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Abstract

In this paper, we empirically demonstrate that
natural images can be reconstructed with high fi-
delity from compressed representations using a
simple first-order norm-plus-linear autoregressive
(FINOLA) process—without relying on explicit
positional information. Through systematic anal-
ysis, we observe that the learned coefficient matri-
ces (A and B) in FINOLA are typically invertible,
and their product, AB_l, is diagonalizable across
training runs. This structure enables a striking in-
terpretation: FINOLA’s latent dynamics resemble
a system of one-way wave equations evolving in
a compressed latent space. Under this framework,
each image corresponds to a unique solution of
these equations. This offers a new perspective on
image invariance, suggesting that the underlying
structure of images may be governed by simple,
invariant dynamic laws. Our findings shed light
on a novel avenue for understanding and model-
ing visual data through the lens of latent-space
dynamics and wave propagation.

1. Introduction

Motivation: Autoregressive language models, such as GPT
(Radford et al., 2018; 2019; Brown et al., 2020), have
achieved remarkable success in Natural Language Process-
ing (NLP) by predicting each token based on its preceding
context. This paradigm has also influenced Computer Vi-
sion, inspiring models like iGPT (Chen et al., 2020a) for
unsupervised representation learning, PixelCNN (van den
Oord et al., 2016a; Salimans et al., 2017) for autoregressive
image generation, and DALL-E (Ramesh et al., 2021) for
text-to-image synthesis. These approaches typically rely on
capturing high-order dependencies among multiple tokens,
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Figure 1: Exploring invariance through one-way wave
equations. Our empirical findings suggest that images may
share a set of one-way wave equations % = Ag—g (or trans-
portation equations). Each image corresponds (to a good
approximation) to a unique solution with an initial condition
(%, g) derived from the original image. The solution
¢(z,y) is a feature map (with resolutions of $ or 3 or full
resolution of the original image) facilitates i 1mage recon-
struction using a few upsampling and convolutional layers.

The wave speeds, A1, ..., Ac, are latent and learnable.

often through deep Transformer architectures. Motivated
by their success, we ask: can autoregressive modeling be
simplified to a first-order process, while still retaining its
expressive power?

First-order norm+linear autoregression (FINOLA): We
propose a simplified first-order autoregressive process for
image reconstruction, which we term FINOLA (First-Order
Norm+Linear Autoregression). Our key insight is that, with
appropriate encoding, images can be autoregressed linearly
after normalization. As illustrated in Figure 2, the pro-
cess begins by encoding an image into a compact vector
q € RC. This vector is placed at the center of a latent
feature map z € RWXH*C je z(%7 %) = q. We
then recursively propagate values across the = and y axes
using: A,z = z(z + 1,y) — 2(z,y) = Az(z,y), and
Ayz=z(x,y+1) — z(z,y) = BZ(z,y), where A, B €
REXC are learnable matrices, and 2(x, ) is the channel-

wise normalized version of z(x,y): 2(x,y) = z(w’(yfﬁ,

e = & 2 2k(2,Y), = V(2 — p2)?/C. FI'
NOLA can generate hlgh resolutlon feature maps (e.g., 4 ,

, or full resolution of the original image). The final image
is reconstructed using a lightweight decoder composed of a
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Figure 2: FINOLA for image reconstruction. Each image
is firstly encoded into a single vector q. Then, FINOLA is
applied to q to iteratively generate the feature map z(x, y)
through a first-order norm+linear autoregression. Finally, a
few upsampling and convolutional layers are used to recon-
struct image pixels. Best viewed in color.

few upsampling and convolutional layers.

Reconstruction based on local structure alone: The
learned coefficient matrices A and B are invariant not only
across spatial positions (x,y) within a single image but
also across different images. These matrices encode a con-
sistent local relationship between a feature vector z(x, y)
and its rate of change Az(x,y), enabling FINOLA to re-
construct an entire image from a single central vector. Re-
markably, this reconstruction relies solely on local prop-
agation rules—without requiring explicit position encod-
ing or global structure. On ImageNet (Deng et al., 2009)
(256 %256 resolution), FINOLA achieves promising recon-
struction performance. With a latent dimension of C' = 128,
we obtain a PSNR of 23.2 on the validation set. Increasing
the dimension to C' = 2048 improves the PSNR to 29.1.
Compared to traditional encoding/decoding methods under
the same latent size, FINOLA outperforms the discrete co-
sine transform (DCT), discrete wavelet transform (DWT),
and convolutional autoencoders (AEs).

Empirical properties of the coefficient matrices A and
B: Our empirical analysis reveals that the learned FINOLA
matrices A and B are typically invertible and that their
product, AB~!, is diagonalizable across multiple training
runs. Thatis, AB~! = VAV !, where A is a diagonal
matrix and V' contains the eigenvectors.

Interpretation via one-way wave equations: Given the in-
vertibility of A and B, FINOLA’s dynamics can be reformu-
lated as a linear difference equation: A,z = AB_lAyz,
where A, z and A, z denote first-order differences along the
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Figure 3: Multi-path FINOLA: The input image is en-
coded into M vectors qi,...,qn. Then the shared FI-
NOLA is applied on each q; to generate feature maps
¢i(z,y), which are aggregated (z = ), ¢;) to pass
through upsampling and convolution layers to reconstruct
image pixels.

- and y-axes, respectively. Since AB~! is diagonalizable,
we can express this relation in a transformed feature space
C(z,y) = V1z(z,y) as: A,¢ = AA,C. In this space,
the channels (; are decorrelated, and each follows a sepa-
rable form: A, = A Ay(k, which can be interpreted as
a finite-difference approximation of a one-way wave equa-
tion: % =X\ ag;; As illustrated in Figure 1, each image
corresponds to a unique solution of this system of equations,
fully determined by its initial condition at the center of the
feature map: ¢( V ~1q. This observation leads to
a key insight:

2’2)

Natural images may share a common system of
one-way wave equations in latent space; each
image is uniquely characterized by its initial con-
dition, from which its full structure can be recon-
structed.

FINOLA for self-supervised pre-training: Beyond re-
construction, FINOLA can be adapted for self-supervised
pre-training. Specifically, applying FINOLA to a single
unmasked quadrant block and training it to predict the sur-
rounding masked regions yields competitive performance
compared to established approaches such as MAE (He et al.,
2021) and SimMIM (Xie et al., 2022)—even when using
lightweight architectures like Mobile-Former (Chen et al.,
2022). Comparing encoders trained with and without mask-
ing reveals a trade-off: while masked prediction reduces
reconstruction fidelity, it significantly enhances the learned
semantic representations. Interestingly, we observe that
masking leads to an increase in Gaussian curvature on the
surfaces of critical feature maps, suggesting that the model
develops more abstract and topologically complex represen-
tations under masking constraints.

Acknowledging theoretical limitations: While our empiri-
cal results strongly support the wave equation interpretation
of FINOLA, we acknowledge that this perspective currently
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Figure 4: Parallel implementation of FINOLA: Horizontal and vertical regressions are separated. The top approach
performs horizontal regression first, enabling parallel vertical regression. Similarly, the bottom approach starts with vertical
regression, enabling parallel horizontal regression. The results of these approaches are averaged, corresponding to the two
autoregression paths from the initial position marked by q. Best viewed in color.

lacks a rigorous theoretical foundation. We hope that our
findings inspire future work to establish a deeper theoretical
understanding of the dynamics uncovered in this study.

2. First-order Norm+Linear Autoregression

In this section, we introduce a first-order norm+linear au-
toregressive process in the latent space, known as FINOLA,
which is able to reconstruct the entire image from a sin-
gle vector at the center. It unveils a position-invariant
and image-invariant relationship between the feature values
z(x,y) (at any (z,y) position for any image) and its spatial
rate of changes A, z(z,y) and Ay z(z,y).

FINOLA: FINOLA is a first-order norm+linear autoregres-
sive process that generates a W x H feature map z(z,y)
by predicting each position using only its immediate pre-
vious neighbor. As depicted in Figure 2, it places a single
embedding g (generated by an encoder) at the center, i.e.,
z(%, g) = g, and recursively regresses the entire feature
map using the following equations:
z(x+1,y) = z(z,y) + AZ(z,y)

s(y) = 2EY) —te
z(z,y +1) = z(z,y) + B2(z,y)’ 2(z,y) =

Oz

ey

The matrices A and B are learnable with dimensions C' x C'.
Z(z,y) is the normalized z(x, y) over C channels at posi-
tion (x,y): the mean p, = & 3, 2, (x, y) and the standard
deviation o, = />, (21, — p12)?/C are computed per po-
sition («, ) over C' channels. Due to the normalization, this
process is a first-order non-linear process.

Eq. 1 provides a solution to predict towards the right and
down (assuming the y axis points down). For predicting
towards the left and up (with negative values of offset), we
introduce two additional learnable matrices, A_ and B_,

to perform predictions in the same manner as for right and
down directions. Specifically, prediction toward the left
is expressed as z(z — 1,y) = z(x,y) + A_Z(z,y). For
brevity, we omit A_ and B_ in the rest of the paper.

Finally, image pixels are reconstructed by passing the fea-
ture map z through upsampling and convolutional layers,
as depicted in Figure 2. Remarkably, FINOLA exhibits the
ability to generate the feature map z at high resolutions,
including i, %, or full resolution of the original image. In
the most extreme scenario, where the feature map matches
the resolution of the original image, merely three 33 con-
volutional layers are required to generate the image pixels.

The entire FINOLA framework, comprising the encoder,
FINOLA, and the subsequent upsampling/convolutional lay-
ers, can be trained in an end-to-end manner. This is achieved
by minimizing the L distance between the original and the
reconstructed images as the training loss.

Position and image invariance: Note that the matrices A
and B, once learned from data, remain invariant not only
across spatial positions (z,y) per image but also across
images. They capture the local relation between the feature
values z(z, y) and their spatial derivatives (A, z, A, 2).

Interpretation of matrices A and B: Imagine points in
the latent feature map connected by springs”. Matrices A
and B define the stiffness of these horizontal and vertical
springs, while their eigenvectors V4 and Vp indicate their
directions. We confirm A and B full rank and diagonal-
izable across multiple training runs. Diagonalizing A and
B simplifies this, projecting latent space so each dimen-
sion (eigenvector) is an independent spring with stiffness
(eigenvalue). The projected horizontal change V A,z
and vertical change Vi lAyz become scaling operations,
with eigenvalues from A4 and Ap determining scaling
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strength along each eigenvector. In essence, A and B en-
code directional ”stretching/compressing” factors governing
local feature map changes, with eigenvalues representing
the strength of these factors.

Parallel implementation: Autoregression can be compu-
tationally intensive due to its sequential nature. FINOLA
mitigates this by capitalizing on the independence of the z
and y axes, enabling parallel execution, significantly boost-
ing efficiency. As shown in Figure 4, performing horizontal
regression first allows for parallel execution of subsequent
vertical regression, and vice versa. In practice, both ap-
proaches (horizontal first and vertical first) are combined
by averaging their results. The prediction at each position
represents the average of the two autoregression paths orig-
inating from the initial position, marked as q. Figure 4
(table on the right) demonstrates the superior speed of the
parallel implementation, compared to the regular AR setting.
It achieves a 30% speedup at a resolution of 16x 16 and a
threefold increase in speed at a higher resolution of 64 x64.

Importance of Norm+Linear: In Section 4.1, experiments
support the significance of Norm+Linear by showing that
(a) simpler processes such as repetition or linear without
normalization lead to significant degradation, (b) per-sample
normalization is crucial, as seen in poor performance of
Batch-Norm during validation, and (c) the gain from more
complex non-linear models (e.g. MLP) is negligible.

