
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTROLLABLE BLUR DATA AUGMENTATION
USING 3D-AWARE MOTION ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing realistic blur datasets provide insufficient variety in scenes and blur pat-
terns to be trained, while expanding data diversity demands considerable time and
effort due to complex dual-camera systems. To address the challenge, data aug-
mentation can be an effective way to artificially increase data diversity. However,
existing methods on this line are typically designed to estimate motions from a
2D perspective, e.g., estimating 2D non-uniform kernels disregarding 3D aspects
of blur modeling, which leads to unrealistic motion patterns due to the fact that
camera and object motions inherently arise in 3D space. In this paper, we pro-
pose a 3D-aware blur synthesizer capable of generating diverse and realistic blur
images for blur data augmentation. Specifically, we estimate 3D camera positions
within the motion blur interval, generate the corresponding scene images, and ag-
gregate them to synthesize a realistic blur image. Since the 3D camera positions
projected onto the 2D image plane inherently lie in 2D space, we can represent
the 3D transformation as a combination of 2D transformation and projected 3D
residual component. This allows for 3D transformation without requiring explicit
depth measurements, as the 3D residual component is directly estimated via a
neural network. Furthermore, our blur synthesizer allows for controllable blur
data augmentation by modifying blur magnitude, direction, and scenes, resulting
in diverse blur images. As a result, our method significantly improves deblurring
performance, making it more practical for real-world scenarios.

1 INTRODUCTION

Motion blur is a common challenge in photography, where it is typically caused by camera or object
movement during long exposure times. Given a blur image, blind motion deblurring tackles the
challenge of producing a sharp image. In recent years, a breakthrough has been made by adopting
diverse neural architecture designs (Nah et al., 2017; Tao et al., 2018; Kupyn et al., 2019; Cho et al.,
2021; Zamir et al., 2021; Tu et al., 2022; Li et al., 2022; Chen et al., 2022; Nah et al., 2022; Zamir
et al., 2022; Wang et al., 2022; Tsai et al., 2022; Li et al., 2023b; Kong et al., 2023; Fang et al., 2023;
Kim et al., 2024) and utilizing the realistic blur datasets (Rim et al., 2020; 2022; Li et al., 2023a) in
blind motion deblurring tasks, enabling the practical usability in real-world scenarios.

To build a more generalizable deblurring model, a realistic large-scale blur dataset containing diverse
scenes and blur patterns is required. Nevertheless, existing realistic blur datasets suffer from a lim-
ited number of scenes and blur patterns because their dual camera system is heavy and complicated
to collect a large-scale blur dataset (Rim et al., 2020; 2022; Li et al., 2023a). Data augmentation
is an alternative to artificially increase the amount of data via a synthesis procedure. For example,
one can synthesize the blur image using blur synthesizers and train a deblurring model using both
real and synthetic blur images. Despite its significant successes in high-level vision tasks (DeVries
& Taylor, 2017; Zhang et al., 2018; Yun et al., 2019; Cubuk et al., 2019; 2020; Hendrycks et al.,
2020; Kim et al., 2021; Yang et al., 2021), there has been little study particularly focused on blur
data augmentation (Zhang et al., 2020; Carbajal et al., 2023; Wu et al., 2024).

In fact, the previous literature on blur data augmentation exhibits certain limitations that merit fur-
ther investigation: (1) diffusion-based data augmentation (Wu et al., 2024) requires ground-truth
video frame images which are not typically provided in blur datasets. Hence, its synthetic data may
not generalize effectively across realistic blur datasets such as RealBlur (Rim et al., 2020) and RS-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1

Proposed Method: controllable blur synthesis

■ Controllable blur synthesis

Synthesized Blur Images

|𝜹|

𝜽𝜹 − 90˚

Scene 2Amp. 0.5ⅹ Amp. 2.0ⅹ Phase -45˚ Phase +45˚Scene 1

Contr

ollable

Blur

Synth

esis

Target Images

Target Images

3D-Aware

Vector Fields

3D-Aware

Motion

Estimation

|𝜹|
𝜽𝜹

Controllable

Blur Synthesis

Blur Image

Figure 1: Our controllable blur image synthesis. We can manipulate the motion amount (amplitude),
direction (phase) of the 3D-aware vector fields, and target scene images to generate a variety of blur
images. They are used for data augmentation in training the deblurring model.

Blur (Rim et al., 2022), and (2) the kernel-based method (Carbajal et al., 2023) offers estimated blur
kernels. However, simply regressing the simulated kernels without physically-driven blur modeling
leads to unrealistic synthetic blur images which are not acceptable in real-world scenarios (Gong
et al., 2017; Tran et al., 2021). Above all, the existing methods on this line neglect to pay attention
to explicit 3D geometry for blur synthesis despite the fact that the camera and object motion primar-
ily occurs in 3D space (Whyte et al., 2010). This may lead to inaccurate or unrealistic blur patterns,
constraining their practical usability for blur data augmentation.

In this paper, we propose a controllable and 3D-aware blur image synthesizer to generate various
realistic blur images as shown in Fig. 1, leading to better deblurring performance. Our intuition is
that intricate 2D non-uniform motion kernels can be parameterized by a simple 3D camera position
trajectory using rotation and translations. Such parametric technique helps reduce ill-posedness of
the problem while it is closely grounded in realistic blur modeling. In the case of camera motion,
we estimate 3D camera positions within the exposure time, use them for generating the transformed
scene images with grid sampling (Jaderberg et al., 2015), and aggregate them to produce a synthe-
sized blur image as shown in Fig. 2. We are motivated by the fact that the 3D camera positions
projected onto the 2D image plane inherently lie in 2D space. Hence, they can be modeled by a
combination of 2D rigid transformations and projected 3D residual components as shown in Fig. 2:
the former is represented by parametric vector fields, and the latter is represented by non-parametric
vector fields. This decomposition allows for 3D rigid transformation without depth measurements,
as the 3D residual component is directly estimated via a neural network. Furthermore, our paramet-
ric and non-parametric motion modeling takes advantage of reducing ill-posedness (by parametric)
and effectively capturing 3D residual components (by non-parametric).

In the case of object motion, the 3D residual components also serve as capturing object motion be-
haviors such as non-uniform and non-rigid deformation due to the flexibility and versatility of the
non-parametric vector field. Therefore, the 3D residual components represent not only 3D camera
residual components but also object residual components. Furthermore, while the non-parametric
vector field is essential for capturing 3D camera motion as shown in Fig. 3 and object motion as
shown in Fig. 4, its flexible nature can lead to undesirable results and ambiguity as shown in Fig. 6
(a). To overcome this, we introduce Laplacian and invertible geometric regularizations which en-
ables us to produce more natural motions. Specifically, the 3D transformed scene image can be
traced back to the original image using our invertible geometric regularization. As a result, the non-
parametric vector field remains geometrically structured. Furthermore, a key aspect of our method
is to represent motion as a vector field, which provides an inherently flexible framework where the
magnitude and direction of each vector can be easily adjusted. This controllability allows for the
generation of millions of diverse blur patterns by randomly varying the blur intensities, directions
and scenes during the deblurring training, enabling the deblurring model to handle a wide range of
unseen blur scenarios. We summarize our contributions as follows:

• We propose a controllable 3D-aware blur synthesizer that combines 2D motion and 3D
residual components to represent 3D motion. This enables 3D transformation without depth
measurements and facilitates accurate 3D motion modeling for blur data augmentation.

• Our blur synthesizer enables controllable blur data augmentation by modifying blur magni-
tude, direction, and scenes. It does not require any extra data such as ground-truth kernels,
depths or frame images during the training, which ensures compatibility to any blur dataset.

• We demonstrate that our blur data augmentation scheme contributes to superior deblurring
performance across various network architectures and blur datasets.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1

Proposed Method: Overview

Blur Image

Motion

Estimator

[𝑹|𝒕] 2D Rigid
Transformation

Image

Coordinates

Compensated

Blur Image

Sharp Image

3D-Aware

Vector Fields

3D-Aware Motion Estimation Blur Image Synthesis

Transformed

Scene Images

3D Residual Field

(Non-Parametric Vector Field)

Grid
SamplingMLP

𝒉𝝃

𝒈𝝋

𝒇𝜽

Parametric

Vector Field

Estimated

Blur Image

𝑩

෩𝑩 𝒉𝝃(෩𝑩)

𝑺

S(෩𝓣𝟏)

Amplitude-Phase

Integration

{෩𝓣𝟏, ෩𝓣𝟐, ⋯ , ෩𝓣𝑴}

෩𝓣S(M)

Compensation
Network

Figure 2: Training procedure for our blur synthesis model. We first predict 3D-aware vector fields
(parametric + non-parametric) from a given blur image, which are used to generate corresponding
scene images. These images are then aggregated to construct a realistic blur image. Note that the
motion estimator, MLP, and compensation network are jointly trained.

