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ABSTRACT

Despite the non-convex landscape, first-order methods can be shown to reach global
minima when training overparameterized neural networks, where the number
of parameters far exceed the number of training data. In this work, we prove
linear convergence of stochastic gradient descent when training a two-layer neural
network with smooth activations. While the existing theory either requires a high
degree of overparameterization or non-standard initialization and training strategies,
e.g., training only a single layer, we show that a subquadratic scaling on the width
is sufficient under standard initialization and training both layers simultaneously if
the minibatch size is sufficiently large and it also grows with the number of training
examples. Via the batch size, our results interpolate between the state-of-the-art
subquadratic results for gradient descent and the quadratic results in the worst case.

1 INTRODUCTION

Our understanding of the optimization landscape of supervised learning with neural networks has
vastly improved in recent years. This is in part due to the observation that overparameterization is
key to overcome the pitfalls of first-order methods in general non-convex problems (Soltanolkotabi
et al., 2019). Under this assumption, a line of research has established convergence of first-order
methods such as gradient descent (GD) to global optimality, (Allen-Zhu et al., 2019; Kawaguchi &
Huang, 2019; Du et al., 2019; Du & Lee, 2018; Zou & Gu, 2019; Brutzkus & Globerson, 2017; Song
& Yang, 2019; Oymak & Soltanolkotabi, 2020), a phenomenon that has been confirmed in practice.

Empirically, as long as the width of a network scales linearly with the size of the training data (mild
overparameterization), stochastic gradient descent (SGD) enjoys fast convergence to global optimality
(Livni et al., 2014; Safran & Shamir, 2018; Oymak & Soltanolkotabi, 2020; Kawaguchi & Huang,
2019). Can we explain such behavior theoretically? Sadly, the available characterizations require
a larger degree of overparameterization, or imposes additional assumptions, which do not hold for
the algorithms that are used in practice. For example, if GD is applied exclusively to the last layer,
Kawaguchi & Huang (2019) show that an ideal linear scaling of the width is sufficient to guarantee
convergence. Song & Yang (2019) prove quadratic scaling when GD is applied only to the first layer.

For two-layer neural networks, when both layers are trained with GD simultaneously, state-of-the-art
results show that subquadratic (not linear) scaling is enough to converge to global optimality (Anony-
mous). Despite being close to the ideal linear rate of overparameterization, due to computational
constraints, GD is rarely used in modern applications involving huge datasets. Hence, closing the gap
between theory and practice requires studying scalable first-order algorithms such as SGD. Our work
focuses on mini-batch SGD, which is one of the most common algorithms for training deep models.
We study convergence of SGD when it is applied to train both layers of a neural network, which is
initialized with standard initialization schemes.

Our contributions:

* We show that under proper initialization and choice of learning rate, the iterates of SGD
converge to a global minimum with high probability and exponentially fast for a general
non-convex problem assuming that the loss function satisfies a growth condition.

* For the special case a two-layer neural network, we show that a subquadratic scaling on the
width is sufficient under standard initialization and training both layers simultaneously, if the
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Reference Algorithm Activation Setting Scaling
Oymak & Soltanolkotabi (2020)  SGD on layer 1 ReLU QL Q(n?)
Song & Yang (2019) GD on layer 1 ReLU SD Q(n?)
Kawaguchi & Huang (2019) GD on layer 2 ReLU CLL Q(n)
Du et al. (2019) GD ReLU  SD+QL Q(n®)
Zou & Gu (2019) GD ReLU  SD+QL Q(n®)
Anonymous GD smooth QL Q(n?) or Q(n?)
Allen-Zhu et al. (2019) SGD ReLU SD+QL Q(n?)
This paper SGD smooth QL Q(n?2) or Q(n?)

Table 1: Required degree of Overparameterization for training shallow networks with global convergence
guarantees. QL=quadratic loss, CLL=convex and Lipschitz loss, SD=separable data. The notation €2 ignores
logarithmic factors.

minibatch size is sufficiently large and it also grows with the number of training examples.
For constant batch size, we show that quadratic overparametrization is sufficient. Our results
interpolate between subquadratic and quadratic scalings depending on the batch size.

Related work. The majority of the existing literature on overparameterization focuses on GD (Du
et al., 2019; Du & Lee, 2018; Allen-Zhu et al., 2019; Zou & Gu, 2019). Allen-Zhu et al. (2019)
provided theoretical bounds for deep networks trained with SGD. However, their results require an
overparameterization degree that is too large, compared to what can be achieved for GD. In contrast,
we study SGD and how the batch size affects the required degree of overparameterization. Chen
et al. (2021) establish generalization guarantees and sufficient network width when SGD trains deep
ReLU networks for binary classification, which is a different setting compared to our paper.

We study the case where SGD updates all the parameters of a shallow neural network. In contrast,
a number of existing literature assume that only the parameters corresponding to some layers are
updated throughout training (Oymak & Soltanolkotabi, 2020; Kawaguchi & Huang, 2019; Song &
Yang, 2019). When SGD is applied only to the first layer, Oymak & Soltanolkotabi (2020) showed
that quadratic scaling is sufficient for convergence with linear rate. Despite being an interesting
theoretical setup, such algorithmic choice rarely happens in practice.

There are also differences regarding the choice of activation function. While ReLU can be considered
as the default activation function when studying deep neural networks, its non-smoothness may
be the reason why results for ReLU networks require substantially more number of parameters or
additional assumptions on the data (like separability) to guarantee convergence to a global minimum.
Moreover, backpropagation on ReLU networks does not correctly calculate the gradient at all points
of differentiability (Kakade & Lee, 2018; Bolte & Pauwels, 2021), which raises major technical
issues. In contrast, we assume a smooth activation, similar to Anonymous, which avoids such issues
and achieves lower overparameterization degrees.

The authors of (Anonymous) established subquadratic scaling when GD trains a shallow neural
network. In this paper, we focus on SGD, which results in substantial technical challenges. Compared
to the results in (Anonymous), controlling the length of the trajectory is more involved in this paper,
which requires a new analysis technique that bounds the length of the trajectory with high probability.
We consider the effect of mini-batch SGD, which shows an interpolation between subquadratic
and quadratic scaling. We also improve the estimates at initialization and show that more relaxed
assumptions are sufficient to establish sufficient overparameterization degree.

We summarize such recent results in the overparametrization literature in Table 1.

Lazy Training. Proving fast convergence to global optimality is not a complete answer. It has been
shown that despite fast convergence, it is possible that an algorithm tends towards a solution with
poor performance on test data, if the training falls in the so-called Lazy Training regime (Chizat
et al., 2019). Thus, any useful algorithmic framework for learning neural networks should avoid
this regime, usually through careful initialization schemes. For example, despite requiring only
linear overparametrization for GD, the initialization studied by Nguyen & Mondelli (2020) leads to
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the lazy regime. This is the reason why we omit such result from Table 1. In this work, we show
global convergence and achieve subquadratic scaling under standard initialization schemes, which
empirically perform well on test data.

Polylogarithmic width is enough to obtain convergence for neural networks of arbitrary depth,
according to Ji & Telgarsky (2020); Chen et al. (2021). However, in those work, convergence is
understood in an ergodic sense. This is a weaker notion than strict convergence with high probability,
which is the one we consider, and which better matches practical applications.