3. Interpretation via One-way Wave Equations

In this section, we interpret FINOLA from the a perspective
of one-way wave equations, empirically offering a deeper
insight into the inherent nature of images.

Linear partial difference equations: Let’s denote the spa-
tial increments of the feature z along z and y axes as A,z =
z(x+1,y) — z(z,y) and Ayz = z(z,y + 1) — 2(z,y),
respectively. Then, FINOLA (Eq. 1) can be expressed as
linear partial difference equations:

A,z=AB 'Ajz=QA,z 5t.Q=AB™'. (2

Here, the horizontal change A, z exhibits a linear correla-
tion with its vertical counterpart A, z. When the matrix B
is invertible, FINOLA stands as a special solution to this
equation, given that A,z and A,z not only exhibit linear
correlation but are also linearly correlated with the normal-
ization of the current feature values z (referred to as the
FINOLA constraint). It’s noteworthy that the learned matri-
ces A and B are empirically found to be invertible across
multiple training runs with various dimensions, ranging
from 128128 to 4096 x4096.

Relaxing the FINOLA constraint through FINOLA se-
ries: FINOLA represents a specific solution to Eq. 2, but it
may not be the optimal one. We have discovered that a more

optimal solution can be attained by relaxing the FINOLA
constraint (A, z = A2, Ayz = B2) through aggregating
a series of FINOLA solutions:

M

z(w,y) =D pilw,y) st Api = Ay, Aypi = Béb,
i=1

3)

where all FINOLA solutions {¢; } share the matrices A and
B. The resulting feature map z satisfies Az = QAyz
(Eq. 2), but it no longer adheres to the FINOLA constraint
(Azz # Az, Ayz # Bz). Notably, the vanilla FINOLA
corresponds to a special case M = 1.

This approach can be implemented by expanding FINOLA
from a single path to multiple paths. As illustrated in Figure
3, an image undergoes encoding into M vectors {q1...qas },
with each vector subjected to the FINOLA process. Each
path corresponds to a special solution ¢; in Eq. 3. Sub-
sequently, the resulting feature maps are aggregated to re-
construct the original image. Importantly, all these paths
share the same set of parameters. Our experiments have
validated the effectiveness of this approach, showing that
the reconstruction PSNR improves as the number of paths
increases.

One-way wave equations after diagonalization: Empiri-
cally, we consistently observed that the learned matrix Q is
diagonalizable (Q = V AV ~1) across various training con-
figurations. As a result, channels become decorrelated when
projecting the feature map z by the inverse of eigenvectors:
¢(z,y) = V~12(x,y), which modifies Eq. 2 to:

Ag¢ = AAC, where A =diag(A, A2,..., Ac). )

where channels in ¢ are decorrelated. Each channel (j,
follows an independent linear partial difference equation
AyCr = AAyCg. Itis a finite approximation of a one-way
wave equation (or transportation equation) as follows:

G Gk

oxr Ak oy’ )
where )\, is the k' eigenvalue in A. For each channel
(k. the rate of change along the z-axis is A; times the rate
of change along the y-axis. Its solution takes the form
Fr(Apz+y), where Fi(+) can be any differentiable function.
Typically, a one-way wave equation involves time ¢ as g—g =

c%”;; here, we replace t with y.

Key insight: The amalgamation of Egs. 1, 3, and 5 empiri-
cally reveals an insight into understanding images: images
may share a set of one-way wave equations in the latent
feature space. Each image corresponds to a distinct solution
that can be generated from its associated initial condition,
as illustrated in Figure 1.
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Table 1: Reconstruction PSNR across various resolutions. Per-
formance drops slightly at higher resolutions which have significant
fewer parameters in the following upsampling and convolution layers.

Resolution upsample/conv |Single-path| Multi-path
#Params 1x3072 4x1024

8x8 25.3M 254 259
16x16 18.5M 25.8 26.2
32x32 9.6M 25.8 26.2
64 x64 7.9M 25.7 26.1

128x128 1.7M 25.3 254

256x256 1.2M 24.6 24.8

Table 3: Comparison with norm+nonlinear. PSNR values
for image reconstruction are reported. The norm+nonlinear
baseline replaces the linear model in FINOLA with two MLP
layers incorporating GELU activation in between.

Autoregression | C=512 C=1024 C=3072

224 23.8 25.8
222 23.7 25.8

Norm+Nonlinear
Norm+Linear

Both FINOLA solution and initial condition can be easily
transformed to the new feature space ¢. The transformed

initial condition is z(*Y-, ) = q. The FINOLA solution in
Eq. 3 is transformed as follows:

M

C(-T,y) = Z‘/h(%?ﬂy Azwz = HA,lZJia Ay/lnbz = HB'lZJiu
=1

(6)

where the transformed FINOLA series v; and matrices
H 4 and Hp are computed by multiplying the inverse of
eigenvectors V ! before ¢;, A, and B, respectively:

d’i - V71¢i7 HA = VilAa HB = VﬁlB,
b (CI - J)Va,
VTVI(CI - )V,

(N

where C represents the number of channels 1;(z,y) € C©,
I and J are the identity and all-ones matrices respectively.
Unlike the normalization of qAS, in Eq. 3, which simply
divides the standard deviation after subtracting the mean, the
derivation of normalization 1/31 is shown in Appendix E.1.

Implementation clarification: We clarify that the inter-
pretation via one-way wave equation does not guide train-
ing, but reveals an insight through post-training processing.
Specifically, wave speeds, denoted as A, are not explicitly
learned during training. Instead, they are computed post-
training by diagonalizing trainable matrices A and B as

Table 2: Comparison with simpler autoregressive
baselines. PSNR values for image reconstruction
on the ImageNet-1K validation set are reported. Im-
age size is 256x256. Single-path FINOLA with
C = 3072 channels is used. ¥ denotes the use of
position embedding.

Autoregression Resolution
16x16 64 x 64
Repetition 16.1 13.3
Repetition* 20.2 21.2
Linear 25.4  not converge
Norm+Linear | 25.8 25.7

Table 4: Comparison between normalization mod-
els. PSNR values for image reconstruction are reported.
Layer-norm is significantly better than batch-norm on
the validation set.

Normalization ‘ Training Validation
Batch-Norm 25.1 16.3
Layer-Norm 25.5 25.8

AB~! = VAV ! Examination of the eigenvalues in A
and eigenvectors in V' across various trained models con-
firms their complex nature (A, V' € C®*©). Please refer to
Appendix B.9 for enforcing real-valued wave speed.

Additionally, it’s noteworthy that the diagonalizability of
AB™! is not guaranteed since matrices A and B are
learned from training loss without imposed constraints.
However, in practice, our experiments indicate that non-
diagonalizable matrices rarely occur. This observation sug-
gests that the set of matrices resistant to diagonalization is
sufficiently small through the learning process.

4. Experiments on Image Reconstruction

We evaluate our FINOLA (single and multiple paths) for im-
age reconstruction on ImageNet-1K (Deng et al., 2009). The
default image size is 256 x256. Our models are trained on
the training set and subsequently evaluated on the validation
set. Please refer to Appendix B.2 for model and training
details, and Appendix B.6-B.10 for additional ablations,
experimental results and visualization.

4.1. Main Properties

FINOLA across various resolutions: Table 1 shows con-
sistent PSNR scores across various feature map resolutions
for both single-path and multi-path FINOLA. Minor perfor-
mance reduction occurs at 128 x 128 and 256 x256 due to
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Figure 5: Reconstruction PSNR for multi-path FINOLA. The generated feature map has a resolution of 64 x64, and the
image size is 256 x256. Increasing the number of paths M, as defined in Eq. 3, consistently enhances reconstruction PSNR
across various dimensions (C' = 128 to C' = 2048). The blue lines in the right table represent contour lines of the latent size
(equal to M C'). PSNR remains consistent along each latent size line. Best viewed in color.

smaller decoders (1.7M and 1.2M parameters, respectively).
Notably, at resolution 256256, FINOLA is followed by
only three 3x3 convolutional layers, covers a 7-pixel field
of view (see Table 13 in Appendix B.2).

Norm-+Linear: Table 2 underscores the irreplaceability of
norm-+linear, as simpler alternatives like repetition exhibit
significantly lower PSNR, and a linear model without nor-
malization fails to converge at higher resolutions (64 x64).
Additionally, Table 3 demonstrates that replacing the lin-
ear component with a more complex 2-layer MLP yields
negligible gain. Moreover, Table 4 emphasizes the impor-
tant role of layer normalization, with a substantial drop in
validation observed for batch normalization. These find-
ings collectively establish that norm+linear is necessary and
sufficient.

Multi-path FINOLA: Figure 5 shows the PSNR values
for multi-path FINOLA. Increasing the number of paths M
consistently improves PSNR. Visual comparisons in Figure
16 at Appendix B.8 emphasize the notably enhanced image
quality from single-path to multi-path FINOLA, showcasing
its ability to find superior solutions within the wave equation
solution space. However, multi-path also increases the latent
size of initial conditions (3" |g;| = M C). The right side of
Figure 5 demonstrates a consistent PSNR along the same
latent size line. This suggests that reconstruction quality is
influenced not solely by the number of wave equations C' or
the number of FINOLA paths M but by their product M C'
(the latent size). This finding enables parameter efficiency
in matrices A and B by decreasing the number of channels
and increasing the number of paths, which is important for
large latent size. For instance, at a latent size of 16,384,
single path requires 268 million parameters in matrices A
and B, whereas aggregating 16 FINOLA paths incurs only
1 million parameters.

Image distribution in g space: We made three intriguing

Table 5: Comparison with discrete cosine transform
(DCT). PSNR values for image reconstruction are reported
on the ImageNet-1K validation set. (2048 x 16) indicates
C = 2048 channels and M = 16 FINOLA paths. T denotes
using multiple initial conditions g; at different positions
instead of overlapping at the center (see Appendix B.10).

Method Latent | PSNR
DCT (top-lefi 1) 3072 20.6
FINOLA (multi-path) 2048 (1024 x2) 24.8
DCT (top-left 3) 9216 23.5
FINOLA (multi-path) 8192 (1024 % 8) 271
DCT (top-left 6) 18432 25.6
FINOLA (multi-path) 16384 (2048 % 8) 28.0
FINOLA (mulli—palh)Jr 16384 (2048 % 8) 28.9
DCT (top-left 10) 30720 27.5
FINOLA (multi-path) 32768 (2048 x16) 29.1
FINOLA (muhi»path)Jr 32768 (2048 x16) 30.0

observations about how images are distributed in the space
of the compressed vector g: (a) the reconstruction from
the averaged q over 50k validation images results in a gray
image (Figure 12 in Appendix B.7), (b) the space is predom-
inantly occupied by noisy images (Figure 11 in Appendix
B.7), and (c) the reconstruction from an interpolation be-
tween two embeddings, ag; + (1 — a)go, yields a mix-up
of corresponding images (Figure 13 in Appendix B.7).

4.2. Comparison with Previous Techniques

We compare multi-path FINOLA with widely recognized en-
coding/decoding methods, such as discrete cosine transform,
discrete wavelet transform, auto-encoders. The comparison
is based on a similar number of latent coefficients.
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Table 6: Comparison with discrete wavelet transform
(DWT). PSNR values for image reconstruction are reported
on the ImageNet-1K validation set. (2048 x 16) indicates
C = 2048 channels and M = 16 FINOLA paths. t denotes
using multiple initial conditions at different positions instead
of overlapping at the center (see Appendix B.10).

