
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

GALERKIN MEETS LAPLACE:
FAST UNCERTAINTY ESTIMATION IN NEURAL PDES

Christian Jimenez Beltran1, Antonio Vergari2*, Aretha L. Teckentrup1*,
Konstantinos C. Zygalakis1* ∗
1School of Mathematics and Maxwell Institute for Mathematical Sciences, 2 School of Informatics
University of Edinburgh
{s2113174,avergari,a.teckentrup,k.zygalakis}@ed.ac.uk

ABSTRACT

The solution of partial differential equations (PDEs) by deep neural networks
trained to satisfy the differential operator has become increasingly popular. While
these approaches can lead to very accurate approximations, they tend to be over-
confident and fail to capture the uncertainty around the approximation. In this
work, we propose a Bayesian treatment to the deep Galerkin method (Sirignano &
Spiliopoulos, 2018), a popular neural approach for solving parametric PDEs. In
particular, we reinterpret the deep Galerkin method as the maximum a posteriori
estimator corresponding to a likelihood term over a fictitious dataset, leading thus
to a natural definition of a posterior. Then, we propose to model such posterior via
the Laplace approximation, a fast approximation that allows us to capture mean-
ingful uncertainty in out of domain interpolation of the PDE solution and in low
data regimes with little overhead, as shown in our preliminary experiments.

1 INTRODUCTION

Partial differential equation (PDE) models appear in numerous areas of science and engineering,
including geophysics, climate modelling and medical imaging to name a few (De Marsily, 1986;
Isaacson et al., 2004; Schneider et al., 2017). In the last few years, deep learning approaches that
use neural networks to approximate the solution of PDEs have shown remarkable success in terms of
approximating certain classes of high-dimensional PDEs (Raissi et al., 2019; Kelshaw et al., 2022),
thus providing fast alternatives to classical numerical methods such as finite differences, elements,
volumes and spectral methods (Larsson & Thomée, 2003).

One of the first deep learning approaches designed for solving PDEs is the physics-informed neural
networks (PINNs) (Raissi et al., 2019). PINNs define a suitable loss function that takes explicitly
into account the PDE in question over specific collocation points, as well as over specific initial
and boundary data. To do so, PINNs require fixed collocation points at training time, an aspect
that can become problematic for high-dimensional PDEs. In addition, in many applications, one is
interested in solving the PDE for a range of parameters, which is something that cannot be addressed
by PINNs. The deep Galerkin method (DGM) (Sirignano & Spiliopoulos, 2018) can deal with these
two issues by averaging oversampled collocation points and initial and boundary data during training
and adding the PDE parameters as additional inputs to the neural network.

While these neural approaches can scale PDE solving to high dimensions, they still require large
amounts of data to be trained and tend to be highly overconfident even when their approximations are
far from the ground truth. This is especially problematic when they are used as surrogate solutions on
collocations unseen during training (out-of-sample) and when trying to perform statistical analysis of
real-world differential equation models, as it is important to have calibrated estimates of uncertainty
with regards to our numerical approximations (Hennig et al., 2015; Conrad et al., 2017).

In this work, we address this issue for DGMs. We start by reinterpreting the DGM as the maximum
a posteriori estimator corresponding to a likelihood term over a fictitious data set, leading thus to a
natural Bayesian treatment. Then, we propose a simple and effective solution: approximating the

∗Shared supervision.

1

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0.0 0.2 0.4 0.6 0.8 1.0

10

0

10

u(
t,y

)

MCD

0.0 0.2 0.4 0.6 0.8 1.0

DeepGaLA
500obs

0.0 0.2 0.4 0.6 0.8 1.0

DeepGaLA
1500obs

t = 0.15 (In-sample)

0.0 0.2 0.4 0.6 0.8 1.0

y

10

0

10

u(
t,y

)

NN Prediction
NN Uncertainty (2 2)
Exact Sol

0.0 0.2 0.4 0.6 0.8 1.0

y
0.0 0.2 0.4 0.6 0.8 1.0

y

t = 2 (Out-sample)

Figure 1: Our DEEPGALA extends the DGM to provide meaningful uncertainty on out-of-
sample input locations (bottom) for the PDE solution of (PDE1) for θ = 0.001 and when trained
over 1000 (second column) and 3000 (third column) samples respectively. Monte Carlo Dropout
(MCD) struggles to approximate the solution even in-sample.

corresponding posterior via Laplace’s method. This allows us to deliver fast uncertainty estimation
over the PDEs that can be meaningful when training data is scarce or we evaluate our surrogate
solution on out-of-sample collocations (see Figure 1 and Figure 2).