Given perfect knowledge about the underlying function that generates the labels and under the
assumption that such target function has low-rank approximation, Su & Yang (2019) showed that GD
achieves zero-approximation. This is different from the problem considered in our paper.

For a binary classification problem, Daniely (2020) showed that near linear network size is sufficient
for SGD to memorize random examples under a variant of Xavier initialization, which is a different
setting compared to our paper. For a deep neural network with pyramidal structure and smooth
activations, Nguyen & Mondelli (2020) showed that subquadratic scaling is sufficient for global
convergence of GD under a restrictive initialization scheme. In this paper, we establish global
convergence for SGD under standard initialization.

A recent line of work uses mean-field analysis to approximate the target distribution of the weights in
a neural network via their empirical distribution (Mei et al., 2019; Lu et al., 2020). Nevertheless,
such results do not provide useful overparametrization degree bounds in terms of the number of
samples. In contrast, our work does not require such approximations and we focus on deriving
explicit sufficient overparametrization rates for global optimality of SGD.

Notation. We use || - || to denote the Euclidean norm of a vector and Frobenius norm of a matrix.
We use V to represent the Jacobian of a vector-valued and gradient of a scalar-valued function. We
use ® and ® to represent the entry-wise Hadamard product and Kronecker product, respectively. We
use lower-case bold font to denote vectors. We use calligraphic and standard fonts to represent sets
and scalars, respectively. We use omin(7") and omax (T') to denote the smallest and largest singular
values of a linear map 7. We use [n] to represent {1, -+ ,n} for an integer n. We use O and (2 to
hide logarithmic factors and use < to ignore terms up to constant and logarithmic factors.

2 A GENERAL GLOBAL CONVERGENCE RESULT FOR SGD

In this section, we consider a general non-convex minimization problem and show that for a certain
choice of learning rate and careful initialization, the iterates of SGD converge to a global minimum
with high probability and exponentially fast. In Section 3, we extend our consideration to the training
of a shallow neural network and find the hidden layer size, which is sufficient for SGD to converge to
a global minimum i.e., its overparameterization degree.

Definition 1 (Smoothness). Let 3, > 0. A function ¢ : R — R is B,-smooth, if for all
u,v e R4 we have

Tmax (VY (1) = Vi) (v)) < Byllu—v]. (D
Definition 2 (PL condition (Bolte et al., 2017)). A function ¢ : R* — R satisfies the PL condition
if there exists oy, > 0 such that, for all u € R?, we have

[V (w)|?
Y(u) < W. (2

We are now ready to state our finite-sum compositional optimization problem:

weRd

min { h(w) = f((w)) = %ij(q)(w)) . RIS RY £ RIS R (3)
j=1

where m denotes the number of training examples.

Assumption 1. The functions introduced in Eq. (3) satisfy the following properties: (i) ® is twice-
differentiable and [3s-smooth (Definition 1), (ii) f is twice-differentiable and [3y-smooth and (iii) f
satisfies the PL condition with some oy > 0 (Definition 2).
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We study the iterates of the stochastic gradient descent (SGD) algorithm when applied to the objective
function h in Eq. (3). For i > 0, let Z* denote a random minibatch at iteration ¢ drawn uniformly at
random, independent of all previous draws. Let b € [m] denote the minibatch size, i.e., Ii| = b for
all . The SGD iterates are defined by a random variable w9, referred to as the initialization, and the
update rule:

with = wi — A% Z Vhj(w'), 4)
JETL?
where A > 0 is the learning rate and h;(w) = f;(®(w)) Vj, w.
jeTi Vh;(®(w?)) in Eq. (4) is an unbiased
estimator of the gradient VA(w?) given w', i.e., E [% > jeri Vhy (<I>(wi))|wZ} = Vh(w?). Never-
theless, this is not enough for SGD to converge to the first-order optimality. In addition, we will

assume that f in Eq. (3) satisfies the growth condition (Schmidt & Roux, 2013; Vaswani et al., 2019;
Cevher & Vu, 2019):

Definition 3 (Growth condition). A function v : R¢ — R with a finite-sum structure satisfies the
growth condition with minibatch size b if there exists 1y, > 0 such that, for all u € R?, we have

B[+ v ] < mlveml?, ®)
JET

An important feature of the SGD iterates is that % >

where the expectation is over the random choice of set T.
Assumption 2. In Eq. (3), f satisfies the growth condition (Definition 3) for some ny > 0.

We are now ready to state the main result of this section.
Theorem 1. Let Assumptions I and 2 hold and let { > 1. Suppose that at initialization,
6
0 < e < Tmin(VE* (W) < T (VE* (W) < vig,  h(w) = O (%) . (©)
CBansvg
Then, for a sufficiently small learning rate
A < min ( Hay , e )
~ s (BavgIVF(@(WO)l + Brvg + Bruevd)” Cy/nrve(Be V(W) + Brrens)
(7

the iterates of SGD {w'};>0 (4) converge to a global minimizer of h (3) with the optimal value of
zero, exponentially fast and with probability at least 1 — 1/(. The rate of convergence is given by

E[h(w')] < (1~ Chagpd)* - h(w®)

for a universal constant C.

Remark 1. The second item in Eq. (6) suggests initializing close to a global minimum of the non-
convex optimization problem. This feature has precedence in the related literature, e.g., in matrix
factorization (Chi et al., 2019).

The proof of Theorem 1 is deferred to Appendix B. However, in the remaining of this section we
provide a sketch of the main arguments that lead to the result. The first condition in Eq. (6) is central
to our arguments, and we will refer to it as the near-isometry property.

Definition 4 (Near-isometry). A linear map T : R% — R% is (u, v)-near-isometry if there exist
0 < p < v such that

u < Umin(T) < Umax(T) <. )]

Let W denote the limit point when the SGD algorithm is run with some learning rate and let V®* (W)
denote the adjoint operator of V®(W). Convergence of SGD is ensured with high probability due to
the strong growth condition (Definition 3) along with proper learning rate and initialization. We note
that W is a first-order stationary point of i. Hence we have:

0 = Vh(w) = VO (W) Vf(®(W)) ©)
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Note that if V®*(W) is nonsingular, it would follow that Vf(®(W)) = 0. The PL condition
(Definition 2) would then imply that ®(W) is a global minimizer of f and hence, a global minimizer
of h. With this fact in mind, our proof can be summarized in three steps: first, a careful choice of
initialization will ensure that V®* is nonsingular for all elements within a certain distance of w.
Second, we show that under small enough learning rate, the iterates of SGD remain close to the
initialization w”, with high probability regardless of the number of iterations.

The third and final step will use the non-singularity of V®* at convergence and Eq. (9) to conclude
global optimality.

This is akin to the arguments in (Anonymous), however, in our case the stochasticity in the SGD
updates poses a challenge for controlling the distance to initialization. We use concentration bounds
on the length of the path and show that the SGD trajectory remains in the region where V®* is
non-singular, with high probability.

A crucial result for the first step of our proof has already been established in by (Anonymous). It
shows that a smooth function that is near-isometry at initialization will preserve such property for all
points within a certain distance.