Method Latent | PSNR T
DWT (scale-3 LL subband) 3888 21.5
DTCWT (scale-3 LL subband) 12288 22.3
FINOLA (multi-path) 2048 (1024 x2) 24.8
DWT (scale—3 all subbands) 15552 243
DTCWT (scale-3 all subbands) 49152 25.6
FINOLA (multi-path) 8192 (1024 x8) 271
DWT (scale-2 all subbands) 55953 28.7
DTCWT (scale-2 all subbands) 196608 30.8
FINOLA (multi-path) 32768 (2048 % 16) 29.1
FINOLA (multi—path)‘\ 32768 (2048 % 16) 30.0

Table 7: Comparison with convolutional auto-encoder
(Conv-AE). FINOLA (multi-path) achieves a higher PSNR
compared to Conv-AE with the same latent size, while using
significantly fewer parameters in the decoder. Both methods
employ the same Mobile-Former encoder, and the same
upsampling/convolution layers after the feature map z is
generated at resolution 64 x64.

Method Latent Param] PSNRt
Conv-AE {2048 359M 246
FINOLA | 2048 (1024x2) 16.6M  24.8
Conv-AE 8192 61.9M  26.0
FINOLA |8192(j024x3) 16.6M  27.1

Comparison with discrete cosine transform (DCT)
(Ahmed et al., 1974): Table 5 compares FINOLA with
DCT. DCT is conducted per 8 x8 image block, and the top-
left K coefficients (in zig-zag manner) are kept, while the
rest are set to zero. We choose four K values (1, 3, 6, 10)
for comparison. Clearly, multi-path FINOLA achieves a
higher PSNR with a similar latent size.

Comparison with discrete wavelet transform
(DWT/DTCWT) (Strang, 1989; Daubechies, 1992;
Vetterli & Kovacevic, 2013): We compare FINOLA with
DWT and DTCWT in Table 6. Three scales are chosen for
wavelet decomposition. The comparisons are organized
into three groups: (a) using only the LL subband at the
coarsest scale (scale 3), (b) using all subbands (LL, LH,
HL, HH) at the coarsest level, and (c) using all subbands
at the finer scale (scale 2). Our method outperforms DWT

Table 8: Comparison with JPEG on end-to-end com-
pression. A single-path FINOLA model with C' = 3072
channels is compared to JPEG compression end-to-end on
ImageNet (Deng et al., 2009) and Kodak (Company, 1999)
datasets. FINOLA has a much cheaper pipeline, i.e. uniform
quantization per channel without additional coding of the
quantized bits, but achieves superior performance compared
to JPEG.

Method ImageNet Kodak
Bit/Pixel] PSNRT |Bit/Pixel| PSNR?T

JPEG 0.50 24.5 0.20 24.0

FINOLA| 0.19 249 0.19 25.6

and DTCWT in terms of PSNR for the first two groups,
achieving at a smaller latent size. In the last group, while
FINOLA’s PSNR is lower than DTCWT, its latent size is
significantly smaller (more than 6 times smaller).

Comparison with convolutional auto-encoder (Masci
et al., 2011; Ronneberger et al., 2015; Rombach et al.,
2021): Table 7 presents a comparison between our
method and convolutional autoencoder (Conv-AE) con-
cerning image reconstruction, measured by PSNR. Both
approaches share the same Mobile-Former (Chen et al.,
2022) encoder and have identical latent sizes (2048 or
8192). In our method, multi-path FINOLA is initially em-
ployed to generate a 64x64 feature map, followed by up-
sampling+convolution to reconstruct an image with size
256%256. On the other hand, Conv-AE employs a deeper
decoder that utilizes upsampling+convolution from the la-
tent vector to reconstruct an image. Please see Table
15 in Appendix B.3 for details in architecture compari-
son. Our method has significantly fewer parameters in the
decoder. The results highlight the superior performance
of our method over Conv-AE, indicating that a single-
layer FINOLA is more effective than a multi-layer upsam-
pling+convolution approach. The comparison with auto-
encoding (first stage) in generative models (e.g. Stable
Diffusion (Rombach et al., 2021)) is shown in Table 16 in
Appendix B.4.

4.3. Comparison with JPEG on Image Compression

In Table 8, we compare FINOLA (single path with 3072
channels) with JPEG for image compression. Remarkably,
by employing only uniform quantization per channel with-
out further coding of the quantized bits, FINOLA achieves
higher PSNR values with lower bits per pixel on both the
ImageNet and Kodak (Company, 1999) datasets.

4.4. Comparison with AE in Generative Models

Table 9 presents a comparison of FINOLA with the first
stage (learning an autoencoder and vector quantization in
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Table 9: Comparisons with the first stage of multiple generative methods (learning an autoencoder and vector quantization
in the latent space), assessed using both PSNR and Fréchet Inception Distance (FID) metrics.

Loss

Method Latent Size #Channels Logit-Laplace Ly Perceptual GAN FID | PSNR 1
DALL-E (Ramesh et al., 2021) 16 x 16 - v 32.00 22.8
VQGAN (Esser et al., 2021) 16 x 16 256 v v 498 199
ViT-VQGAN (Yu et al., 2022a) 32 x 32 32 v v v v 1.28 -
Stable Diffusion (Rombach et al., 2021) | 16 x 16 16 v v 0.87 24.1
FINOLA 1x1 3072 v 27.82 25.8

the latent space) of multiple generative methods, assessed
using both PSNR and Fréchet Inception Distance (FID) met-
rics. While FINOLA achieves good performance in terms
of PSNR, its results are less competitive with respect to FID.
This divergence is a consequence of our deliberate choice
to employ the L5 loss function. We intentionally prioritized
a straightforward loss function to emphasize that FINOLA’s
efficacy does not depend on complex reconstruction loss for-
mulations. To further optimize FID scores, we acknowledge
the potential benefits of incorporating perceptual loss func-
tions and Generative Adversarial Network (GAN) losses,
as demonstrated in models such as VQGAN (Esser et al.,
2021), ViT-VQGAN (Yu et al., 2022a), Stable Diffusion
(Rombach et al., 2021). We also leave more extensive com-
parisons with recent generative models (Shocher et al., 2024;
Ismail et al., 2024) to future work.

It is crucial to reiterate that FINOLA’s primary objective dif-
fers from that of a generative model. Our focus is not on im-
age generation per se, but rather on introducing a novel per-
spective for understanding images (first-order norm-linear
autoregression).

5. Application on Self-Supervised Learning

FINOLA can be applied to self-supervised learning through
a straightforward masked prediction task, which we refer
to as Masked FINOLA to distinguish it from the vanilla
FINOLA. Please refer to Appendix C for details of masked
prediction, network structure, training setup, and additional
experiments. Our key findings include:

Comparable performance: Masked FINOLA demon-
strates comparable performance to established baselines,
e.g. MAE (He et al., 2021) and SimMIM (Xie et al., 2022),
on ImageNet fine-tuning (see Table 10), as well as linear
probing (see Table 25 in Appendix C.4), while maintaining
lower computational requirements.

Robust task-agnostic encoders: Pre-training with Masked
FINOLA, followed by fine-tuning on ImageNet-1K (IN-1K),
consistently outperforms IN-1K supervised pre-training in
both ImageNet classification and COCO object detection
(see Figure 6). The gains in object detection are substantial,

Table 10: Comparison with previous self-supervised
methods on ImageNet-1K fine-tuning. The baseline meth-
ods includes MoCo-v3 (Chen et al., 2021), MAE-Lite (Wang
et al., 2022), UMMAE (Li et al., 2022b), MAE (He et al.,
2021), and SimMIM (Xie et al., 2022). Three Mobile-
Former backbones of varying widths are used, followed
by a decoder with 4 transformer blocks.

Method | Model |MAdds| #Params)| |Top-11
MoCo-v3 | ViT-Tiny 1.2G 6M| 76.8
MAE-Lite| ViT-Tiny 1.2G 6M| 78.0
FINOLA |MF-W720 0.7G M| 78.4
MoCo-v3 |ViT-S 4.6G 22M| 814
UM-MAE|Swin-T 4.5G 29M| 82.0
MAE-Lite| ViT-S 4.6G 22M| 82.1
SimMIM |Swin-T 4.5G 29M| 82.2
FINOLA |MF-W1440 2.6G 20M| 82.2
MoCo-v3 |ViT-B 16.8G 86M| 83.2
MAE ViT-B 16.8G 86M| 83.6
SimMIM | ViT-B 16.8G 86M| 83.8
SimMIM |Swin-B 15.4G 88M| 84.0
FINOLA |MF-W2880 9.9G 57M| 83.9

ranging from 5 to 6.4 AP. Table 26 in Appendix C.5 shows
that FINOLA outperforms MoCo-v2 on various tasks such
as image classification, object detection, and segmentation.
Notably, the encoder is frozen without fine-tuning on detec-
tion and segmentation tasks. Please refer to Appendix C.5
for additional experimental results.

FINOLA vs. Masked FINOLA: Table 30 in Appendix
D.1 compares vanilla FINOLA and two masked FINOLA
variants in image reconstruction and linear probing. The
introduction of masking in masked FINOLA trades restora-
tion accuracy for improved semantic representation. Geo-
metrically, Figure 23 in Appendix D.2 illustrates masked
FINOLA introduces a substantial increase in Gaussian cur-
vature on critical feature surfaces, suggesting enhanced cur-
vature in the latent space for capturing semantics. Computa-
tion details of Gaussian curvature are available in Appendix
D.3. Additional comparisons can be found in Appendix D.1.
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Figure 6: Task-agnostic encoders evaluated on ImageNet (IN-1K) classification and COCO object detection. We assess
three IN-1K pretraining methods: (a) supervised (Sup-IN1K), (b) FINOLA, and (c) FINOLA with fine-tuning on IN-1K
(FINOLA+IN1K-FT). The dots represent different Mobile-Former backbones. It is noteworthy that the backbone remains
task-agnostic and is kept frozen during object detection. FINOLA performs lower than Sup-IN1K in classification but
surpasses it in object detection. After fine-tuning on IN-1K, FINOLA+INI1K-FT shows improvements in both tasks,

providing robust task-agnostic encoders.

6. Related Work

Image autoregression: Autoregression has played a pivotal
role in generating high-quality images (van den Oord et al.,
2016b;a; Salimans et al., 2017; Chen et al., 2018). These
methods model conditional probability distributions of cur-
rent pixels based on previously generated ones, evolving
from pixel-level focus to latent space modeling using vector
quantization (van den Oord et al., 2017; Razavi et al., 2019;
Esser et al., 2021; Yu et al., 2022c). In contrast, we present
a first-order norm+linear autoregression to generate feature
map and reveals new insights by generalizing FINOLA as a
set of one-way wave equations.

Image transforms: The Discrete Cosine Transform (DCT)
(Ahmed et al., 1974) and Wavelet Transform (Strang, 1989;
Daubechies, 1992; Vetterli & Kovacevic, 2013) are widely
recognized signal processing techniques for image compres-
sion. Both DCT and wavelet transforms project images into
a complete space consisting of known wave functions, in
which each image has compact coefficients, i.e., most coef-
ficients are close to zero. In contrast, our method offers a
distinct mathematical perspective for representing images.
It encodes images into a compact space represented by a
set of one-wave equations with learnable speeds, with each
image corresponding to a unique initial condition. These
differences are summarized in Table 11 at Appendix B.1.