2 RELATED WORKS

Data augmentation. Data augmentation has been widely explored in the field of image classifica-
tion, where it is proven to be effective for improving the model generalization (DeVries & Taylor,
2017; Yun et al., 2019; Cubuk et al., 2019; Lim et al., 2019; Cubuk et al., 2020; Hendrycks et al.,
2020; Kim et al., 2021; Yang et al., 2021). On the other hand, there has been little study particularly
focused on blur data augmentation (Zhang et al., 2020; Rim et al., 2022; Wu et al., 2024). Blur
Pipeline (Rim et al., 2022) presents a method to generate synthetic blur images based on GoProU
dataset using saturation and noise synthesis (not data-agnostic and not controllable). Diffusion-
based data augmentation (Wu et al., 2024) is a scheme to generate a synthetic blur dataset and use it
for pre-training and fine-tuning the deblurring model (not cost-effective). Also, it requires the video
frame images for extracting the optical flow (not data-agnostic), where the optical flow is used for
the condition of the diffusion model. Also, these fail to explicitly account for the 3D geometry,
despite the fact that the motion inherently occurs in 3D space (not accurate). On the other hand, our
method considers the explicit 3D geometry, such that it achieves a realistic blur synthesis (accurate).
Furthermore, our method can be controllable, applied to any blur dataset (data-agnostic), and used
during the training of the deblurring model (cost-effective).

Deblurring methods. The kernel-based methods estimate blur kernels or motion information to re-
construct latent sharp images (Gong et al., 2017; Zhang et al., 2021; Carbajal et al., 2023). We may
utilize these byproducts, i.e., blur kernels, to synthesize blur images. However, simply regressing the
simulated kernels without physically-driven blur modeling may not hold in generating realistic blur
images. In recent years, as realistic blur-sharp pair datasets (Rim et al., 2020; 2022; Li et al., 2023a)
have been released, they have enabled direct prediction of latent sharp images without explicit kernel
estimation. A variety of neural architecture designs (Kupyn et al., 2018; Cui et al., 2024; Mao et al.,
2023; Tu et al., 2022; Cho et al., 2021; Zamir et al., 2021; Chen et al., 2022; Zamir et al., 2022; Kong
et al., 2023) has emerged to improve the deblurring performance. Also, some works introduce addi-
tional self-generated priors to further improve deblurring performance (Li et al., 2022; Fang et al.,
2023; Kim et al., 2024). They estimate the degradation representation (Li et al., 2022), non-uniform
kernel (Fang et al., 2023), and blur segmentation map (Kim et al., 2024) as prior information and
exploit them for improving the deblurring performance. These methods require additional compu-
tational costs to generate their own priors. On the other hand, our method is used for blur data
augmentation during the training, such that it does not require additional inference cost.

3 CONTROLLABLE 3D-AWARE BLUR SYNTHESIS

3.1 2D BLUR SYNTHESIS MODEL

In this section, we present a new blur synthesis framework that considers a 3D perspective on blur
modeling, rather than simply regressing non-uniform motion kernels from a 2D perspective. Simple
regression-based motion estimation may not be generalizable and controllable. Our primary goal
is to estimate camera positions in 3D space within the exposure time, generate the corresponding
scene images, and aggregate them to achieve a realistic blur image synthesis. To this end, we

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d) (e) (f)

Figure 3: Blur synthesis results on 3D motion blur such as in-plane rotation blur, e.g., z-axis rotation:
(a) Blur image, (b) Blur synthesis result, and (c) Estimated blur trajectory, and forward motion blur,
e.g., z-axis translation: (d) Blur image, (e) Blur synthesis result, and (f) Estimated blur trajectory.

consider a dataset D = {(B,S)}, which contains a pair of blur image B and sharp image S. Let
Tτ = {Tτ (ui)}Ni=1 be a vector field, i.e., a set of transformed coordinates, where ui ∈ R2 denotes a
2D image coordinate at a pixel index i, Tτ (ui) ∈ R2 indicates i th transformed pixel coordinate at
a time τ , and N is the number of pixels. Note that we initially consider 2D motion and extend it to
3D motion subsequently. The blur image is expressed by using the camera exposure model over the
exposure time T :

B =

∫ T

0

S(Tτ) dτ , (1)

where S(Tτ) is a scene image at a time τ . As scenes may change due to object movements and cam-
era shake over the exposure time, we generate the corresponding scene images {S(T1), · · · , S(TM)}
using transformed vector field {T1, · · · , TM} with grid sampling (Jaderberg et al., 2015). Note that
the exposure time T is approximately divided into M discrete camera positions for implementations.
Here, we begin by considering a certain case, i.e., camera motion, which is easily encoded by a rigid
transformation. The 2D rigid transformation is simply parameterized by [Rτ |tτ], e.g., rotation and
translation. The transformed coordinate Tτ (u) is denoted by

Tτ (u) = [Rτ |tτ]u =

[
r
(11)
τ r

(12)
τ t

(1)
τ

r
(21)
τ r

(22)
τ t

(2)
τ

][
x
y
1

]
=

[
r
(11)
τ x+ r

(12)
τ y + t

(1)
τ

r
(21)
τ x+ r

(22)
τ y + t

(2)
τ

]
. (2)

Since the unknown parameters are now [R|t] in (1), one can view the blur synthesis problem as a
camera pose estimation by a neural network, fθ : B → [γ1, · · · ,γM , t1, · · · , tM] where γτ ∈ R3

is the axis-angle representation (Murray et al., 2017) for a rotation matrix and tτ ∈ R2 indicates a
translation component. Once we estimate γτ , we can generate a 3D rotation matrix using Rodrigues’
formula (Murray et al., 2017), whose 2D components are used to construct a 2D transformation
matrix Rτ . Given Rτ and tτ , we can make a 2D rigid transformation field Tτ using (2) and optimize
the following loss to train the blur synthesis model, i.e., Lblur = ∥B − 1

M

∑
τ S(Tτ)∥1.

3.2 3D-AWARE BLUR SYNTHESIS MODEL

3D camera motion blur synthesis. We further develop our blur synthesis model, elaborating on its
extension to 3D space. In fact, the camera motion appears in 3D space, but it is primarily modeled
from a 2D perspective, i.e., 2D non-uniform kernels (Carbajal et al., 2023; Fang et al., 2023), which
is insufficient to ensure the geometric coherence of the camera motions. Therefore, we begin by
investigating the 3D rigid transformation below

Tτ (X) = [Rτ |tτ]X =

r
(11)
τ r

(12)
τ r

(13)
τ t

(1)
τ

r
(21)
τ r

(22)
τ r

(23)
τ t

(2)
τ

r
(31)
τ r

(32)
τ r

(33)
τ t

(3)
τ


xyz
1

 =

r
(11)
τ x+ r

(12)
τ y + r

(13)
τ z + t

(1)
τ

r
(21)
τ x+ r

(22)
τ y + r

(23)
τ z + t

(2)
τ

r
(31)
τ x+ r

(32)
τ y + r

(33)
τ z + t

(3)
τ

 , (3)

where X is a 3D canonical coordinate. We discover that the 3D rigid transformation vector Tτ (X) ∈
R3 can be decomposed into 2D rigid transformation vector T ∗

τ (u) = [Tτ (u), 0] ∈ R3 and 3D
residual vector Eτ (X) ∈ R3, written by

Tτ (X) =

r(11)τ x+ r
(12)
τ y + t

(1)
τ

r
(21)
τ x+ r

(22)
τ y + t

(2)
τ

0


︸ ︷︷ ︸

T ∗
τ (u)

+

 r
(13)
τ z

r
(23)
τ z

r
(31)
τ x+ r

(32)
τ y + r

(33)
τ z + t

(3)
τ


︸ ︷︷ ︸

Eτ (X)

. (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 4: Visual results on (a) Blur image, (b)
Synthesized blur image, (c) 2D parametric blur
trajectory, and (d) 2D parametric + 3D non-
parametric blur trajectory. Person movements
are captured by (d), but not (c).

(a) (b) (c) (d)

Figure 5: Visual results on (a) Synthesized
blur image, (b-d) transformed scene images.
Our blur synthesizer generates 3D-aware trans-
formed scene images without requiring ground-
truth video frame images.