2 THE DEEP GALERKIN METHOD

We consider a general parametric PDE (see e.g. Deveney et al. (2023)), given by

A(x, u(x; θ); θA) = h(x; θh), u(∂x; θ) = b(∂x; θb), x ∈ Ω, ∂x ∈ ∂Ω, θ ∈ Θ (1)

where the domain Ω ⊂ Rd is the input space with boundary ∂Ω, and Θ ⊂ Rp is the parameter space
for θ = (θA, θh, θb). The differential operator A is parameterized by θA, whereas the functions
h and b are parameterized by θh and θb, respectively. We denote by u(x; θ) the solution of the
parametric PDE. Note that A could be non-linear, and that time could be a component of the input
x. We want to use a neural network (NN) to approximate u(x; θ). To this end, consider a NN fW
with L layers and parameterized by W = {W1, . . . ,WL}.1 The NN takes as inputs a point x ∈ Ω
in the closure of the input domain and a parameter value θ ∈ Θ, and it is trained to approximate the
solution of the PDE, fW(x; θ) ≈ u(x; θ).

The deep Galerkin method (DGM) (Sirignano & Spiliopoulos, 2018) uses a mesh-free strategy: At
each iteration of the training step, K collocations for xi, ∂xi, and θi are sampled from densities
πp, πb, and πθ, respectively. Then, the NN fW is trained to minimize the following loss:

1

K

∑K

i=1
ℓ(Di;W) =

1

K

∑K

i=1
(ℓh(Dh,i;W) + ℓb(Db,i;W)) , (2)

where D = {Di}Ki=1 = {Dh,i}Ki=1 ∪ {Db,i}Ki=1, and Dh,i = {xi, θi} and Db,i = {∂xi, θi}. Here,
ℓh(Dh,i;W) = (A(xi, fW(xi, θi); θA,i)− h(xi; θh,i))

2 measures the error in the approximation of
the differential operator and ℓb(Db,i;W) = (fW(∂xi, θi)− b(∂xi; θb,i))

2 measures the error in the
boundary conditions. Optimization is carried out by gradient-based approaches, e.g., SGD, possi-
bly increasing the number of samples K and the number of iterations. In this work, we followed
a two-step training as suggested by He et al. (2020). Although conceptually simple, there are no
convergence guarantees for DGM, and the error in predictions made by the NN fW could be sig-
nificant. In applications where the NN is then used in a computational pipeline, such as using NNs
to approximate the likelihood in an inverse problem (Deveney et al., 2023), it becomes crucial to
quantify the uncertainty in the predictions of the NN to avoid overconfident and biased inference.

1We consider the biases to be included in each Wl. Note that other non-sequential architectures are possible.

2

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

3 DEEPGALA: LAPLACE APPROXIMATION FOR BAYESIAN DGM

In this section, we explain how to extend the DGM to allow for uncertainty quantification in its
predictions, using Bayesian theory and the Laplace approximation. Uncertainty quantification has
been thoroughly investigated for NNs as function approximators (Wilson & Izmailov, 2020; Wilson,
2020) and more recently also for neural PDE solvers such as PINNS and DeepOnets (Psaros et al.,
2023). To the best of our knowledge, this has not been done for neural parametric PDE solvers such
as DGM yet. Moreover, our approach emphasises more precisely assessing the uncertainty resulting
from limited sample numbers, training methods, and NN hyperparameters.