Lemma 1 (Anonymous). Let ® be Bg-smooth and N®*(wq) be a (j1¢, ve)-near-isometry. Then

for all w such that ||w — wg|| < 2”%, %I) < Opin (VO™ (W)) < oppax (VO™ (wW)) < 3? (10)
P

The second step in the proof of Theorem 1 is to compute the expected length of the SGD trajectory

which is spent inside the ball defined in Eq. (10). We find an upper bound on this expected length

depending on the initialization and learning rate, but independent of the number of iterations. Hence,

under some proper initialization and learning rate, we can control the expected length of the trajectory

for which Lemma 1 holds. In particular, we have

Proposition 1 (Expected length of trajectory). Let Assumptions 1 and 2 hold and let { > 1. Let the
random variable I denote the first iteration of SGD (Eq. (4)) such that
w! ¢ B :=ball(w’, pg) = {w: [|[w — w°|| < pa} (11)

or I = oo if the trajectory does not leave B. Suppose that w° satisfies Eq. (6) and SGD is executed
with sufficiently small learning rate, which satisfies Eq. (7). An upper bound on the expected length
of the SGD trajectory is given by

Mo Po
E[(D] < 505 = & (12)

We provide the sketch of the proof (see Appendix A for the complete proof). We first find an upper
bound on the expected length of the trajectory in terms of the norm of gradients of f. With a proper
learning rate, we find an upper bound on the norm of the gradient in terms of the expected decent
of f in two consecutive iterates, which are inside the ball. We also ensure that the learning rate is
sufficiently small such that E[||w! — w!~!|]] is bounded. Finally, under proper initialization, we
obtain an upper bound on the expected length of the trajectory for the iterates inside the ball, i.e.,
[ o Iw' = wi=|.

Remark 2. A similar phenomenon that shows bounded length of the trajectory has been observed
in various settings mainly for gradient descent (Du et al., 2019; Oymak & Soltanolkotabi, 2019;
Anonymous). In this paper, we focus on a compositional non-convex problem trained with SGD,
which is more challenging to analyze.

Using the upper bound (12) on the expected length of the trajectory spent inside B = ball(w’, pg ),
we can bound the probability that the SGD iterates leaves the ball B. Indeed, in order for the process
to leave B starting from w", it is required that the length of the trajectory spent inside B satisfies
I(I) > pg. Hence, using bound (12) on E[/(I)] together with a concentration bound (Markov
inequality in our case), we can upper bound the probability of SGD iterates leaving B. Finally, under
the event that the SGD iterates remain in B, an upper bound on E[¢(I)] implies the convergence of
the iterates.

Remark 3. With a more involved analysis on the concentration properties of the random variable
L(I), it may be possible to greatly improve the dependence of the initialization and step size on (.
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Indeed, the current analysis assumes the worst-case scenario, where the SGD iterates either remain
at the initialization, or directly leave the ball B in a straight line (this scenario indeed maximizes the
probability that the process leaves the ball, given a bound on E[£(I)]).

Although £(I) is obtained as a sum of random variables, the difficulty of obtaining better concentration
bounds for {(I) comes from the high level of dependence between all the variables involved. A better
analysis would thus need to better understand how the trajectories behave inside the ball B, e.g., by
bounding the variance of £(I).

In the following section, we specify our result to the special case of shallow neural networks. We
will show that, in the case of quadratic loss, the strong growth condition naturally holds, with a
constant depending on the batch size. Moreover, using Gaussian initialization for the neural network
parameters, we can control the initial smoothness and near-isometry parameters involved in Theorem 1
with high probability.

3 GLOBAL OPTIMALITY OF NEURAL NETWORKS TRAINED WITH SGD

Setup. We will consider the problem of training a shallow neural network with one hidden layer,
input dimension dj, d; hidden nodes, output dimension ds, and quadratic loss. We denote the data
and label matrices as X € R%*™ and Y € R% ™ respectively.

Let W € R4 %40 and V € R4 denote the parameters of the first and second layers of the network,
respectively. We collect both parameters in a variable © = (W, V) € R41xd0 x R¥>d1_In order to
fit the supervised training of the network to the template studied in Section 2 (Eq. (3)) we define:

(0) =V -¢(WX) eR="™  [fi(Z)=|Z; - Yj||* € Ry (13)

where Z; denotes the j-th column of a matrix Z and ¢ : R — R is the activation function, which is
applied entry-wise. We can now write the problem as a the finite-sum:

min { () = F(®(0)) = VAW X) - YI? = - S [VoWX;) ~vi|” t (4
j=1

We will make an assumption on the Hermite norm (Definition 5) of the activation function. Our
assumptions on the activation function are summarized as Assumption 3 below.

Definition 5 (Hermite norm (Olver et al., 2010)). Let ¢ : R — R. The Hermite norm of ¢ is given
by ||9lln = /D _iop ¢ where ¢; denotes the i-th Hermite coefficients of ¢ given by:

i = (G = <= [ o)) e (—‘"’;) da

and q; : R — R is the i-th Hermite polynomial (probabilist’s convention) for i > 0.

éssumption 3. ¢ is twice-differentiable, $(0) = 0, sup, \¢(a)| = Qf;max < 00, sup, |¢)(a)| =
Pmax < 00, and ||¢||’}-L < oQ.

The popular ReLU does not satisfy the twice-differentiability assumption. However, smooth ap-
proximations of ReLU such as the Gaussian error Linear Units (GeLU) and softplus (Hendrycks &
Gimpel, 2020; Nguyen & Mondelli, 2020) have been shown to outperform ReLU in several settings
and are commonly used in practice (Clevert et al., 2016; Gulrajani et al., 2017; Kumar et al., 2017;
Kim et al., 2018; Xu et al., 2020). In addition, smoothened functions by a Gaussian kernel uniformly
approximate the ReLU function (Nguyen & Mondelli, 2020).

Xl <1y <1

Remark 4. The assumption on the data is mild and common in the overparameterization literature
(Li & Liang, 2018; Ji & Telgarsky, 2020). It can be enforced by data normalization.

Assumption 4. Forall j € [m),

Initialization. The initial iterate of SGD will be chosen in the following way:

WWQW,Ww@ﬁ.e%WW% (15)
do dl
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Remark 5. The initialization in Eq. (15) matches popular initialization schemes such as LeCun
(LeCun et al., 2012) and He (He et al., 2015) initializations.

We now proceed to estimate with high probability the value of h(©°), near-isometry constants
(us,vs) of V*®(OY) and smoothness parameter 3, which are required in Theorem 1.

Lemma 2 (Estimation of h(0°), g, vs, Ss (Anonymous)). Let Assumptions 3 and 4 hold, and
suppose that OO follows the initialization distribution in Eq. (15). Let t be a positive integer such that

m o~ d6 and X*t € RYOX™ pe the matrix whose a-th column defined as vec(z, ® -+ Q@ x4) € R,

For some constants 01,02, 03, k1, and ko independent of dy, di and m, with probability at least
1 — it holds that:

O3k kS 0 (X)

h(e°%) <

m

Ve = max{|co|\/ (]. + 52)d1m, w1y \/(1 + 52)(0% + Cgo)dlamax(X)} (16)

2
/ c
e =1/ (1— 51)7€d10—min(X*t)

The precise expression for 15 is provided in Appendix E, c; is the i-th Hermite coefficients of ¢
(Definition 5) and c2, =Y oo, c3 /il

Moreover, the map © restricted to the set {(V, W) : 0max (V) < Xmax | is smooth with constant

B = V20max(X) (s + X ) a7

Although the mapping @ is not globally smooth, Lemma 2 shows that it is smooth in a region where
the largest singular value of V' remains bounded. In the following lemma, we show that we can indeed
bound the smoothness constant of ® restricted to a neighbourhood of V' as required in Theorem 1.