Using a projection operation π : R3 → R2 with camera intrinsics K, we compute the projected
coordinate vector T̃τ (u) = π(Tτ (X);K) = π(T ∗

τ (u)+Eτ (X);K) to sample 3D-aware transformed
scene images over the exposure time. Here, we are motivated by the fact that T̃τ (u) lies in R2.
Therefore, following the rationale of the decomposition principle in (4), we express the projected
coordinate vector T̃τ (u) as a combination of 2D rigid transformation coordinate Tτ (u) ∈ R2 and
projected 3D residual vector1 ϵτ (u) ∈ R2 derived from Eτ (X), i.e.,

T̃τ (u) = C(Tτ (u), ϵτ (u)), (5)

where C serves as a composition function for integrating the two components. Since T̃τ (u) contains
3D residual components, it is referred to as the 3D-aware coordinate vector. Then, we simply induce
the 3D-aware vector field, i.e., T̃τ = C(Tτ , ϵτ) where Tτ is the 2D rigid transformation field as
discussed in Section 3.1 and ϵτ denotes the 3D residual field modeled by a neural network, gφ : B →
{ϵ1, ϵ2, · · · , ϵM}. This decomposition scheme allows for 3D rigid transformation without requiring
explicit depth measurements2, as the 3D residual field is directly estimated via the neural network.
To investigate the composition function C for better motion controllability, we first reformulate the
3D-aware vector field using a known canonical vector field U, i.e., S = S(U), which is

T̃τ = C(Tτ , ϵτ) = C(U+∆Tτ︸ ︷︷ ︸
Tτ

, ϵτ) = U+ C(∆Tτ , ϵτ)︸ ︷︷ ︸
δτ

= U+ δτ , (6)

where δτ = C(∆Tτ , ϵτ) is a displacement field which consists of the 2D rigid transformation resid-
ual field ∆Tτ (parametric field) and 3D residual field ϵτ (non-parametric field). Note that the
canonical vector field U is the constant field, such that it is factored out from the composition func-
tion. Then, we adopt amplitude-phase integration in polar coordinates for the composition function,
i.e., δτ = C(∆Tτ , ϵτ) = |∆Tτ | · |ϵτ |∠(ϕ(∆Tτ) + ϕ(ϵτ)), where | · | indicates the magnitude of the
vector and ϕ is a function to calculate the vector angle. This integration scheme provides a straight-
forward way to manipulate the magnitude and direction of the motion, facilitating a controllable blur
synthesis, as opposed to simple vector field integration, i.e., δτ = C(∆Tτ , ϵτ) = ∆Tτ +ϵτ . Given a
target scene image S and the 3D-aware vector field T̃τ , we can render 3D-aware transformed scene
images and synthesize a blur image as exemplified in Fig. 5 by

B̃ =
1

M

∑
τ

S(T̃τ). (7)

Finally, we suggest minimizing the following loss to train the 3D-aware blur synthesis model:

Lblur 3D = ∥B − B̃∥1 + ∥B − hξ(B̃)∥1, (8)

where hξ is an auxiliary network that compensates for photometric variations between blur and
sharp images, arising from different image sensors, lenses, and color drifts. This compensation is
required to encourage the 3D-aware vector fields to focus only on blur components (not disrupted
by the photometric issues). This will be more discussed in Section C of Appendix. Furthermore,
we emphasize that our compositional training framework leverages structured parametric modeling

1We provide underlying derivation and insights of projected 3D residual vector in Section A of Appendix.
2In our experiments, we observe that inaccurate absolute depth measurements can lead to performance

degradation, as discussed in detail in Section 4.4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

to alleviate ill-posedness and flexible non-parametric modeling to effectively capture 3D residual
components, thereby achieving accurate 3D motion modeling.

3D object motion blur synthesis. As discussed earlier, we estimate the 3D residual components
using the non-parametric vector field ϵτ , which is initially designed to represent the 3D camera
residual fields. Additionally, the 3D residual components are capable of representing object residual
fields. In fact, non-parametric motion modeling, i.e., directly estimating the vector field via a neural
network, is particularly effective in capturing the object motion behaviors (i.e., non-uniform and
non-rigid motion) due to its flexibility and versatility. Hence, our 3D-aware blur synthesis model (7)
is inherently compatible with scenarios containing object motion without further modification. As a
result, our method can handle 3D camera motions as shown in Fig. 3 and object motions as shown
in Fig. 4, using (6). Additional visualization results can be found in Fig. 14 of Appendix.

3.3 AMBIGUITY REGULARIZATION AND TOTAL LOSS

As discussed in Section 3.2, the non-parametric vector field provides substantial flexibility, but its
arbitrary and unconstrained natures can lead to ambiguities. This makes the optimization more
challenging. As a result, it yields implausible synthesis images and artifacts as shown in Fig. 6
(a). To address this, we present Laplacian regularization and invertible geometric regularization.
These regularizations help mitigate the ambiguities and ensure the geometric coherence regarding
the non-parametric vector field.

Laplacian regularization. The Laplacian regularization helps smooth irregular vector fields. This
holds under the prior knowledge that the motion vector field is not irregularly changed in the spatial
space. To promote the smoothness of the vector fields, we derive the Laplacian regularization with
respect to the 3D-aware vector field T̃τ :

Lsmooth =
(
4T̃τ (x, y)−

∑
i,j T̃τ (x+ i, y) + T̃τ (x, y + j)

)2

, i, j ∈ {−1, 1}. (9)

(a) (b)

Figure 6: Synthesized blur im-
ages (a) without regularizations
and (b) with regularizations.

Invertible geometric regularization. To adapt the geometric
consistency for the 3D-aware vector field T̃τ , we propose a new
invertible geometric regularization that allows us to trace back
to the original scene image. Specifically, the 3D transformed
scene image S̃τ = S(T̃τ) should be geometrically reverted to
the original one S via an inverse vector field. To this end, we
recall the 3D-aware vector field (6), i.e., T̃τ = U + δτ , where
δτ denotes the displacement field. The inverse vector field T̃ ′

τ
is computed by using the reversed direction of the displacement
field, i.e., T̃ ′

τ = U− δτ . Finally, the geometric-consistent vector
field is achieved by optimizing the following loss:

Lgeometric =
∑
τ

∥S − S̃τ (T̃ ′
τ)∥1, (10)

where S̃τ (T̃ ′
τ) is the geometrically inverted scene image. This geometric consistency loss is the key

component of our method to ensure that the 3D-aware vector field remains geometrically structured.
Therefore, it ensures geometric-aware blur synthesis as shown in Fig. 6 (b).

Total loss. We suggest minimizing the following loss to train our geometric-aware blur synthesizer:

Ltotal = Lblur 3D + λ1Lsmooth + λ2Lgeometric, (11)

where λ1, λ2 > 0 are hyper-parameters to balance the loss terms, which will be discussed in Sec-
tion 4.5 and Section F.1 of Appendix.

3.4 CONTROLLABLE BLUR IMAGE SYNTHESIS

Our blur synthesis model is designed to enable blur data augmentation during the deblurring model
training, thereby improving final deblurring performance and model generalization. Specifically, if

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Blur NAFNet-64 FFTformer ID-Blau GeoSyn (ours)

Figure 7: Qualitative comparison results on real-world blur images. NAFNet is used for all methods.
Our blur synthesizer produces sharper and artifact-free results compared to state-of-the-art methods.

a blur dataset contains 3, 000 blur images and the deblurring model is trained over 1,000 epochs,
it generates approximately 3,000,000 different synthetic blur images. This extensive diversity en-
hances the generalization ability of the deblurring model, enabling it to handle a wide range of
unseen blur scenarios. To this end, we first extract a 3D-aware displacement vector δ = (xδ, yδ)
from (6). Note that we use the notation δ for simplicity here. It can be converted into the amplitude-
phase representations in the polar coordinates, i.e., δ = |δ|∠ϕ(δ) where |δ| =

√
x2
δ + y2δ in-

dicates the amplitude of the vector, i.e., motion intensity and ϕ(δ) = tan−1(yδ

xδ
) represents the

phase of the vector, i.e., motion direction. Then, every displacement vector is controlled by the
amplitude control parameter α and phase control parameter β, i.e., x̃δ = α|δ| cos(ϕ(δ) + β) and
ỹδ = α|δ| sin(ϕ(δ) + β), whose parameters are explored in Section B of Appendix. We remark that
this amplitude-phase motion adjustment preserves the geometric structure of the vector fields since
the control parameters are identically applied to all vector fields generated from a single blur image
to adjust overall blur intensity and direction. Meanwhile, the control parameters can be determined
to each blur image. Finally, we employ this modified displacement motion vector, δ̃ = (x̃δ, ỹδ)
instead of the original one δ for the subsequent scene image rendering and blur image synthesis as
in (7). We present some blur synthesis results for different scenes, amplitudes, and phases as shown
in Fig. 1, Fig. 15 and 16 of Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and evaluation metrics. For datasets, we use RealBlur (Rim et al., 2020), RSBlur (Rim
et al., 2022), and GoPro (Nah et al., 2017) datasets for training and evaluation. RealBlur is split
into two types: RealBlur-J (sRGB domain) and RealBlur-R (RAW domain). Each RealBlur type
consists of 3,758 and 980 image pairs for training and test sets, respectively. RSBlur contains 8,878
and 3,360 blur-sharp image pairs for training and test sets, respectively. GoPro contains 2,103 and
1,111 image pairs for training and test sets, respectively. We use the evaluation metrics such as Peak
Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) (Wang et al., 2004).
Implementation details. We present the implementation details for training our blur synthesis
model. Our blur synthesis model consists of a motion estimator (NAFNet-8) and compensation net-
work (NAFNet-16). NAFNet-16 means NAFNet (Chen et al., 2022) with 16 base channel widths.
Note that the compensation network is only used for the photometric compensation during the train-
ing, as discussed in Section C of Appendix. According to Fig. 2, the blur input image is fed into the
encoder of the motion estimator. Then, the intermediate features are fed to MLP, including global
average pooling, two fully connected layers, and one ReLU activation, in order to estimate 2D
motion parameters {γ1, · · · ,γM , t1, · · · , tM}. Using the parameters, we obtain parametric vector

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison results across diverse neural networks and blur datasets.