Self-supervised learning: Contrastive methods (Becker
& Hinton, 1992; Hadsell et al., 2006; van den Oord et al.,
2018; Wu et al., 2018; He et al., 2019; Chen & He, 2020;
Caron et al., 2021) achieve significant progress. They are
most applied to Siamese architectures (Chen et al., 2020b;
He et al., 2019; Chen et al., 2020d; 2021) to contrast image
similarity and dissimilarity and rely on data augmentation.
(Chen & He, 2020; Grill et al., 2020) remove dissimilarity

between negative samples by handling collapse carefully.
(Chen et al., 2020c; Li et al., 2021a) show pre-trained mod-
els work well for semi-supervised learning and few-shot
transfer. Masked image modeling (MIM) is inspired by
BERT (Devlin et al., 2019) and ViT (Dosovitskiy et al.,
2021) to learn representation via masked prediction. BEiT
(Bao et al., 2021) and PeCo (Dong et al., 2021) predict on
tokens, MaskFeat (Wei et al., 2022) predicts on HOG, and
MAE (He et al., 2021) reconstructs original pixels. Recent
works explore combining MIM and contrastive learning
(Zhou et al., 2022; Dong et al., 2022; Huang et al., 2022;
Tao et al., 2022; Assran et al., 2022; Jiang et al., 2023) or
techniques suitable for ConvNets (Gao et al., 2022; Jing
et al., 2022; Fang et al., 2022). Different from using random
masking in these works, FINOLA uses regular masking and
simpler norm+linear prediction.

7. Conclusion

In this paper, we empirically revealed a form of invariance
in natural images through the lens of one-way wave equa-
tions. Our findings suggest that all images may share a
common set of such equations, defined by learnable propa-
gation speeds, with each image corresponding to a unique
solution determined by its initial condition. This dynamic is
seamlessly implemented within an encoder-decoder frame-
work, where the wave equations are reformulated as a first-
order norm-plus-linear autoregressive (FINOLA) process.
The proposed approach demonstrates strong performance
in image reconstruction and shows promising potential for
self-supervised learning, offering a novel perspective on
the underlying structure of visual data. Looking forward,
we believe that further theoretical investigations into the
dynamics uncovered in this work could provide valuable
insights and foundations for future research.
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Table 11: Comparison between DCT/Wavelet transform and FINOLA.

DCT or Wavelet Transform FINOLA
Representation Cosine/Wavelet functions One-way wave equations
Parameters Fixed parameters Learnable speeds
Encoding Image — coefficients Image — initial conditions

Compactness | Compact coefficients per image Compact space representation

Table 12: Specification of Mobile-Former encoders. “bneck-lite” denotes the lite bottleneck block (Li et al., 2021b).
“M-F” denotes the Mobile-Former block and “M-F*” denotes the Mobile-Former block for downsampling.

Stage | Resolution Block MF-W2880 MF-W1440 MF-W720
#exp #out #exp #out #exp  #out
token 6x256 6x256 6x192
stem 2567 conv 3x3 — 64 — 32 — 16
1 1282 bneck-lite 128 64 64 32 32 16
5 642 M-F! 384 112 192 56 96 28
M-F 336 112 168 56 84 28
M-F* 672 192 336 96 168 48
3 322 M-F 576 192 288 96 144 48
M-F 576 192 288 96 144 48
M-F 1152 352 288 96 240 80
M-F 1408 352 704 176 320 88
M-F 1408 352 704 176 480 88
4 162 M-F 2112 480 1056 240 528 120
M-F 2880 480 1440 240 720 120
M-F 2880 480 1440 240 720 120
conv 1x1 - 2880 - 1440 - 720

A. Limitations

The major limitation of our method is that the invariance (encoded in matrices A and B) is revealed empirically without
theoretical proof. Additionally, this paper focuses on multi-path FINOLA, which represents only a subspace of the solutions
to the one-way wave equations. In future work, we plan to explore the theoretical analysis of the revealed invariance and the
complete solution space of the one-way wave equations.

B. FINOLA for Image Reconstruction

In this section, we list implementation details and additional experimental results of FINOLA (single or multiple paths).

B.1. Conceptual Comparison with DCT/Wavelet Transforms

Both DCT and wavelet transforms project images into a complete space consisting of known wave functions, in which each
image has compact coefficients, i.e., most coefficients are close to zero. In contrast, our method offers a distinct mathematical
perspective for representing images. It encodes images into a compact space represented by a set of one-way wave equations
with learnable speeds. Each image corresponds to a unique initial condition. These differences are summarized in Table 11.
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Table 13: Upsampling and convolutional layers in FINOLA decoder. The complexity of upsampling and convolution
layers decreases as the spatial resolution of feature map (generated by FINOLA) increases from 8x8 to 256x256). “res-
conv” represents a residual block (He et al., 2016) consisting of two 3x3 convolutional layers, while “up-conv” performs
upsampling followed by a 3x3 convolutional layer.

Resolution 8x8 16x16 32x32 64 <64 128128 256 x256
block #out| block #out| block #out| block #out| block #out| block #out
82 res-conv 512
162 up-conv 512
res-conv 512 | res-conv 512
392 up-conv 512 | up-conv 512
res-conv 256 | res-conv 256 | res-conv 256
642 up-conv 256 | up-conv 256 | up-conv 256
res-conv 256 | res-conv 256 | res-conv 256 | res-conv 256
1282 up-conv 256 | up-conv 256 | up-conv 256 | up-conv 256
res-conv 128 | res-conv 128 | res-conv 128 | res-conv 128 | res-conv 128
up-conv 128 | up-conv 128 | up-conv 128 | up-conv 128 | up-conv 128
2562 res-conv 128 | res-conv 128 | res-conv 128 | res-conv 128 | res-conv 128 | res-conv 128
convd3x3 3 |[conv3x3 3 |conv3x3 3 |conv3x3 3 |conv3x3 3 |conv3x3 3
#param 25.3M 18.5M 9.6M 7.9M 1.7M 1.2M

B.2. Implementation Details
B.2.1. NETWORK ARCHITECTURES

In this subsection, we provide detailed information on the network architecture components used in our study. Specifically,
we describe (a) the Mobile-Former encoders, (b) the pooler to compress the feature map into a single vector, (c) the
upsampling and convolutional layers employed in FINOLA decoder.

Mobile-Former encoders: Mobile-Former (Chen et al., 2022) is used as the encoder in our approach. It is a CNN-based
network that extends MobileNet (Sandler et al., 2018) by adding 6 global tokens in parallel. To preserve spatial details, we
increase the resolution of the last stage from 3% to %6. We evaluate three variants of Mobile-Former, which are detailed
in Table 12. Each variant consists of 12 blocks and 6 global tokens, but they differ in width (720, 1440, 2880). These
models serve as the encoders (or backbones) for image reconstruction, self-supervised pre-training, and evaluation in image
classification and object detection tasks. For image reconstruction, we also explore two wider models, W4320 and W5760,
which increase the number of channels from W2880 by 1.5 and 2 times, respectively. It’s important to note that these models

were manually designed without an architectural search for optimal parameters such as width or depth.

Pooling the compressed vector g: In both FINOLA and
element-wise masked FINOLA, the compressed vector g
is obtained by performing attentional pooling (Lee et al.,

Table 14: Training setting for FINOLA.

2019; Yu et al., 2022b) on the feature map. This pooling Config FINOLA
operation involves a single multi-head attention layer with optimizer AdamW

learnable queries, where the encoder output serves as both base learning rate 1.5¢-4

the keys and values. weight decay 0.1

FINOLA decoders: Table 13 provides the architecture batch size 128

details of upsampling and covolutional layers after apply- learning rate schedule | cosine decay

ing FINOLA to generate feature maps z. The complexity warmup epochs 10

of decreases as the spatial resolution increases, going from training epochs 100

88 t0 256x256. FINOLA is trained for 100 epochs on image size 2567

TmageNet. augmentation RandomResizeCrop

B.2.2. TRAINING SETUP

The FIOLA training settings for image reconstruction are provided in Table 14. The learning rate is scaled as Ir =
base_lrxbatchsize / 256.
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Table 15: Architecture comparison between convolutional Auto-Encoder and FINOLA.

Auto-Encoder FINOLA
Encoder same same
Pooling 2x2x512 (2x2 grid) 2x 1024 (overlap at center)
Upsampling to 64x64x1024 |5 conv blocks (from 2x2 to 64 x64) FINOLA
Upsampling to 256 x256x 13 same same
Training setup same same

B.2.3. TRAINING AND INFERENCE TIME

Training time: Training the FINOLA model involves regressing dense feature maps, with computational requirements
increasing with feature map size. For instance, training FINOLA to generate a 16x 16 feature map with 3072 latent channels
for 100 epochs on ImageNet takes approximately 8 days with 8 V100 GPUs. Extending to a larger feature map, such as
64 x 64, increases the training time to 18 days using the same GPU setup.

Inference time: In addition to training time, the runtime evaluation includes the complete inference pipeline, encompassing
encoding, autoregression, and decoding, conducted on a MacBook Air with an Apple M2 CPU. We evaluated FINOLA for
generating feature maps of sizes 16x 16 and 64 x64, with running times of 1.2 seconds and 2.6 seconds, respectively.

B.3. Architecture Comparison with Convolutional Auto-Encoder (Convv-AE)

Table 15 presents a comparison of the architectural components between the Conv-AE and FINOLA, while their performance
comparison is reported in Table 7 in Section 4.2). Both models share identical (a) encoder, (b) upsampling from resolution
64x64 to 256256, and (c) training setup (hyper-parameters). However, they differ in their approaches to pooling and

upsampling toward the resolution 64 x 64.

Pooling: Auto-encoder pools a 2x2 grid with 512
channels, while FINOLA pools two vectors with
dimension 1024, both yielding the same latent size
(2048). Auto-encoder pooling retains spatial infor-
mation within the 2x2 grid, whereas FINOLA has
no explicit spatial information as both vectors are
positioned centrally for the FINOLA process.

Upsampling to Resolution 64x64: The auto-
encoder utilizes a stack of five convolutional blocks
to generate features at a resolution of 64 x64. Each
block consists of three 3 x3 convolutional layers
followed by an upsampling layer to double the reso-
lution. In contrast, our method employs multi-path
FINOLA to generate the feature map from center-
placed vectors. Since FINOLA utilizes only four
matrices (A, B, A_, and B_), it significantly re-
duces the number of parameters compared to the
five convolutional blocks used in the auto-encoder.

Engineering techniques: FINOLA does not rely
on any additional engineering techniques. Despite
this, it slightly outperforms the auto-encoder while
utilizing significantly fewer parameters. We at-

Table 16: Comparison with auto-encoding (first stage) in genera-
tive models. PSNR values for image reconstruction are reported on
the ImageNet-1K validation set. (2048 x 16) indicates C' = 2048
channels and M = 16 FINOLA paths. T denotes using multiple
initial conditions g; at different positions instead of overlapping at
the center (see Appendix B.10).

Method Latent | PSNR 1
DALL-E 32x32x— 22.8
VQGAN 65536 (16x16x256)  19.9
Stable Diffusion 4096 (16x16%16) 24.1
FINOLA (multi-path) 4096 (1024 x4) 26.1
FINOLA (multi—path)T 4096 (1024 x4) 26.7
Stable Diffusion 12288 (64x64x3) 27.5
FINOLA (multi-path) 8192 (1024 % 8) 27.1
FINOLA (multi—path)T 8192 (1024 % 8) 28.0
Stable Diffusion 32768 (128 % 128 %x2) 30.9
FINOLA (multi-path) 32768 (2048 % 16) 290.1
FINOLA (multi—path)T 32768 (2048 % 16) 30.0

tribute this performance to FINOLA’s efficient and effective modeling of spatial transitions.
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Original
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Original

Reconstruction

Original
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Figure 7: Image reconstruction examples. FINOLA works well to reconstruct diverse categories such as natural scenes,
human portraits, facial images, animal photographs, air and land transportation, and medical images. Best viewed in color.

