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ABSTRACT

Existing realistic blur datasets provide insufficient variety in scenes and blur pat-
terns to be trained, while expanding data diversity demands considerable time and
effort due to complex dual-camera systems. To address the challenge, data aug-
mentation can be an effective way to artificially increase data diversity. However,
existing methods on this line are typically designed to estimate motions from a
2D perspective, e.g., estimating 2D non-uniform kernels disregarding 3D aspects
of blur modeling, which leads to unrealistic motion patterns due to the fact that
camera and object motions inherently arise in 3D space. In this paper, we pro-
pose a 3D-aware blur synthesizer capable of generating diverse and realistic blur
images for blur data augmentation. Specifically, we estimate 3D camera positions
within the motion blur interval, generate the corresponding scene images, and ag-
gregate them to synthesize a realistic blur image. Since the 3D camera positions
projected onto the 2D image plane inherently lie in 2D space, we can represent
the 3D transformation as a combination of 2D transformation and projected 3D
residual component. This allows for 3D transformation without requiring explicit
depth measurements, as the 3D residual component is directly estimated via a
neural network. Furthermore, our blur synthesizer allows for controllable blur
data augmentation by modifying blur magnitude, direction, and scenes, resulting
in diverse blur images. As a result, our method significantly improves deblurring
performance, making it more practical for real-world scenarios.

1 INTRODUCTION

Motion blur is a common challenge in photography, where it is typically caused by camera or object
movement during long exposure times. Given a blur image, blind motion deblurring tackles the
challenge of producing a sharp image. In recent years, a breakthrough has been made by adopting
diverse neural architecture designs (Nah et al., 2017; Tao et al., 2018; Kupyn et al., 2019; Cho et al.,
2021; Zamir et al., 2021; Tu et al., 2022; Li et al., 2022; Chen et al., 2022; Nah et al., 2022; Zamir
et al., 2022; Wang et al., 2022; Tsai et al., 2022; Li et al., 2023b; Kong et al., 2023; Fang et al., 2023;
Kim et al., 2024) and utilizing the realistic blur datasets (Rim et al., 2020; 2022; Li et al., 2023a) in
blind motion deblurring tasks, enabling the practical usability in real-world scenarios.

To build a more generalizable deblurring model, a realistic large-scale blur dataset containing diverse
scenes and blur patterns is required. Nevertheless, existing realistic blur datasets suffer from a lim-
ited number of scenes and blur patterns because their dual camera system is heavy and complicated
to collect a large-scale blur dataset (Rim et al., 2020; 2022; Li et al., 2023a). Data augmentation
is an alternative to artificially increase the amount of data via a synthesis procedure. For example,
one can synthesize the blur image using blur synthesizers and train a deblurring model using both
real and synthetic blur images. Despite its significant successes in high-level vision tasks (DeVries
& Taylor, 2017; Zhang et al., 2018; Yun et al., 2019; Cubuk et al., 2019; 2020; Hendrycks et al.,
2020; Kim et al., 2021; Yang et al., 2021), there has been little study particularly focused on blur
data augmentation (Zhang et al., 2020; Carbajal et al., 2023; Wu et al., 2024).

In fact, the previous literature on blur data augmentation exhibits certain limitations that merit fur-
ther investigation: (1) diffusion-based data augmentation (Wu et al., 2024) requires ground-truth
video frame images which are not typically provided in blur datasets. Hence, its synthetic data may
not generalize effectively across realistic blur datasets such as RealBlur (Rim et al., 2020) and RS-
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Proposed Method: controllable blur synthesis
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Figure 1: Our controllable blur image synthesis. We can manipulate the motion amount (amplitude),
direction (phase) of the 3D-aware vector fields, and target scene images to generate a variety of blur
images. They are used for data augmentation in training the deblurring model.

Blur (Rim et al., 2022), and (2) the kernel-based method (Carbajal et al., 2023) offers estimated blur
kernels. However, simply regressing the simulated kernels without physically-driven blur modeling
leads to unrealistic synthetic blur images which are not acceptable in real-world scenarios (Gong
et al., 2017; Tran et al., 2021). Above all, the existing methods on this line neglect to pay attention
to explicit 3D geometry for blur synthesis despite the fact that the camera and object motion primar-
ily occurs in 3D space (Whyte et al., 2010). This may lead to inaccurate or unrealistic blur patterns,
constraining their practical usability for blur data augmentation.

In this paper, we propose a controllable and 3D-aware blur image synthesizer to generate various
realistic blur images as shown in Fig. 1, leading to better deblurring performance. Our intuition is
that intricate 2D non-uniform motion kernels can be parameterized by a simple 3D camera position
trajectory using rotation and translations. Such parametric technique helps reduce ill-posedness of
the problem while it is closely grounded in realistic blur modeling. In the case of camera motion,
we estimate 3D camera positions within the exposure time, use them for generating the transformed
scene images with grid sampling (Jaderberg et al., 2015), and aggregate them to produce a synthe-
sized blur image as shown in Fig. 2. We are motivated by the fact that the 3D camera positions
projected onto the 2D image plane inherently lie in 2D space. Hence, they can be modeled by a
combination of 2D rigid transformations and projected 3D residual components as shown in Fig. 2:
the former is represented by parametric vector fields, and the latter is represented by non-parametric
vector fields. This decomposition allows for 3D rigid transformation without depth measurements,
as the 3D residual component is directly estimated via a neural network. Furthermore, our paramet-
ric and non-parametric motion modeling takes advantage of reducing ill-posedness (by parametric)
and effectively capturing 3D residual components (by non-parametric).

In the case of object motion, the 3D residual components also serve as capturing object motion be-
haviors such as non-uniform and non-rigid deformation due to the flexibility and versatility of the
non-parametric vector field. Therefore, the 3D residual components represent not only 3D camera
residual components but also object residual components. Furthermore, while the non-parametric
vector field is essential for capturing 3D camera motion as shown in Fig. 3 and object motion as
shown in Fig. 4, its flexible nature can lead to undesirable results and ambiguity as shown in Fig. 6
(a). To overcome this, we introduce Laplacian and invertible geometric regularizations which en-
ables us to produce more natural motions. Specifically, the 3D transformed scene image can be
traced back to the original image using our invertible geometric regularization. As a result, the non-
parametric vector field remains geometrically structured. Furthermore, a key aspect of our method
is to represent motion as a vector field, which provides an inherently flexible framework where the
magnitude and direction of each vector can be easily adjusted. This controllability allows for the
generation of millions of diverse blur patterns by randomly varying the blur intensities, directions
and scenes during the deblurring training, enabling the deblurring model to handle a wide range of
unseen blur scenarios. We summarize our contributions as follows:

• We propose a controllable 3D-aware blur synthesizer that combines 2D motion and 3D
residual components to represent 3D motion. This enables 3D transformation without depth
measurements and facilitates accurate 3D motion modeling for blur data augmentation.

• Our blur synthesizer enables controllable blur data augmentation by modifying blur magni-
tude, direction, and scenes. It does not require any extra data such as ground-truth kernels,
depths or frame images during the training, which ensures compatibility to any blur dataset.

• We demonstrate that our blur data augmentation scheme contributes to superior deblurring
performance across various network architectures and blur datasets.
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Proposed Method: Overview
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Figure 2: Training procedure for our blur synthesis model. We first predict 3D-aware vector fields
(parametric + non-parametric) from a given blur image, which are used to generate corresponding
scene images. These images are then aggregated to construct a realistic blur image. Note that the
motion estimator, MLP, and compensation network are jointly trained.