Model GoPro HIDE RealBlur-J RealBlur-R
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MIMO-UNet+ 32.44 0.957 30.00 0.930 31.92 0.919 39.10 0.969
+ GeoSyn (ours) 33.01 0.962 30.86 0.940 32.55 0.925 39.68 0.972
Restormer 32.92 0.961 31.22 0.942 32.32 0.924 39.47 0.972
+ GeoSyn (ours) 33.37 0.964 31.61 0.946 33.05 0.937 40.31 0.974
NAFNet 33.69 0.966 31.32 0.943 32.50 0.928 39.89 0.973
+ GeoSyn (ours) 34.09 0.969 31.64 0.947 32.99 0.936 40.49 0.976
FFTformer 34.21 0.969 31.62 0.946 32.62 0.933 40.11 0.973
+ GeoSyn (ours) 34.39 0.970 31.98 0.949 33.68 0.938 40.89 0.977

fields {T1, T2, · · · , TM} as discussed in Section 3.1. Also, the intermediate features are fed into the
decoder of the motion estimator to predict non-parametric vector fields {ϵ1, ϵ2, · · · , ϵM}. Then, we
aggregate the parametric and non-parametric vector fields using the amplitude-phase integration and
finally obtain the 3D-aware vector fields as discussed in Section 3.2. To produce diverse blur images
for blur data augmentation, we modify amplitudes, phases of the vector field, and scene contents
as discussed in Section 3.4. We will discuss how to synthesize and where to synthesize in detail in
Section B of Appendix. Note that our blur synthesizer is only used for training. Therefore, it does
not increase the computation cost in the evaluation stage. We use blur datasets randomly cropped
by 256 × 256 during the training. We train our blur synthesizer up to 1, 000 epochs for RealBlur,
3, 000 epochs for GoPro, and 500 epochs for RSBlur. Also, our blur synthesizer is optimized by
the AdamW (Loshchilov & Hutter, 2019) algorithm (β1 = 0.9, β2 = 0.9 and weight decay 1e−3)
with the cosine annealing schedule (1e−3 to 1e−7) (Loshchilov & Hutter, 2016) gradually reduced
for total iterations of each dataset. Unless otherwise specified, we use λ1 = 0.1, λ2 = 1.0 and the
number of camera positions as 16, which is discussed in Section 4.5 and F.1 of Appendix. We use
RealBlur-J for all ablation studies.

4.2 MAIN RESULTS

To demonstrate the effectiveness of our blur synthesizer, we conduct experiments across various
datasets such as GoPro (Nah et al., 2017), HIDE (Shen et al., 2019), RealBlur-J and R (Rim et al.,
2020), and network architectures such as MIMO-UNet+ (Cho et al., 2021), Restormer (Zamir et al.,
2022), NAFNet (Chen et al., 2022) and FFTformer (Kong et al., 2023). We train with GoPro and
evaluate GoPro and HIDE. Also, we train with RealBlur-J and R, and evaluate the corresponding
trained models. As shown in Table 1, the results clearly demonstrate that our blur synthesizer,
i.e., GeoSyn boosts deblurring performance across not only different network architectures but also
various datasets. For example, FFTformer equipped with our GeoSyn significantly improves PSNR
from 32.62 to 33.68 dB on RealBlur-J. Furthermore, we present a more comprehensive analysis
of the generalization ability of our GeoSyn in Section D. Also, we present the visual comparison
results on GoPro as shown in Fig. 12 of Appendix, RealBlur as shown in Fig. 13 of Appendix, and
real-world blur images as shown in Fig. 7 and Fig. 11 of Appendix.

4.3 COMPARISON TO OTHER METHODS

Comparison to kernel-based methods. J-MKPD (Carbajal et al., 2023) and MotionETR (Zhang
et al., 2021) generate motion information for deblurring purposes. However, motion information can
be used for blur data augmentation. Since their motion estimators are trained with GoPro, we train
our blur synthesizer with GoPro for a fair comparison. Then, the deblurring model, NAFNet-64 is
trained with GoPro, using data augmentation with their motion estimators and ours. As shown in
the upper side of Table 2, MotionETR exhibits a performance improvement from 33.69 to 33.92 dB,
but it lags behind our GeoSyn (34.09 dB). We believe their motion information does not account for
explicit 3D geometry, causing performance limitations.
Comparison to blur synthesis methods. Blur Pipeline (Rim et al., 2022) and ID-Blau (Wu et al.,
2024) are the blur data augmentation methods and are trained with a certain dataset (GoPro). For
example, ID-Blau requires the ground-truth video frame images to extract optical flows, such that it

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparison results against related
works. We compare our method with kernel-
based methods (above) and blur data aug-
mentation methods (below).

Augmentation Types Datasets PSNR ↑ SSIM ↑
None

GoPro

33.69 0.966
J-MKPD 33.59 0.965

MotionETR 33.92 0.968
GeoSyn (ours) 34.09 0.969

None

RealBlur-J

32.50 0.928
Blur Pipeline 32.57 0.931

ID-Blau 32.70 0.932
GeoSyn (ours) 32.99 0.936

ID-Blau + GeoSyn (ours) 33.09 0.938

Table 3: Comparison results on RSBlur. The
best results are indicated in bold.

Methods GMACs RSBlur
PSNR ↑ SSIM ↑

SRN-Deblur 1434.82 32.53 0.840
MIMO-UNet+ 154.41 33.37 0.856
MPRNet 777.01 33.61 0.861
Restormer 141.00 33.69 0.863
Uformer-B 89.50 33.98 0.866
ConvIR-L 71.22 34.06 0.868
NAFNet-64 63.64 33.97 0.866
+ GeoSyn (ours) 63.64 34.23 0.870
SegDeblur-L 62.68 34.21 0.870
+ GeoSyn (ours) 62.68 34.31 0.872

Table 4: Ablation study on various types
of vector fields. “P” indicates the paramet-
ric vector field while “NP” exhibits the non-
parametric vector field. The best results are
indicated in bold.

Methods P NP PSNR ↑ SSIM ↑
No Augmentation 32.50 0.928

2D Parametric ✓ 32.65 0.932
3D Non-Parametric ✓ 32.61 0.930

3D Flat Depth ✓ 32.66 0.932
3D Monocular Depth ✓ 32.47 0.929

GeoSyn (ours) ✓ ✓ 32.99 0.936

Table 5: Ablation study on model sizes. Our
blur augmentation enables us to build an ef-
ficient deblurring model. It reduces the com-
putational cost by up to 4×.

Methods GMACs PSNR ↑ SSIM ↑
NAFNet-16

4.0
31.58 0.912

+ GeoSyn (ours) 31.97 0.921
NAFNet-32

16.0
31.99 0.920

+ GeoSyn (ours) 32.59 0.931
NAFNet-64

63.5
32.50 0.928

+ GeoSyn (ours) 32.99 0.936

can not be trained with other datasets containing only blur and sharp images such as RealBlur (Rim
et al., 2020) and RSBlur (Rim et al., 2022). As shown in the lower side of Table 2, ID-Blau, trained
with GoPro, leads to limited deblurring performance improvement on RealBlur-J, from 32.50 to
32.70 dB. On the other hand, our GeoSyn can be trained with RealBlur-J, to capture dataset-specific
motion patterns. Hence, our GeoSyn yields better deblurring performance (32.99 dB), thanks to our
data-agnostic motion modeling. Furthermore, we remark that our GeoSyn is compatible with ID-
Blau. Specifically, we train the deblurring model initialized by ID-Blau pre-trained model, with our
GeoSyn. We observe that it further improves the deblurring performance (33.09 dB), achieving the
best performance. More comparison results with ID-Blau can be found in Section E of Appendix.
Results on RSBlur. We experiment with an additional dataset, RSBlur (Rim et al., 2022) which
contains a variety of camera and object motions with high-resolution images. We train and evaluate
NAFNet-64 (Chen et al., 2022) and SegDeblur-L (Kim et al., 2024) with RSBlur, using our data
augmentation scheme. As shown in Table. 3, our GeoSyn improves the performance on NAFNet-64,
from 33.97 to 34.23 dB. Interestingly, our GeoSyn can be compatible with the prior-based method
such as SegDeblur-L, improving the deblurring performance from 34.21 to 34.31 dB.