3.1 BAYESIAN RE-INTERPRETATION OF DGM

In a Bayesian version of DGM, we are interested not in a single parameter configuration W, but
in its posterior distribution p(W | D). To this end, we first interpret the data D to be the fictious
dataset built by K collocations points sampled from πp, πb, and πθ. Then, we interpret the loss
in equation 2 as a negative log-likelihood by considering Gaussian noise around the fictitious data
observed at the collocation points. By doing this, the likelihood p(D|W) characterises how well a
choice of weights W approximates the PDE solution u(x; θ), and is given by

p(D|W) = p(Dh|W)p(Db|W) =
1

(2πσ2)2K

K∏
i=1

exp

(
−ℓh(Dh,i;W) + ℓb(Db,i;W)

2σ2

)
, (3)

where we assume that the likelihoods of the collocations Dh and Db are conditionally independent
given W. We further introduce a Gaussian prior distribution p(W). By Bayes’ rule, we then have the
posterior distribution p(W |D) ∝ p(D|W)p(W) on the weights W given the fictitious training data
D. Note that although not explicitly indicated, the posterior p(W |D) is also conditioned on A, h
and b from equation 1, since these are used to define the likelihood. While intractable in general,
p(W |D) is amenable to a fast and and effective approximation, as discussed next.

3.2 A LAPLACE APPROXIMATION OF BAYESIAN DGM

We propose a Laplace Approximation (LA) of the posterior of our Bayesian DGM, which we call
DEEPGALA– Deep Galerkin via Laplace. The LA is a well-known method for approximating in-
tractable posterior distributions as a Gaussian distribution centred on the maximum a posteriori
(MAP) solution WMAP, i.e.,

argmin
W

1

2σ2

K∑
i=1

ℓ(Di;W) + r(W), (4)

where the negative log-prior r(W) = −log p(W) is an L2 regularizer (weight decay) in our experi-
ments. Despite its simplicity (assuming unimodality of the posterior), the LA has been demonstrated
to be a solid alternative to more complex approximations such as MCMC and VI on a number of
uncertainty quantification tasks for Bayesian deep learning (Daxberger* et al., 2021). To compute
the LA, the first step is to find the minimizer WMAP of equation 4, which can be achieved by training
fW via gradient-based optimization. The second step is to fit the local Gaussian distribution, namely
N (W ;WMAP,Λ) where Λ−1 is the Hessian of the negative log-posterior evaluated at WMAP. In
our case, r(W) is a weight decay regularizer, which corresponds to a Gaussian prior distribution
p(W) = N (W ; 0, γ2I) (Daxberger* et al., 2021), Λ−1 taking the form

Λ−1 = − 1

2σ2

K∑
i=1

∇2
W log p(Di|W)|WMAP − γ−2I. (5)

Exactly computing Λ−1 above can be computationally demanding, as W in modern NNs can be very
large (Nilsen et al., 2019). To this end, we employ a fast approximation of the covariance in DEEP-
GALA, by leveraging a number of heuristics from the modern Bayesian deep learning literature.
First, we consider only the weights WL of the last layer of f , which is generally enough to deliver
good uncertainty estimates as noted in Sharma et al. (2023). 2 Second, we subsample a subset K ′

of all the training points seen by f during training. Third, we either compute the full Hessian or
approximate the Hessian by its diagonal (Pearlmutter, 1994). Appendix A details the whole process.

2This also allows us to compute the posterior predictive in closed-form, see Appendix A.1 for details.

3

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

1.0 0.5 0.0 0.5 1.0
1

0

1

u(
t,y

)

MCD

1.0 0.5 0.0 0.5 1.0

Deep Ensemble

1.0 0.5 0.0 0.5 1.0

DeepGaLA
500obs

1.0 0.5 0.0 0.5 1.0

DeepGaLA
1500obs

t = 0.25 (In-sample)

1 0 1
y

2

0

2
u(

t,y
)

NN Prediction
NN Uncertainty (2)
Exact Sol

1 0 1
y

1 0 1
y

1 0 1
y

t = 0.75 (Out-sample)

Figure 2: DEEPGALA provides meaningful uncertainty on out-of-sample input locations (bot-
tom) for the Burger’s solution of equation PDE2 for θ = 0.01/π and when trained over 500 (third
column) and 1500 (fourth) samples. Monte Carlo Dropout (MCD) and Deep Ensembles struggled
to approximate the solution of equation PDE2.

4 EXPERIMENTS AND DISCUSSION

We aim to answer the following research questions: RQ1) does DEEPGALA capture meaningful
uncertainty over out-of-sample inputs x? RQ2) does increasing training size properly reduce the
epistemic uncertainty highlighted by DEEPGALA?