2 RELATED WORKS

Data augmentation. Data augmentation has been widely explored in the field of image classifica-
tion, where it is proven to be effective for improving the model generalization (DeVries & Taylor,
2017; Yun et al., 2019; Cubuk et al., 2019; Lim et al., 2019; Cubuk et al., 2020; Hendrycks et al.,
2020; Kim et al., 2021; Yang et al., 2021). On the other hand, there has been little study particularly
focused on blur data augmentation (Zhang et al., 2020; Rim et al., 2022; Wu et al., 2024). Blur
Pipeline (Rim et al., 2022) presents a method to generate synthetic blur images based on GoProU
dataset using saturation and noise synthesis (not data-agnostic and not controllable). Diffusion-
based data augmentation (Wu et al., 2024) is a scheme to generate a synthetic blur dataset and use it
for pre-training and fine-tuning the deblurring model (not cost-effective). Also, it requires the video
frame images for extracting the optical flow (not data-agnostic), where the optical flow is used for
the condition of the diffusion model. Also, these fail to explicitly account for the 3D geometry,
despite the fact that the motion inherently occurs in 3D space (not accurate). On the other hand, our
method considers the explicit 3D geometry, such that it achieves a realistic blur synthesis (accurate).
Furthermore, our method can be controllable, applied to any blur dataset (data-agnostic), and used
during the training of the deblurring model (cost-effective).

Deblurring methods. The kernel-based methods estimate blur kernels or motion information to re-
construct latent sharp images (Gong et al., 2017; Zhang et al., 2021; Carbajal et al., 2023). We may
utilize these byproducts, i.e., blur kernels, to synthesize blur images. However, simply regressing the
simulated kernels without physically-driven blur modeling may not hold in generating realistic blur
images. In recent years, as realistic blur-sharp pair datasets (Rim et al., 2020; 2022; Li et al., 2023a)
have been released, they have enabled direct prediction of latent sharp images without explicit kernel
estimation. A variety of neural architecture designs (Kupyn et al., 2018; Cui et al., 2024; Mao et al.,
2023; Tu et al., 2022; Cho et al., 2021; Zamir et al., 2021; Chen et al., 2022; Zamir et al., 2022; Kong
et al., 2023) has emerged to improve the deblurring performance. Also, some works introduce addi-
tional self-generated priors to further improve deblurring performance (Li et al., 2022; Fang et al.,
2023; Kim et al., 2024). They estimate the degradation representation (Li et al., 2022), non-uniform
kernel (Fang et al., 2023), and blur segmentation map (Kim et al., 2024) as prior information and
exploit them for improving the deblurring performance. These methods require additional compu-
tational costs to generate their own priors. On the other hand, our method is used for blur data
augmentation during the training, such that it does not require additional inference cost.

3 CONTROLLABLE 3D-AWARE BLUR SYNTHESIS

3.1 2D BLUR SYNTHESIS MODEL

In this section, we present a new blur synthesis framework that considers a 3D perspective on blur
modeling, rather than simply regressing non-uniform motion kernels from a 2D perspective. Simple
regression-based motion estimation may not be generalizable and controllable. Our primary goal
is to estimate camera positions in 3D space within the exposure time, generate the corresponding
scene images, and aggregate them to achieve a realistic blur image synthesis. To this end, we
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(a) (b) (c) (d) (e) (f)

Figure 3: Blur synthesis results on 3D motion blur such as in-plane rotation blur, e.g., z-axis rotation:
(a) Blur image, (b) Blur synthesis result, and (c) Estimated blur trajectory, and forward motion blur,
e.g., z-axis translation: (d) Blur image, (e) Blur synthesis result, and (f) Estimated blur trajectory.

consider a dataset D = {(B,S)}, which contains a pair of blur image B and sharp image S. Let
Tτ = {Tτ (ui)}Ni=1 be a vector field, i.e., a set of transformed coordinates, where ui ∈ R2 denotes a
2D image coordinate at a pixel index i, Tτ (ui) ∈ R2 indicates i th transformed pixel coordinate at
a time τ , and N is the number of pixels. Note that we initially consider 2D motion and extend it to
3D motion subsequently. The blur image is expressed by using the camera exposure model over the
exposure time T :

B =

∫ T

0

S(Tτ ) dτ , (1)

where S(Tτ ) is a scene image at a time τ . As scenes may change due to object movements and cam-
era shake over the exposure time, we generate the corresponding scene images {S(T1), · · · , S(TM )}
using transformed vector field {T1, · · · , TM} with grid sampling (Jaderberg et al., 2015). Note that
the exposure time T is approximately divided into M discrete camera positions for implementations.
Here, we begin by considering a certain case, i.e., camera motion, which is easily encoded by a rigid
transformation. The 2D rigid transformation is simply parameterized by [Rτ |tτ ], e.g., rotation and
translation. The transformed coordinate Tτ (u) is denoted by

Tτ (u) = [Rτ |tτ ]u =

[
r
(11)
τ r

(12)
τ t

(1)
τ

r
(21)
τ r

(22)
τ t

(2)
τ

][
x
y
1

]
=

[
r
(11)
τ x+ r

(12)
τ y + t

(1)
τ

r
(21)
τ x+ r

(22)
τ y + t

(2)
τ

]
. (2)

Since the unknown parameters are now [R|t] in (1), one can view the blur synthesis problem as a
camera pose estimation by a neural network, fθ : B → [γ1, · · · ,γM , t1, · · · , tM ] where γτ ∈ R3

is the axis-angle representation (Murray et al., 2017) for a rotation matrix and tτ ∈ R2 indicates a
translation component. Once we estimate γτ , we can generate a 3D rotation matrix using Rodrigues’
formula (Murray et al., 2017), whose 2D components are used to construct a 2D transformation
matrix Rτ . Given Rτ and tτ , we can make a 2D rigid transformation field Tτ using (2) and optimize
the following loss to train the blur synthesis model, i.e., Lblur = ∥B − 1

M

∑
τ S(Tτ )∥1.

3.2 3D-AWARE BLUR SYNTHESIS MODEL

3D camera motion blur synthesis. We further develop our blur synthesis model, elaborating on its
extension to 3D space. In fact, the camera motion appears in 3D space, but it is primarily modeled
from a 2D perspective, i.e., 2D non-uniform kernels (Carbajal et al., 2023; Fang et al., 2023), which
is insufficient to ensure the geometric coherence of the camera motions. Therefore, we begin by
investigating the 3D rigid transformation below

Tτ (X) = [Rτ |tτ ]X =

r
(11)
τ r

(12)
τ r

(13)
τ t

(1)
τ

r
(21)
τ r

(22)
τ r

(23)
τ t

(2)
τ

r
(31)
τ r

(32)
τ r

(33)
τ t

(3)
τ


xyz
1

 =

r
(11)
τ x+ r

(12)
τ y + r

(13)
τ z + t

(1)
τ

r
(21)
τ x+ r

(22)
τ y + r

(23)
τ z + t

(2)
τ

r
(31)
τ x+ r

(32)
τ y + r

(33)
τ z + t

(3)
τ

 , (3)

where X is a 3D canonical coordinate. We discover that the 3D rigid transformation vector Tτ (X) ∈
R3 can be decomposed into 2D rigid transformation vector T ∗

τ (u) = [Tτ (u), 0] ∈ R3 and 3D
residual vector Eτ (X) ∈ R3, written by

Tτ (X) =

r(11)τ x+ r
(12)
τ y + t

(1)
τ

r
(21)
τ x+ r

(22)
τ y + t

(2)
τ

0


︸ ︷︷ ︸

T ∗
τ (u)

+

 r
(13)
τ z

r
(23)
τ z

r
(31)
τ x+ r

(32)
τ y + r

(33)
τ z + t

(3)
τ


︸ ︷︷ ︸

Eτ (X)

. (4)
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(a) (b) (c) (d)

Figure 4: Visual results on (a) Blur image, (b)
Synthesized blur image, (c) 2D parametric blur
trajectory, and (d) 2D parametric + 3D non-
parametric blur trajectory. Person movements
are captured by (d), but not (c).