B.4. Comparison with Auto-Encoder in Generative Models

Table 16 provides a detailed comparison of FINOLA’s performance against the first stage (autoencoding) of VQGAN and
Stable Diffusion in image reconstruction, evaluated on ImageNet-Val with 256x256 images. It’s important to note that the
first stage of VQGAN and Stable Diffusion focuses solely on auto-encoding and does not involve the generation process
(e.g., diffusion process).

This comparison underscores FINOLA’s performance across varying latent dimensions and its effectiveness in comparison
to other methods. Although FINOLA falls behind Stable Diffusion at the largest latent dimension (32768), it operates in a
more challenging setup. While FINOLA outputs a single vector after encoding, positioned at the center to generate feature
maps through the FINOLA process, spatial information is not explicitly retained. In contrast, the encoder in Stable Diffusion
produces a high-resolution grid (128x128) where spatial information is highly preserved.

Introducing spatial information in FINOLA by scattering the initial positions of multiple FINOLA paths (rather than
overlapping at the center) enhances the reconstruction quality by 0.6-0.9 PSNR. However, due to scattering initial positions
at only 16 locations, the preservation of spatial information remains constrained compared to Stable Diffusion’s 128x128
grid. Consequently, while this enhancement closes the gap in performance (PSNR 30.0 vs 30.9), it still falls short of Stable
Diffusion’s spatial fidelity.

B.5. Additional Reconstructed Examples

Additional FINOLA reconstructed images, encompassing diverse categories such as natural scenes, human portraits, facial
images, animal photographs, air and land transportation, and medical images, are shown in Figure 7.
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Table 17: Image reconstruction ablation experiments on ImageNet-1K. We report PSNR on the validate set. The
reconstruction quality correlates to (a) the number of channels in the latent space and (b) complexity of encoder. Default
settings are marked by .

#Channels\4096 30727 2048 1024 512 256 128 64 Encoder\67.6M 43.5M 25.0M' 12.0M 5.0M
PSNR .25.9 25.8 25.1 237 22.2 20.8 194 18.2 PSNR . 26.1 260 258 25.1 244
(a) Number of channels in latent space. (b) Model size of encoders.
Original d4096 d3072 d2048 d1024 d512 d256 d128 d64
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Figure 8: Impact of the number of channels on image reconstruction quality. The leftmost column shows the original
images. The number of channels in the latent space, decreasing from 4096 to 64 from the left to right, controls the
reconstruction quality. Best viewed in color.

B.6. Ablation Studies of Single Path FINOLA

The number of channels in the latent space is crucial. Table 17-(a) presents the PSNR values for various latent space
dimensions, while Figure 8 showcases the corresponding reconstructed examples. The image quality is noticeably poor
when using only 64 channels, resulting in significant loss of details. However, as the number of channels increases, more
details are successfully recovered. Using more than 3072 channels yields reasonably good image quality, achieving a PSNR
of 25.8.

The model size of encoder is less critical but also related. As shown in Figure 9 and Table 17-(b), the larger model has
better image quality. But the gap is not significant. When increasing model size by 13 times from 5.0M to 67.6M, the PSNR
is slightly improved from 24.4 to 26.1. Note all encoders share similar architecture (Mobile-Former with 12 blocks), but
have different widths.

The position of g is not critical: Figure 10 showcases the reconstructed samples obtained by placing the compressed
vector q at different positions, including the center and four corners. The corresponding peak signal-to-noise ratio (PSNR)
values on the ImageNet validation set are provided at the bottom. While placing q at the center yields slightly better results
compared to corner positions, the difference is negligible. It is important to note that each positioning corresponds to its own
pre-trained model with non-shared parameters.
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Original 67.6M 43.5M 25.0M 12.0M 5.0mM
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Figure 9: Impact of encoder size on image reconstruction quality: The image reconstruction quality shows a slight
improvement as the size of the encoder increases. Even with a small encoder containing 5 million parameters (right column),
it effectively compresses an image into a single vector capable of reconstructing the entire image. Best viewed in color.

B.7. Inspecting the Image Distribution in ¢ Space

In this subsection, we list main observations and analysis in the space of the compressed vector g (named embedding space).
This will help us to understand how images are distributed in the embedding space. In this subsection, we use single-path
FINOLA with C' = 3072 channels.

Three observations: Below we list three observations that reveal properties of the embedding space.

Dominance of noisy images in the space: To analyze the distribution of images in the embedding space, we collected g
vector for all 50,000 images from the ImageNet validation set and computed their statistics (mean and covariance). By
sampling embeddings based on these statistics and reconstructing images, we consistently observed the emergence of similar
noisy patterns, as depicted in Figure 11. This observation highlights the prevalence of noisy images throughout the space,
with good images appearing as isolated instances surrounded by the abundance of noise.

Averaged embedding q yields a gray image: In Figure 12, we observe that the reconstructed image obtained from the
averaged embedding g, computed over 50,000 images from the ImageNet validation set, closely resembles a gray image. We
further investigate the relationship between real image embeddings g and the averaged embedding g through interpolations
along the embedding space. As depicted in the left figure, the reconstructed images maintain their content while gradually
fading into a gray image. Additionally, we extend this connection to mirror embeddings in the right figure, represented by
2q — @, which correspond to images with reversed colors. These findings suggest that despite the prevalence of noisy images,
the line segment connecting an image embedding to the average embedding encompasses different color transformations of
the same image.

Reconstruction from interpolated embeddings: In Figure 13, we present the reconstructed images obtained by interpolating
between two image embeddings using the equation aq; + (1 — a)ge. This process of embedding mixup results in a
corresponding mixup of the images, allowing for a smooth transition between the two original images by varying the value
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Figure 10: Comparison of different positions of compressed vector g: The quality of image reconstruction shows minimal
sensitivity to the position of q. Placing it at the center yields slightly better results compared to corner positions. It is worth
noting that each positioning has its own pre-trained model with non-shared parameters. Best viewed in color.

Figure 11: Reconstruction from random samples: The reconstructed images are generated by sampling from the statistics
(mean and covariance) of compressed embeddings q obtained from the ImageNet validation set, consisting of 50,000 images.
Although the samples are not similar to images of Gaussian noise, they lack semantic meaning and appear as noisy images.
Multiple samplings consistently yield similar noisy patterns. Best viewed in color.
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Mean Mean
q 0.75q+0.25q 0.5q+0.5q  0.259+0.75q q q

q
Original .

q 2q—-q

Figure 12: Reconstruction from the average embedding ¢: The reconstructed image corresponding to the average
embedding g computed from 50,000 ImageNet validation images closely resembles a gray image (shown in the right column
of the left figure). In the left figure, we demonstrate the interpolation along a line connecting embeddings from different
images to the average embedding. Notably, the reconstructed images progressively fade into a gray image. In the right
figure, we extend the connection between an image embedding g and the average embedding g to a mirror embedding
2q — @, corresponding to an image with reversed colors. This comparison provides insights into the nature of the embedding
space. Best viewed in color.
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Figure 13: Reconstruction from interpolated embeddings: The images are reconstructed by interpolating embeddings of
two images, g, + (1 — «)go. Although the mixed embedding passes through a non-linear network that includes FINOLA
and a multi-layer decoder, it leads to mixing up images as output. Best viewed in color.
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Original Images

Perturbation level

p=0.0

Figure 14: Sensitivity to small perturbations: Perturbed representations (g,) were generated by linear interpolation
between an image representation (g;) and a randomly sampled noise vector (g,,): ¢, = (1 — p)g; + pg,,. The interpolation
parameter, p, was varied from O (no perturbation) to 1.0 (full perturbation) in increments of 0.1. The perturbed vectors (g,)
were then processed by FINOLA and the decoder to reconstruct the images. Best viewed in color.

of . However, it is important to note that the resulting reconstruction may not precisely match the simple mixup of the
original images, represented by al; + (1 — «) L.

Combining the three observations discussed above, our findings suggest that the presence of noisy images in Figure 11
indicates the mixing of multiple surrounding images. As the number of image embeddings involved in the mixing process
increases, the resulting reconstructions tend to resemble a gray image, as depicted in Figure 12.

Sensitivity to small perturbations: To assess FINOLA’s sensitivity to perturbations, we conducted an experiment where
perturbations were introduced into the compressed representation space. Specifically, perturbed representations (g,)
were generated by linear interpolation between an image representation (q;) and a randomly sampled noise vector (q,,):
gy = (1 — p)q; + pg,. The interpolation parameter, p, was varied from 0 (no perturbation) to 1.0 (full perturbation) in
increments of 0.1. The perturbed vectors (q,,) were then processed by FINOLA and the decoder to reconstruct the images.
The result images are shown in Figure 14, demonstrate that FINOLA exhibits robustness to small perturbations (p = 0.1 or
p = 0.2). However, the quality of the reconstruction degrades as the perturbation level increases.

Principle component analysis (PCA): The reconstruction results shown in Figure 15 are obtained using PCA with
the top-K principle components. These components correspond to the largest K eigenvalues of the covariance matrix
computed from 50,000 image embeddings in the ImageNet validation set. The principle components capture essential
information, starting with color and layout, and gradually encoding finer image details as more components are included in
the reconstruction process.
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Figure 15: Reconstruction from top principle components: The top- K principle components correspond to the largest
K eigenvalues of the covariance matrix computed from 50,000 image embeddings in the ImageNet validation set. With a
selection of top-192 components (the right column), the color and layout of the images are primarily determined, but the
resulting reconstructions appear blurred with noticeable loss of details. As more principle components are incorporated, the
finer details are gradually restored. Best viewed in color.

Original 2048 Channels 1024 Channels 512 Channels 256 Channels 128 Channels
Image Multiple Paths Single Path ~ Multiple Paths Single Path  Multiple Paths Single Path  Multiple Paths Single Path  Multiple Paths Single Path
256x256 M=8 M=1 M=8 M=1 M=8 M=1 M=8 M=1 M=8 M=1

Figure 16: Multiple paths vs. Single path: Summing M = 8 FINOLA solutions ¢; (as in Eq. 3) yields superior image
reconstruction quality compared to the single path counterpart. This trend holds across various dimensions (from C' = 128
to C' = 2048). Resolution of feature map z is set to 64 x 64, with an image size of 256 x256. Best viewed in color.
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Figure 17: Reconstruction examples for varying numbers of channels (C) and FINOLA paths (}/): Increasing the
number of paths, as per Eq. 3, consistently enhances image quality across different dimensions (C' = 128 to C' = 2048),
affirming the relaxation of FINOLA constraints. Feature resolution (2) is 64 x 64, and image size is 256 x256. Best viewed
in color.

B.8. Visual Comparison between Single-path and Multi-path FINOLA

Single vs. Multiple paths: Figure 16 visually demonstrates that multiple paths M = 8 exhibit markedly superior image
quality compared to the single path counterpart (M = 1).

Reconstruction examples for varying number of channels C' and paths M: Figure 17 illustrates the reconstruc-
tion examples obtained for different combinations of channel counts (or number of one-way wave equations C' =
128, 256,512, 1024, 2048) and the number of FINOAL paths (M = 1,2,4,8). These results correspond to the exper-
iments in Figure 5, as discussed in Section 4.1.