PDEs. To this end, we consider two PDEs defined over x = (y, t): A heat equation with external
heat source:

∂u

∂t
= θ

∂2u

∂y2
+ sin(5πy), t > 0, θ > 0 and y ∈ [0, 1], (PDE1)

with conditions u(y, 0) = 4 sin(3πy)+9 sin(7πy), and u(0, t) = u(1, t) = 0; and Burgers Equation

∂u

∂t
+ u

∂u

∂y
− θ

∂2u

∂y2
= 0, t > 0, θ > 0 and y ∈ [−1, 1], (PDE2)

with conditions u(y, 0) = − sin(πy), and u(−1, t) = u(1, t) = 0. PDE1 admits analytic solutions,
allowing us to directly compare the performance of DEEPGALA both in terms of accuracy and
uncertainty. For PDE2, we use the results obtained by the work of Raissi et al. (2019) for θ = 0.01/π
as a baseline.

The experiments were carried out in a machine with 12th Gen Intel Core i7-1265Ux12, 32 GB of
RAM and Ubuntu 22.04 operating system.

NNs models. For both PDEs we use a feed-forward NN with three layers and 40 neurons using
hyperbolic tangent non-linearities, trained with Adam for 1,200 epochs, a learning rate of 0.01 and
regularizer, γ, of 0.0015 for PDE1 and 0.0001 for PDE2, followed by the L-BFGS optimizer in
a two-step optimisation, as recommended by He et al. (2020). We show results for the diagonal
approximation in Appendix B. The mean time to fit and call the full Hessian LA for PDE1 and
PDE2 was 0.081 and 0.003, and 0.077 and 0.0044 seconds respectively.

Alternative UQ baselines. We test our approach against Deep Ensemble (DE) (Lakshminarayanan
et al., 2017b) and Monte Carlo Dropout (MCD) (Lakshminarayanan et al., 2017a). In order to
calculate the mean and variance for the MCD, 1,000 samples were used, with the dropout layer set
to p = 0.05 for PDE1 and p = 0.1 for PDE2, respectively. For the PDE2, the NN architecture stays
the same, however for the PDE1, five hidden layers comprising forty neurons were employed. The
reason for the size modification was that smaller NN were not producing satisfactory results for this
specific PDE. Five NN’s of three layers and forty neurons were trained to approximate the PDE2
using the DE method in accordance with Lakshminarayanan et al. (2017a). Nevertheless, obtaining
satisfactory results for the PDE1 was surprisingly challenging; this difficulty may have arisen from
the PDE’s initial condition. That’s the reason why we don’t present the results utilizing this baselines
for the PDE1.

4

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

RQ1) In- vs out-of-sample. For both PDEs, we provide DEEPGALA only a portion of the input
at training time (in-sample), expecting it to extrapolate poorly – but delivering good uncertainty
– on out-of-sample inputs. In particular, we draw our in-sample collocations from the following
intervals: yi ∼ U [0, 1], ti ∼ U [0, 1], θi ∼ U [0.0001, 0.05] for PDE1 and yi ∼ U [−1, 1], ti ∼
U [0, 0.5], θi ∼ U [0.0001, 0.05] for PDE2, where U denotes the uniform distribution. The top (in-
sample) and bottom (out-of-sample) sides of Figure 1 and Figure 2 show two uncertainty surfaces
representing 95% and 68% confidence intervals around the MAP estimate for DEEPGALA for PDE1
and PDE2 respectively. Reassuringly, these uncertainties increase when the model makes more
mistakes, highlighting how DEEPGALA can be used to indicate that the NN are “aware” that they
may be forecasting incorrectly. In contrast, the uncertainty exhibits no specific behaviour when
examined both in- and out-of-sample for the methods MCD and DE, nor do they provide good
approximations at the mean.

RQ2) training size effect. We train DEEPGALA over sample sizes of 1,000, and 3,000 for PDE1
and 500, and 1,500 for PDE2, plotting the results in the top and bottom halves of Figure 1 and Figure
2. All models trained with more samples outperform the other (both for in-sample and out-sample
values of t). Nonetheless, the exact solution is within the uncertainty range of the models for this
particular value of t. Again, DEEPGALA is shown to be an effective way to estimate the epistemic
uncertainty of NNs for PDE solving, which can be useful in quantifying how much data can improve
performance. As such, we plan to use the uncertainty DEEPGALA provides in an active learning
loop to select what are the most promising collocation to improve accuracy of the PDE solution.