Lemma 3. Let Assumption 3 hold. Let V°, W© be arbitrary matrices and i3 be as in (16). Let

Bo = V20 max(X) (dmax + Tmax(V?)) + ¢m‘.ax/fé<1>7 e He (18)
2¢max 2Bq>
The function ® is So-smooth over the set:
By (VO W) = {(V, W) s V=V + W = WO < p } (19)
Proof. Let
Ho =
max ‘— Omax VO + H 5 B max V7W * Omax Vv < Xmax (20)
X * * ( ) 2\/§UIIIB.X(X)¢IIIB.X X {( ) ( ) X * }

Lemma 2 then implies that ® restricted to B Xmax is Bg-smooth, following Eq. (17). With this
choice of Xmax we show that B,, (V°, W% C B which implies the result. Note that 3¢ >

V20 max (X ) dmax, hence

Xmax?

Xmax Z Umax(vo) + Mi = Umax(vo) + Pd-.
29

Suppose that (V, W) € B,, (VY W?). By Eq. (19) this implies ||V — V|| < pg. Then,
Omax(V) < Omax(V = V°) + G (V)
<V =V + omax (V)
S P + Unlax(vo)
< Xmax-
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In our case, as f is the quadratic loss, the growth condition (Definition 3) is satisfied with 1y = 7.
This is precisely the quantity that will reveal the impact of the minibatch size on the global convergence
of SGD. Moreover, the quadratic loss satisfies the PL condition (Definition 2) and is smooth. All
things considered, Assumptions 1 and 2 hold for our shallow neural network training setting, ensuring

that Theorem 1 is valid.

We are now ready to integrate Lemma 2 and Lemma 3 together with the convergence guarantees in
Theorem 1 to arrive at the sufficient degree of overparameterization required for the convergence
of SGD. The following theorem finally concludes that for the shallow neural network described in
Section 3, for a sufficient degree of overparameterization SGD converges to a global minimum with
high probability.

Theorem 2 (Shallow network with SGD). Suppose that Assumptions 3 and 4 hold, and that that
(WO, V) is randomly initialized as in (15). Suppose that the hidden layer width d; satisfies

B 2
dl =Q <€(C(57 t7 ¢7 {ci}i207 C)M) (2])

where Cs is a set of constants, £ is a term independent of dy, m. The SGD iterates converge to a global
minimum exponentially fast with probability at least 1 — (¢, €, dy, d1,da, X, C). See Appendix C
for the exact expressions of & and 1 and the proof.

Finally, we provide an order analysis to understand how the sufficient overall overparameterization
degree directly depends on the minibatch size. Intuitively, the sufficient overparameterization degree
improves (is lower) as the minibatch size increases.

3.1 IMPACT OF THE MINIBATCH SIZE ON THE OVERPARAMETERIZATION DEGREE

For t = 1, the analysis requires m ~ dj, which is not a common setting in practice. For ¢t > 2,
we suppose that m ~ df, which is the case in practice. We estimate that Omax(X) >~ /m/dy

and oyin (X*) ~ y/m/db ~ 1, along the lines of (Oymak & Soltanolkotabi, 2020, Section 2.1).
Substituting oyax (X) and opin (X *Y) into (21), we have

m2

Vbdy

Therefore, the overall overparameterization degree becomes dod; =~ Q(m2 /v/b), which is sufficient
for SGD to find a global minimum at a linear rate except with an arbitrary small probability. This fact
will let us understand more clearly the effect minibatch size on the overparameterization degree.

di 2 (22)

Ifb = Q(m), similar to gradient descent, a subquadratic scaling on the network width, dod; ~
Q(m% ), is sufficient. In that case, an optimal linear scaling d; ~ O(m) is sufficient when the number
of input features is sufficiently large dy >~ Q(y/m).

On the other hand, when the batch size is small b = 0(1) we recover the standard quadratic
scaling on the network width. Our analysis provides an interpolation between dod; ~ Q(m%) and

dody ~ Q(m?) depending on b. As long as the batch size b ~ (m?) for some a > 0, we achieve a
subquadratic scaling.

4 CONCLUSIONS AND FUTURE WORK

In this work, we prove linear convergence of stochastic gradient descent for training over-
parameterized two-layer neural networks with smooth activation functions, using classical initial-
ization strategies, and where both layers are trained simultaneously. We provide a lower bound on
the required over-parameterization degree for our result to hold, depending on the batch size b used
to compute the stochastic gradients. More precisely, we show that using a number of parameters
dod; = Q(m?/+/b) is sufficient to obtain linear convergence with high probability, providing sub-
quadratic over-parameterization degree as long as the batch size increases with the number of data
points.
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In future work, we would like to relax the smoothness condition on the activation function, in order
to encapsulate non-smooth activation functions such as ReLU. In addition, we would like to improve
the high probability bound by analyzing more deeply the concentration properties of the random
variable (1), characterizing the length of the trajectory spent in a neighborhood of the initialization.
Finally, an important step would be to analyze the generalization properties of SGD through the lens
of the proposed approach, in particular by analyzing in which case it leads to lazy training.
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A PROOF OF PROPOSITION 1

According to the definition of I, w! € B fori = 0,--- ,I — 1. We first find an upper bound on the
expected length of the trajectory in terms of the norm of gradients of f. With a proper learning rate,
we find an upper bound on the norm of the gradient in terms of the expected decent of function in two
consecutive iterates. We also ensure that the learning rate is sufficiently small such that ||w! —w!=1|
is bounded. Finally, under proper initialization, the final bound is established.

The “length” of the trajectory traced by the SGD iterates {w'}!_ is

I-1
0D = |lw'™ —w|
=0

I—-1
=23 Iy 3 hy(w)
=0

jeTi (A.1)
-1 }
S Yl 0 VEE)]
i=0 = jeTi
where z¢ = ®(w?) for all i.
The expected length of this segment of the trajectory is therefore bounded as
-1
E[(I)] S AveE | > I3 > VEE)
=0 ger (A.2)
-1
< AipveE | Vf(zi)lll
i=0

where the last inequality holds thanks to the growth condition and Jensen’s inequality.

We now develop a “descent inequality’ and establish a lower bound on f(z') — E[f(z""")|w"]. First,
consider two consecutive SGD iterates 7, i + 1 such that w’, wi*! € B. Then, we have

fl) — 1) > (@ 2 V)~ L
= (@(w) — o(w), V() ~ T a(w ) - a(w)?

= (Vo(w') {w' —w'} Vf(z')) - %H‘P(W”l) —o(w')|
—(D(wW'Th) — d(w') — VO(W?) {WH'1 - Wi} ,VF(zY))

> (Vo (w') {w —w Vi)~ D e - e(w)|?
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=D w29 )
i i it1 i L i 0|2 i 9Bsvg
> (T0(w) {w' w1} 9) - g Iw - wiP (9] + 2% )
2 9Bvg
w7 X Ty b V) - 37 3wl (salwe) + 2228 )
j€I7 j€I7
(A3)

Hence, taking expectation over the selected batch n' at iteration 4, we find that

f(2") —E[f(z")|w]

( (5 3 V(W) v —7||bZVh (mpnw |+9Bfl”¢))|wi]

JEI JET?