(a) (b) (c) (d)

Figure 5: Visual results on (a) Synthesized
blur image, (b-d) transformed scene images.
Our blur synthesizer generates 3D-aware trans-
formed scene images without requiring ground-
truth video frame images.

Using a projection operation π : R3 → R2 with camera intrinsics K, we compute the projected
coordinate vector T̃τ (u) = π(Tτ (X);K) = π(T ∗

τ (u)+Eτ (X);K) to sample 3D-aware transformed
scene images over the exposure time. Here, we are motivated by the fact that T̃τ (u) lies in R2.
Therefore, following the rationale of the decomposition principle in (4), we express the projected
coordinate vector T̃τ (u) as a combination of 2D rigid transformation coordinate Tτ (u) ∈ R2 and
projected 3D residual vector1 ϵτ (u) ∈ R2 derived from Eτ (X), i.e.,

T̃τ (u) = C(Tτ (u), ϵτ (u)), (5)

where C serves as a composition function for integrating the two components. Since T̃τ (u) contains
3D residual components, it is referred to as the 3D-aware coordinate vector. Then, we simply induce
the 3D-aware vector field, i.e., T̃τ = C(Tτ , ϵτ ) where Tτ is the 2D rigid transformation field as
discussed in Section 3.1 and ϵτ denotes the 3D residual field modeled by a neural network, gφ : B →
{ϵ1, ϵ2, · · · , ϵM}. This decomposition scheme allows for 3D rigid transformation without requiring
explicit depth measurements2, as the 3D residual field is directly estimated via the neural network.
To investigate the composition function C for better motion controllability, we first reformulate the
3D-aware vector field using a known canonical vector field U, i.e., S = S(U), which is

T̃τ = C(Tτ , ϵτ ) = C(U+∆Tτ︸ ︷︷ ︸
Tτ

, ϵτ ) = U+ C(∆Tτ , ϵτ )︸ ︷︷ ︸
δτ

= U+ δτ , (6)

where δτ = C(∆Tτ , ϵτ ) is a displacement field which consists of the 2D rigid transformation resid-
ual field ∆Tτ (parametric field) and 3D residual field ϵτ (non-parametric field). Note that the
canonical vector field U is the constant field, such that it is factored out from the composition func-
tion. Then, we adopt amplitude-phase integration in polar coordinates for the composition function,
i.e., δτ = C(∆Tτ , ϵτ ) = |∆Tτ | · |ϵτ |∠(ϕ(∆Tτ ) + ϕ(ϵτ )), where | · | indicates the magnitude of the
vector and ϕ is a function to calculate the vector angle. This integration scheme provides a straight-
forward way to manipulate the magnitude and direction of the motion, facilitating a controllable blur
synthesis, as opposed to simple vector field integration, i.e., δτ = C(∆Tτ , ϵτ ) = ∆Tτ +ϵτ . Given a
target scene image S and the 3D-aware vector field T̃τ , we can render 3D-aware transformed scene
images and synthesize a blur image as exemplified in Fig. 5 by

B̃ =
1

M

∑
τ

S(T̃τ ). (7)

Finally, we suggest minimizing the following loss to train the 3D-aware blur synthesis model:

Lblur 3D = ∥B − B̃∥1 + ∥B − hξ(B̃)∥1, (8)

where hξ is an auxiliary network that compensates for photometric variations between blur and
sharp images, arising from different image sensors, lenses, and color drifts. This compensation is
required to encourage the 3D-aware vector fields to focus only on blur components (not disrupted
by the photometric issues). This will be more discussed in Section C of Appendix. Furthermore,
we emphasize that our compositional training framework leverages structured parametric modeling

1We provide underlying derivation and insights of projected 3D residual vector in Section A of Appendix.
2In our experiments, we observe that inaccurate absolute depth measurements can lead to performance

degradation, as discussed in detail in Section 4.4.
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to alleviate ill-posedness and flexible non-parametric modeling to effectively capture 3D residual
components, thereby achieving accurate 3D motion modeling.

3D object motion blur synthesis. As discussed earlier, we estimate the 3D residual components
using the non-parametric vector field ϵτ , which is initially designed to represent the 3D camera
residual fields. Additionally, the 3D residual components are capable of representing object residual
fields. In fact, non-parametric motion modeling, i.e., directly estimating the vector field via a neural
network, is particularly effective in capturing the object motion behaviors (i.e., non-uniform and
non-rigid motion) due to its flexibility and versatility. Hence, our 3D-aware blur synthesis model (7)
is inherently compatible with scenarios containing object motion without further modification. As a
result, our method can handle 3D camera motions as shown in Fig. 3 and object motions as shown
in Fig. 4, using (6). Additional visualization results can be found in Fig. 14 of Appendix.

3.3 AMBIGUITY REGULARIZATION AND TOTAL LOSS

As discussed in Section 3.2, the non-parametric vector field provides substantial flexibility, but its
arbitrary and unconstrained natures can lead to ambiguities. This makes the optimization more
challenging. As a result, it yields implausible synthesis images and artifacts as shown in Fig. 6
(a). To address this, we present Laplacian regularization and invertible geometric regularization.
These regularizations help mitigate the ambiguities and ensure the geometric coherence regarding
the non-parametric vector field.

Laplacian regularization. The Laplacian regularization helps smooth irregular vector fields. This
holds under the prior knowledge that the motion vector field is not irregularly changed in the spatial
space. To promote the smoothness of the vector fields, we derive the Laplacian regularization with
respect to the 3D-aware vector field T̃τ :

Lsmooth =
(
4T̃τ (x, y)−

∑
i,j T̃τ (x+ i, y) + T̃τ (x, y + j)

)2

, i, j ∈ {−1, 1}. (9)

(a) (b)

Figure 6: Synthesized blur im-
ages (a) without regularizations
and (b) with regularizations.

Invertible geometric regularization. To adapt the geometric
consistency for the 3D-aware vector field T̃τ , we propose a new
invertible geometric regularization that allows us to trace back
to the original scene image. Specifically, the 3D transformed
scene image S̃τ = S(T̃τ ) should be geometrically reverted to
the original one S via an inverse vector field. To this end, we
recall the 3D-aware vector field (6), i.e., T̃τ = U + δτ , where
δτ denotes the displacement field. The inverse vector field T̃ ′

τ
is computed by using the reversed direction of the displacement
field, i.e., T̃ ′

τ = U− δτ . Finally, the geometric-consistent vector
field is achieved by optimizing the following loss:

Lgeometric =
∑
τ

∥S − S̃τ (T̃ ′
τ )∥1, (10)

where S̃τ (T̃ ′
τ ) is the geometrically inverted scene image. This geometric consistency loss is the key

component of our method to ensure that the 3D-aware vector field remains geometrically structured.
Therefore, it ensures geometric-aware blur synthesis as shown in Fig. 6 (b).

Total loss. We suggest minimizing the following loss to train our geometric-aware blur synthesizer:

Ltotal = Lblur 3D + λ1Lsmooth + λ2Lgeometric, (11)

where λ1, λ2 > 0 are hyper-parameters to balance the loss terms, which will be discussed in Sec-
tion 4.5 and Section F.1 of Appendix.