5 CONCLUSION AND DISCUSSION

We proposed DEEPGALA as a fast and effective way to estimate uncertainty in deep neural PDE
solvers, and tested it on preliminary benchmarks with encouraging results. We plan to evaluate
DEEPGALA to more complex PDEs, extending it with recent advancements in Bayesian deep learn-
ing (Wilson, 2020) and comparing to other Bayesian PDE solvers such as the ones presented in
Psaros et al. (2023), which however are limited to non-parametric PDEs. We hope that scaling un-
certainty estimation can lead to a renewed interest for efficient probabilistic numerics for complex
neural PDEs in the real-world.

ACKNOWLEDGEMENTS

The Maxwell Institute of Mathematical Sciences and the University of Edinburgh’s School of Math-
ematics provided funding for this research. AV was supported by the ”UNREAL: Unified Reasoning
Layer for Trustworthy ML” project (EP/Y023838/1) selected by the ERC and funded by UKRI EP-
SRC

5

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

REFERENCES

Patrick R. Conrad, Mark Girolami, Simo Särkkä, Andrew Stuart, and Konstantinos Zygalakis. Statis-
tical analysis of differential equations: introducing probability measures on numerical solutions.
Statistics and Computing, 27(4):1065–1082, 2017.

E. Daxberger*, A. Kristiadi*, A. Immer*, R. Eschenhagen*, M. Bauer, and P. Hennig.
Laplace Redux — Effortless Bayesian Deep Learning. In Advances in Neural Informa-
tion Processing Systems 34 (NeurIPS 2021), pp. 20089–20103. Curran Associates, Inc.,
December 2021. URL https://proceedings.neurips.cc/paper/2021/file/
a7c9585703d275249f30a088cebba0ad-Paper.pdf. *equal contribution.

Ghislain De Marsily. Quantitative hydrogeology. Academic Press, London, 1986.

Teo Deveney, Eike H. Mueller, and Tony Shardlow. Deep Surrogate Accelerated Delayed-
Acceptance Hamiltonian Monte Carlo for Bayesian Inference of Spatio-Temporal Heat Fluxes
in Rotating Disc Systems. SIAM/ASA Journal on Uncertainty Quantification, 11(3):970–995,
2023.

QiZhi He, David Barajas-Solano, Guzel Tartakovsky, and Alexandre M. Tartakovsky. Physics-
informed neural networks for multiphysics data assimilation with application to subsurface
transport. Advances in Water Resources, 141:103610, 2020. ISSN 0309-1708. doi: https:
//doi.org/10.1016/j.advwatres.2020.103610. URL https://www.sciencedirect.com/
science/article/pii/S0309170819311649.

Philipp Hennig, Michael A. Osborne, and Mark Girolami. Probabilistic numerics and uncer-
tainty in computations. Proceedings of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 471(2179):20150142, 2015. doi: 10.1098/rspa.2015.0142. URL https:
//royalsocietypublishing.org/doi/abs/10.1098/rspa.2015.0142.

David Isaacson, Jennifer L Mueller, Jonathan C Newell, and Samuli Siltanen. Reconstructions of
chest phantoms by the D-bar method for electrical impedance tomography. IEEE Transactions
on medical imaging, 23(7):821–828, 2004.

Daniel Kelshaw, Georgios Rigas, and Luca Magri. Physics-informed CNNs for super-resolution of
sparse observations on dynamical systems. arXiv preprint arXiv:2210.17319, 2022.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017a.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017b.

Stig Larsson and Vidar Thomée. Partial differential equations with numerical methods. Springer,
2003.

Geir K Nilsen, Antonella Z Munthe-Kaas, Hans J Skaug, and Morten Brun. Efficient computation
of hessian matrices in tensorflow. arXiv preprint arXiv:1905.05559, 2019.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–160,
1994.