Notably, a consistent trend emerges where increasing the value of M consistently enhances image quality. This trend
remains consistent across various equation counts, ranging from C' = 128 to 2048. This observation underscores the efficacy
of relaxing the FINOLA constraint by FINOLA series, as detailed in Section 3.
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Original Complex Real All-One Repetition
256x256 A €C A €R A =1

Table 18: Inspection of real-valued wave speeds: (a)
PSNR values for image reconstruction with varying
wave speeds (complex, real, all-one) on the ImageNet-
1K validation set, with the symbol ¥ denoting the
use of position embedding. The number of wave

: . o r r « r e
equations (or feature map dimension) is set C = Py Py Y- Y- '
1024, and the number of FINOLA paths is set M = Mmmmm
4. (b) A comparison between all-one speed waves
and feature map generation through repetition with ﬁ)" N ﬁi’-’ N’)’; Nn’
position embedding to ensure position embedding -
isn’t the sole dominant factor.

Wave Speed | Dimension PSNR

Complex A, € C 1024 x4 26.1
Real A\, € R 1024 x4 25.1
All-one )\, = 1} 1024 x4 23.9

(a) Special cases: real and all-one speeds.

Feature Map Gen|Dimension PSNR

Repetition 4096 21.6
All-one waves 1024 x4 239
Figure 18: Reconstructed examples for varying wave speeds (com-
(b) Using position embedding. plex, real, all-one).

B.9. Real-valued Wave Speeds

It is worth noting that the speeds of the wave equations are generally complex numbers A\ € C, which is also validated in the
experiments. This arises because we do not impose constraints on the coefficient matrices (A, B) in Eq. 2. Consequently,
during the diagonalization process, AB~! = VAV ~1, it is highly likely that the eigenvalues and eigenvectors will be
complex numbers.

Here, we introduce two interesting cases by constraining the speeds of the one-way wave equations as follows: (a) as real
numbers A\, € R, and (b) as allequaltoone \; =--- = A\¢ = 1.

Real speed )\, € R: This is achieved by constraining matrices H 4 and Hp in Eq. 6 as real diagonal matrices:
HA:diag(alaa%-"aaC), HB:diag(ﬂlaﬂQa-"aﬂC)a A:PHAa B = PHg. (8)

Here, the coefficient matrices A and B in FINOLA are implemented by multiplying a real projection matrix P with
diagonal matrices H 4 and H g, respectively. Consequently, the speeds of the wave equations are real numbers, denoted as

= ak/ﬂk.

All-one speed \; = --- = A\¢c = 1: By further constraining H 4 and H g as identity matrices, all wave equations have
identical speed A\ = 1.

Hy=Hp=I, A=B=P, M=X= =)\ =1 )

Here, the coefficient matrices A and B in FINOLA are also identical and denoted as P.

Experimental results for real-valued wave speeds: Table 18-(a) provides the results for real-valued and all-one wave
speed, while Figure 18 displays corresponding reconstruction examples. In comparison to the default scenario using
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complex-valued wave speeds, enforcing wave speeds as real numbers or setting them uniformly to one shows a slight
decline in performance. Nonetheless, both real-valued speed cases still deliver reasonably good PSNR scores. Notably, the
all-one wave speed configuration achieves a PSNR of 23.9. This specific configuration shares the coefficient matrix for
autoregression across all four directions (up, down, left, right), creating symmetry in the feature map. To account for this
symmetry, we introduced position embedding before entering the decoder.

In an effort to determine whether position em-
bedding is the dominant factor for all-one wave
speed, we conducted experiments by generating
feature maps using both repetition and position
embedding, with the same dimention (4096).
This approach falls short of the all-one wave
speed configuration by 2.3 PSNR (as detailed
in Table 18-(b)). Its reconstruction quality sig-
nificantly lags behind that of all-one waves, as
depicted in the last two columns of Figure 18.

B.10. Scattering Initial Conditions Spatially

To enhance reconstruction further, we can adjust
spatial positions to place the initial conditions,
without introducing additional parameters or
FLOPs. This concept is straightforward to im-
plement through multi-path FINOLA (refer to
Figure 3), where different paths employ scat-
tered initial positions rather than overlapped at

Table 19: Position of initial conditions. PSNR values for image recon-
struction on the ImageNet-1K validation set is reported. Scattering of
initial positions spatially boosts performance.

Position #Paths M #Channels C PSNR 1
Overlapping at Center 4 1024 26.1
Scattering Uniformly 4 1024 26.7
Overlapping at Center 8 1024 27.1
Scattering Uniformly 8 1024 28.0
Overlapping at Center 16 1024 27.7
Scattering Uniformly 16 1024 29.1
Overlapping at Center 8 2048 28.0
Scattering Uniformly 8 2048 28.9
Overlapping at Center 16 2048 29.1
Scattering Uniformly 16 2048 30.0

the center. Table 19 demonstrates that further improvements in reconstruction is achieved by scattering the initial conditions
uniformly compared to placing them at the center, regardless of whether we use 4, 8 or 16 FINOLA paths.

C. Masked FINOLA for Self-supervised Pre-training

C.1. Masked FINOLA

FINOLA can be applied to self-supervised learning
through a straightforward masked prediction task, which
we refer to as Masked FINOLA to distinguish it from
the vanilla FINOLA. Unlike vanilla FINOLA that sup-
port various resolutions of feature map, masked FINOLA
performs mask prediction at resolution 11—6, which is con-
sistent with established baselines like MAE (He et al.,
2021), SimMIM (Xie et al., 2022). In this paper, we only
use single path for masked FINOLA.

Simple block masking: FINOLA is applied through a
simple masked prediction design that involves using a
single unmasked image block (see Figure 19) to predict
the surrounding masked region. Specifically, we crop
out the unmasked block and pass it through the encoder,
leveraging the power of FINOLA to generate a full-size
feature map. Finally, a decoder is applied to recover the
pixels in masked region. Unlike vanilla FINOLA, the
reconstruction loss is computed only from the masked
region. Please note that the unmasked block floats around
the image randomly.

Table 20: Mobile-Former decoder specifications for COCO
object detection: 100 object queries with dimension 256 are
used. “down-conv” includes a 3x3 depthwise convolution
(stride=2) and a pointwise convolution (256 channels). ~up-
conv” uses bilinear interpolation, followed by a 3x3 depthwise
and a pointwise convolution. "M-F*” replaces the Mobile sub-
block with a transformer block, while "M-F~ " uses the lite
bottleneck (Li et al., 2021b) to replace the Mobile sub-block.

Stage | MF-Dec-522 MF-Dec-211
query 100x256 100x256
1 | down-conv down-conv
32 M-F* x5 M-F+ x2
1 up-conv up-conv
16 M-F~ X2 M-F~ x1
1 up-conv up-conv
8 M-F~ x2 M-F~ x1

Masked FINOLA variants: Masked FINOLA comprises two variants: the element-wise approach (Masked-FINOLA-E)
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Element-wise Masked FINOLA Block-wise Masked FINOLA

: Corner case: single group Edge case: 2 groups Middle case: 4 groups
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Figure 19: Two Masked FINOLA variants: element-wise (left) and block-wise (right) approaches. In the element-wise
approach, autoregression is performed similarly to vanilla FINOLA, with the compressed vector g observing only the
unmasked block rather than the entire image. Conversely, the block-wise approach does not compress the unmasked block.
Each unmasked position exclusively predicts three masked positions, as indicated by arrows, using Eq. 1. Assignments are
grouped together, with shared offsets within each group. The grouping varies depending on the location of the unmasked
quadrant, resulting in 1, 2, and 4 groups for corner, edge, and middle locations, respectively. Best viewed in color.

and the block-wise approach (Masked-FINOLA-B), as depicted in Figure 19.

The element-wise variant (Masked-FINOLA-E) operates similarly to vanilla FINOLA, with the compressed vector g only
observing the unmasked block rather than the entire image (see Figure 19-left). To accommodate the longer training required
in masked FINOLA (e.g., 1600 epochs), we follow (He et al., 2021) to replace the convolutional decoder with a simple
linear layer, transforming a C-channel token into a 16x 16x3 image patch.

In contrast, the block-wise variant (Masked-FINOLA-B) preserves the unmasked block in its entirety, without compression.
It requires the unmasked block to have a quadrant size. As shown in Figure 19-right, each unmasked position is tasked with
predicting three masked positions, denoted by arrows and computed using Eq. 1. These assignments are organized into
groups, and within each group, all unmasked positions share common offsets for reaching their assigned masked positions.
The configuration of these groups dynamically adapts based on the location of the unmasked quadrant, resulting in 1, 2, or 4
groups for corner, edge, or middle positions, respectively. To promote communication across these groups, transformer
blocks are integrated into the decoder.

Relation to MAE (He et al., 2021): Masked FINOLA shares a similar architecture with MAE but differs notably in masking
and prediction strategies. Firstly, masked FINOLA adopts a regular masking design, grouping all unmasked patches into a
single block, in contrast to MAE’s utilization of random unmasked patches. This design choice suits efficient CNN-based
networks. Secondly, masked FINOLA employs a first-order norm+linear autoregression approach for predicting the masked
region, whereas MAE utilizes masked tokens within an attention model.

C.2. Implementation Details
C.2.1. DECODER ARCHITECTURES

Below, we describe (a) the decoders employed in masked FINOLA, (b) the decoders designed for image classification, and
(c) the decoders tailored for object detection.

Decoders for FINOLA pre-training: Unlike vanilla FINOLA, which employs stacked upsampling and convolution blocks,
the masked FINOLA variants utilize simpler architectures — a linear layer for transforming features into 16 x 16 image
patches. This choice facilitates longer training. The decoder of Masked-FINOLA-B incorporates transformer blocks (without
positional embedding) to enable spatial communication. Masked FINOLA undergoes training for 1600 epochs.

Decoders for ImageNet classification: We utilize three decoders to evaluate the pre-trained encoders in FINOLA. These
decoders are as follows:
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Table 22: Settings for linear probing and t ran—1 probing on ImageNet-1K: The encoders are frozen during both tasks.

Config Linear probing tran-1 probing
optimizer SGD AdamW
base learning rate 0.1 0.0005
weight decay 0 0.1
batch size 4096 4096
learning rate schedule cosine decay cosine decay
warmup epochs 10 10
training epochs 90 200
augmentation RandomResizeCrop | RandAug (9, 0.5)
label smoothing - 0.1
dropout - 0.1 (MF-W720) 0.2 (MF-W1440/W2880)
random erase - 0 (MF-W720/W1440) 0.25 (MF-W2880)

e 1lin decoder: It consists of a single linear layer and is used for linear probing.

* tran-1 decoder: It incorporates a shallower transformer decoder with a single transformer block followed by a linear
classifier and is employed for t ran—1 probing and fine-tuning.

* tran-4 decoder: This decoder is composed of four transformer blocks followed by a linear classifier and is utilized
for fine-tuning alone.

The transformer decoders are designed with different widths (192, 384, 768) to correspond with the three Mobile-Former
encoders, which have widths of 720, 1440, and 2880, respectively.

Decoders for object detection: The decoders used in the DETR framework with Mobile-Former (Chen et al., 2022) are
described in Table 20. Both decoders consist of 100 object queries with a dimension of 256. While they share a similar
structure across three scales, they differ in terms of their depths. Since the backbone network ends at a resolution of %, the
decoder incorporates a downsampling step to further reduce the resolution to 3—12 This enables the decoder to efficiently
process the features for object detection.