4.4 VARIOUS FORMS OF VECTOR FIELDS

The goal of this experiment is to identify an optimal configuration of the vector fields for blur data
augmentation, by evaluating various combinations of parametric and non-parametric vector fields
including 2D motion, 3D motion, and depth information, as reported in Table 4.

2D parametric vector field. The parametric vector field approach is beneficial for reducing the ill-
posedness of the problem, rather than naı̈vely estimating non-parametric vector fields. However, the
2D parametric vector field that relies solely on 2D transformations fails to incorporate 3D motion
information, leading to a sub-optimal performance of 32.65 dB.
3D non-parametric vector field. The non-parametric vector field is specialized to capture 3D mo-
tions. However, when the non-parametric method is used only, it struggles to effectively learn mo-
tion behaviors due to huge ill-posedness, e.g., the presence of numerous feasible solutions, achieving
insufficient performance (32.61 dB).
3D parametric vector field using depth information. The parametric vector fields using 3D trans-
formation with depth measurements yield sub-optimal results. The deblurring result (32.47 dB)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

None LaplacianGeometric All32.4

32.5

32.6

32.7

32.8

32.9

33.0

PS
NR

 (d
B)

32.52

32.87
32.92

32.99

(a)

No Aug. Amp. Phase Scene All32.4

32.5

32.6

32.7

32.8

32.9

33.0

PS
NR

 (d
B)

32.50

32.82
32.78

32.86

32.99

(b)

4 8 16 32 6432.4

32.5

32.6

32.7

32.8

32.9

33.0

PS
NR

 (d
B)

32.86

32.97 32.99 32.98 32.97

(c)

Figure 8: Ablation studies on (a) Regularizations, (b) Controllability, and (c) # of camera positions.

using the monocular depth estimates generated by Ke et al. (2024) is even worse than that of flat
depth (32.66 dB). We believe that monocular depth values are inherently inaccurate because they
are typically relative depth information rather than accurate absolute depth measurements required
for 3D transformations, leading to unfavorable blur synthesis.
2D parametric + 3D non-parametric vector field (ours). Our method fuses 2D parametric and 3D
non-parametric vector fields, which circumvents the need for absolute depth values. Therefore, we
take advantage of both reducing ill-posedness (by parametric) and effectively modeling 3D residual
components (by non-parametric), achieving the best performance (32.99 dB).

4.5 ABLATION STUDY

Efficient deblurring models. In this section, we discuss the effectiveness of our blur data augmen-
tation scheme in constructing an efficient deblurring model. We train and evaluate NAFNet with
different model sizes, incorporating our data augmentation scheme. As shown in Table. 5, the re-
sults show that our GeoSyn reduces the computational cost, i.e., GMACs, by up to 4×. Specifically,
NAFNet-32 equipped with our data augmentation (16 GMACs, PSNR 32.59 dB) produces even
better performance than that of NAFNet-64 (63.5 GMACs, PSNR 32.50 dB). This highlights the
potential benefits of our blur synthesis model in building an efficient deblurring model.
Effects on regularization. To verify that the ambiguity regularization losses are necessary, we train
deblurring models using our blur synthesizers trained without regularization, with Laplacian only
(λ1 = 0.1), with geometric only (λ2 = 1.0), and with both regularizations. As shown in Fig. 8
(a), we observe that each regularization technique contributes to reducing ambiguities, leading to
better subsequent deblurring performance (32.50 → 32.87 or 32.92 dB). Furthermore, the results
demonstrate that both regularizations are crucial for achieving further improvements, reaching 32.99
dB. We explore the hyperparameters {λ1, λ2} for more details in Section F.1 of Appendix.
Controllability. We explore the controllability of our GeoSyn. As discussed in Section 3.4, we can
manipulate amplitude, phase of the vector fields, and scene contents to produce blur images with
diverse blur patterns and scene contents. To confirm which augmentation type is more effective, we
train deblurring models with amplitude, phase, scene, and all augmentations. As shown in Fig. 8 (b),
each augmentation type demonstrates its effectiveness in improving deblurring performance. More-
over, the results indicate that all augmentation types are necessary to achieve the best performance.
The number of camera positions. We investigate the effect of the number of camera positions
when synthesizing a blur image. We train our blur synthesizer with different numbers of camera
positions: {4, 8, 16, 32, 64}, and the deblurring model using individual synthesizers. As shown in
Fig. 8 (c), a sufficient number of camera positions, e.g., more than 8, can capture intrinsic motion
behaviors, such that it results in meaningful subsequent deblurring performance.
More ablation studies. For further insights, we perform an in-depth analysis of our blur synthesizer
in Section F of Appendix.

5 CONCLUSIONS

In this paper, we propose a new 3D-aware blur synthesizer designed to generate diverse blur im-
ages for data augmentation, improving deblurring performance. We integrate parametric and non-
parametric vector fields to take advantage of reducing the ill-posedness and modeling 3D camera
and object residual components. We demonstrate the effectiveness of our blur synthesizer on var-
ious network architectures and datasets. Our method can be extended to other tasks such as depth
estimation from a blur image and controllable blind motion deblurring using the vector fields.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we present comprehensive implementation details for training our blur
synthesizer in Section 4.1 and Fig. 2. We also describe the details of the data augmentation strategy,
i.e., where to synthesize, how to synthesize, and how to augment during the training of the deblur-
ring model, in Section B of Appendix. The hyperparameter settings are empirically optimized as
described in Section 4.5 and Section F.1 of Appendix, and are summarized in Section 4.1.

REFERENCES

Guillermo Carbajal, Patricia Vitoria, José Lezama, and Pablo Musé. Blind motion deblurring with
pixel-wise kernel estimation via kernel prediction networks. IEEE Transactions on Computational
Imaging, 2023.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
The European Conference on Computer Vision (ECCV), 2022.

Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung, and Sung-Jea Ko. Rethinking coarse-
to-fine approach in single image deblurring. The IEEE International Conference on Computer
Vision (ICCV), pp. 4641–4650, 2021.

Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. Autoaugment:
Learning augmentation strategies from data. The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019.

Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated
data augmentation with a reduced search space. The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. Revitalizing convolutional network for
image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024. doi:
10.1109/TPAMI.2024.3419007.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Zhenxuan Fang, Fangfang Wu, Weisheng Dong, Xin Li, Jinjian Wu, and Guangming Shi. Self-
supervised non-uniform kernel estimation with flow-based motion prior for blind image deblur-
ring. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18105–
18114, 2023.

Dong Gong, Jie Yang, Lingqiao Liu, Yanning Zhang, Ian Reid, Chunhua Shen, Anton Van Den Hen-
gel, and Qinfeng Shi. From motion blur to motion flow: A deep learning solution for removing
heterogeneous motion blur. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2319–2328, 2017.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
International Conference on Learning Representations (ICLR), 2020.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray kavukcuoglu. Spatial transformer
networks. Advances in Neural Information Processing Systems (NIPS), 2015.

Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Kon-
rad Schindler. Repurposing diffusion-based image generators for monocular depth estimation.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2024.

Insoo Kim, Seungju Han, Ji-Won Baek, Seong-Jin Park, Jae-Joon Han, and Jinwoo Shin. Quality-
agnostic image recognition via invertible decoder. The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Insoo Kim, Jae Seok Choi, Geonseok Seo, Kinam Kwon, Jinwoo Shin, and Hyong-Euk Lee. Real-
world efficient blind motion deblurring via blur pixel discretization. The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 25879–25888, 2024.

Lingshun Kong, Jiangxin Dong, Mingqiang Li, Jianjun Ge, and Jinshan Pan. Efficient frequency
domain-based transformers for high-quality image deblurring. The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023.

Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiřı́ Matas. Deblur-
gan: Blind motion deblurring using conditional adversarial networks. The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 8183–8192, 2018.

Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. Deblurgan-v2: Deblurring
(orders-of-magnitude) faster and better. The IEEE International Conference on Computer Vision
(ICCV), pp. 8878–8887, 2019.

Dasong Li, Yi Zhang, Ka Chun Cheung, Xiaogang Wang, Hongwei Qin, and Hongsheng Li. Learn-
ing degradation representations for. The European Conference on Computer Vision (ECCV), pp.
736–753, 2022.

Haoying Li, Ziran Zhang, Tingting Jiang, Peng Luo, Huajun Feng, and Zhihai Xu. Real-world deep
local motion deblurring. Association for the Advancement of Artificial Intelligence (AAAI), 2023a.

Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx, Rakesh Ranjan, Radu Timofte, and
Luc Van Gool. Efficient and explicit modelling of image hierarchies for image restoration. The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023b.

Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment.
Advances in Neural Information Processing Systems (NIPS), pp. 6665–6675, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. International Conference
on Learning Representations (ICLR), 2019.