Apostolos F. Psaros, Xuhui Meng, Zongren Zou, Ling Guo, and George Em Karniadakis. Uncer-
tainty quantification in scientific machine learning: Methods, metrics, and comparisons. Journal
of Computational Physics, 477:111902, 2023. ISSN 0021-9991. doi: https://doi.org/10.1016/
j.jcp.2022.111902. URL https://www.sciencedirect.com/science/article/
pii/S0021999122009652.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

6

https://proceedings.neurips.cc/paper/2021/file/a7c9585703d275249f30a088cebba0ad-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/a7c9585703d275249f30a088cebba0ad-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0309170819311649
https://www.sciencedirect.com/science/article/pii/S0309170819311649
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2015.0142
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2015.0142
https://www.sciencedirect.com/science/article/pii/S0021999122009652
https://www.sciencedirect.com/science/article/pii/S0021999122009652
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Tapio Schneider, Shiwei Lan, Andrew Stuart, and João Teixeira. Earth system modeling 2.0: A
blueprint for models that learn from observations and targeted high-resolution simulations. Geo-
physical Research Letters, 44(24):12–396, 2017.

Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do Bayesian Neu-
ral Networks Need To Be Fully Stochastic? In Francisco Ruiz, Jennifer Dy, and Jan-
Willem van de Meent (eds.), Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pp.
7694–7722. PMLR, 25–27 Apr 2023. URL https://proceedings.mlr.press/v206/
sharma23a.html.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solv-
ing partial differential equations. Journal of Computational Physics, 375:1339–1364, 2018.
ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.08.029. URL https://www.
sciencedirect.com/science/article/pii/S0021999118305527.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. Advances in neural information processing systems, 33:4697–4708, 2020.

Andrew Gordon Wilson. The case for Bayesian deep learning. arXiv preprint arXiv:2001.10995,
2020.

7

https://proceedings.mlr.press/v206/sharma23a.html
https://proceedings.mlr.press/v206/sharma23a.html
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://www.sciencedirect.com/science/article/pii/S0021999118305527

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

A EFFICIENT COMPUTATION OF THE LAPLACE APPROXIMATION

Following Sharma et al. (2023), we consider partially stochastic networks and introduce uncertainty
only in WL, the parameters in the last layer of fW. The last layer, involving only an affine trans-
formation, can be represented as fW (x, θ) = WL · [1, ϕ(yL−1(x, θ))], where WL is the vector
of weights and biases, and ϕ(yL−1(x, θ)) is the vector of outputs of the penultimate layer for in-
put (x, θ). Let’s just focus on calculating the Hessian for one input zi = (xi, θi) and compute
∇2

WL
ℓ(zi;W), where we will use the abbreviation liand fi,W to denote ℓ(zi;W) and fW (zi). There-

fore,

∇2
WL

li = ∇W

∂li

∂fi,W

∂fi,W
∂w0

L
∂li

∂fi,W

∂fi,W
∂w1

L

...
∂li

∂fi,W

∂fi,W
∂wK

L

 =

∂2li

∂f2
i,W

∂fi,W
∂w0

L

∂fi,W
∂w0

L
. . . ∂2li

∂f2
i,W

∂fi,W
∂w0

L

∂fi,W
∂wK

L

...
. . .

...
∂2li

∂f2
i,W

∂fi,W
∂wK

L

∂fi,W
∂w0

L
. . . ∂2li

∂f2
i,W

∂fi,W
∂wK

L

∂fi,W
∂wK

L

+

∂li

∂fi,W

∂2fi,W
∂w02

L
. . . ∂li

∂fi,W

∂2fi,W
∂w0

L∂wK
L

...
. . .

...
∂li

∂fi,W

∂2fi,W
∂wK

L ∂w0
L

. . . ∂li
∂fi,W

∂2fi,W
∂wK2

L

 . (6)

In the special case of a last layer with only an affine transformation, the second term in the previous
equation becomes zero. Additionally, the terms ∂fi,W

∂wk
L

= ϕk(yL−1(zi)) and ∂fi,W
∂w0

L
= 1. Conse-

quently, we can reformulate the previous equation as:

∇2
WL

li = JWL
(fi,W)

∂2li
∂f2

i,W

JWL
(fi,W)

T
=

=
∂2li
∂f2

i,W

1 ϕ1(yL−1(zi)) . . . ϕK(yL−1(zi))

ϕ1(yL−1(zi)) ϕ1(yL−1(zi))
2 . . . ϕK(yL−1(zi))ϕ1(yL−1(zi))

...
...

. . .
...

ϕK(yL−1(zi)) ϕ1(yL−1(zi))ϕK(yL−1(zi)) . . . ϕK(yL−1(zi))
2

 .