>E

( w'){VA(w')}, Vi (z') —E[HZ% ok |w](/sq>|w< >||+95§;”¢))
JEL®
2_7 i 951””%
(Anw Y- 2R (113 Ihy (w2 w}(&pnwmw ! ))
J€I
> (AT = 2 v (vt + 224 ) )

i 4
= N2 | VF(z)]? [ 1 )\77f1/<1)5<1>||Vf(z I 9nsBrva (chain rule and Lemma 1)
o 203 813

2 i [V (2)]|?

where the final inequality holds if the learning rate is small enough such that

2
Hyp
A< , . (A4)
1y Baovg max; |V (z))|| +nsBrvg

‘We also note that:

@ wi] = (f(= ') E[f(z"")[w'])
\/ \/]E | \/f + \/E f ZH—I |W’

L BIVRE)P

~ V(@) + VE[f ()W)

Mg IVf ()]
2y f(z')

L MWV

T V2ViEl
>\\/7N<1>

== IV (2]l

Y

(AS)

Substituting the above back into (A.2), and using the fact that w! € BYi = 0,...,I — 1, an upper
bound on E[¢(I)] is given by:

-1
E[((1)] < A\/ijvak | Y IVf(zi)II]
i=0
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\/»V(b r1—2
ST z(w () — VEIF@ )W) | + Ayguak [[Vf(2 )]
r%-\/i\/”l)\ E[[|Vf(z Jensen’s inequali
\/7%1, ; f(z) =/ [ | + A/mrveE [V (2" Y]] (Jensen’s inequality)
= YTk | VI - 1) + Ak (195 )]
ve/f(2°)
<YV \/‘%% + AV [[VF ("] (A.6)
Suppose that, in addition to the previous bound on the learning rate, we have
A< He (A7)

= 4¢/Mivefe max; ||Vf(z?)|’
and that the initialization satisfies

0y _ 0 af/i?b
f(Z ) - h(W ) S; C%?WV%' (AS)

for some ¢ > 1. Then, we obtain (12).:

B < 55, = ¢

We note that the local Lipschitz constant of f is given by
max [|Vf (z)|| < [|Vf(2")|| + max |[Vf(z') — V()]
< VS ()] + By max ||z — 2°|
= [IVF(2")I| + By max || ®(w’) — D(w’)]
35,;% 0 (A9)

Hoe  pPo

= IVf (")l +

max |[w’ — w
2

3ﬂfl/<1>
9 P
3B ave
4B

Substituting (A.9) into (A.4) and (A.7), an upper bound on the learning rate of SGD is given by

< IVl +

= [IVf (%)l +

A < min ( Hao , He > .
~ 0t (Bavg V(@) + Brvg + Brravd) Cyirre(Ba| V(20| + Brrops)

This completes the proof of Proposition 1.

B PROOF THEOREM 1

Let ¢ > 1. Using Proposition 1, under proper initialization and choice of learning rate, the expected
length of SGD trajectory is bounded above by:

Mo Po
BN < 55 = ¢

Thus, using Markov inequality on ¢(I), we have

Pr{{(I) > po} <

i
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Therefore, with probability greater than 1 — %, we have ¢(I) < pg, meaning that the SGD trajectory

never leaves the ball B, i.e., I = co. Moreover, conditioned on this event, £(I) corresponds to the
length of the full trajectory. Since we have a bound on E[£(T)], it implies that the trajectory length is
finite, i.e., that the SGD iterates converge.

Finally, we show the linear convergence to the optimal limit point:
E[h(w'™)|w'] = E[A(w"™)|w'] — h(w') + h(w")
ELf(z)) W] - £(z) + h(w')
—OMug ||V (2) > + h(w') (A.10)
—Chayus f(z') + h(w')
(1= Chagd)h(w),

INIA

where C' denotes constants and z° = ®(w?*) for all i. Taking expectation of both sides of (A.10) w.r.t.

nY, ..., n'"! completes the proof of Theorem 1.

C PROOF OF THEOREM 2

For the case of quadratic loss functions, we have ay = 85 = % In the following, we first find the
growth condition parameter:

Recall f;(Z) = ||Z; — Y;||*. Although V f;(Z) is a matrix is a matrix with the same size as Z,
ie., Vf(Z) € R%2x™ f. only depends on the j** column of Z, and hence only the j** column of
V £;(Z) will be non zero. More precisely, we have

(V5(2)5 =3 (2 - Yy).

and (Vf;(Z)).x = 0 for k # j, where (Vf;(Z)).x, denotes the k" column of V f;(Z). We thus have
that

4
Bz s (I S VEEIP| = T Bzimes |3 212 - 1P

JEI jEI

4
)

=7 f(2).
Similarly, we have ||[Vf(Z)||?> = £ f(Z). Hence, the quadratic loss satisfies growth condition with
=%
Suppose there exists some constant ¢ > 1 such that m ~ dfj.

Using Lemma 2 and Lemma 3, we can estimate the parameters vg, (1o, B¢ and establish an upper
bound on h(©°):

h(@()) < 763k2k2 de(X)
o = max {[eolv/(T+ B2)dim, wiy/(1+62)(c3 + 2 )dimax(X) }

2 (A11)
He = (1 - 61) dlamm(X*t)

ﬁq) = \/io-max(X)<¢3max + Jmax(vo)) + q;nd.)am

where §1, 92, d3, k1, and ko are all constants and independent of dy, di, and m; the term ¢ is
a constant such that m ~ d%, and X*t R4 *™ is derived from Khatri-Rao product with its
a-th column defined as vec(z, ® -+ Q@ x,) € R%, with probability at least 1 — ) where 1) =
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Con Cords — ( 510 min (BIM)) )2 _ ( 59 omax (E[MO]) )2 )
— — 52 2 52 2 0 — —
dl 4 o_dl ad2 _ o 10% axThax (X)84/dologdr | _ o \46Riaxhax(X)6ay/dologdy ) __ o—=Cdi_ o 063’

84 = max(ky, ka), Mo = qb(XTWOT)(b(WOX), C is a constant, and

2
Wftdl%aﬁﬁn(X*t) < Omin(E[M"]) < 0max(E[M"]) < di (mef + wi(cf + ) oian(X)) -
We denote Cs = {91, 02, 03,94 }.
We highlight the main condition for the linear convergence of SGD in (6):
6
AfHe
h(e°%) =0 (f> :
=\ Gng

1
¢
Suppose |co| is sufficiently large such that [co|y/(1 + d2)d1m becomes the dominating term in vg.!

The convergence happens with probability at least 1 —

We note that the order of 0.y (X) and omin (X *t) play significant roles for the overparameterization
order analysis. For ¢t = 1, it requires m ~ dy, which is not a common setting in practice. In the
following, we focus on ¢t > 2.