Xintian Mao, Yiming Liu, Fengze Liu, Qingli Li, Wei Shen, and Yan Wang. Intriguing findings of
frequency selection for image deblurring. Association for the Advancement of Artificial Intelli-
gence (AAAI), 2023.

Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical introduction to robotic
manipulation. CRC press, 2017.

Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
for dynamic scene deblurring. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3883–3891, 2017.

Seungjun Nah, Sanghyun Son, Jaerin Lee, and Kyoung Mu Lee. Clean images are hard to reblur:
Exploiting the ill-posed inverse task for dynamic scene deblurring. International Conference on
Learning Representations (ICLR), 2022.

Jaesung Rim, Haeyun Lee, Jucheol Won, and Sunghyun Cho. Real-world blur dataset for learning
and benchmarking deblurring algorithms. The European Conference on Computer Vision (ECCV),
pp. 184–201, 2020.

Jaesung Rim, Geonung Kim, Jungeon Kim, Junyong Lee, Seungyong Lee, and Sunghyun Cho.
Realistic blur synthesis for learning image deblurring. The European Conference on Computer
Vision (ECCV), 2022.

Ziyi Shen, Wenguan Wang, Xiankai Lu, Jianbing Shen, Haibin Ling, Tingfa Xu, and Ling Shao.
Human-aware motion deblurring. The IEEE International Conference on Computer Vision
(ICCV), pp. 5572–5581, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Jiaya Jia. Scale-recurrent network for deep
image deblurring. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 8174–8182, 2018.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. The European
Conference on Computer Vision (ECCV), 2020.

Phong Tran, Anh Tuan Tran, Quynh Phung, and Minh Hoai. Explore image deblurring via encoded
blur kernel space. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 11956–11965, 2021.

Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, and Chia-Wen Lin. Stripformer: Strip
transformer for fast image deblurring. The European Conference on Computer Vision (ECCV),
2022.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxim: Multi-axis mlp for image processing. The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5769–5780, 2022.

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
Uformer: A general u-shaped transformer for image restoration. The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 17683–17693, 2022.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Oliver Whyte, Josef Sivic, Andrew Zisserman, and Jean Ponce. Non-uniform deblurring for shaken
images. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

Jia-Hao Wu, Fu-Jen Tsai, Yan-Tsung Peng, Chung-Chi Tsai, Chia-Wen Lin, and Yen-Yu Lin. Id-
blau: Image deblurring by implicit diffusion-based reblurring augmentation. The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2024.

Zhou Yang, Weisheng Dong, Xin Li, Mengluan Huang, Yulin Sun, and Guangming Shi. Vector
quantization with self-attention for quality-independent representation learning. The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2021.

Jaejun Yoo, Namhyuk Ahn, and Kyung-Ah Sohn. Rethinking data augmentation for image super-
resolution: A comprehensive analysis and a new strategy. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. The IEEE
International Conference on Computer Vision (ICCV), pp. 6023–6032, 2019.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-
Hsuan Yang, and Ling Shao. Multi-stage progressive image restoration. The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 14821–14831, 2021.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5728–5739, 2022.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. International Conference on Learning Representations (ICLR), pp. 6438–
6447, 2018.

Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Bjorn Stenger, Wei Liu, and Hongdong Li. De-
blurring by realistic blurring. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2737–2746, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Youjian Zhang, Chaoyue Wang, Stephen J Maybank, and Dacheng Tao. Exposure trajectory recov-
ery from motion blur. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):
7490–7504, 2021.

Zhihang Zhong, Ye Gao, Yinqiang Zheng, and Bo Zheng. Efficient spatio-temporal recurrent neural
network for video deblurring. The European Conference on Computer Vision (ECCV), pp. 191–
207, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MORE DETAILS ON PROJECTED 3D RESIDUAL VECTOR

To derive the projected 3D residual vector, we recall the 3D transformation vector (4) as follows:

Tτ (X) =

[
X
Y
Z

]
=

r(11)τ x+ r
(12)
τ y + t

(1)
τ

r
(21)
τ x+ r

(22)
τ y + t

(2)
τ

0


︸ ︷︷ ︸

R

+

 r
(13)
τ z

r
(23)
τ z

r
(31)
τ x+ r

(32)
τ y + r

(33)
τ z + t

(3)
τ


︸ ︷︷ ︸

E

. (12)

where R = [Rx, Ry, 0] is the 2D transformation vector and E = [Ex, Ey, Ez] is the 3D residual
vector. Note that we use the notations of R and E instead of T ∗

τ (u) and Eτ (X) in (4) for simplicity
here. Using a projection operation π : R3 → R2 with camera intrinsics K, we can compute the
projected coordinate vector T̃τ (u) = [x, y] = π(Tτ (X);K) = π(R + E ;K). By using the pinhole
camera principle, we express a x component of the projected coordinate vector as

x = fx
X

Z
+ Px = fx

Rx + Ex
Ez

+ Px, (13)

where Rx is a 2D transformation component, Ex and Ez are 3D residual components, fx is a focal
length, and Px is a principal point. Here, we emphasize that x is characterized by the 2D transforma-
tion component Rx and 3D residual components {Ex, Ez}. Since we define x as a combination of 2D
transformation component Rx and projected 3D residual component ϵx, i.e., x = C(Rx, ϵx) where C
is a composition function for integrating the two components, the projected 3D residual component
ϵx contains the 3D residual components {Ex, Ez}, focal length fx, and principal point Px. These
components are combined by a single value ϵx which is estimated by our motion estimator.

B DATA AUGMENTATION STRATEGY

Where to synthesize? The camera motion is regarded as a global motion while the object motion
is treated as a local motion. To accommodate the synthesized local motion, we use CutSyn strategy,
whose methodology is similar to other data augmentation schemes such as CutBlur (Yoo et al.,
2020), CutMix (Yun et al., 2019) and CutOut (DeVries & Taylor, 2017). Specifically, we randomly
choose a region for augmentation and apply a controllable blur synthesis, i.e., Baug = M ⊙ B̃ +

(1 − M) ⊙ S where M ∈ {0, 1} is the mask image indicating where to synthesize, B̃ means
the synthesized blur image, S is the sharp image, and ⊙ denotes the element-wise multiplication.
Note that we will discuss our amplitude and phase augmentation policy, i.e., how to construct the
synthesized blur image B̃, in the following paragraph. On the other hand, RealBlur has only camera
motion blur images (global motion only). In this case, we apply the controllable blur synthesis in
the whole region, e.g., Baug = B̃. As shown in Table 6, the local data augmentation is beneficial for
GoPro which contains camera and object motions. Meanwhile, the global data augmentation shows
better performance on RealBlur-J since it contains camera motion only.

Table 6: Comparison results on regions of blur augmentation. The best results are indicated in bold.

Region of augmentation GoPro RealBlur-J
PSNR↑ SSIM↑ PSNR↑ SSIM↑

None 33.69 0.966 32.50 0.928
Global 34.02 0.969 32.99 0.936

Local (CutSyn) 34.09 0.969 32.94 0.936

How to synthesize? We discuss our amplitude and phase adjustment policy for constructing a syn-
thesized blur image B̃ during the deblurring training. As discussed in Section 3.4, we introduce the
amplitude control parameter α and phase control parameter β to adjust the amplitude and phase of
the displacement field, i.e., δ̃ = α|δ|∠(ϕ(δ)+β). Since many data augmentation approaches adopt
a random augmentation policy and show remarkable performance, we also use the random choice
of both amplitude and phase control parameters. To determine the dynamic range of amplitude and
phase control parameters for random augmentations, we conduct experiments on various ranges, as
presented in Table 7. For phase augmentation, although the best performance is observed across
multiple phase ranges, we select the range of -90◦ to 90◦, as it allows for phase augmentation over a

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

wider range of phase variations. For amplitude augmentation, the bounded amplitude augmentation
gives the best performance. Specifically, the dynamic range of the phase values is bounded between
-180◦ and 180◦ even though adjusting the phase values by β. Meanwhile, the dynamic range of
amplitude values may not be bounded. For example, a large amplitude control parameter can sig-
nificantly increase the blur amount in large-motion scenes, resulting in unnatural large-motion blur
images. Such unbounded amplitude values may not be optimal for amplitude augmentation. To
address this, we bound the absolute amplitude values adjusted by α to the values between 1.0× and
1.5×, and α is randomly chosen to keep the bounded range. As a result, the bounded amplitude
augmentation policy achieves the best performance. In summary, we randomly select α to keep the
absolute amplitude values between 1.0× and 1.5× for amplitude augmentation, and we use random
β values between -90◦ and 90◦ for phase augmentation unless otherwise specified.

Table 7: Effects on amplitude / phase augmentation policies. The best results are indicated in bold.