3.4 CONTROLLABLE BLUR IMAGE SYNTHESIS

Our blur synthesis model is designed to enable blur data augmentation during the deblurring model
training, thereby improving final deblurring performance and model generalization. Specifically, if

6
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Blur NAFNet-64 FFTformer ID-Blau GeoSyn (ours)

Figure 7: Qualitative comparison results on real-world blur images. NAFNet is used for all methods.
Our blur synthesizer produces sharper and artifact-free results compared to state-of-the-art methods.

a blur dataset contains 3, 000 blur images and the deblurring model is trained over 1,000 epochs,
it generates approximately 3,000,000 different synthetic blur images. This extensive diversity en-
hances the generalization ability of the deblurring model, enabling it to handle a wide range of
unseen blur scenarios. To this end, we first extract a 3D-aware displacement vector δ = (xδ, yδ)
from (6). Note that we use the notation δ for simplicity here. It can be converted into the amplitude-
phase representations in the polar coordinates, i.e., δ = |δ|∠ϕ(δ) where |δ| =

√
x2
δ + y2δ in-

dicates the amplitude of the vector, i.e., motion intensity and ϕ(δ) = tan−1( yδ

xδ
) represents the

phase of the vector, i.e., motion direction. Then, every displacement vector is controlled by the
amplitude control parameter α and phase control parameter β, i.e., x̃δ = α|δ| cos(ϕ(δ) + β) and
ỹδ = α|δ| sin(ϕ(δ) + β), whose parameters are explored in Section B of Appendix. We remark that
this amplitude-phase motion adjustment preserves the geometric structure of the vector fields since
the control parameters are identically applied to all vector fields generated from a single blur image
to adjust overall blur intensity and direction. Meanwhile, the control parameters can be determined
to each blur image. Finally, we employ this modified displacement motion vector, δ̃ = (x̃δ, ỹδ)
instead of the original one δ for the subsequent scene image rendering and blur image synthesis as
in (7). We present some blur synthesis results for different scenes, amplitudes, and phases as shown
in Fig. 1, Fig. 15 and 16 of Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and evaluation metrics. For datasets, we use RealBlur (Rim et al., 2020), RSBlur (Rim
et al., 2022), and GoPro (Nah et al., 2017) datasets for training and evaluation. RealBlur is split
into two types: RealBlur-J (sRGB domain) and RealBlur-R (RAW domain). Each RealBlur type
consists of 3,758 and 980 image pairs for training and test sets, respectively. RSBlur contains 8,878
and 3,360 blur-sharp image pairs for training and test sets, respectively. GoPro contains 2,103 and
1,111 image pairs for training and test sets, respectively. We use the evaluation metrics such as Peak
Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) (Wang et al., 2004).
Implementation details. We present the implementation details for training our blur synthesis
model. Our blur synthesis model consists of a motion estimator (NAFNet-8) and compensation net-
work (NAFNet-16). NAFNet-16 means NAFNet (Chen et al., 2022) with 16 base channel widths.
Note that the compensation network is only used for the photometric compensation during the train-
ing, as discussed in Section C of Appendix. According to Fig. 2, the blur input image is fed into the
encoder of the motion estimator. Then, the intermediate features are fed to MLP, including global
average pooling, two fully connected layers, and one ReLU activation, in order to estimate 2D
motion parameters {γ1, · · · ,γM , t1, · · · , tM}. Using the parameters, we obtain parametric vector
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Table 1: Comparison results across diverse neural networks and blur datasets.

Model GoPro HIDE RealBlur-J RealBlur-R
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MIMO-UNet+ 32.44 0.957 30.00 0.930 31.92 0.919 39.10 0.969
+ GeoSyn (ours) 33.01 0.962 30.86 0.940 32.55 0.925 39.68 0.972
Restormer 32.92 0.961 31.22 0.942 32.32 0.924 39.47 0.972
+ GeoSyn (ours) 33.37 0.964 31.61 0.946 33.05 0.937 40.31 0.974
NAFNet 33.69 0.966 31.32 0.943 32.50 0.928 39.89 0.973
+ GeoSyn (ours) 34.09 0.969 31.64 0.947 32.99 0.936 40.49 0.976
FFTformer 34.21 0.969 31.62 0.946 32.62 0.933 40.11 0.973
+ GeoSyn (ours) 34.39 0.970 31.98 0.949 33.68 0.938 40.89 0.977

fields {T1, T2, · · · , TM} as discussed in Section 3.1. Also, the intermediate features are fed into the
decoder of the motion estimator to predict non-parametric vector fields {ϵ1, ϵ2, · · · , ϵM}. Then, we
aggregate the parametric and non-parametric vector fields using the amplitude-phase integration and
finally obtain the 3D-aware vector fields as discussed in Section 3.2. To produce diverse blur images
for blur data augmentation, we modify amplitudes, phases of the vector field, and scene contents
as discussed in Section 3.4. We will discuss how to synthesize and where to synthesize in detail in
Section B of Appendix. Note that our blur synthesizer is only used for training. Therefore, it does
not increase the computation cost in the evaluation stage. We use blur datasets randomly cropped
by 256 × 256 during the training. We train our blur synthesizer up to 1, 000 epochs for RealBlur,
3, 000 epochs for GoPro, and 500 epochs for RSBlur. Also, our blur synthesizer is optimized by
the AdamW (Loshchilov & Hutter, 2019) algorithm (β1 = 0.9, β2 = 0.9 and weight decay 1e−3)
with the cosine annealing schedule (1e−3 to 1e−7) (Loshchilov & Hutter, 2016) gradually reduced
for total iterations of each dataset. Unless otherwise specified, we use λ1 = 0.1, λ2 = 1.0 and the
number of camera positions as 16, which is discussed in Section 4.5 and F.1 of Appendix. We use
RealBlur-J for all ablation studies.

4.2 MAIN RESULTS

To demonstrate the effectiveness of our blur synthesizer, we conduct experiments across various
datasets such as GoPro (Nah et al., 2017), HIDE (Shen et al., 2019), RealBlur-J and R (Rim et al.,
2020), and network architectures such as MIMO-UNet+ (Cho et al., 2021), Restormer (Zamir et al.,
2022), NAFNet (Chen et al., 2022) and FFTformer (Kong et al., 2023). We train with GoPro and
evaluate GoPro and HIDE. Also, we train with RealBlur-J and R, and evaluate the corresponding
trained models. As shown in Table 1, the results clearly demonstrate that our blur synthesizer,
i.e., GeoSyn boosts deblurring performance across not only different network architectures but also
various datasets. For example, FFTformer equipped with our GeoSyn significantly improves PSNR
from 32.62 to 33.68 dB on RealBlur-J. Furthermore, we present a more comprehensive analysis
of the generalization ability of our GeoSyn in Section D. Also, we present the visual comparison
results on GoPro as shown in Fig. 12 of Appendix, RealBlur as shown in Fig. 13 of Appendix, and
real-world blur images as shown in Fig. 7 and Fig. 11 of Appendix.

4.3 COMPARISON TO OTHER METHODS

Comparison to kernel-based methods. J-MKPD (Carbajal et al., 2023) and MotionETR (Zhang
et al., 2021) generate motion information for deblurring purposes. However, motion information can
be used for blur data augmentation. Since their motion estimators are trained with GoPro, we train
our blur synthesizer with GoPro for a fair comparison. Then, the deblurring model, NAFNet-64 is
trained with GoPro, using data augmentation with their motion estimators and ours. As shown in
the upper side of Table 2, MotionETR exhibits a performance improvement from 33.69 to 33.92 dB,
but it lags behind our GeoSyn (34.09 dB). We believe their motion information does not account for
explicit 3D geometry, causing performance limitations.
Comparison to blur synthesis methods. Blur Pipeline (Rim et al., 2022) and ID-Blau (Wu et al.,
2024) are the blur data augmentation methods and are trained with a certain dataset (GoPro). For
example, ID-Blau requires the ground-truth video frame images to extract optical flows, such that it
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Table 2: Comparison results against related
works. We compare our method with kernel-
based methods (above) and blur data aug-
mentation methods (below).