Substituting the parameters obtained in (A.11) into (6), a sufficient condition to satisfy (6) is given by
2
mo

max (X) )
\/Bo-fnin (X*t )

dl Z \/§(657 ta ¢a {Ci}iZOa C) :

where

L[O3R+ 8a)wy 0 (G + Timax (V)23
5(657t,¢, {01}120,0 - \/ (1 —(51)36? .

Since £(Cs, t, ¢, {ci}i>0, ¢) is constant w.r.t. do, d1, and m. The sufficient condition can be expressed

as:
MO (X)

\/Eoilin (X*t)

Finally, along the lines of (Oymak & Soltanolkotabi, 2020)[Section 2.1], we have o pay (X) ~ %
. *t) ~ mo~

and o i (X ™) ~ /d6 ~ 1.

Replacing opax (X) and o (X*?) into (A.12), the overall overparameterization degree becomes

dody =~ Q(m2 /+/b).Finally using the union bound on the events corresponding to random initializa-
tion and random SGD iterates, the linear convergence is established with probability at least 1 — 1)
where

di = Q( ). (A.12)

W= d;C&;dg +d;064d2 4 e Cdi 4 ,—C3 _‘_1

¢

2 2
_(—_S1ominBIMOD _( S2omax®[MO)
4 e \4haxohax(X)6av/dologdr ) 4 o \ 4éfhiaxfhax(X)6a/dologdr /

(A.13)

D PROOF OF LEMMA 1

The content of this proof is originally due to (Anonymous) and provided here for the completeness of
our paper.

Intuitively, if V@*(w?) is a (ue, Ve )-near-isometry, then one would expect V®* to remain near-
isometry for all nearby points. Formally, let A, B € R™*" and let singular values of a matrix are
ordered such that o;(A) > 0;(A) and 0;(B) > 0;(B) for 1 < i < j < min{m,n}. Using Weyl’s
inequality and for i + j — 1 < min{m, n}, we have:

!The same scaling holds if the other term dominates.
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O'H_j_l(A—‘rB) SO’z(A)—FO'](B) (A.14)

More formally, suppose that w € R? satisfies
He _ e (A.15)

If V&* (wY) is (1a, va )-isometry in the sense of Definition 4, then applying Weyl’s inequality (A.14)
along with using smoothness and (A.15), we have

Omin(VO* (W) > 0min (VE*(W0)) — Omax (VE* (W) — VO* (w?))

> pa — Pallw — W
> e
-2
Using a similar argument, we establish an upper bound o5 (V®*(W)):
3
Jmax(vq)*(w)) < Gmax(VQ'*(wO)) + UmaX(qu*(W) - V(I)*(WO)) <ve+ M?q) < ?.

E PROOF OF LEMMA 2

Lemma A.4 (Estimation of h(0°), ug, ve, Be (Anonymous)). Suppose that the shallow neural
network satisfies Assumption 3. Then we have

1
B(O°) < — 83k k30%,0(X)

max

va = max { eo| /(T + &) dum, w, V8 + 2 )1 0ma(X) }

C2
pe =1/(1 - 51)7§d10min(X*t)
BQ) = \/ia-max(X) (émax + émameax) .

where 01, 02, 03, k1, and ko are all constants and independent of dy, dy, and m; Be is the smoothness
constant of the map ® restricted to the set {(V,W) : 0max(V) < Xmax}s the term t is a constant

such that m ~ df, and X*' € R4X™ is derived from Khatri-Rao product with its a-th column
defined as vec(z, @ -+ Q@ x,) € R%, with probability at least 1 — 1 where ¢ = d1—054d0 —

2 2
( 51 iy (B[MO)) ) _( _ Spomax®[MO] ) )
(X)84+/dg log dy e 462 1 02 (X)d4+/dg log dq — e Cdi _ 6—063’ where

(A.16)

dyCoadz _ o~
04 = max(ky, ka), My = (b(XTWOT)qb(WOX), C'is a constant, and

52 2
4diax Tmax

2
C
wi'di—r o0 (X™) S Omin (B[M°]) < omax(B[M?]) S di (mef +wi(e] + ¢ )omax(X))

. We denote Cs = {61, 02, 03,04}

The content of this proof is originally due to (Anonymous) and provided here for the completeness of
our paper.

We first obtain the expression for adjoint operator V&*(Q) : Rd2*m — Ré1xdo x Rd2Xd1 [ et
Ay € Rirxdo Ay e R¥%2%d1 apnd A € R2X™, We expand P as follow:

O(W+ Ay, V)= (W, V) + Vi P(Aw),

W,V + Ay) = (W, V) + Vi &(Ay) (A.17)

where

Viwd(Aw) =V ($WX) 0 AwX ), Ty@(Ay) = Ava(WX),
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© stands for the Hadamard (entry-wise) product, and qS(WX ) is the derivative of ¢ calculated at each
entry of the matrix W X. The operator V®(©) is given by (Aw, Ay) = Vi ®(Aw ) + Vv (Ay).

Using the cyclic property of the trace operator and trace ((4 ® B)C) = trace (A® CT)BT), we
have

(A, Vip®(Aw)) = <(¢(WX) ® VTA) X7, AW> ,
(A, Vy@(Ay)) = (Ay,A¢ (XTWT)).

(A.18)

Substituting (A.18), the adjoint operator is given by

VOH(O): A - ((QB(WX) ® VTA) XT, A (XTWT)) . (A.19)

Suppose that there exist gi)max, (;zérnax < oo such that
sup|$(a)| < bmax,  sup|H(a)] < Pmax- (A.20)

Lemma A.5. Let A € R™*" gand B € R™**. Then, we have
Tmin (A)[|B]| < [[AB|| < omax(A)|| B
Using Lemma A.5 and triangular inequality, we note that
Ive* (@, )] < || (dwx) o (VT a)) X7 + [|asxTw T
< FmaxOmax(X)Tmax (V) 1Al + 0max ($(W X)) 1A

(A.21)

Similarly, we have this lower bound:
V@™ (0, A)|| > owmin(o(WX))[| Al (A.22)

Substituting ©¢ = (Wp, Vp) into (A.21) and (A.22), ue and vg are given by:

Umax(vq)*(@())) S Q'smaxo'max(X)o'max(‘/O) + Urnax(¢(W0X)) = Vyp,
Omin(vq)*(go)) 2 0min(¢(W0X)) = Up.
Lemma A.6. Let A € R™*™ and B € R"**. Then, for p,q > 1, we have
1ABll, < Al 1Bl

(A.23)

In the following, we find the smoothness parameter B in (1). Let ©,0 € R%1*do x Rd2xd1 We
note that ||[V® (0, A) — V®(O, A)|| < Uy + U, where

Uy = V(W X) © (ARX)) - V(W X)© (AR X))

) (A.24)
Us = [Ave(WTX) = Ayo(W X)),

Let us denote

Tmax(V) < Xmax- (A.25)

An upper bound on U; in (A.24) is given by:

Uy < |(V =)W TX) 0 (AR X))+ VW TX) e (AR X) - VoW X) o (Aj X))
< PmaxTmax (X)) |V = V|| Aw || + O'maX(X)O'InaX(V)||¢(WTX) - ¢(WTX)||OO||AW||
< GmaxTmax (X) |V = VI[[Aw || + dmaxOmax (X)[| X |locomax (V) [W = W[ Aw ||
S ¢max0max(X)||V - VHHAW” + ¢maXXmaxUmax(X)||W - WH“AW”

where the second last inequality is due to Lemma A.6.
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An upper bound on Us in (A.24) is given by:
U2 < d)maxo—maX(X)”W - W” ||AV||

Substituting the upper bounds on U; and Us, an upper bound on o,y (VP(0) — V& (O)) is given by
O (V(©) = V() < Gunax (X) (dmax + GumaxXmax ) W = WI| + Grnax (X)bma [V = V|

< V200(X) (G + s X ) [0 = O]

where the last inequality holds since

W =W+ |V -V| < \/5\/IIW W2+ [V = V]2

Finally, B4 in (1) is given by
ﬁcb = \/io—max(X) (émax + qlb.mameax) . (A26)

E.1 ESTIMATING /¢, Vg

We now estimate the random quantities g, Vg in our neural network setting. They key quantities to
estimate are oyin (AW X)) and opmax (¢(WYX)). To that end, we consider Hermite decomposition
of the activation function ¢.

