimization: Teaching Language Models to Self-Improve with
General Preferences. arXiv preprint arXiv:2404.03715, 2024.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
research and development, 3(3):210–229, 1959.

Mikayel Samvelyan, Akbir Khan, Michael Dennis, Minqi Jiang, Jack Parker-Holder, Jakob Foerster,
Roberta Raileanu, and Tim Rocktäschel. MAESTRO: Open-ended environment design for multi-
agent reinforcement learning. arXiv preprint arXiv:2303.03376, 2023.

21

https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://arxiv.org/abs/2406.15126
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/pdf/2405.14734
https://arxiv.org/pdf/2405.14734
https://arxiv.org/abs/2206.07137
https://arxiv.org/abs/2206.07137
https://arxiv.org/pdf/2402.08114
https://arxiv.org/pdf/2402.08114
https://arxiv.org/pdf/2312.00886
https://arxiv.org/pdf/2312.00886
https://www.cs.upc.edu/~ia/nash51.pdf
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2203.01302
https://arxiv.org/pdf/2407.00695
https://arxiv.org/pdf/2407.00695
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2004.07804
https://arxiv.org/abs/2004.07804
https://arxiv.org/abs/2404.03715
https://arxiv.org/abs/2404.03715
https://arxiv.org/pdf/1707.02038
https://arxiv.org/pdf/1707.02038
https://people.csail.mit.edu/brooks/idocs/Samuel.pdf
https://arxiv.org/abs/2303.03376
https://arxiv.org/abs/2303.03376

Leonard J Savage. The theory of statistical decision. Journal of the American Statistical association,
46(253):55–67, 1951.

Hans-Paul Schwefel. Evolutionsstrategien fr die numerische Optimierung. Springer, 1977.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial
Intelligence, 299:103535, 2021.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming
Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with
minimal human supervision. Advances in Neural Information Processing Systems, 36, 2024.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 761–768, 2011.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano
Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage suboptimal,
on-policy data. arXiv preprint arXiv:2404.14367, 2024.

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Rowland,
Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Generalized
preference optimization: A unified approach to offline alignment. arXiv preprint arXiv:2402.05749,
2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS), pages 23–30. IEEE,
2017.

Hoang Tran, Chris Glaze, and Braden Hancock. Iterative DPO Alignment. Technical report, Snorkel
AI, 2023.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson Ho.
Will we run out of data? Limits of LLM scaling based on human-generated data. arXiv preprint
arXiv:2211.04325, 2024.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable Preferences
via Multi-Objective Reward Modeling and Mixture-of-Experts. arXiv preprint arXiv:2406.12845,
2024.

22

https://www.jstor.org/stable/2280094
https://search.worldcat.org/title/Evolutionsstrategie-und-numerische-Optimierung/oclc/52361662
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://www.sciencedirect.com/science/article/pii/S0004370221000862
https://arxiv.org/abs/2312.06585
https://arxiv.org/abs/2312.06585
https://arxiv.org/abs/1703.05407
https://arxiv.org/abs/2305.03047
https://arxiv.org/abs/2305.03047
https://www.cs.swarthmore.edu/~meeden/DevelopmentalRobotics/horde1.pdfhttps://www.cs.swarthmore.edu/~meeden/DevelopmentalRobotics/horde1.pdf
https://www.cs.swarthmore.edu/~meeden/DevelopmentalRobotics/horde1.pdfhttps://www.cs.swarthmore.edu/~meeden/DevelopmentalRobotics/horde1.pdf
https://arxiv.org/abs/2404.14367
https://arxiv.org/abs/2404.14367
https://arxiv.org/abs/2402.05749
https://arxiv.org/abs/2402.05749
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1703.06907
https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
https://arxiv.org/pdf/2211.04325
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Huasen Wu and Xin Liu. Double thompson sampling for dueling bandits. Advances in neural
information processing systems, 29, 2016.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023a.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
2023b.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs
with Nothing. arXiv preprint arXiv:2406.08464, 2024.

Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei Zheng, and Yang You. To repeat or not to repeat:
Insights from scaling llm under token-crisis. Advances in Neural Information Processing Systems,
36, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Rui Zheng, Hongyi Guo, Zhihan Liu, Xiaoying Zhang, Yuanshun Yao, Xiaojun Xu, Zhaoran Wang,
Zhiheng Xi, Tao Gui, Qi Zhang, et al. Toward Optimal LLM Alignments Using Two-Player Games.
arXiv preprint arXiv:2406.10977, 2024.

23

https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/1604.07101
https://arxiv.org/abs/2405.00675
https://arxiv.org/abs/2405.00675
https://arxiv.org/pdf/2312.11456
https://arxiv.org/pdf/2312.11456
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2312.16682
https://arxiv.org/abs/2312.16682
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2305.13230
https://arxiv.org/abs/2305.13230
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2305.10425
https://arxiv.org/abs/2305.10425
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/pdf/2406.10977

	Introduction
	Method
	The Principle: Open-ended RLHF for Joint Self-Improvement
	The Mechanism: Asymmetric Self-Play via the Creator v.s. Solver Game

	Main Experimental Results
	Concluding Remarks
	Preliminaries
	The Practical Algorithm
	The Creator Step: Estimate, Sample then Evolve
	The Solver Step: Solve then Optimize

	Understanding eva in Different Intuitive Ways
	Additional Experimental Settings
	Ablation Studies
	The Choice of Informativeness Metrics: info(·)
	The Effect of the sample-then-evolve procedure
	Scaling Pointwise and Pairwise Reward Models
	eva Improves Both Sample Efficiency and Generalization

	Additional Experimental Results
	Related Works
	Future Directions
	Appendix on Reproducibility
	Examples on Prompts and Model Generations