Method Adjustment Range PSNR ↑ SSIM ↑

GeoSyn (ours)

Amplitude α

0.5× ∼ 1.0× 32.68 0.932
1.0× ∼ 1.5× 32.80 0.933
1.0× ∼ 2.0× 32.78 0.933
1.0× ∼ 4.0× 32.76 0.933

Bounded Amplitudes 32.82 0.933

Phase β

-15◦ ∼ 15◦ 32.73 0.932
-30◦ ∼ 30◦ 32.78 0.933
-45◦ ∼ 45◦ 32.78 0.933
-90◦ ∼ 90◦ 32.78 0.933

-180◦ ∼ 180◦ 32.65 0.932

Data augmentation during the deblurring training. When training the deblurring model, we use
both real blur image B and augmented blur image Baug based on the accumulated gradient (AG)
strategy. Specifically, it relies on accumulating gradients in both real data and synthesized data (1:1)
and then backpropagation. As it seems similar to 2× increases of mini-batch size, we experiment on
2× increases of mini-batch size using AG technique, resulting in slight performance improvement,
32.50 → 32.56 dB, as shown in “Accumulated gradient” of Table 8. We clarify that the performance
improvement is not due to gradient accumulation itself, but rather our data augmentation scheme
32.50 → 32.99 dB as shown in Table 8.

Table 8: Effects on accumulated gradients. The best results are indicated in bold.

Methods PSNR ↑ SSIM ↑
None 32.50 0.928

Accumulated gradient 32.56 0.929
GeoSyn (ours) 32.99 0.936

C CONSIDERATION ON THE COMPENSATION NETWORK

As shown in Fig. 2, we use the compensation network to address the photometric issues. Basi-
cally, RealBlur (Rim et al., 2020) and RSBlur (Rim et al., 2022) datasets are acquired using dual-
camera systems. These systems consist of two cameras with different lenses or sensors, resulting
in color drifts. Furthermore, since blur and sharp images require different exposure time, this leads
to variations in brightness and contrast. Although such photometric inconsistencies are corrected
by post-processing, they are not fully compensated. This means that the synthesized blur image
using a sharp image may be different from a ground-truth blur image in terms of color, brightness,
or contrast. This difference may disrupt motion modeling. To confirm that the compensation net-
work is necessary, we conduct experiments with the configurations: (1) training our blur synthesizer
without the compensation network and using the estimated blur image B̃ for blur data augmenta-
tion, (2) training our blur synthesizer with the compensation network and using the estimated blur
image B̃ for blur data augmentation (ours), (3) training our blur synthesizer with the compensation
network and using the compensated blur image hξ(B̃) for blur data augmentation, and (4) training
our blur synthesizer with the compensation network and using the compensated blur image hξ*(B̃)
with finetuning. For simplicity, we refer to configuration (1) as C1, configuration (2) as C2, config-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

uration (3) as C3, and configuration (4) as C4. As shown in Table 9, the results show that the C2
gives the best deblurring performance (32.99 dB). We believe that the usage of the compensation
network during the synthesizer training enables the 3D-aware vector fields to focus exclusively on
learning blur components, thereby free from photometric variations such as color drifts and sensor
differences. On the other hand, the C1 shows a sub-optimal result (32.86 dB) since it may suffer
from the photometric issues for motion modeling. Furthermore, when training deblurring models
with our blur data augmentation scheme, various blur patterns can be generated by manipulating the
amplitude and phase of the vector field. Such modified blur patterns may be unseen to the compensa-
tion network, which may cause unexpected artifacts or blur effects after the compensation network.
Therefore, the C3 leads to sub-optimal performance (32.78 dB), compared to that of the C2 (32.99
dB). To address this, we finetune the compensation network during the deblurring training, which
is indicated as the C4. We observe that it somewhat handles unseen blur patterns by finetuning the
compensation model (32.78 → 32.89 dB), but it lags behind our configuration, C2. As a result, we
empirically prove that the C2 gives the best performance, and use it unless otherwise specified.

Table 9: Effects on the compensation network. hξ* is a finetuned version of hξ. The best results are
indicated in bold.

Configurations Compensation Net Synthetic Blur PSNR ↑ SSIM ↑
C1 B̃ 32.86 0.935

C2 (ours) ✓ B̃ 32.99 0.936
C3 ✓ hξ(B̃) 32.78 0.934

C4 ✓ hξ*(B̃) 32.89 0.934

D GENERALIZATION ABILITY

To demonstrate the generalization ability of our method, we conduct cross-dataset evaluations. First,
we train both our blur synthesis and deblurring models on RealBlur (i.e., GeoSyn-R) and test on Re-
alBlur (Rim et al., 2020), RSBlur (Rim et al., 2022) and BSD (Zhong et al., 2020). Additionally,
we train our blur synthesis model on GoPro and deblurring model on RealBlur (i.e., GeoSyn-G) and
test again on RealBlur, RSBlur and BSD. As shown in Table 10, our GeoSyn-R shows remarkable
performance on RealBlur, and our GeoSyn-G demonstrates promising generalization performance
on RSBlur and BSD. This relies on what dataset is used for training our blur synthesizer. Specifi-
cally, the GeoSyn-R is trained on RealBlur, enabling it to generate diverse and dataset-specific blur
patterns that contribute to performance improvement on RealBlur. Even though the GeoSyn-R uses
only RealBlur in both trainings, it also shows good generalization results on RSBlur and BSD be-
cause it can generate numerous and diverse blur patterns during the deblurring training. On the other
hand, our GeoSyn-G leverages separate datasets for the blur synthesizer (GoPro) and the deblurring
model (RealBlur), enabling it to benefit from multiple blur datasets. As a result, it achieves superior
generalization performance (see the results on BSD Test set).

E COMPARISON RESULTS WITH ID-BLAU

We compare our method with ID-Blau (Wu et al., 2024) to demonstrate its effectiveness. We conduct
experiments across various network architectures such as MIMO-UNet+ (Cho et al., 2021) and FFT-
former (Kong et al., 2023), and datasets such as GoPro (Nah et al., 2017) and RealBlur-J (Rim et al.,
2020). As shown in Table. 11, our GeoSyn gives better performance than ID-Blau. In particular,
our GeoSyn achieves a PSNR of 33.01 dB on GoPro, outperforming 32.93 dB obtained by ID-Blau
in MIMO-UNet+. We believe that our blur synthesizer effectively accounts for explicit 3D motion
modeling, leading to better performance. Furthermore, our method shows remarkable performance
improvement on RealBlur-J, compared with that of ID-Blau. Notably, while ID-Blau shows the per-
formance improvement in FFTformer from 32.62 to 32.88 dB, our GeoSyn achieves a significant
performance improvement, reaching 33.68 dB. Unlike ID-Blau which requires video frame images,
our GeoSyn is compatible with training on RealBlur-J which only contains blur-sharp image pairs.
Hence, our method can generate more dataset-specific motion patterns for data augmentation, such
that it yields better subsequent deblurring performance on RealBlur-J.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 10: Ablation study on the cross-data validation. The best results are indicated in bold.
Train

(Deblur) Test Train
(Synthesizer) Methods NAFNet MIMO-UNet+

PSNR SSIM PSNR SSIM

RealBlur RealBlur

- No Aug 32.50 0.928 31.92 0.919
GoPro ID-Blau 32.70 0.932 31.96 0.921

RealBlur GeoSyn-R 32.99 0.936 32.55 0.925
GoPro GeoSyn-G 32.94 0.935 32.47 0.924

RealBlur RSBlur

- No Aug 30.61 0.809 29.72 0.790
GoPro ID-Blau 30.90 0.814 29.43 0.786

RealBlur GeoSyn-R 30.91 0.815 29.95 0.794
GoPro GeoSyn-G 30.98 0.815 29.81 0.794

RealBlur BSD

- No Aug 29.67 0.893 29.25 0.891
GoPro ID-Blau 30.42 0.907 28.93 0.882

RealBlur GeoSyn-R 30.83 0.911 29.73 0.899
GoPro GeoSyn-G 30.91 0.912 29.91 0.904

Table 11: Comparison results against ID-Blau. The best results are indicated in bold.

Methods GoPro RealBlur-J
PSNR↑ SSIM↑ PSNR↑ SSIM↑

MIMO-UNet+ 32.44 0.957 31.92 0.916
+ ID-Blau 32.93 0.961 31.96 0.921
+ GeoSyn 33.01 0.962 32.55 0.925
FFTformer 34.21 0.969 32.62 0.932
+ ID-Blau 34.36 0.970 32.88 0.934
+ GeoSyn 34.39 0.970 33.68 0.938

F COMPREHENSIVE ANALYSIS ON GEOSYN

F.1 EFFECTS ON λ

We examine the hyperparameters λ1 and λ2 to confirm performance sensitivity across the hyperpa-
rameters. We train our blur synthesizers using combinations of λ1 = {0.1, 1.0}, λ2 = {0.1, 1.0},
resulting in the pairs (λ1, λ2) such as (0.1, 0.1), (0.1, 1.0), (1.0, 0.1), and (1.0, 1.0). The results are
given in Table. 12. We observe that the higher impact (λ2 = 1.0) of invertible geometric loss gives
better performance. This means that it accounts for the importance of geometric consistency for blur
synthesis. In contrast, we observe that the greater impact (λ1 = 1.0) of Laplacian smoothing loss
leads to decreased deblurring performance. This is because a stronger smoothing constraint impedes
the learning of diverse motion patterns, reducing data diversity for data augmentation. Subsequently,
it limits performance improvements.