Augmentation Types Datasets PSNR ↑ SSIM ↑
None

GoPro

33.69 0.966
J-MKPD 33.59 0.965

MotionETR 33.92 0.968
GeoSyn (ours) 34.09 0.969

None

RealBlur-J

32.50 0.928
Blur Pipeline 32.57 0.931

ID-Blau 32.70 0.932
GeoSyn (ours) 32.99 0.936

ID-Blau + GeoSyn (ours) 33.09 0.938

Table 3: Comparison results on RSBlur. The
best results are indicated in bold.

Methods GMACs RSBlur
PSNR ↑ SSIM ↑

SRN-Deblur 1434.82 32.53 0.840
MIMO-UNet+ 154.41 33.37 0.856
MPRNet 777.01 33.61 0.861
Restormer 141.00 33.69 0.863
Uformer-B 89.50 33.98 0.866
ConvIR-L 71.22 34.06 0.868
NAFNet-64 63.64 33.97 0.866
+ GeoSyn (ours) 63.64 34.23 0.870
SegDeblur-L 62.68 34.21 0.870
+ GeoSyn (ours) 62.68 34.31 0.872

Table 4: Ablation study on various types
of vector fields. “P” indicates the paramet-
ric vector field while “NP” exhibits the non-
parametric vector field. The best results are
indicated in bold.

Methods P NP PSNR ↑ SSIM ↑
No Augmentation 32.50 0.928

2D Parametric ✓ 32.65 0.932
3D Non-Parametric ✓ 32.61 0.930

3D Flat Depth ✓ 32.66 0.932
3D Monocular Depth ✓ 32.47 0.929

GeoSyn (ours) ✓ ✓ 32.99 0.936

Table 5: Ablation study on model sizes. Our
blur augmentation enables us to build an ef-
ficient deblurring model. It reduces the com-
putational cost by up to 4×.

Methods GMACs PSNR ↑ SSIM ↑
NAFNet-16

4.0
31.58 0.912

+ GeoSyn (ours) 31.97 0.921
NAFNet-32

16.0
31.99 0.920

+ GeoSyn (ours) 32.59 0.931
NAFNet-64

63.5
32.50 0.928

+ GeoSyn (ours) 32.99 0.936

can not be trained with other datasets containing only blur and sharp images such as RealBlur (Rim
et al., 2020) and RSBlur (Rim et al., 2022). As shown in the lower side of Table 2, ID-Blau, trained
with GoPro, leads to limited deblurring performance improvement on RealBlur-J, from 32.50 to
32.70 dB. On the other hand, our GeoSyn can be trained with RealBlur-J, to capture dataset-specific
motion patterns. Hence, our GeoSyn yields better deblurring performance (32.99 dB), thanks to our
data-agnostic motion modeling. Furthermore, we remark that our GeoSyn is compatible with ID-
Blau. Specifically, we train the deblurring model initialized by ID-Blau pre-trained model, with our
GeoSyn. We observe that it further improves the deblurring performance (33.09 dB), achieving the
best performance. More comparison results with ID-Blau can be found in Section E of Appendix.
Results on RSBlur. We experiment with an additional dataset, RSBlur (Rim et al., 2022) which
contains a variety of camera and object motions with high-resolution images. We train and evaluate
NAFNet-64 (Chen et al., 2022) and SegDeblur-L (Kim et al., 2024) with RSBlur, using our data
augmentation scheme. As shown in Table. 3, our GeoSyn improves the performance on NAFNet-64,
from 33.97 to 34.23 dB. Interestingly, our GeoSyn can be compatible with the prior-based method
such as SegDeblur-L, improving the deblurring performance from 34.21 to 34.31 dB.

4.4 VARIOUS FORMS OF VECTOR FIELDS

The goal of this experiment is to identify an optimal configuration of the vector fields for blur data
augmentation, by evaluating various combinations of parametric and non-parametric vector fields
including 2D motion, 3D motion, and depth information, as reported in Table 4.

2D parametric vector field. The parametric vector field approach is beneficial for reducing the ill-
posedness of the problem, rather than naı̈vely estimating non-parametric vector fields. However, the
2D parametric vector field that relies solely on 2D transformations fails to incorporate 3D motion
information, leading to a sub-optimal performance of 32.65 dB.
3D non-parametric vector field. The non-parametric vector field is specialized to capture 3D mo-
tions. However, when the non-parametric method is used only, it struggles to effectively learn mo-
tion behaviors due to huge ill-posedness, e.g., the presence of numerous feasible solutions, achieving
insufficient performance (32.61 dB).
3D parametric vector field using depth information. The parametric vector fields using 3D trans-
formation with depth measurements yield sub-optimal results. The deblurring result (32.47 dB)
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Figure 8: Ablation studies on (a) Regularizations, (b) Controllability, and (c) # of camera positions.

using the monocular depth estimates generated by Ke et al. (2024) is even worse than that of flat
depth (32.66 dB). We believe that monocular depth values are inherently inaccurate because they
are typically relative depth information rather than accurate absolute depth measurements required
for 3D transformations, leading to unfavorable blur synthesis.
2D parametric + 3D non-parametric vector field (ours). Our method fuses 2D parametric and 3D
non-parametric vector fields, which circumvents the need for absolute depth values. Therefore, we
take advantage of both reducing ill-posedness (by parametric) and effectively modeling 3D residual
components (by non-parametric), achieving the best performance (32.99 dB).

4.5 ABLATION STUDY

Efficient deblurring models. In this section, we discuss the effectiveness of our blur data augmen-
tation scheme in constructing an efficient deblurring model. We train and evaluate NAFNet with
different model sizes, incorporating our data augmentation scheme. As shown in Table. 5, the re-
sults show that our GeoSyn reduces the computational cost, i.e., GMACs, by up to 4×. Specifically,
NAFNet-32 equipped with our data augmentation (16 GMACs, PSNR 32.59 dB) produces even
better performance than that of NAFNet-64 (63.5 GMACs, PSNR 32.50 dB). This highlights the
potential benefits of our blur synthesis model in building an efficient deblurring model.
Effects on regularization. To verify that the ambiguity regularization losses are necessary, we train
deblurring models using our blur synthesizers trained without regularization, with Laplacian only
(λ1 = 0.1), with geometric only (λ2 = 1.0), and with both regularizations. As shown in Fig. 8
(a), we observe that each regularization technique contributes to reducing ambiguities, leading to
better subsequent deblurring performance (32.50 → 32.87 or 32.92 dB). Furthermore, the results
demonstrate that both regularizations are crucial for achieving further improvements, reaching 32.99
dB. We explore the hyperparameters {λ1, λ2} for more details in Section F.1 of Appendix.
Controllability. We explore the controllability of our GeoSyn. As discussed in Section 3.4, we can
manipulate amplitude, phase of the vector fields, and scene contents to produce blur images with
diverse blur patterns and scene contents. To confirm which augmentation type is more effective, we
train deblurring models with amplitude, phase, scene, and all augmentations. As shown in Fig. 8 (b),
each augmentation type demonstrates its effectiveness in improving deblurring performance. More-
over, the results indicate that all augmentation types are necessary to achieve the best performance.
The number of camera positions. We investigate the effect of the number of camera positions
when synthesizing a blur image. We train our blur synthesizer with different numbers of camera
positions: {4, 8, 16, 32, 64}, and the deblurring model using individual synthesizers. As shown in
Fig. 8 (c), a sufficient number of camera positions, e.g., more than 8, can capture intrinsic motion
behaviors, such that it results in meaningful subsequent deblurring performance.
More ablation studies. For further insights, we perform an in-depth analysis of our blur synthesizer
in Section F of Appendix.