(7)

Another observation is that the last equation is akin to the Gauss-Newton Matrix (GNN), up to a
constant G(W) = 1

N

∑N
n=1 JW (fW (zn))

T∇2
f l(fW (zn))JW (fW (zn)). The GNN is a first-order

Taylor approximation of the loss function. We can compute the equation 5 by using the next equa-
tion:

Λ−1 = −γ−2I − 1

2σ2

K∑
i=1

(JWL
(fW (zi))∇2

f ℓ(Dh,i;W)JWL
(fW (zi))

T
+

JWL
(fW (∂zi))∇2

f ℓ(Db,i;W)JWL
(fW (∂zi))

T
), (8)

where JWL
(fW (zi)) = [∂fW (zi)

∂w0
L

, ..., ∂fW (zi)
∂wc

L
]T . Note that equation 8 represents a full Hessian; for

a big enough NN, we can approximate even further to obtain a diagonal approximation by using the
Hadamard product. Thus, the Diagonal approximation of the Hessian is computed in the following
way:

8

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Λ−1 = −γ−2I − 1

2σ2

K∑
i=1

(JWL
(fW (zi))⊙∇2

f ℓ(Dh,i;W)⊙ JWL
(fW (zi))

T
+

JWL
(fW (∂zi))⊙∇2

f ℓ(Db,i;W)⊙ JWL
(fW (∂zi))

T
). (9)

A.1 POSTERIOR PREDICTIVE

Finally, in order to perform predictions, one needs to compute the posterior predictive distribu-
tion. This is done in the following way. Given our focus on the last layer of fW , linearity
in the weights W is observed. Therefore, for a test input ẑi of the neural network, we obtain
p(f∗|fW (ẑi),D) = N (f∗; fWMAP

(ẑi), ϕ(yzi,L−1)
TΛϕ(yzi,L−1)), where fWMAP is the output of

the neural network at the MAP. In the case of a diagonal Hessian, Λ is easily obtained by computing
the inverse of each value on the diagonal. For a full Hessian, the process involves first computing
the lower triangular decomposition, where Λ−1 = LTL, then finding the inverse of L, and finally
obtaining Λ = L−1(L−1)T .

B DIAGONAL HESSIAN UNCERTAINTY

Figures 3 and 4 depict the results of DEEPGALA when applying a diagonal approximation to the
Hessian to quantify uncertainty for the solutions of PDE1 and PDE2. The mean time to fit and call
the diagonal LA for the PDE1 and PDE was 0.07 and 0.004, and 0.067 and 0.06 seconds respectively.
As we can see, the uncertainty estimation has been reduced; yet, our method continues to be a good
tool to predict how much performance may be improved. However, we still need to understand and
quantify how much uncertainty estimation changes when utilising full or diagonal Hessian.

10

0

10

u(
y,

t)

t = 0.15 (In-sample) t = 2 (Out-sample)

0.0 0.2 0.4 0.6 0.8 1.0
y

10

0

10

u(
y,

t)

NN MAP
Exact Sol
NN Uncertainty (3 * 2)

0.0 0.2 0.4 0.6 0.8 1.0
y

Figure 3: DEEPGALA Diagonal Hessian Approximation for the PDE1 with θ = 0.001 : Uncer-
tainty results for in-sample (left column) and out-of-sample (right column) inputs when DEEPGALA
is trained over 1000 (top) and 3000 (bottom) data points respectively.

9

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

2
0
2

u(
y,

t)

t = 0.25 (In-sample) t = 0.75 (Out-sample)

1.0 0.5 0.0 0.5 1.0
y

2
0
2

u(
y,

t)

NN MAP
NN Uncertainty (2)
Numerical Sol

1.0 0.5 0.0 0.5 1.0
y

Figure 4: DEEPGALA Diagonal Hessian Approximation for the PDE2 with θ = 0.01/π : Un-
certainty results for in-sample (left column) and out-of-sample (right column) inputs when DEEP-
GALA is trained over 500 (top) and 1500 (bottom) data points respectively.

10

	Introduction
	The deep Galerkin method
	DeepGaLa: Laplace Approximation for Bayesian DGM
	Bayesian re-interpretation of DGM
	A Laplace approximation of Bayesian DGM

	Experiments and Discussion
	Conclusion and Discussion
	Efficient Computation of the Laplace Approximation
	Posterior predictive

	Diagonal Hessian uncertainty