Table 12: Ablation study on hyperparameters λ1 and λ2. The best results are indicated in bold.

Methods λ1 λ2 PSNR ↑ SSIM ↑

GeoSyn (ours)

0.1 0.1 32.90 0.935
0.1 1.0 32.99 0.936
1.0 0.1 32.76 0.933
1.0 1.0 32.84 0.934

F.2 PERFORMANCE SENSITIVITY AND ITS RELATIONSHIP TO GEOMETRIC CONSISTENCY

To investigate the deblurring performance sensitivity to the accuracy of the vector field, we con-
duct the experiment by introducing random perturbations to the vector fields. We believe that the
robustness of the final deblurring performance is closely tied to the geometric consistency of the
vector field. As shown in Table 13, without geometric consistency (λ2 = 0.0), the vector field

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

lacks geometric coherence, and thus even no perturbation leads to performance degradation (32.52
dB) compared to the baseline performance, i.e., no data augmentation (32.56 dB). In contrast, with
strong geometric consistency (λ2 = 1.0), the deblurring model remains robust to the perturbations
of the vector field, consistently outperforming the baseline (indicated in bold). For mid-level geo-
metric consistency (λ2 = 0.5), the vector field is generally robust to small perturbations (indicated
in bold), but large perturbations disrupt its geometric coherence and adversely affect performance
(32.51 dB). These observations highlight the critical role of our geometric consistency regulariza-
tion in mitigating the performance sensitivity to the accuracy of the vector field. In other words,
blur data augmentation with inaccurate vector fields reduces performance gain but does not degrade
baseline deblurring performance, as long as our motion estimator is trained under strong geometric
consistency.

Table 13: Ablation study on performance sensitivity under perturbations to the vector fields. The
performance exceeding the baseline is indicated in bold.

Methods λ2
Perturbations

0 0.001 0.005 0.01
Baseline

(No Augmentation) - 32.56

With GeoSyn
1.0 32.92 32.90 32.83 32.70
0.5 32.77 32.77 32.75 32.51
0.0 32.52 32.51 32.49 32.49

F.3 BLUR DIVERSITY AND ITS RELATIONSHIP M

When the number of camera positions M is small (e.g., M = 4), the expressive power of complex
motion using only four camera exposures becomes inherently constrained. Namely, complex mo-
tion trajectory is represented by a simplified form, leading to a lack of blur diversity. In contrast,
increasing M to 16 provides the capability to capture intricate motion patterns, leading to better blur
diversity. As shown in Fig. 9, we observe that the larger number of M , i.e., M = 16 yields more
accurate motion results, ultimately promoting a wider range of blur patterns. Therefore, it leads to
better final deblurring results as discussed in Section 4.5.

F.4 VISUAL COMPARISON ON BLUR TRAJECTORIES

Our primal goal is to build a controllable blur synthesizer that estimates motions from a single blur
image. This enables our blur synthesizer to be directly applicable to various blur datasets (blur-
sharp image pairs) such as GoPro (Nah et al., 2017), RealBlur (Rim et al., 2020), RSBlur (Rim
et al., 2022), BSD (Zhong et al., 2020), and ReLoBlur (Li et al., 2023a). However, we can compare
blur trajectories estimated by our blur synthesizer with those obtained from video frames using an
off-the-shelf optical flow model, e.g., RAFT (Teed & Deng, 2020). To this end, we utilize GoPro,
which provides video frame images that allow us to extract optical flow maps. Then, we convert
these optical flow maps into vector fields to represent a real-like blur trajectory, which provides a
straightforward way to verify that our blur trajectory aligns well with real ones. The results are visu-
alized in Fig. 10. We found that the blur trajectories are nearly identical, confirming the alignment
between our blur trajectories and the real one. Despite estimating blur trajectories from single blur
images, our method is comparable to those derived from video frames.

G GENERALIZATION TO REAL-WORLD BLUR IMAGES

We provide additional visual results on real-world examples to demonstrate the effectiveness of our
blur synthesizer, compared with recent deblurring models such as FFTformer (Kong et al., 2023)
and FFTformer + ID-Blau (Wu et al., 2024). We download and use the deblurring models trained
with RealBlur-J (Rim et al., 2020). We compare them with our method trained with RealBlur-J for
a fair comparison, as illustrated in Fig. 11.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Blur Image Synthetic Blur
(M = 4)

Synthetic Blur
(M = 16)

Blur Trajectory
(M = 4)

Blur Trajectory
(M = 16)

Figure 9: Blur diversity and its relationship with the number of camera positions M .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Blur Image Synthetic Blur Image Blur Trajectory
(video frames)

Blur Trajectory
(ours)

Figure 10: Comparison results on blur trajectories (video frame images vs. single blur image).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Blur Input

(c) FFTformer + ID-Blau

(a) Blur Input

(c) FFTformer + ID-Blau

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Blur Input

(c) FFTformer + ID-Blau

(a) Blur Input

(c) FFTformer + ID-Blau

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Blur Input

(c) FFTformer + ID-Blau

(a) Blur Input

(c) FFTformer + ID-Blau

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Blur Input

(c) FFTformer + ID-Blau

(a) Blur Input

(c) FFTformer + ID-Blau

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) Blur Input

(c) FFTformer + ID-Blau

(a) Blur Input

(c) FFTformer + ID-Blau

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) Blur Input

(c) FFTformer + ID-Blau

(a) Blur Input

(c) FFTformer + ID-Blau

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

(b) FFTformer

(d) FFTformer + GeoSyn (ours)

Figure 11: Visual results on real-world blur images.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

H QUALITATIVE RESULTS ON GOPRO

Blur ID-Blau GeoSyn (ours) Sharp

Figure 12: Qualitative results on GoPro (Nah et al., 2017). All models are trained with GoPro and
are based on MIMO-UNet (Cho et al., 2021).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

I QUALITATIVE RESULTS ON REALBLUR-J

(a) Blur Input (b) ID-Blau (c) GeoSyn (ours) (d) Ground-Truth Sharp

Figure 13: Qualitative deblurring results on RealBlur-J (Rim et al., 2020). All models are trained
with RealBlur-J and are based on NAFNet-64 (Chen et al., 2022).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

J BLUR TRAJECTORY RESULTS

Blur Image Synthetic Image 2D Blur Trajectory 3D Blur Trajectory

Figure 14: Synthesized blur images and blur trajectories on 2D camera motion (1st row), 3D camera
motion (2 - 3rd rows), and 3D object + camera motion examples (4 - 6th rows).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

K CONTROLLABLE BLUR IMAGE SYNTHESIS ON GOPRO

(a) Blur Image (b) Synthesized Image (c) Phase 90◦ (d) Amplitude 2×

Figure 15: Controllable blur image synthesis on GoPro (Nah et al., 2017).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

L CONTROLLABLE BLUR IMAGE SYNTHESIS ON REALBLUR-J

(a) Blur Image (b) Synthesized Image (c) Phase 90◦ (d) Amplitude 2×

Figure 16: Controllable blur image synthesis on RealBlur-J (Rim et al., 2020).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

M MORE OBJECT MOTION EXAMPLES

Blur Image Synthetic Blur Image Sharp Image Blur Trajectory

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Blur Image Synthetic Blur Image Sharp Image Blur Trajectory

Figure 17: Blur synthesis results and their blur trajectories for object motion using RSBlur (Rim
et al., 2022).

34

	Introduction
	Related Works
	Controllable 3D-Aware Blur Synthesis
	2D blur synthesis model
	3D-aware blur synthesis model
	Ambiguity regularization and total loss
	Controllable blur image synthesis

	Experiments
	Experimental setup
	Main results
	Comparison to other methods
	Various forms of vector fields
	Ablation study

	Conclusions
	More details on Projected 3D residual vector
	Data augmentation strategy
	Consideration on the compensation network
	Generalization ability
	Comparison results with ID-Blau
	Comprehensive analysis on GeoSyn
	Effects on
	Performance sensitivity and its relationship to geometric consistency
	Blur diversity and its relationship M
	Visual comparison on blur trajectories

	Generalization to real-world blur images
	Qualitative results on GoPro
	Qualitative results on RealBlur-J
	Blur trajectory results
	Controllable blur image synthesis on GoPro
	Controllable blur image synthesis on RealBlur-J
	More object motion examples