5 CONCLUSIONS

In this paper, we propose a new 3D-aware blur synthesizer designed to generate diverse blur im-
ages for data augmentation, improving deblurring performance. We integrate parametric and non-
parametric vector fields to take advantage of reducing the ill-posedness and modeling 3D camera
and object residual components. We demonstrate the effectiveness of our blur synthesizer on var-
ious network architectures and datasets. Our method can be extended to other tasks such as depth
estimation from a blur image and controllable blind motion deblurring using the vector fields.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we present comprehensive implementation details for training our blur
synthesizer in Section 4.1 and Fig. 2. We also describe the details of the data augmentation strategy,
i.e., where to synthesize, how to synthesize, and how to augment during the training of the deblur-
ring model, in Section B of Appendix. The hyperparameter settings are empirically optimized as
described in Section 4.5 and Section F.1 of Appendix, and are summarized in Section 4.1.
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A MORE DETAILS ON PROJECTED 3D RESIDUAL VECTOR

To derive the projected 3D residual vector, we recall the 3D transformation vector (4) as follows:

Tτ (X) =

[
X
Y
Z

]
=

r(11)τ x+ r
(12)
τ y + t

(1)
τ

r
(21)
τ x+ r

(22)
τ y + t

(2)
τ

0


︸ ︷︷ ︸

R

+

 r
(13)
τ z

r
(23)
τ z

r
(31)
τ x+ r

(32)
τ y + r

(33)
τ z + t

(3)
τ


︸ ︷︷ ︸

E

. (12)

where R = [Rx, Ry, 0] is the 2D transformation vector and E = [Ex, Ey, Ez] is the 3D residual
vector. Note that we use the notations of R and E instead of T ∗

τ (u) and Eτ (X) in (4) for simplicity
here. Using a projection operation π : R3 → R2 with camera intrinsics K, we can compute the
projected coordinate vector T̃τ (u) = [x, y] = π(Tτ (X);K) = π(R + E ;K). By using the pinhole
camera principle, we express a x component of the projected coordinate vector as

x = fx
X

Z
+ Px = fx

Rx + Ex
Ez

+ Px, (13)

where Rx is a 2D transformation component, Ex and Ez are 3D residual components, fx is a focal
length, and Px is a principal point. Here, we emphasize that x is characterized by the 2D transforma-
tion component Rx and 3D residual components {Ex, Ez}. Since we define x as a combination of 2D
transformation component Rx and projected 3D residual component ϵx, i.e., x = C(Rx, ϵx) where C
is a composition function for integrating the two components, the projected 3D residual component
ϵx contains the 3D residual components {Ex, Ez}, focal length fx, and principal point Px. These
components are combined by a single value ϵx which is estimated by our motion estimator.

B DATA AUGMENTATION STRATEGY

Where to synthesize? The camera motion is regarded as a global motion while the object motion
is treated as a local motion. To accommodate the synthesized local motion, we use CutSyn strategy,
whose methodology is similar to other data augmentation schemes such as CutBlur (Yoo et al.,
2020), CutMix (Yun et al., 2019) and CutOut (DeVries & Taylor, 2017). Specifically, we randomly
choose a region for augmentation and apply a controllable blur synthesis, i.e., Baug = M ⊙ B̃ +

(1 − M) ⊙ S where M ∈ {0, 1} is the mask image indicating where to synthesize, B̃ means
the synthesized blur image, S is the sharp image, and ⊙ denotes the element-wise multiplication.
Note that we will discuss our amplitude and phase augmentation policy, i.e., how to construct the
synthesized blur image B̃, in the following paragraph. On the other hand, RealBlur has only camera
motion blur images (global motion only). In this case, we apply the controllable blur synthesis in
the whole region, e.g., Baug = B̃. As shown in Table 6, the local data augmentation is beneficial for
GoPro which contains camera and object motions. Meanwhile, the global data augmentation shows
better performance on RealBlur-J since it contains camera motion only.

Table 6: Comparison results on regions of blur augmentation. The best results are indicated in bold.

Region of augmentation GoPro RealBlur-J
PSNR↑ SSIM↑ PSNR↑ SSIM↑

None 33.69 0.966 32.50 0.928
Global 34.02 0.969 32.99 0.936

Local (CutSyn) 34.09 0.969 32.94 0.936

How to synthesize? We discuss our amplitude and phase adjustment policy for constructing a syn-
thesized blur image B̃ during the deblurring training. As discussed in Section 3.4, we introduce the
amplitude control parameter α and phase control parameter β to adjust the amplitude and phase of
the displacement field, i.e., δ̃ = α|δ|∠(ϕ(δ)+β). Since many data augmentation approaches adopt
a random augmentation policy and show remarkable performance, we also use the random choice
of both amplitude and phase control parameters. To determine the dynamic range of amplitude and
phase control parameters for random augmentations, we conduct experiments on various ranges, as
presented in Table 7. For phase augmentation, although the best performance is observed across
multiple phase ranges, we select the range of -90◦ to 90◦, as it allows for phase augmentation over a
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wider range of phase variations. For amplitude augmentation, the bounded amplitude augmentation
gives the best performance. Specifically, the dynamic range of the phase values is bounded between
-180◦ and 180◦ even though adjusting the phase values by β. Meanwhile, the dynamic range of
amplitude values may not be bounded. For example, a large amplitude control parameter can sig-
nificantly increase the blur amount in large-motion scenes, resulting in unnatural large-motion blur
images. Such unbounded amplitude values may not be optimal for amplitude augmentation. To
address this, we bound the absolute amplitude values adjusted by α to the values between 1.0× and
1.5×, and α is randomly chosen to keep the bounded range. As a result, the bounded amplitude
augmentation policy achieves the best performance. In summary, we randomly select α to keep the
absolute amplitude values between 1.0× and 1.5× for amplitude augmentation, and we use random
β values between -90◦ and 90◦ for phase augmentation unless otherwise specified.

Table 7: Effects on amplitude / phase augmentation policies. The best results are indicated in bold.

Method Adjustment Range PSNR ↑ SSIM ↑

GeoSyn (ours)

Amplitude α

0.5× ∼ 1.0× 32.68 0.932
1.0× ∼ 1.5× 32.80 0.933
1.0× ∼ 2.0× 32.78 0.933
1.0× ∼ 4.0× 32.76 0.933

Bounded Amplitudes 32.82 0.933

Phase β

-15◦ ∼ 15◦ 32.73 0.932
-30◦ ∼ 30◦ 32.78 0.933
-45◦ ∼ 45◦ 32.78 0.933
-90◦ ∼ 90◦ 32.78 0.933

-180◦ ∼ 180◦ 32.65 0.932

Data augmentation during the deblurring training. When training the deblurring model, we use
both real blur image B and augmented blur image Baug based on the accumulated gradient (AG)
strategy. Specifically, it relies on accumulating gradients in both real data and synthesized data (1:1)
and then backpropagation. As it seems similar to 2× increases of mini-batch size, we experiment on
2× increases of mini-batch size using AG technique, resulting in slight performance improvement,
32.50 → 32.56 dB, as shown in “Accumulated gradient” of Table 8. We clarify that the performance
improvement is not due to gradient accumulation itself, but rather our data augmentation scheme
32.50 → 32.99 dB as shown in Table 8.

Table 8: Effects on accumulated gradients. The best results are indicated in bold.