We start with the basic definition of Hermite polynomial and its properties. Let ¢ > 0 and let
¢; : R — R denote the ¢-th Hermite polynomial. Note that ¢;’s form an orthogonal basis for the
Hilbert space of functions.:

H:{u;R—an /u2(x)exp<—”;2> <oo},

which is equipped with the inner product

(1, )3 = \/% / u(z)v(z) exp (-f) dz

for u, v € H. We consider probabilist’s convention of Hermite polynomial. Specifically, for ¢, j > 0,
we have
i i=7,
i) H = ., A27
(gi, aj)n {0 it (A27)

Using the above orthogonal basis to decompose ¢(WYX), we have
0vy o Ci 0
(W X)—;qu(w X) (A.28)

where ¢; = (¢, ;)% and each matrix ¢;(WoX) € R%*™ is formed by applying ¢; entry-wise to the
matrix W°X. Let us denote

MO = (X TWO)p(WOX).
In the following, we first obtain E[A°] = E[¢(X "W )¢(WO°X)] with W° ~ A’(0,1) and then

obtain a lower bound on o, (E[M°]) and an upper bound on o, (E[M°]) by appropriately scaling
the data matrix X.

Applying Hermite decomposition (A.28) and taking expectation, we have

B[] = E [6(X W )o(WOX)

< - (A.29)
ciC T ~
= 2 7 BlaX W g, (W0 X)]
i,j=0 '
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where the expectation is w.r.t. the random matrix WO. Let x, € R% denote the a-th column of the
training data X . Each summand in (A.29) is an m x m matrix where

- dq
[Bla:(XTWO g (VOX0)] =3B [0:(x] oo )5 (Wil - x0)] (A.30)
’ c=1

where V~V07c7_> is the c-th row of W for a,b € [m].

In summand on the RHS of (A.30), we note that there is a linear combination of Ws elements
inside of each Hermite polynomial.
We use the properties of Hermite polynomials (Olver et al., 2010)[§18.18.11]:

S1

(a%_l’_..._i'_a?‘)%q‘(alxl+...+arxr):Z al ...air
(a%+~~+a$)% ... g

ds, (z1) - qs,.(zr)  (A31)

7! 81! !
S1+-+sr=1 L r

where ¢;’s form an orthogonal basis, equipped with the inner product (u,v); =
ﬁ J u(z)v(z) exp(—z?) dz. This basis follows the physicist’s convention of Hermite polynomial.

Since ¢; and g; are rescalings of the other, we can replace g;’s into (A.31). Note that we have
Ixq||2 = 1 for all @ € [n]. Then we have

Sdo

- R - -
qi(XIWO,c,%) =l Z ﬁqsl Woen) - Qsq, (Wo.c.do) (A.32)
s1+-+8ay =1t Lt do*

where x,_;, and WO,CJC are k-th entry of x, and VT/O’C:H for k € [do]. Using the expansion in (A.32),
we expand (A.30) as follows:

s st s,
a(,igo . xb,ll U xb:i(g()

o -
1 Pss (Woe—)
do*

Gigla,b) =itjt > > o

s1+-+8dy=1 s’1+~--+s£10:j

iy

“ Sdy! sile-s

.1\2 (Ta,1%5,1)° (Ta,dy Tb,dy) %0 . .
_ (i) Zsl+~~+sd0=i 31!~~~sd0!0 . t=1, (A.33)
0 (¥
= 2 ZS1+~-~+sd0=i (sl,..?,SdO)(anwb,l)Sl T (xa,doxbvdo)s% i=7,
0 i FJ

where Ci;(a,0) = B [qi(x] Wo.e.-)a; (Wil %) .

Pt Wo o) = E |45, (Woe1) = gy Worcuto) - 0y (Woe1) sy, (Woea)]

dg

s={[s1,",84,), and s’ = [s],-- ,sjio].
To simplify the expression in (A.33), we define X** € R%*m where the a-th column is given by

X =vec(xg ® - ®X,) € R%,
which is also called Khatri-Rao product. For i = 0, we use the convention that X 0 =11T ¢ Rmxm,
We can rewrite (A.33) as follows:

X XFY i=

ii(a,b) = a1 “%b A.34

Substituting (A.34) back into (A.30), we find that

~ - dl -~ -
Elgi(XTWO g7 ]| = 3B [gu(x] Woe)as (Wil 30)]
b=t (A35)

_ [ dil(X5L X)) i=
o i # j.
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Substituting (A.35) into (A.29), we have

E [MO} —d <cg11T +c1XTX+Z () TX’”) (A.36)

We now establish an upper bound on o5 (ZZ 2 3 (X*Z)TX“)

- *1\ Ty *i i *1\ Ty *i
Tmax (Z (X)X ><Z L Tmax (X)) T X*) A7)

=2

| /\

Trmax (X)

OO mux

where ¢, is given by

S AN

o
8[\3
I
]
=83

s
I|
N

which is finite provided that ||¢||4 is bounded.
Using (A.37), we now establish an upper bound on amax(]E[M :
Tmax(B[M°)) < dy (mc§ + (6] + €2)0han (X))

Moreover, suppose there exists some ¢ such that o, (X**) > 0. Then we have d; Ctt, o2 (X <
Omin (E[M°]). This requires to have d}, > m. Putting together the lower bound on &y, (E[M°])

and the upper bound on o, (E[M°]), noting W° = w; W?, and scaling X accordingly to take into
account the coefficient wy, we have

2
& *
W3 L 02 (X™) S nin(EIM]) < O (BIMO]) S di (e + (6 + e2)0%0e(X)
(A.38)
E.2 CONCENTRATION OF THE RANDOM MATRIX M°
To see how well the random matrix M° concentrates about its expectation, note that
MO = (X WO ) (WOX)
dy
= XTwy, Wo.iX
O a0

dl

= Z A;
i=1

where {A; } 2, C R™*™ are independent random matrices.