C.2.2. TRAINING SETUP

In this section, we provide detailed training setups for
different tasks, including:

Table 21: Pre-training setting for masked FINOLA.

Masked FINOLA .. 1 Net-1K Config Masked FINOLA
aske pre-training on ImageNet-1K. optimizer Adam W
* Linear probing on ImageNet-1K. base learning rate 1.5e-4
weight decay 0.1
e tran-1 probing on ImageNet-1K. batch size 1024
« Fine-tuning on ImageNet-1K. learning rate schedule | cosine decay
warmup epochs 10
¢ COCO object detection. training epochs 1600
image size 2562
Masked FINOLA pre-training: Similar to the vanilla augmentation RandomResizeCrop

FINOLA, masked FINOLA also follows the training setup
described in Table 21, but with a larger batch size due to
the simpler decoder architecture that requires less memory
consumption.

Linear probing: In our linear probing, we follow the approach described in (He et al., 2021) by incorporating an additional
BatchNorm layer without affine transformation (affine=False). Detailed settings can be found in Table 22.
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Table 23: Setting for end-to-end fine-tuning on ImageNet-1K.

Config Value
optimizer AdamW
base learning rate 0.0005
weight decay 0.05
layer-wise Ir decay 0.90 (MF-W720/W1440) 0.85 (MF-W2880)
batch size 512
learning rate schedule cosine decay
warmup epochs 5
training epochs 200 (MF-W720) 150 (MF-W1440) 100 (MF-W2880)
augmentation RandAug (9, 0.5)
label smoothing 0.1
mixup 0 (MF-W720) 0.2 (MF-W1440) 0.8 (MF-W2880)
cutmix 0 (MF-W720) 0.25 (MF-W1440) 1.0 (MF-W2880)
dropout 0.2
random erase 0.25
Mobile-Former-W720 Mobile-Former-W1440 Mobile-Former-W2880
90 90 90
B0.3  80.4 804  80.4 805 BLo 822 822 824 823
§80 756 735 735 736 757 §8° == 5 i 75'2 §80 :'_,7(;?_7;9——7553——7-&7
§ 70 g 70 SWB § 20745 O e e st
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Figure 20: Training schedules of Masked-FINOLA-B. Longer training schedule provides consistent improvement for
linear and t ran—1 probing over different models, while fine-tuning performance is not sensitive to training schedule. Best
viewed in color.

tran-1 probing: The settings for t ran-1 decoder probing are presented in Table 22. It is important to note that the
default decoder widths are 192, 384, and 768 for MF-W720, MF-W 1440, and MF-W2880, respectively.

End-to-end fine-tuning on ImageNet-1K: The settings for the end-to-end fine-tuning of both the encoder and tran-1
decoder are presented in Table 23. The decoder weights are initialized from the t ran—-1 probing stage.

Decoder probing on COCO object detection: In this configuration, the backbone pre-trained on ImageNet-1K is frozen,
and only the decoders are trained for 500 epochs on 8 GPUs with 2 images per GPU. We employ AdamW optimizer with an
initial learning rate of le-4. The learning rate is decreased by a factor of 10 after 400 epochs. The weight decay is le-4, and
the dropout rate is 0.1.

Fine-tuning on COCO object detection: In this setting, both the encoder and decoder are fine-tuned. The fine-tuning
process consists of an additional 200 epochs following the decoder probing stage. The initial learning rate for both the
encoder and decoder is set to 1e-5, which decreases to 1e-6 after 150 epochs.

C.3. Ablation Studies

Ablation on training schedule: The impact of training schedule length on three Mobile-Former encoders is depicted
in Figure 20. Notably, the accuracies of both linear and t ran—1 probings demonstrate a consistent improvement as the
training duration increases. Interestingly, even with a pre-training of just 100 epochs, fine-tuning with t ran—1 achieves
commendable performance. This finding diverges from the observations in MAE (He et al., 2021), where longer training is
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Table 24: Ablation on the number of transformer Table 25: Comparison with masked encoding methods on
blocks in the decoder: Evaluation is conducted on ImageNet-1K using linear probing. The baseline methods
ImageNet using Mobile-Former-W2880 as the encoder. include iGPT (Chen et al., 2020a), BEiT (Bao et al., 2021),
Each transformer block consists of 512 channels. Each  SimMIM (Xie et al., 2022), MAE (He et al., 2021) and MAE-
model is pre-trained for 800 epochs. Increasing the de- Lite (Wang et al., 2022). Three Mobile-Former backbones of
coder depth exhibits consistent improvement for linear  varying widths are used. FINOLA pre-training demonstrates
and t ran—-1 probing, while fine-tuning performance the ability to learn effective representations for small models.
shows limited sensitivity to decoder depth. denotes our implementation.

Method Model Params | Top-1
#Blocks | lin tran-1 tran-1-ft . .

iGPT iGPT-L 1362M | 69.0
1 61.1 74.4 82.2 BEiT ViT-B 86M | 56.7
2 62.6 76.5 82.3 SimMIM ViT-B 86M | 56.7
3 63.5 77.3 82.2 MAE ViT-B 86M | 68.0
4 63.8 78.0 82.3 MAE ViT-S 22M | 492
5 64.0 78.1 82.3 MAE-Lite | ViT-Tiny 6M | 233
6 65.0 783 82.4

FINOLA | MF-W720 6M | 51.3

FINOLA | MF-W1440 14M | 62.8

FINOLA | MF-W2880 28M | 66.4

essential for fine-tuning improvements.

Ablation on the number of transformer blocks in the decoder: We investigate the impact of the number of transformer
blocks in the decoder on FINOLA pre-training using the Mobile-Former-W2880 as encoder. Each transformer block in the
decoder consists of 512 channels, but does not use positional embedding. The results, shown in Table 24, demonstrate that
adding more transformer blocks leads to consistent improvements in both linear and t ran—-1 probing tasks. However, we
observe that the performance of fine-tuning is less sensitive to changes in the decoder depth.

C.4. Comparable Performance with Established Baselines on Linear Probing

As shown in Table 25, FINOLA achieves comparable performance with well known baselines on linear probing while
requiring lower FLOPs. The comparison is conducted in end-to-end manner (combining encoder and pre-training method).
For example, we compare FINOLA-+MobileFormer with MAE+ViT in the context of ImageNet classification.

C.5. Robust Task Agnostic Encoders

FINOLA provides a robust task-agnostic encoders: Pre-training with FINOLA followed by fine-tuning on ImageNet-1K
(IN-1K) consistently outperforms IN-1K supervised pre-training in both ImageNet classification and COCO object detection
(see Figure 6). The gains in object detection are substantial, ranging from 5 to 6.4 AP. Remarkably, even without IN-1K
fine-tuning, FINOLA pre-training alone outperforms the supervised counterpart in object detection by a clear margin (3 to
4.5 AP). This highlights FINOLA's ability to encode spatial structures.

Comparisons with MoCo-v2: As shown in Table 26, FINOLA demonstrates comparable performance to MoCo-V2 in
linear probing, while surpassing MoCo-V2 in tran-1 probing that uses a single transformer block as a decoder for
classification, IN-1K fine-tuning, object detection and segmentation. The backbone is frozen for both COCO object detection
and segmentation. FINOLA’s superior performance suggests it learns more effective intermediate features, contributing to
more representative decoder features. Furthermore, the improved performance in object detection emphasizes FINOLA’s
ability to encode spatial structures effectively.

These experiments demonstrate that the proposed masked FINOLA is able to learn task-agnostic representation by using a
simple masking design. This supports that the underling PDEs capture the intrinsic spatial structures present in images.

Comparison with the IN-1K supervised pre-training on transferring to COCO object detection: Table 27 presents
the results of COCO object detection using frozen backbones. The evaluation utilizes three Mobile-Former encoders
with different widths and two Mobile-Former decoders with different depths. Notably, FINOLA pre-training followed
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Table 26: Comparisons with MoCo-v2 (Chen et al., 2020d) on ImageNet classification, COCO object detection and
instance segmentation. Three Mobile-Former backbones with different widths are used. In t ran—1, the encoder is frozen
while a transformer block is trained as a decoder using class labels. In t ran—1-£ft, encoders are fine-tuned. Encoders are
frozen in both COCO object detection and instance segmentation. DETR framework is used for object detection, while
Mask-RCNN (1 x) is used for segmentation. FINOLA outperforms MoCo-V2 in most evaluations, except on par in linear
probing.

Pre-training| Encoder . IN-1K Top-1 COCO Det (Box-AP) COCO Seg (Mask-AP)
lin tran-1 tran-1-ft |w/oIN-ft with IN-ft |w/o IN-ft with IN-ft
FNoLa | MFWTO 513 G55 7se | 400 ate | 263 234
FiNoLa |MFWI0/O8 353 sos | are a0 | 306 327
e e

Table 27: COCO object detection results on the va12017 dataset using a frozen backbone pre-trained on ImageNet-1K.
Evaluation is conducted over three backbones and two heads that use Mobile-Former (Chen et al., 2022) end-to-end
in DETR (Carion et al., 2020) framework. Our FINOLA consistently outperform the supervised counterpart. Notably,
fine-tuning on ImageNet-1K (denoted as "IN-ft”) yields further improvements. The initial "MF” (e.g., MF-Dec—-522)
denotes Mobile-Former. The madds metric is based on an image size of 800x 1333.

Head Backbone

model madds param | model madds param pre-train IN-ft| AP APsy AP35 | APs APy APL
G ™M G ™

MF supervised — [40.5 58.5 43.3|21.1 434 56.8
346 194 | oo 775 250 FINOLA X 433 (05 615 468|237 469 60.1
FINOLA v |455.s50 63.8 49.5|251 49.1 63.5
ME . supervised — [38.3 56.0 40.8 [19.0 409 543
g;; 323 186 |1, 204 117 FINOLA X 42605 603 46.1(22.6 46.2 60.0
FINOLA v [44.0.5; 623 47.3|23.8 47.6 61.0
MF supervised — |35.2 52.1 376|169 372 51.7
30 182 | oo0 56 49 FINOLA X |40.0..5 57.9 4291206 433 56.8
FINOLA v |41.6.6s 59.4 45.0|21.2 45.0 589
MF supervised - |34.1 51.3 36.1 (155 36.8 50.0
157 92 | oo, 775 250 FINOLA X |36.7u. 537 393|182 397 522
FINOLA v [41.0060 592 44.4 (209 44.6 58.3
ME - supervised — [312  47.8 32.8[13.7 329 46.9
gec 134 84 | /. 204 117 FINOLA X |36.0.:5 527 387166 39.1 525
11 FINOLA v |392.50, 569 42.0 197 42.8 562
MF supervised - |27.8 434 289 (11.3 29.1 41.6
122 80 | oo0 56 49 FINOLA X [33.0.5; 493 350153 35.1 489
FINOLA v |358.s50 52.6 383|164 383 52.0

by ImageNet-1K (IN-1K) fine-tuning consistently outperforms the IN-1K supervised pre-training across all evaluations,
demonstrating the effectiveness of task-agnostic encoders. Impressively, even FINOLA pre-training alone, without IN-1K
fine-tuning, surpasses the supervised counterpart on object detection by a significant margin of 2.6-5.2 AP. This showcases
FINOLA’s ability to encode spatial structures.