Methods PSNR ↑ SSIM ↑
None 32.50 0.928

Accumulated gradient 32.56 0.929
GeoSyn (ours) 32.99 0.936

C CONSIDERATION ON THE COMPENSATION NETWORK

As shown in Fig. 2, we use the compensation network to address the photometric issues. Basi-
cally, RealBlur (Rim et al., 2020) and RSBlur (Rim et al., 2022) datasets are acquired using dual-
camera systems. These systems consist of two cameras with different lenses or sensors, resulting
in color drifts. Furthermore, since blur and sharp images require different exposure time, this leads
to variations in brightness and contrast. Although such photometric inconsistencies are corrected
by post-processing, they are not fully compensated. This means that the synthesized blur image
using a sharp image may be different from a ground-truth blur image in terms of color, brightness,
or contrast. This difference may disrupt motion modeling. To confirm that the compensation net-
work is necessary, we conduct experiments with the configurations: (1) training our blur synthesizer
without the compensation network and using the estimated blur image B̃ for blur data augmenta-
tion, (2) training our blur synthesizer with the compensation network and using the estimated blur
image B̃ for blur data augmentation (ours), (3) training our blur synthesizer with the compensation
network and using the compensated blur image hξ(B̃) for blur data augmentation, and (4) training
our blur synthesizer with the compensation network and using the compensated blur image hξ*(B̃)
with finetuning. For simplicity, we refer to configuration (1) as C1, configuration (2) as C2, config-
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uration (3) as C3, and configuration (4) as C4. As shown in Table 9, the results show that the C2
gives the best deblurring performance (32.99 dB). We believe that the usage of the compensation
network during the synthesizer training enables the 3D-aware vector fields to focus exclusively on
learning blur components, thereby free from photometric variations such as color drifts and sensor
differences. On the other hand, the C1 shows a sub-optimal result (32.86 dB) since it may suffer
from the photometric issues for motion modeling. Furthermore, when training deblurring models
with our blur data augmentation scheme, various blur patterns can be generated by manipulating the
amplitude and phase of the vector field. Such modified blur patterns may be unseen to the compensa-
tion network, which may cause unexpected artifacts or blur effects after the compensation network.
Therefore, the C3 leads to sub-optimal performance (32.78 dB), compared to that of the C2 (32.99
dB). To address this, we finetune the compensation network during the deblurring training, which
is indicated as the C4. We observe that it somewhat handles unseen blur patterns by finetuning the
compensation model (32.78 → 32.89 dB), but it lags behind our configuration, C2. As a result, we
empirically prove that the C2 gives the best performance, and use it unless otherwise specified.

Table 9: Effects on the compensation network. hξ* is a finetuned version of hξ. The best results are
indicated in bold.

Configurations Compensation Net Synthetic Blur PSNR ↑ SSIM ↑
C1 B̃ 32.86 0.935

C2 (ours) ✓ B̃ 32.99 0.936
C3 ✓ hξ(B̃) 32.78 0.934

C4 ✓ hξ*(B̃) 32.89 0.934

D GENERALIZATION ABILITY

To demonstrate the generalization ability of our method, we conduct cross-dataset evaluations. First,
we train both our blur synthesis and deblurring models on RealBlur (i.e., GeoSyn-R) and test on Re-
alBlur (Rim et al., 2020), RSBlur (Rim et al., 2022) and BSD (Zhong et al., 2020). Additionally,
we train our blur synthesis model on GoPro and deblurring model on RealBlur (i.e., GeoSyn-G) and
test again on RealBlur, RSBlur and BSD. As shown in Table 10, our GeoSyn-R shows remarkable
performance on RealBlur, and our GeoSyn-G demonstrates promising generalization performance
on RSBlur and BSD. This relies on what dataset is used for training our blur synthesizer. Specifi-
cally, the GeoSyn-R is trained on RealBlur, enabling it to generate diverse and dataset-specific blur
patterns that contribute to performance improvement on RealBlur. Even though the GeoSyn-R uses
only RealBlur in both trainings, it also shows good generalization results on RSBlur and BSD be-
cause it can generate numerous and diverse blur patterns during the deblurring training. On the other
hand, our GeoSyn-G leverages separate datasets for the blur synthesizer (GoPro) and the deblurring
model (RealBlur), enabling it to benefit from multiple blur datasets. As a result, it achieves superior
generalization performance (see the results on BSD Test set).

E COMPARISON RESULTS WITH ID-BLAU

We compare our method with ID-Blau (Wu et al., 2024) to demonstrate its effectiveness. We conduct
experiments across various network architectures such as MIMO-UNet+ (Cho et al., 2021) and FFT-
former (Kong et al., 2023), and datasets such as GoPro (Nah et al., 2017) and RealBlur-J (Rim et al.,
2020). As shown in Table. 11, our GeoSyn gives better performance than ID-Blau. In particular,
our GeoSyn achieves a PSNR of 33.01 dB on GoPro, outperforming 32.93 dB obtained by ID-Blau
in MIMO-UNet+. We believe that our blur synthesizer effectively accounts for explicit 3D motion
modeling, leading to better performance. Furthermore, our method shows remarkable performance
improvement on RealBlur-J, compared with that of ID-Blau. Notably, while ID-Blau shows the per-
formance improvement in FFTformer from 32.62 to 32.88 dB, our GeoSyn achieves a significant
performance improvement, reaching 33.68 dB. Unlike ID-Blau which requires video frame images,
our GeoSyn is compatible with training on RealBlur-J which only contains blur-sharp image pairs.
Hence, our method can generate more dataset-specific motion patterns for data augmentation, such
that it yields better subsequent deblurring performance on RealBlur-J.
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Table 10: Ablation study on the cross-data validation. The best results are indicated in bold.
Train

(Deblur) Test Train
(Synthesizer) Methods NAFNet MIMO-UNet+

PSNR SSIM PSNR SSIM

RealBlur RealBlur

- No Aug 32.50 0.928 31.92 0.919
GoPro ID-Blau 32.70 0.932 31.96 0.921

RealBlur GeoSyn-R 32.99 0.936 32.55 0.925
GoPro GeoSyn-G 32.94 0.935 32.47 0.924

RealBlur RSBlur

- No Aug 30.61 0.809 29.72 0.790
GoPro ID-Blau 30.90 0.814 29.43 0.786

RealBlur GeoSyn-R 30.91 0.815 29.95 0.794
GoPro GeoSyn-G 30.98 0.815 29.81 0.794

RealBlur BSD

- No Aug 29.67 0.893 29.25 0.891
GoPro ID-Blau 30.42 0.907 28.93 0.882

RealBlur GeoSyn-R 30.83 0.911 29.73 0.899
GoPro GeoSyn-G 30.91 0.912 29.91 0.904

Table 11: Comparison results against ID-Blau. The best results are indicated in bold.

Methods GoPro RealBlur-J
PSNR↑ SSIM↑ PSNR↑ SSIM↑

MIMO-UNet+ 32.44 0.957 31.92 0.916
+ ID-Blau 32.93 0.961 31.96 0.921
+ GeoSyn 33.01 0.962 32.55 0.925
FFTformer 34.21 0.969 32.62 0.932
+ ID-Blau 34.36 0.970 32.88 0.934
+ GeoSyn 34.39 0.970 33.68 0.938

F COMPREHENSIVE ANALYSIS ON GEOSYN

F.1 EFFECTS ON λ

We examine the hyperparameters λ1 and λ2 to confirm performance sensitivity across the hyperpa-
rameters. We train our blur synthesizers using combinations of λ1 = {0.1, 1.0}, λ2 = {0.1, 1.0},
resulting in the pairs (λ1, λ2) such as (0.1, 0.1), (0.1, 1.0), (1.0, 0.1), and (1.0, 1.0). The results are
given in Table. 12. We observe that the higher impact (λ2 = 1.0) of invertible geometric loss gives
better performance. This means that it accounts for the importance of geometric consistency for blur
synthesis. In contrast, we observe that the greater impact (λ1 = 1.0) of Laplacian smoothing loss
leads to decreased deblurring performance. This is because a stronger smoothing constraint impedes
the learning of diverse motion patterns, reducing data diversity for data augmentation. Subsequently,
it limits performance improvements.