Consider the event £; that

m[é:lX] Wo,i,—ll2 S kiwiy/dologdi, Ig[aX (Vo0
1

‘2 < k‘g(}.)g\/ d2 log dl (A40)

where V; ; | is the i-th column of V;. Note that Wy ; -, € R% and Vg ;| € R% are random zero-
mean Gaussian vectors whose entries’ variances are w? and w3, respectively. Therefore, with an
application of the scalar Bernstein inequality (Vershynin, 2012, Proposition 5.16), followed by the
union bound, we observe that the event £ happens except with a probability of at most

pr o= dy OFrdo g g Ohedz (A41)

for a universal constant C' with sufficiently large k1, k5.
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Leti € [d;]. Conditioned on the event &1, an upper bound on ||¢(X "Wy ; _,)||2 is given by:

(X T Wo.i-)l2 < GmaxTmax(X)k1wi/do log dy . (A.42)

Moreover, we have

Omax(Ai) = | ¢(X T Wo,i )3
= (X T Wo ) — ¢(0)]|3 (A43)
< @202 (X)K2widylog dy .

max ™~ max

We now focus on the concentration of o, (M?) and ., (M°). We use a concentration property,
which provides the tail bound of f(W) = ¢(X "W T )p(W X) with multivariate Gaussian input TV,
In the following lemma, we show that fisa Lipschitz function, and its Lipschitz constant explains
how f (W) concentrates around its mean.

Lemma A.7. Let f(W) = ¢(X "W )d(W X). Suppose W satisfies (A.40). Then f is K-Lipschitz
function with constant k = 4¢% o2 (X)kiwiv/dylogdy. So we have

max ™~ max

IF W) = FW)| < 407axTmax(X)krwi/do log dy - [W — W|].

Proof. Note that f(W°) = M° and f can be represented as
FX) =) fi(Wis)
i=1

where f; is given by f;(W; ) = qﬁ(XTWZ.L)qS(WiHX). We prove that each f; is x-Lipschitz,
which implies that f is also k-Lipschitz.
We note that f;’s can be expressed as a composition of three functions:

fi(v) = (g1092093)(v)

where g1, g2, and g3 are given by

(V) =vv', fo(v) = (v), f3(v) =vX. (A44)

It is clear that g5 is émax—Lipschitz, and g3 i8S Omax (X )-Lipschitz from their definitions. Lipschitz
constant of g; comes from the domain bound as follows:
lg1(v +6v) = g1 (V)| = [[5vv " +vovT +dvevT||
<2/ 0vv | + [|ovov | (A.45)
< Qv+ [[ov]) - [I6v]]-

A bound on (2||v| + ||dv]|]) is obtained in (A.42). Then g; is x1-Lipschitz function with
K1 = 4q5maxamaX(X Ykiwiv/dologd;. Therefore, all g1, g» and g3 are Lipschitz function, so
their composition f; is also Lipschitz function with constant x = 4¢2,. 02 (X)kywi/dolog dy,
which completes the proof. O

Lemma A.8. Let z € R? denote a Gaussian random vector. Then we have Pr{||z — E[z]|| >
t €2} < exp(—t2) where s is the event that ||z| is bounded.

We can focus on the tail distribution of My = f(Wy). Using Lemmas A.7 and A.8, we have
Pr||M° —E[M°]|| > &1} S exp(—k3) (A.46)

where ¢ = k342, 02, (X)kiwiv/do log d; with some constant k3.
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Using (A.46), we now establish a tail bound on oy, (M©):

Pr{omin(M°) < (1 = 61)0min (E[M])[E1} < Pr{|omin(M®) = oumin (B[M°])| > 810min (E[M])[E1}
< Pr{omin(M° — E[M°]) > 610min(E[M°])|E1}
< Pr{amaX(MO - E[MOD 2 51‘7min(E[M0])|gl}
< Pr{[|M° — E[M°]]| > 610min(E[M"])|E1}

S pe

where

( 510 min (E[M?]) >
P2 =€xXp | — : .
4¢12nax0-1%1ax (X)klwl V dO IOg dl
Similarly, we obtain

Pr{amaX(Mo) > (1+ 52)0maX(E[MO])|51} S ps

where

( J20max (E[M°]) ) ’

p3 =exp | — - .
4¢12nax01211ax (X)klwl V do IOg dy
Putting these bounds together with (A.38), we have :

02

wi (1 - 51)t*$d10min(X*t) < Umin(¢(W0X))

UmaX(¢(W0X)) < V(14 d2)(wy \/ (C% + €2 )d10max(X) + |co|r/dim)

except with a probability of at most p; + p2 + ps.

With establishing the bounds on o (¢(WYX)) and oax (¢(WPX)), we can finally estimate
U, Ve as follows:

(A47)

E.3 LOWER BOUND ON ug
A lower bound on pg is given by

C2

wf (]_ - 51)?ﬁd10—min(X*t) < Umin(¢(W0X)) = U, (A48)

except with a probability of at most p; + ps.

E.4 UPPER BOUND ON vg
Since vg = qﬁmaxamax(X)UmaX(VO) + Omax (P(WY X)), we obtain a bound on oy (V°):

Since V9 is a Gaussian random matrix, we have

Tmax(V?) < w2(2v/dy + V/da) < wan/dy (A.49)

except with a probability of at most p; = exp(—Cd;) where C is a universal constant (Vershynin,
2012)[Corollary 5.35].

Combining (A.49) with the upper bound on o, (¢(W°X)), we have
Vy = QZ’)InaxO'max(X)O'max(Vo) + UIII&X(¢(WOX))
< womaxOma (X)V/d1 +wi 1/ (1+02)(c + ) d10max(X) + co/(T 1 B2)dym

except with a probability of at most p; + p3 + p4.
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E.5 UPPER BOUND ON h(QY)

In this section, we bound ~(6°). Using [la + b||3 < 2|/al|3 + 2||b||3, we have

M(O°) = VOo(WOX) ¥

oy (A.50)

< ZIv0swox)? + 2P,
m m

To upper bound the random norm in (A.50), we first decompose V%¢(W°X) into terms including
Wo.i— € R% and Vp ;| € R% as follows:

VOp(WOX Z B; (A51)

where B; = Vg,wgb(WJiﬂX) € R92X™g are independent random matrices for i € [d;].

Conditioned on the event £&; defined in (A.40), we bound || B;||:

IBill = Vot ll2lld(Wo's , X)l2
< Vositll2 - PrmaxOmax(X) k1w /do log dy (A.52)
< W1WaPmaxOmax(X) k1 ka\/dods log dy
fori < d;j.

Substituting the upper bound in A.51 into A.52 and applying the Hoeffding inequality (Hoeffding,
1963), we have

Pr{|[Vop(WX)|| 2 u(do, d1, d2)|E1} = Pr{[[V°p(WOX) — E[VO6(W X)) |&]]| 2 uldo, da, d2)[&1}

{Z|B —E[Bi| >U(d0,d1,d2)|gl}

<ps
where
u(do, di, dz) = d3w1w2Pmaxk1 k2 \/dod1da0max(X) log dy
and ps = exp(—C63) with §3 > 0 and a universal constant C.
Therefore, under the event £;, we have
M(O%) < 2 [VOS(WOX) | + V2

1 (A.53)
< E 20292 . k2k2dodydyo?

~

1
Jlog? dy + ||V

max(

except with a probability of at most p; + ps. It is natural to assume that do = o(d;). We also have
1Y) <1

Suppose that
1
wlwg S (A54)
(bmax Vv dOdl ]-Og dl
Substituting (A.54) into (A.53), we have
1
h(O) < — 03k k30 man(X) (A55)

where d3, ki, and ko are all constants and independent of dy, d;, and m.
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