C.6. Fine-tuning on COCO

Furthermore, fine-tuning the backbone on COCO further enhances detection performance. Table 28 provides a comprehensive
comparison of fine-tuning results using the Mobile-Former (Chen et al., 2022) in the DETR (Carion et al., 2020) framework.
Unlike the frozen backbone configuration, where FINOLA outperforms supervised pre-training significantly (as shown in
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Table 28: COCO object detection results on the val2017 dataset after fine-tuning both the backbone and head on
COCO. Evaluation is performed on three different backbones and two heads, utilizing the Mobile-Former (Chen et al., 2022)
end-to-end in the DETR (Carion et al., 2020) framework. Our approach, which involves FINOLA pre-training followed by
ImageNet-1K fine-tuning, surpasses the performance of the supervised baselines. The initial "MF” (e.g., MF-Dec-522)
denotes Mobile-Former, while "IN-ft” indicates fine-tuning on ImageNet-1K. The reported madds values are based on the
image size of 800x 1333.

Head Backbone

model madds param| model madds param pre-train IN-ft| AP APsy AP75|APs APy APL
G ™ G ™M

e supervised — [48.1 66.6 52.5[29.7 51.8 64.0
346 194 | oo 775 250 FINOLA X [480001 662 523|282 514 64.1
FINOLA v [49.0 .00, 67.7 53.4|30.1 52.9 65.5
ME” . supervised — [46.2 64.4 50.1(27.1 49.8 62.4
D‘;g 323 186 | 1., 204 117 FINOLA X |468.05 649 51.0|26.6 50.6 634
> FINOLA v (473, 65.6 51.4(27.3 50.7 63.9
e supervised — [42.5 60.4 46.0]23.9 46.0 58.5
3.1 182 | o0 56 49 FINOLA X |433.05 610 47.023.1 46.6 61.0
FINOLA v (4440 62.1 48.1[24.3 478 61.5
E supervised — [44.0 62.8 47.7]25.8 473 60.7
157 92 | Jgoo 775 250 FINOLA X |4d4.0, 62.5 482247 47.6 60.7
FINOLA « |46.0..0 64.8 49.9[26.2 50.0 62.7
ME . supervised — [42.5 60.6 46.0(23.6 459 57.9
2?‘13 134 84 | 0 204 117 FINOLA X |4240 60.2 459219 457 60.0
FINOLA v (438.,; 61.8 47.5(23.9 47.1 60.8
e supervised — [37.6 55.1 40.4]18.9 40.6 53.8
122 80 | ., 56 49 FINOLA X |372(0 543 397|187 39.8 53.4
FINOLA v (393..7 56.7 424|194 42.1 56.5

Table 29: Comparison with DETR-based models on COCO detection. All baselines are fine-tuned on COCO. FINOLA-
DETR utilizes Mobile-Former (MF-W2880) as the backbone, which has similar FLOPs and model size to the ResNet-50
used in other methods. MAdds are calculated based on an image size of 800x 1333.

MAdds | Param

Model Query AP AP50 AP75 APS APM APL (G) (M)
DETR-DC5(Carion et al., 2020) 100 | 433 63.1 459|225 473 61.1 187 41
Deform-DETR(Zhu et al., 2020) | 300 |46.2 652 50.0 |28.8 49.2 61.7 173 40
DAB-DETR(Liu et al., 2022) 900 | 469 660 50.8 |30.1 504 62.5 195 48
DN-DETR(Li et al., 2022a) 900 |48.6 674 527 |31.0 520 63.7 195 48
DINO(Zhang et al., 2022) 900 |50.9 69.0 553 |34.6 54.1 64.6 279 47
FINOLA-DETR (frozen) 100 455 638 495|251 49.1 635 112 44
FINOLA-DETR (fine-tune) 49.0 67.7 534 |30.1 529 655

Table 27), they achieve similar performance in COCO fine-tuning. This is because the advantage of FINOLA pre-training
on spatial representation diminishes when object labels in COCO provide strong guidance. However, FINOLA maintains its
leading position by leveraging fine-tuning on IN-1K to improve semantic representation and transfer it to object detection.
Compared to the supervised baseline, FINOLA pre-training followed by IN-1K fine-tuning achieves a gain of 0.9-2.0 AP
for all three encoders and two decoders.

Table 29 compares FINOLA-DETR (in which the backbone is fine-tuned in the DETR framework) with existed DETR
baselines. FINOLA-DETR achieves an AP of 49.0, outperforming most DETR-based detectors except DINO (Zhang et al.,
2022). Remarkably, our method achieves these results while using significantly fewer FLOPs (112G vs. 279G) and object
queries (100 vs. 900). When compared to DETR-DC5 with a fine-tuned backbone, FINOLA-DETR with a frozen backbone
achieves a 2.2 AP improvement while reducing MAdds by 40%.
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Table 30: Comparing FINOLA and Masked FINOLA on ImageNet-1K. Masked FINOLA variants trade restoration
accuracy for enhanced semantic representation. The block-wise masked FINOLA outperforms the element-wise variant in
linear probing (11in), probing with a single transformer block (t ran-1), and fine-tuning (t ran-1-ft).

Model | Compress Autoregression Decoder |Recon-PSNR|1lin tran-1 tran-1-ft
FINOLA v element up+conv 25.8 179 46.8 81.9
Masked FINOLA-E v element linear 16.7 541 67.8 82.2
Masked FINOLA-B X block trans+linear 17.3 66.4 78.7 82.5
. Masked Masked
Original FINOLA FINOLA-E FINOLA-B

Table 31: Comparison between FINOLA and
Masked FINOLA on ImageNet (Deng et al.,
2009) classification: Compared to masked FI-
NOLA variants, FINOLA performs poorly on
both linear probing (1in) and probing with a
single transformer block (t ran—1) with clear
margins. Even we search over the dimension
of latent space from 64 to 3072, the gap is
still large, i.e. more than 20%. Block-wise
masked FINOLA (Masked-FINOLA-B) out-
performs the element-wise variant (Masked-
FINOLA-E), achieving higher accuracy. Please
note that the encoders are frozen when perform-
ing linear and t ran-1 probing.

Pre-training Dimofqg 1lin tran-1
64 102 202
128 115 240
256 150  29.0

FINOLA 512 201 341
1024 230  39.6
2048 232  41.1
3072 179 468

Masked 512 541 678

FINOLA-E

Masked — 664 787

FINOLA-B

PSNR
IN-1K val

25.8 16.7 17.3

Figure 21: FINOLA vs. masked FINOLA on image reconstruction:
In this comparison, the encoders of the two masked FINOLA variants
are frozen, and their attentional pooling and FINOLA components are
fine-tuned. To ensure a fair comparison, we replace the decoders in the
masked FINOLA variants with the same architecture as FINOLA, trained
from scratch. When compared to vanilla FINOLA, the masked variants
preserve color and shape information but exhibit a loss of texture details.

These results showcase the efficacy of FINOLA in capturing rich image representations even with more compact models,
offering a promising approach for efficient self-supervised learning.

D. Comparison between FINOLA and Masked FINOLA

D.1. Detailed Experimental Results

Table 30 presents a comparison between vanilla FINOLA and two masked FINOLA variants, assessing both their architectural
distinctions and performance in image reconstruction and classification tasks. The introduction of masking, a characteristic
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linear probing tran-1 probing tran-1 fine-tuning
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Figure 22: Comparison of element-wise and block-wise Masked FINOLA. The evaluation includes linear probing,
tran-1 probing, and tran-1 fine-tuning. Block-wise masked FINOLA consistently outperforms the element-wise
counterpart across all evaluations. Notably, the performance gap in fine-tuning is smaller compared to linear and t ran—1
probing. Best viewed in color.

of masked FINOLA, entails a trade-off between restoration accuracy and enhanced semantic representation.

Comparison of FINOLA and Masked FINOLA on ImageNet classification: Table 31 presents the results of linear
and tran-1 probing applied to the vanilla FINOLA across various dimensions of the latent space. Notably, even the
highest accuracy achieved by the vanilla FINOLA falls significantly behind both masked FINOLA variants (element-wise or
block-wise). This stark difference highlights the remarkable power of masked prediction in learning semantic representations.

Comparison of FINOLA and Masked FINOLA on image reconstruction: Figure 21 presents a comparison of re-
constructed samples obtained using FINOLA and masked FINOLA. In the case of the two masked FINOLA variants
(element-wise and block-wise), the encoders are frozen, and only their attentional pooling and FINOLA components are
fine-tuned. To ensure a fair comparison, we utilize the same architecture for the decoders in the masked FINOLA variants
as in FINOLA, training them from scratch. The corresponding peak signal-to-noise ratio (PSNR) values on the ImageNet
validation set are provided at the bottom. While the masked variants preserve color and shape information, they exhibit a
loss of texture details compared to the vanilla FINOLA. Notably, as demonstrated in the main paper, the masked FINOLA
variants demonstrate stronger semantic representation. This comparison highlights that FINOLA and masked FINOLA
adhere to the same mathematical principles (involving partial differential equations) but strike different balances between
semantic representation and preserving fine details.

Comparison between two Masked FINOLA variants: Figure 22 showcases the results of linear probing, tran-1
probing, and fine-tuning for two masked FINOLA variants trained with different schedules. The block-wise masked
FINOLA consistently outperforms its element-wise counterpart across all evaluations. These findings demonstrate the
effectiveness of directly applying FINOLA on the unmasked features to predict the masked region, as opposed to performing
compression before applying FINOLA.

D.2. Geometric Insight

Geometrically, Figure 23 illustrates masked FINOLA introduces a substantial increase in Gaussian curvature on critical
feature surfaces, suggesting enhanced curvature in the latent space for capturing semantics.

D.3. Calculation of Gaussian Curvature

To compute the Gaussian curvature, we consider the feature map per channel as a set of W x H surfaces zi(x, y) in 3D
space, where x, y, and z;, denote the coordinates. At each position (x, y), the Gaussian curvature for the k" channel can be
determined using the following equation:

8%z, 9%z _ (azzk )2
ox2 0y? dxOy
(10)

oY (1'7 ): P
T (e )
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Gaussian curvature of critical features
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Figure 23: FINOLA vs. Masked FINOLA on Gaussian curvature of critical features. Masked FINOLA demonstrates
significantly larger curvature on critical features than vanilla FINOLA, highlighting the effectiveness of masked prediction
in curving the latent space to capture semantics. Best viewed in color.

Gaussian curvature is computed for all channels at each grid element. Subsequently, channels within each image are sorted
based on the root mean square of the peak positive curvature (x4 ) and the peak negative curvature (x_) over the surface.

E. Mathematical Derivation

E.1. Normalization after Diagonalization

Below, we provide the derivation of 'zﬁl in Eq. 7.

L (CI-DVe
ENCagie S w

A FINOLA path is described as A ¢; = AngSi (Eq. 3 in the paper), where (ﬁl is a normalized ¢;, i.e. ¢; = % After
diagonalization of AB~! = VAV !, the FINOLA vectors ¢, are projected into 1); = V ~1¢;, where each 1); satisfies a
one-way wave equation.

We attempt to rewrite 1); in the FINOLA format as AAz v =H A?[)i (similar to ¢; before projection A, ¢; = Aéi). 1/32 is not
a simple normalization. The derivation of H 4 and 1); is shown below step by step:

Apth; =V AL, (i =V ')
—vlag —via®ih (Ari = Ady)
o
1 ¢i — &J ¢ . . . .
=V A (1, 0 in matriz format, J is all one matrix)

N (12)
V—lA (CI — J)¢’L
oT(CI—T)9,
(CI —J)Vy,

—v1iA ‘: |
o AR

Thus, we have:

A=V , P JITVICT - IV, (13)
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