Table 12: Ablation study on hyperparameters λ1 and λ2. The best results are indicated in bold.

Methods λ1 λ2 PSNR ↑ SSIM ↑

GeoSyn (ours)

0.1 0.1 32.90 0.935
0.1 1.0 32.99 0.936
1.0 0.1 32.76 0.933
1.0 1.0 32.84 0.934

F.2 PERFORMANCE SENSITIVITY AND ITS RELATIONSHIP TO GEOMETRIC CONSISTENCY

To investigate the deblurring performance sensitivity to the accuracy of the vector field, we con-
duct the experiment by introducing random perturbations to the vector fields. We believe that the
robustness of the final deblurring performance is closely tied to the geometric consistency of the
vector field. As shown in Table 13, without geometric consistency (λ2 = 0.0), the vector field
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lacks geometric coherence, and thus even no perturbation leads to performance degradation (32.52
dB) compared to the baseline performance, i.e., no data augmentation (32.56 dB). In contrast, with
strong geometric consistency (λ2 = 1.0), the deblurring model remains robust to the perturbations
of the vector field, consistently outperforming the baseline (indicated in bold). For mid-level geo-
metric consistency (λ2 = 0.5), the vector field is generally robust to small perturbations (indicated
in bold), but large perturbations disrupt its geometric coherence and adversely affect performance
(32.51 dB). These observations highlight the critical role of our geometric consistency regulariza-
tion in mitigating the performance sensitivity to the accuracy of the vector field. In other words,
blur data augmentation with inaccurate vector fields reduces performance gain but does not degrade
baseline deblurring performance, as long as our motion estimator is trained under strong geometric
consistency.

Table 13: Ablation study on performance sensitivity under perturbations to the vector fields. The
performance exceeding the baseline is indicated in bold.

Methods λ2
Perturbations

0 0.001 0.005 0.01
Baseline

(No Augmentation) - 32.56

With GeoSyn
1.0 32.92 32.90 32.83 32.70
0.5 32.77 32.77 32.75 32.51
0.0 32.52 32.51 32.49 32.49

F.3 BLUR DIVERSITY AND ITS RELATIONSHIP M

When the number of camera positions M is small (e.g., M = 4), the expressive power of complex
motion using only four camera exposures becomes inherently constrained. Namely, complex mo-
tion trajectory is represented by a simplified form, leading to a lack of blur diversity. In contrast,
increasing M to 16 provides the capability to capture intricate motion patterns, leading to better blur
diversity. As shown in Fig. 9, we observe that the larger number of M , i.e., M = 16 yields more
accurate motion results, ultimately promoting a wider range of blur patterns. Therefore, it leads to
better final deblurring results as discussed in Section 4.5.

F.4 VISUAL COMPARISON ON BLUR TRAJECTORIES

Our primal goal is to build a controllable blur synthesizer that estimates motions from a single blur
image. This enables our blur synthesizer to be directly applicable to various blur datasets (blur-
sharp image pairs) such as GoPro (Nah et al., 2017), RealBlur (Rim et al., 2020), RSBlur (Rim
et al., 2022), BSD (Zhong et al., 2020), and ReLoBlur (Li et al., 2023a). However, we can compare
blur trajectories estimated by our blur synthesizer with those obtained from video frames using an
off-the-shelf optical flow model, e.g., RAFT (Teed & Deng, 2020). To this end, we utilize GoPro,
which provides video frame images that allow us to extract optical flow maps. Then, we convert
these optical flow maps into vector fields to represent a real-like blur trajectory, which provides a
straightforward way to verify that our blur trajectory aligns well with real ones. The results are visu-
alized in Fig. 10. We found that the blur trajectories are nearly identical, confirming the alignment
between our blur trajectories and the real one. Despite estimating blur trajectories from single blur
images, our method is comparable to those derived from video frames.

G GENERALIZATION TO REAL-WORLD BLUR IMAGES

We provide additional visual results on real-world examples to demonstrate the effectiveness of our
blur synthesizer, compared with recent deblurring models such as FFTformer (Kong et al., 2023)
and FFTformer + ID-Blau (Wu et al., 2024). We download and use the deblurring models trained
with RealBlur-J (Rim et al., 2020). We compare them with our method trained with RealBlur-J for
a fair comparison, as illustrated in Fig. 11.
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Blur Image Synthetic Blur
(M = 4)

Synthetic Blur
(M = 16)

Blur Trajectory
(M = 4)

Blur Trajectory
(M = 16)

Figure 9: Blur diversity and its relationship with the number of camera positions M .
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Blur Image Synthetic Blur Image Blur Trajectory
(video frames)

Blur Trajectory
(ours)

Figure 10: Comparison results on blur trajectories (video frame images vs. single blur image).
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(a) Blur Input

(c) FFTformer + ID-Blau

(a) Blur Input

(c) FFTformer + ID-Blau

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

(b) FFTformer

(d) FFTformer + GeoSyn (ours)
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(a) Blur Input

(c) FFTformer + ID-Blau

(b) FFTformer

(d) FFTformer + GeoSyn (ours)
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(a) Blur Input
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(a) Blur Input

(c) FFTformer + ID-Blau

(a) Blur Input

(c) FFTformer + ID-Blau

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

Figure 11: Visual results on real-world blur images.
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H QUALITATIVE RESULTS ON GOPRO

Blur ID-Blau GeoSyn (ours) Sharp

Figure 12: Qualitative results on GoPro (Nah et al., 2017). All models are trained with GoPro and
are based on MIMO-UNet (Cho et al., 2021).
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I QUALITATIVE RESULTS ON REALBLUR-J

(a) Blur Input (b) ID-Blau (c) GeoSyn (ours) (d) Ground-Truth Sharp

Figure 13: Qualitative deblurring results on RealBlur-J (Rim et al., 2020). All models are trained
with RealBlur-J and are based on NAFNet-64 (Chen et al., 2022).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

J BLUR TRAJECTORY RESULTS

Blur Image Synthetic Image 2D Blur Trajectory 3D Blur Trajectory

Figure 14: Synthesized blur images and blur trajectories on 2D camera motion (1st row), 3D camera
motion (2 - 3rd rows), and 3D object + camera motion examples (4 - 6th rows).
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K CONTROLLABLE BLUR IMAGE SYNTHESIS ON GOPRO

(a) Blur Image (b) Synthesized Image (c) Phase 90◦ (d) Amplitude 2×

Figure 15: Controllable blur image synthesis on GoPro (Nah et al., 2017).
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L CONTROLLABLE BLUR IMAGE SYNTHESIS ON REALBLUR-J

(a) Blur Image (b) Synthesized Image (c) Phase 90◦ (d) Amplitude 2×

Figure 16: Controllable blur image synthesis on RealBlur-J (Rim et al., 2020).
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M MORE OBJECT MOTION EXAMPLES

Blur Image Synthetic Blur Image Sharp Image Blur Trajectory
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Blur Image Synthetic Blur Image Sharp Image Blur Trajectory

Figure 17: Blur synthesis results and their blur trajectories for object motion using RSBlur (Rim
et al., 2022).
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